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Abstract
We propose a novel Bayesian inference frame-
work for distributed differentially private linear re-
gression. We consider a distributed setting where
multiple parties hold parts of the data and share
certain summary statistics of their portions in
privacy-preserving noise. We develop a novel
generative statistical model for privately shared
statistics, which exploits a useful distributional
relation between the summary statistics of linear
regression. We propose Bayesian estimation of
the regression coefficients, mainly using Markov
chain Monte Carlo algorithms, while we also pro-
vide a fast version that performs approximate
Bayesian estimation in one iteration. The pro-
posed methods have computational advantages
over their competitors. We provide numerical
results on both real and simulated data, which
demonstrate that the proposed algorithms provide
well-rounded estimation and prediction.

1. Introduction
Linear regression is a mathematical method that lies at the
core of statistical research. Many researchers have been
working on linear regression since the 19th century, and
hence, many well-known solution methods exist. On a sepa-
rate note, privacy-preserving statistical learning has gained
popularity and importance in recent years, with differential
privacy prevailing as the most commonly used definition
for privacy (Dwork, 2006; Dwork et al., 2014a; Dankar &
El Emam, 2013). As a result, there is a recent but growing
interest in differentially private linear regression.

Many works in the data privacy literature do not mainly
focus on regression but are motivated by or can be applied
to regression. As an example, differentially private empiri-
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cal risk minimisation (Chaudhuri et al., 2011; Bassily et al.,
2014; Abadi et al., 2016; Kuru et al., 2022) can be applied to
regression once it is cast as a data-driven optimisation prob-
lem. Many general-purpose Bayesian differentially private
estimation methods can also be used in regression problems.
Williams & Mcsherry (2010) is one of the first works that
considered a hierarchical model for the privatised data and
Bayesian estimation for the model parameters. Zhang et al.
(2016) analyse several differential privacy mechanisms for
posterior sampling and suggest using these mechanisms also
for linear regression. Dimitrakakis et al. (2017) developed a
posterior sampling query algorithm to combine differential
privacy and Bayesian inference. Contrary to those one-
sample approaches, general-purpose differentially private
Markov chain Monte Carlo (MCMC) algorithms, which
aim to identify the whole posterior distribution via iterative
sampling, can also be applied to regression (Wang et al.,
2015; Foulds et al., 2016; Wang et al., 2015; Yıldırım &
Ermiş, 2019; Heikkilä et al., 2019; Gong, 2022; Alparslan
& Yıldırım, 2022; Ju et al., 2022).

Several works in the literature are somewhat more directly
related to differentially private regression. Zhang et al.
(2012) have suggested a functional mechanism method,
which is based on perturbing polynomial objective functions
with privacy-preserving noise. As an alternative, Dwork
et al. (2014b); Wang (2018) considered perturbation of
summary statistics. Alabi et al. (2022) provide a techni-
cal discussion on different point estimation methods for
differentially private simple linear regression, (that is when
we have a single feature). Ferrando et al. (2022) present a
method to compute confidence intervals for the coefficients
of linear regression. Cai et al. (2021) study the rates of con-
vergence for parameter estimation with differential privacy
via output perturbation, where a non-private estimator is
perturbed. All those works consider point estimation of the
linear regression parameters.

In this paper, we focus on differentially private distributed
Bayesian inference for the parameters of linear regression.
We use a novel hierarchical model that relies on a distri-
butional relationship (Proposition 3.1) between the sum-
mary statistics of linear regression, which, to the best of
our knowledge, has not been exploited so far. We propose
Bayesian inference algorithms that take perturbations of
summary statistics as observations. The general inferential
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tool we pick in this paper is MCMC, a well-known frame-
work for iterative sampling from posterior distributions. As
we shall see, the proposed MCMC algorithms in this paper
already have lower computational complexities per itera-
tion than their closest competitors in Bernstein & Sheldon
(2019). Additionally, we also propose much faster Bayesian
estimation methods that perform estimation in one iteration.
Finally, for the sake of generality, we assume a distributed
setting where the total dataset is shared among multiple par-
ties (data nodes), who want to collaborate for the inference
of a common parameter, see e.g., Heikkilä et al. (2017) for
such a setting. The non-distributed setting is just a special
case (single data holder) for our methodology.

This paper has connections with several works in the litera-
ture, yet it has significant differences from each of those, as
we shall explain below.

For the privacy-preserving mechanism, we consider adding
noise to summary statistics of linear regression, similarly
to Wang (2018); Bernstein & Sheldon (2019). The adaSSP
framework of Wang (2018) also motivates the fast Bayesian
estimation methods developed in this paper. However,
adaSSP is a point estimation method while we aim for a
posterior distribution. The latter work, Bernstein & Sheldon
(2019), is particularly related to this paper as they also study
Bayesian linear regression with differential privacy using
perturbed statistics of data. However, there are some im-
portant differences between our work and that of Bernstein
& Sheldon (2019). These differences stem from the choice
of summary statistics and the consequent hierarchical struc-
ture used for modelling linear regression. Those modelling
differences lead to significant differences in the inference
methods as well as significant computational advantages for
our methods. Specifically, the computational complexity of
our methods is O(d3), where d is the number of features.
This order is much less than O(d6) of Bernstein & Sheldon
(2019). Finally, neither Wang (2018) nor Bernstein & Shel-
don (2019) has considered a distributed learning setting as
we do in this paper, although both works can be modified
for the distributed setting after moderate modifications.

Foulds et al. (2016) and Heikkilä et al. (2017) are other dif-
ferentially Bayesian inference methods that target posterior
distributions of perturbed summary statistics of sensitive
data. Heikkilä et al. (2017) is particularly interesting be-
cause they consider a distributed setting and present linear
regression as their showcase example. However, we dif-
fer from those works in the way we model the perturbed
statistics and in the choice of inference methods. Specifi-
cally, Foulds et al. (2016); Heikkilä et al. (2017) treat the
perturbed statistics as if not perturbed, while we correctly
incorporate the effect of perturbation in our model.

Recently, Alparslan & Yıldırım (2022) and Ju et al. (2022)
employ data augmentation for modelling sensitive and pri-

vatised data and propose MCMC for Bayesian inference,
the latter having linear regression as a major application.
Their methods have O(n) complexity per iteration in gen-
eral where n is the number of instances in the data set, which
can be slow when n is large. In contrast, our methods are
scalable in data size since their computational complexities
do not depend on n. We note that Alparslan & Yıldırım
(2022, Section 4.2) also present an MCMC method scalable
with n that exploits the approximate normality of additive
summary statistics. However, a direct application of that
would lead to an algorithm with O(d6) computational com-
plexity (per iteration), like in Bernstein & Sheldon (2019).

The paper is organised as follows: In Section 2, we review
differential privacy. In Section 3, we lay out the hierarchical
model for differentially private distributed linear regression
with perturbed summary statistics. In Section 4, we present
and discuss the aspects of the proposed inference algorithms.
In Section 5, we provide numerical experiments. We con-
clude in Section 6.

Notation: Matrices and vectors are shown in bold-face no-
tation. For a matrixA, its transpose, trace, and determinant
(if they exist) are AT , tr(A), and |A|, respectively. Id is
the d × d identity matrix. For any sequence {ai}i≥0, we
write ai:j for (ai, . . . , aj). We write x ∼ P to mean the
random variable x has distribution P . N (m,Σ) stands for
the multivariate normal distribution with mean m and co-
variance Σ. The Wishart and inverse-Wishart distributions,
each with scale matrix Λ and κ degrees of freedom, are
shown asW(Λ, κ) and IW(Λ, κ), respectively. IG(a, b)
stands for the inverse-gamma distribution with shape and
scale parameters a and b. We augment those notations, e.g.,
withx, to denote the respective probability density functions
(pdf), e.g., N (x;m,Σ).

2. Differential Privacy
Differential privacy (Dwork, 2006; 2008) concerns ran-
domised algorithms that run on sensitive, or usually private,
data. A randomised algorithm takes an input data setD ∈ D
and returns a random output in O where the randomness is
intrinsic to the algorithm. A differentially private algorithm
constrains the difference between the probability distribu-
tions of the output values obtained from neighbouring data
sets. We say two data sets are neighbours if they have the
same size and differ by a single element, corresponding to a
single individual’s piece of data.

Definition 2.1 (Differential privacy). A randomised algo-
rithm M : D 7→ O is (ε, δ)-differentially private (DP) if for
any pair of neighbouring data sets D,D′ ∈ D and for any
subset O ⊆ O of the of support domain, it satisfies

P[M(D) ∈ O] ≤ eεP[M(D′) ∈ O] + δ.
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The definition implies that we have more privacy with
smaller (ε, δ) pair. Privacy-preserving algorithms often use
noise-adding mechanisms. A popular noise-adding mecha-
nism is the Gaussian mechanism (Dwork et al., 2006), which
perturbs a function f : D 7→ Rk of the sensitive data, for
some k ≥ 1, with a random noise drawn from the Gaussian
distribution. The amount of the added noise depends on the
L2-sensitivity of the function, given by

∆f = max
neighbourD1,D2∈D

‖f(D1)− f(D2)‖2.

An (ε, δ)-DP Gaussian mechanism returns

f(D) + ∆fσ(ε, δ)v, v ∼ N (0, Ik) (1)

upon taking D as the input, where the quantity σ(ε, δ) en-
sures (ε, δ)-DP. In this work, we take σ(ε, δ) as the analyti-
cal solution given in Balle & Wang (2018, Algorithm 1) due
to its tightness. The Gaussian mechanism is also central to
other forms of privacy, such as zero-concentrated DP (Bun
& Steinke, 2016) and Gaussian DP (Dong et al., 2022).

This paper considers (ε, δ)-DP as the type of privacy and
the Gaussian mechanism to generate noisy observations.
Moreover, the proposed methods in this paper never use
the sensitive data given the noisy observations generated
using the Gaussian mechanism, hence exploiting the post-
processing property of differential privacy (Dwork & Roth,
2014).

Theorem 2.2 (Post-processing). If M : D 7→ O be (ε, δ)-
DP and let f : O → O′ be another mapping independent
of D given M(D). Then fM : D 7→ O′ with fM (D) =
f(M(D)) is (ε, δ)-DP.

3. Differentially Private Distributed Linear
Regression

This section presents a new hierarchical model for differen-
tially private distributed linear regression. For ease of ex-
position, we first present a model with a single data holder,
then generalise the model for the distributed setting.

3.1. Basic Model and Privacy Setup

Suppose we have a sequence of random variables {(xi, yi) :
i = 1, . . . , n}, where xi ∈ X ⊆ Rd×1 are the feature vec-
tors and yi ∈ Y ⊆ R is the i’th response variable. We
consider the normal linear regression to model the depen-
dency between xi and yi. Specifically,

yi = xTi θ + ei, ei
i.i.d.∼ N (0, σ2

y), i = 1, . . . , n,

where θ ∈ Rd is the vector of the linear regression coef-
ficients. We assume that the feature vectors xi’s are i.i.d.
with distribution Px. A particular case of interest will be

one where Px can be assumed to be a normal distribution.
However, we will also present algorithms for general Px
that is not (even approximately) normal.

In matrix notation, the above can shortly be expressed as

y = Xθ + e, e ∼ N (0, σ2
yIn),

where X =
[
xT1 . . . xTn

]T
is the so-called design ma-

trix, y =
[
y1 . . . yn

]T
. Additionally, we also define the

summary statistics ofX and y given by

S := XTX and z := XTy,

respectively. In this paper, we assume a data-sharing sce-
nario where S and z are privately released as the noisy
summary statistics Ŝ and ẑ, constructed as

Ŝ = S + σsM , (2)
ẑ = z + σzv, v ∼ N (0, Id), (3)

whereM is a d× d symmetric matrix with its upper trian-
gular elements drawn from N (0, 1). Dwork et al. (2014b)
arrange σs and σz so that both (2) and (3) are (ε/2, δ/2) dif-
ferentially private, leading to (ε, δ)-DP overall. Differently
than Dwork et al. (2014b), we set

σs = σz = ∆szσ(ε, δ),

where σ(ε, δ) is given in Balle & Wang (2018, Algorithm
1), and ∆sz is the overall L2 sensitivity of [S, z], given by

∆sz =
√
‖X‖4 + ‖X‖2‖Y ‖2

with ‖X‖ = maxx∈X ‖x‖2 and ‖Y ‖ = maxy∈Y |y|.

Finally, we assign prior distributions for θ, σ2
y as

θ ∼ N (m,C), σ2
y ∼ IG(a, b). (4)

Based on the above relations, we shall represent a hierarchi-
cal model that enables Bayesian inference of θ given Ŝ and
ẑ. One important element of our modelling approach is the
following result that establishes the conditional distribution
of z given S, θ, and σ2

y .

Proposition 3.1. For the normal linear regression model,
we have

z|S,θ, σ2
y ∼ N (Sθ,Sσ2

y).

Proof. First, note that,

E[z|X,θ, σ2
y] = E[XTXθ +XTe]

Cov(z|X,θ, σ2
y) = XTXσ2

y

Hence, the conditional density of z givenX , θ, and σ2
y is

p(z|X,θ, σ2
y) = N (z;XTXθ,XTXσ2

y). (5)
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Let ν and ω denote the probability distributions of x and S,
respectively. By change of variables S = XTX , we have∫

f(S)ω(dS) =

∫
f(XTX)ν(dX) (6)

for any real-valued measurable function f : Sd 7→ R, from
the set Sd of d× d positive definite matrices. Also, for any
pair of sets A ⊆ Sd and B ∈ Rd×1, we can write

P(S ∈ A, z ∈ B) =

∫
IA(XTX)P(z ∈ B|X)ν(dX).

The integrand above depends on X through XTX only,
since P(z ∈ B|X) =

∫
B
N (z;XTXθ,XTXσ2

y)dz.
Therefore, applying the relation in (6) to the RHS with
the choice f(S) = IA(S)

∫
B
N (z;Sθ,Sσ2

y)dz, we can
rewrite the joint probability as

P(S ∈ A, z ∈ B) =

∫
IA(S)

∫
B

N (z;Sθ,Sσ2
y)dzω(dS)

=

∫
A

∫
B

N (z;Sθ,Sσ2
y)dzω(dS).

This shows that the variables z,S have the joint prob-
ability distribution ω(dS)N (z;Sθ,Sσ2

y)dz and that
the conditional probability density is p(z|S,θ, σ2

y) =
N (z;Sθ,Sσ2

y), as claimed.

At this point, some important modelling differences between
our work and Bernstein & Sheldon (2019) are worth dis-
cussing. In Bernstein & Sheldon (2019), the central limit
theorem (CLT) is applied to

[
S, z,yTy

]
, leading to a nor-

mality assumption for the whole vector. In contrast, we
use the exact conditional distribution p(z|S,θ, σ2) thanks
to Proposition 3.1. Moreover, unlike Bernstein & Sheldon
(2019), we do not require a noisy version yTy, hence have
a slight advantage of using less privacy-preserving noise. In
summary, our model has a different hierarchical structure
and requires less privacy-preserving noise.

3.2. Distributed Setting

Here we extend our model to the distributed setting, where
the total data are shared among J ≥ 1 data holders as

(X,y) = {(Xj ,yj); j = 1, . . . , J}. (7)

We let ni be number of rows in each xi, so that n =
n1 + . . . + nJ . Each data holder j shares their own sum-
mary statistics Sj = XT

j Xj , zj = XT
j yj with privacy-

preserving noise

Ŝj = Sj + σsMj ,

ẑj = z + σ2
zvj , vj ∼ N (0, Id).

(8)

Note that, to preserve a given (ε, δ)-DP overall, each party
must provide that level of privacy for their data, hence σ2

s

and σ2
z are the same as before. The hierarchical structure of

the overall model (specified for normally distributed xi’s)
is shown in Figure 1.

Figure 1. Differentially private distributed linear regression model
(specified for normally distributed xi’s.)

The distributed setting deserves separate consideration than
the single data holder case for a couple of reasons: Firstly,
the node-specific observations (Ŝ1, ẑ1), . . . , (ŜJ , ẑJ) are
altogether statistically more informative on θ than their ag-
gregates

∑J
j=1 Ŝj and

∑J
j=1 ẑj . This is because the aggre-

gate versions are not sufficient statistics of the node-specific
observations (Ŝ1, ẑ1), . . . , (ŜJ , ẑJ) with respect to θ (even
when σ2

y is known.) Therefore, when the node-specific
observations are available, one should not, in principle,
trivially aggregate them and apply an inference method
designed for J = 1 using those aggregates.

Secondly, the partitioning of data as in (7) can be relevant
to data privacy applications even outside the distributed
learning framework, rendering the methodology in Section
4 useful in a broader sense. For example, batches of (x, y)-
type of data may be donated to a common data collector
as in (8). At this point, a particular and interesting relation
exists with pan-privacy applications (Dwork et al., 2010).
Imagine that sensitive data from individuals are collected
sequentially in time and the data holder is concerned about
possible intrusions into the memory where the sensitive data
are stored. Then, one possible way to ensure the privacy
of the data against such possible intrusions, which is the
promise of pan-privacy, is to store the noisy statistics of
every new batch of data and erase the original sensitive data.
Then, at any time, the data collector has data of the form
(Ŝ1, ẑ1), . . . , (ŜJ , ẑJ), each pair corresponding to a batch,
the J th pair being the current batch. As a result, inference
algorithms in Section 4 can be applied.

4. Algorithms for Bayesian Inference
Bayesian inference targets the posterior distribution of the
latent variables of the model, in particular θ, given the
observations Ŝ1:J and ẑ1:J . We present several Bayesian
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inference algorithms for the hierarchical model described
in the previous section. In addition to other concerns like
computational budget, the choice among those approaches
mainly depends on the specification of Px as the distribution
of S directly depends on it. In this paper, we consider the
following two cases and devise algorithms for each of them:

1. In some cases it may be adequate to specify Px =
N (0,Σx). This leads to S|Σx ∼ W(Σx, n). Fur-
ther, to account for the uncertainty about the covari-
ance Σx, one can treat it as a random variable with
Σx ∼ IW(Λ, κ). Figure 1 shows the hierarchical struc-
ture of the distributed setting with those specifications.
We defer discussing the conflict between the normality
and boundedness assumptions to Remark 4.1 towards the
end of Section 4.1.

2. As the second case, we assume a general (non-normal)
Px. A normal approximation, based on the CLT, could
be considered for the distribution S (Wilson & Ghahra-
mani, 2011). However, this would require the knowledge
(or accurate estimation) of up to the fourth moments of
Px as well as expensive computations for sampling S.
We circumvent those difficulties by plugging in a point
estimate of S given Ŝ and use it during the sampling
process as if it is the true S itself. Then, we develop
two different algorithms for inference of θ, one being
an MCMC algorithm and the other providing a closed
form-solution for the posterior of θ following a rough
point-wise estimation of σ2

y . Note that these algorithms
with fixed S do not require a distribution for x.

Next, we provide the details of our approaches and the
resulting algorithms.

4.1. MCMC for Normally Distributed Features

In this section, we present an MCMC algorithm for Bayesian
inference for the differentially private distributed linear
regression model when Px = N (0,Σx) and Σx ∼
IW(Λ, κ). The latent variables involved in this variant
are θ,Σx, σ

2
y,S1:J , z1:J . Their posterior distribution given

Ŝ1:J , ẑ1:J can be written as

p(θ,σ2
y,Σx, z1:J ,S1:J |ẑ1:J , Ŝ1:J) ∝ p(θ)p(σ2

y)p(Σx)

J∏
j=1

p(zj |θ, σ2
y,S)p(Sj |Σx)p(Ŝj |Sj)p(ẑj |zj). (9)

One could design an MCMC algorithm for this posterior
distribution that updates θ, σ2

y , Σx, z1:J , S1:J in turn based
on their full conditional distributions. However, such an
algorithm suffers from poor convergence because of a high
posterior correlation between θ and z1:J (as verified in our
numerical studies). It is well known that highly correlated

variables result in poor convergence if they are updated one
conditional on the other. To alleviate that problem, we work
with the reduced model where z1:J is integrated out. The
reduced model has θ,Σx, σ

2
y as its latent variables, whose

joint posterior distribution can be written as

p(θ, σ2
y,Σx,S|ẑ, Ŝ) ∝ p(θ)p(σ2

y)p(Σx)

J∏
j=1

p(Sj |Σx)p(Ŝj |Sj)p(ẑj |Sj ,θ, σ2
y),

(10)

where p(ẑ|S,θ, σ2
y) = N (ẑ;Sθ, σ2

ySθ + σ2
zId).

We would like to sample from the posterior distribution
in (10) via MCMC that updates θ, σ2

y , Σx, S1:J in turn
based on their full conditional distributions. The variables
θ and Σx enjoy closed-form full conditional distributions
(see Appendix A for the derivations):

Σx|S1:J , Ŝ1:J , ẑ1:J ∼ IW

Λ +

J∑
j=1

Sj , κ+ n

 ,

(11)

θ|σ2
y, ẑ,S1:J ∼ N (mp,Σp), (12)

where the posterior moments for θ are

Σ−1p =

J∑
j=1

Sj(σ
2
ySj + σ2

zId)
−1Sj +C−1,

mp = Σp

 J∑
j=1

Sj(σ
2
ySj + σ2

zId)
−1ẑj +C−1m

 .

The full-conditional distributions of S1:J and σ2
y have no

closed form; hence, we design Metropolis-Hastings (MH)
moves to update them. For σ2

y , one can simply use a random-
walk MH move targeting p(σ2

y|θ,S1:J , ẑ1:J). For S1:J ,
their full conditional distribution can be factorised as

p(S1:J |Ŝ1:J , ẑ1:J ,Σx, σ
2
y,θ)

=

J∏
j=1

p(Sj |Ŝj , ẑj ,Σx, σ
2
y,θ),

where each factor is given by

p(Sj |Ŝj , ẑj ,Σx, σ
2
y,θ)

∝ p(ẑj |Sj ,θ, σ2
y)p(Sj |Σx)p(Ŝj |Sj).

Thanks to that factorised form, each Sj can be updated
with an MH move independently and in parallel. For the
MH algorithm to update one Sj , we propose a new value
from a Wishart distribution as S′j ∼ W(Sj/α, α), which
has mean Sj and variance determined by α > 0. In our
experiments, we adjust α using ideas from the adaptive
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Algorithm 1 MCMC-normalX - one iteration
Input: Current values of S1:J , θ, σ2

y , Σx; observations
Ŝ1:J ,ẑ1:J ; noise variances σ2

s , σ2
z ; proposal parame-

ters a, σ2
q ; hyperparameters a, b, κ,Λ,m, C.

Output: New sample of Σx,S, σ
2
y,θ

Sample Σx using (11).
for j = 1, 2, . . . J do

Update Sj via an MH move targeting p(Sj |Σx,θ, ẑj).
Sample θ using (12).
Update σ2

y via an MH move targeting p(σ2
y|θ,S1:J , ẑ1:J).

MCMC framework (Andrieu & Thoms, 2008) to target an
acceptance rate of around 0.2.

Algorithm 1 represents the overall MCMC algorithm for the
hierarchical model for differentially Bayesian distributed
linear regression when Px is a normal distribution with a
random covariance matrix having an inverse-Wishart distri-
bution. We call this algorithm MCMC-normalX.
Remark 4.1. Admittedly, a potential concern is a conflict
between the normality and boundedness assumptions (both
for x and y). However, we also note that the collected
data often happen to have some natural boundaries (which
can be exploited to determine the sensitivity of the shared
statistics), and yet the normal distribution is still used for
modelling and subsequent inference mainly for the sake of
tractability. With the normality assumption, one can imple-
ment computationally efficient algorithms at the expense of
minor modelling inaccuracies. While we acknowledge the
methodologies in Alparslan & Yıldırım (2022, Section 4.2)
and Ju et al. (2022) that can correctly incorporate the effect
of truncation into inference, we remark that those methods
pay the price of exactness by having O(n) computational
complexity per iteration.

4.2. MCMC for Non-normally Distributed Features

The normality assumption for xi’s in Section 4.1 may not
be adequate for some data sets. Moreover, when d is large,
updating Sj’s can be the bottleneck of MCMC-normalX
in Algorithm 1 in terms of computation time and conver-
gence. We propose two algorithms to address both of those
concerns. As it turns out, those algorithms provide accu-
rate estimations even for the case of normally distributed
features; see Section 5.1.

Our approach for non-normal xi’s is based on estimating
Sj’s from Ŝjs at the beginning, using some principled es-
timation method, and fixing Sj’s to those estimates during
the whole course of the inference procedure. In that way,
we obtain a faster version of MCMC-normalX that is also
well-suited for non-normal xi’s. Indeed, we observed in our
experiments that this method outperforms the other methods
for most of the cases, especially when the total number of

Algorithm 2 MCMC-fixedS - one iteration

Input: Current values of θ, σ2
y; estimates S̃1:J , observa-

tions ẑ1:J ; noise variance σ2
z , and hyperparameters

a, b,m, C.
Output: New sample of σ2

y,θ.
Use S1:J = S̃1:J throughout.
Sample θ using (12).
Update σ2

y via an MH move targeting p(σ2
y|θ,S1:J , ẑ1:J).

nodes J increases. We call this variant MCMC-fixedS and
present it in Algorithm 2.

As for estimating Sj’s, one could simply take the privately
shared Ŝj as an estimator for Sj , but Ŝj is not necessarily
a positive (semi-)definite matrix. Instead, we consider the
nearest positive semi-definite matrix to Ŝj in terms of the
Frobenius norm as the estimator of Sj . (The nearest positive
definite matrix to Ŝj does not exist.) To find the nearest
positive semi-definite matrix, we follow Higham (1988) and
apply the following procedure for each j = 1, . . . , J : (i)
Calculate the eigendecomposition Ŝj = EDET , where
E is a matrix of eigenvectors, and D is a diagonal matrix
consisting of the eigenvalues λi. (ii) The nearest symmetric
positive semi-definite matrix is S̃j = ED+E

T , whereD+

is a diagonal matrix withD+(i, i) = max{D(i, i), 0}.

Note that S̃j found above is the maximum likelihood esti-
mator of Sj given Ŝj (over the set of positive semi-definite
matrices) since the conditional distribution of Ŝj given Sj
is a normal distribution with mean Sj .

Algorithm 2 is faster than Algorithm 1, since it avoids the
step to update Sj’s, which constitutes the main computa-
tional burden on Algorithm 1. However, Algorithm 2 can be
made even faster by fixing σ2

y also. As a crude estimator, we
used σ̃2

y = ‖Y ‖/3 throughout the experiments. We call the
resulting algorithm Bayes-fixedS-fast and present it
in Algorithm 3. Algorithm 3 does nothing but calculate the
moments of the posterior distribution of θ given σ2

y = σ̃2
y ,

Sj = S̃j and ẑj for j = 1, . . . , J , and the prior parameters
for θ.

4.3. Computational Cost

All our methods described in this section require O(d3)
computation (either per iteration for the iterative ones in
Algorithms 1 and 2 or as a whole for the fast version in
Algorithm 3) since they deal with d × d matrices. In con-
trast, since Bernstein & Sheldon (2019) apply CLT to the
vector [S, z,yTy], their methods deal with covariance ma-
trices of size (d2 + d+ 1) explicitly, which leads to O(d6)
computation per MCMC iteration. For even moderate d,
this computational difference between O(d6) and O(d3)
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Algorithm 3 Bayes-fixedS-fast
Input: Observations Ŝ1:J , ẑ1:J ; noise variance: σ2

z ; esti-
mate σ̃2

y of σ2
y; hyperparameters: m, C.

Output: Estimate θ̂.
for j = 1, 2, . . . J do

Calculate the estimate S̃j for Sj using Ŝj .
Calculate Uj = S̃j(σ̃

2
yS̃j + σ2

zId)
−1S̃j .

Calculate uj = S̃j(σ̃
2
yS̃j + σ2

zId)
−1ẑj .

return Posterior moments of θ: Σ−1post =
∑J
j=1Uj +C−1,

mpost = Σpost

(
C−1m+

∑J
j=1 uj

)
.

becomes dramatic and the former may be prohibitive in
practice.

We also note that the complexity of our methods does not
depend on the data size n. This is in contrast to the O(n)
complexity of general-purpose methods applicable to linear
regression, such as Alparslan & Yıldırım (2022, Section
4.3) and Ju et al. (2022).

4.4. Extensions

We mention two other variants of our methodology, defer-
ring the details to Appendix B. One solution for dealing
with non-normal Px could be to average the feature vectors
inX and the corresponding response variables in y, so that
the averaged rows ofX can be modelled as approximately
normal, due to CLT. This enables using the methods devised
for normally distributed features. For the details of this
approach, see Appendix B.1.

Secondly, if the features are normally distributed but not
centred, we need to include the intercept parameter, which
corresponds to appending xi with a one from the left, and
MCMC-normalX does not directly apply. In that case, we
can modify the hierarchical model that accommodates the
non-centralised features and the intercept parameter, and
we still benefit from the sampling techniques involved in
MCMC-normalX in Algorithm 1. Appendix B.2 contains
the details of the modified hierarchical model.

5. Numerical Experiments
We present several numerical evaluations of the pro-
posed methods, MCMC-normalX, MCMC-fixedS, and
Bayes-fixedS-fast, with simulated and real data.
We compare our algorithms with two methods: adaSSP
of Wang (2018) and the MCMC method of Bernstein
& Sheldon (2019) for differentially private linear regres-
sion, which we will call MCMC-B&S. Note that adaSSP
and MCMC-B&S were originally proposed for the non-
distributed setting, that is, J = 1. For a comprehensive

comparison, we implemented their extensions for J ≥ 1.
The details of those extensions are provided in Appendix C.
In particular, we carefully generalised the model in Bern-
stein & Sheldon (2019) for J ≥ 1 (and for (ε, δ)-DP) in
a similar fashion as we did to our model in Section 3.2.
MCMC-B&S is the adaptation of Bernstein & Sheldon (2019,
Algorithm 1) for this generalised model. Both for simulated
and real data, we set ‖X‖ and ‖Y ‖ to the maximum of the
norms over the whole dataset (for real data, we perform
centring and normalising first.) This procedure is equivalent
to scaling the data to an interval and standard in existing
work. The link for the code and data to replicate all of the
experiments in this section is given at the end of Section 6.

5.1. Experiments with Simulated Data

We considered two different configurations, (n = 105, d =
2) and (n = 105, d = 5), for the problem size. For each
(n, d) we simulated the data as follows. We generated θ ∼
N (0, Id), xi ∼ N (0,Σx) where Σx ∼ IW(Λ, κ), with
κ = d+ 1 and the scale matrix selected randomly as Λ =
V TV , where V is a d × d matrix of i.i.d. variables from
N (0, 1). The response variables y are generated with σ2

y =
1. For inference, we used the same Λ, κ as above and
a = 20, b = 0.5,m = 0d×1, C = b/(a− 1)Id.

We evaluated the methods at all combinations of J ∈
{1, 5, 10} and ε ∈ {0.1, 0.2, 0.5, 1, 2, 5, 10}. All the
MCMC algorithms were run for 104 iterations. For each
(J, ε) pair, we ran each method for 50 times (each with dif-
ferent noisy observations) to obtain average performances.

For performance metrics, we looked at the mean squared
errors (MSE) of (i) the estimates θ̂ and (ii) the predictions
ŷ(xtest) generated by the methods. For the Bayesian meth-
ods, θ̂ is taken as the posterior mean, which can be numeri-
cally estimated for the MCMC algorithms. For prediction
performance, we calculated E[ŷ(xtest) − ytest]

2. For the
Bayesian methods, ŷ(xtest) is the posterior predictive ex-
pectation of ytest at xtest. For adaSSP, we simply take
ŷ(xtest) = xTtestθ̂.

The results are summarised in Figure 2. We observe
that MCMC-fixedS and Bayes-fixedS-fast outper-
form adaSSP and MCMC-B&S in almost all cases both in
terms of estimation and prediction. Comparing the full-
scale algorithms MCMC-normalX and MCMC-B&S (that
involve updates of S), we observe a clear advantage of
MCMC-normalX at d = 2 but MCMC-B&S becomes more
competitive at d = 5. This can be attributed to the fact
that MCMC-B&S requires the extra statistic yTy, unlike
MCMC-normalX, which causes MCMC-B&S to use more
noisy statistics. This difference becomes more significant
at small d, where the relative effect of the presence of yTy
on the sensitivity is more significant. Finally, all methods
improve as ε grows, as expected.
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Figure 2. Averaged prediction and estimation performances (over 50 runs). Top row: n = 105, d = 2, Bottom row: n = 105, d = 5. For
the non-private posterior, for d = 2 (d = 5, resp.), the obtained MSE values for estimation are 2.92× 10−5 (1.54× 10−5, resp.) and for
prediction are 9.60× 10−5 (4.19× 10−5, resp.)

Table 1. Averaged prediction performances (over 50 runs) for the real datasets - ε = 1

J data sets MCMC-normalX MCMC-fixedS Bayes-fixedS-fast MCMC-B&S adaSSP

J = 1

PowerPlant 0.0129 0.0129 0.0129 0.0128 0.0139
BikeSharing 0.0024 0.0021 0.0021 0.0020 0.0107
AirQuality 0.0060 0.0057 0.0057 0.0062 0.0066

3droad 0.0229 0.0229 0.0229 0.0229 0.0229

J = 5

PowerPlant 0.0133 0.0134 0.0134 0.0136 0.0235
BikeSharing 0.0174 0.0045 0.0045 0.0086 0.0382
AirQuality 0.0142 0.0100 0.0099 0.0130 0.0227

3droad 0.0229 0.0229 0.0229 0.0229 0.0229

J = 10

PowerPlant 0.0142 0.0143 0.0143 0.0143 0.0351
BikeSharing 0.0812 0.0082 0.0082 0.0137 0.0526
AirQuality 0.0985 0.0117 0.0117 0.0216 0.0314

3droad 0.0229 0.0229 0.0229 0.0229 0.0229

We also compare the computation times of the MCMC
algorithms MCMC-normalX, MCMC-fixedS, and
MCMC-B&S1. Figure 3 shows the run times of the algo-
rithms vs. d. The drastic difference in computational loads
explained in Section 4.3 is also visible in the figure. While
MCMC-B&S may be improved in terms of accuracy as d
increases, the O(d6) dramatically slows it down.

In addition to the MSE, we also consider maximum mean
discrepancy (MMD) for evaluating the calibration of the
learned posteriors following the method in (Gretton et al.,
2012). The estimated MMD values in Figure 4 in Appendix
D show that all the methods converge to the non-private
posterior as ε increases.

1The algorithms were run in MATLAB 2021b on an Apple M1
chip with 8 cores and 16 GB LPDDR4 memory.
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Figure 3. Run times per iteration for MCMC algorithms

5.2. Experiments with Real Data

For the real data case, we use four different data sets
from the UCI Machine Learning Repository. We disre-
gard the columns including string data or key values (ID,
name, date, etc.), and we consider the most right-hand col-
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umn as y. The finalised data sets are summarised below.
data set n d hyperlinks

power plant energy 7655 4 view link
bike sharing 13904 14 view link
air quality 7486 12 view link

3d road 347900 3 view link

For prediction, we took 80% of the data for training and the
rest for testing. We present the average prediction perfor-
mances (out of 50 runs) in Table 1 for each dataset and J
with ε = 1. We observe that the prediction performances of
the compared methods are close, while MCMC-fixed-S
and Bayes-fixed-S are arguably the most stable ones.
When J > 1, (the distributed data setting) those two meth-
ods beat adaSSP and MCMC-B&S more satisfactorily. To
show the robustness of these conclusions to variation, we
provide 90% confidence intervals for the prediction perfor-
mances in Table 2 in Appendix D.

6. Conclusion
We propose a novel Bayesian inference framework, with
MCMC being its main workhorse, for a differentially private
distributed linear regression setting where the data is parti-
tioned among the data holders and shared using summary
statistics. We provide several Bayesian inference algorithms
suited to the developed hierarchical model for linear regres-
sion. Those algorithms can be preferred one over the other
depending on the computational budget, model specifics, or
how much we know about the underlying statistical facts
of the data. We exploit the conditional structure between
the summary statistics of linear regression (Proposition 3.1),
which leads to feasible algorithms with computational ad-
vantages over their competitors. The numerical experiments
show that the proposed methods are competitive with their
state-of-the-art alternatives in terms of accuracy. The ex-
tensions mentioned in Section 4.4 indicate potential future
directions.

The experiments demonstrate that MCMCM-fixedS and
Bayes-fixedS-fast are competitive even under nor-
mality. Hence, we can suggest users try those fast
and effective versions on their first attempts. However,
MCMC-normalX can potentially provide more insight
since it infers Px as well. There is also room for improve-
ment of MCMC-normalX. We chose the most common
MH moves to update σ2

y and Sj’s, without paying much
attention to their efficiencies. Especially for large d, more
advanced techniques such as Hamiltonian Monte Carlo or
pseudo-marginal MCMC may be employed to facilitate the
mixing of the algorithm.

Code for the experiments: Link to the code and the
data for the experiments: https://github.com/
sinanyildirim/Bayesian_DP_dist_LR.git.

Acknowledgements
The study was funded by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) ARDEB Grant No
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A. Derivations for MCMC-normalX
We reserve this section for the derivations for our algorithm MCMC-normalX.

A.1. Full Conditional Distribution of Σx

We can write the full conditional distribution for Σx as

p(Σx|S1:J , Ŝ1:J , ẑ1:J ) ∝ p(Σx)

J∏
j=1

p(Sj |Σx)

=
|Λ|dk/2

2dk/2Γd(
k
2 )
|Σx|−(d+κ+1)/2e−

1
2 tr(ΛΣ−1

x )
J∏
j=1

|Sj |(nj−d−1)/2e−
1
2 tr(Σ−1

x Sj)

2njd/2|Σx|nj/2Γd(nj/2)

∝ |Σx|−
n
2−

(d+κ+1)
2 e−

1
2 (

∑
tr(Σ−1

x Sj)+tr(ΛΣ−1
x ))

∝ |Σx|−
(d+κ+n+1)

2 e−
1
2 tr((

∑
Sj+Λ)Σ−1

x ).

Therefore, we have

Σx|S1:J , Ŝ1:J , ẑ1:J ∼ IW

Λ +

J∑
j=1

Sj ,κ+ n

 .

A.2. Full Conditional Distribution of θ

The full conditional distribution for θ can be written as

p(θ|S1:J ,σ
2
y, ẑ1:J) ∝ N (θ;m,C)p(ẑ1:J |S1:J ,θ,Σ

2
y).

For the second factor, we have

p(ẑ1:J |S1:J ,θ,σ
2
y) ∝

J∏
i=1

p(ẑj |Sj ,θ, σ2
y) =

J∏
i=1

p(ẑj ;Sjθ, σ
2
ySj + σ2

zId)

∝
J∏
i=1

exp

{
−1

2
(ẑj − Sjθ)T (σ2

ySj + σ2
zId)

−1(ẑj − Sjθ)

}

∝ exp

−1

2

θT
∑

j

Sj(σ
2
ySj + σ2

zId)
−1Sj

θ − 2θT

∑
j

Sj(σ
2
ySj + σ2

zId)
−1

 ẑj
 .

Reorganising the terms, we end up with

p(θ|S1:J ,σ
2
y, ẑ1:J) ∝ exp

{
−1

2

[
θTΣ−1p θ − 2θTΣ−1p mp

]}
,

where Σp = [
∑
j Sj(σ

2
ySj + σ2

zId)
−1Sj + C−1]−1 and mp = Σp[

∑
j Sj(σ

2
ySj + σ2

zId)
−1)ẑj + C−1m]. Therefore,

θ|S1:J ,σ
2
y, ẑ1:J ∼ N (θ;mp,Σp).

A.3. Acceptance Ratio for the MH Update of Sj

We drop the index j from Sj for simplicity. When S′ ∼ W(S/α, α), the proposal density is

q(S′|S) =
|S′|(α−d−1)/2e−tr[αS−1S′]/2

|S/α|α/22αd/2Γd(
α
2 )

=
|S′|(α−d−1)/2e−tr[αS−1S′]/2

|S|α/22αd/2Γd(
α
2 )

αα/2.
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Therefore, the acceptance ratio corresponding to this proposal is

min

{
1,
q(S|S′)
q(S′|S)

W(S′;njΣx, κ)p(Ŝ|Ŝ′)N (ẑ;S′θ, σ2
ySθ + σ2

zId)

W(S;njΣx, κ)p(Ŝ|Ŝ)N (ẑ;Sθ, σ2
ySθ + σ2

zId)

}
,

where the ratio of proposals becomes

q(S|S′)
q(S′|S)

=
|S|(α−d−1)/2|S|α/2e−tr[αS′−1S]/2

|S′|(α−d−1)/2|S′|α/2e−tr[αS−1S′]/2
=

(
|S|
|S′|

)α−(d+1)/2

eα(tr[S−1S′]−tr[S′−1S])/2.

A.4. Acceptance Ratio for the MH Update of σ2
y

To update σ2
y , we use a random walk proposal σ2′

y ∼ N (σ2
y, σ

2
q ). The resulting acceptance ratio is

min

{
1,
IG(σ2′

y ; a, b)
∏J
j=1N (ẑj ;Sjθ, σ

2′
y Sjθ + σ2

zId)

IG(σ2
y; a, b)

∏J
j=1N (ẑj ;Sjθ, σ2

ySjθ + σ2
zId)

}
.

B. Other Variants
This appendix is reserved for the details of the other variants mentioned in Section 4.4.

B.1. Approximating Normality by Averaging

Assume J = 1 for simplicity. When the feature vectors xi, i = 1, . . . , n are not normal, another approach that we consider
is based on modifying the data to make the rows of the feature matrix averages of multiple original features, and therefore,
approximately normal, by the CLT. Specifically, let k > 1 be an integer that divides n so that m = n/k is also an integer.
Consider the m× n matrix

A =
1√
k


11×k 01×k . . . 01×k
01×k 11×k . . . 01×k

...
...

. . .
...

01×k 01×k . . . 11×k


m×n

,

where k is some number that divides n so that m = n/k is an integer. Then, the matrix Xav = AX corresponds to
constructing a shorter m × d matrix whose i’th column is the average of the rows (i − 1)k + 1, . . . , ik of X (scaled by
1/
√
k). When k is large enough, we can make normality assumptions for the rows ofXav. Further, consider

yav := Ay = Xavθ +Ae,

whose mean isXavθ and covarianceAATσ2
y . But we haveAAT = Im, so the covariance is σ2

yIm. Therefore, the same
hierarchical model in Figure 1 can be used forXav, yav with their respective summary statistics

zav = (Xav)Tyav, Sav = (Xav)TXav,

as well as the noisy versions of those summary statistics to provide a given level of privacy. Note that Sav and zav have
the same sensitivities as S and z, hence the same noise variances are needed for privacy. However, Sav and zav bear less
information about θ than S and z due to averaging.

B.2. Including the Intercept

Again, assume J = 1 for simplicity. If we include the intercept parameter, which corresponds to appending xi with a 1

from the left, the design matrix will be changed from S to S0 =

[
n nx̄T

nx̄ S

]
, where x̄ = 1

n

∑n
i=1 xi. Also, note that

S = (n − 1)Σ̂x + nx̄x̄T where Σ̂x is the sample covariance of x1, . . . ,xn. Under the normality assumption for xi’s,
we have x̄ ∼ N (m,Σx/n) and Σ̂x ∼ W(n− 1,Σx) are independent and have known distributions. Therefore, we can
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write a model that includes the additional variables (b = x̄, Σ̂x,S0) such that b and Σ̂x are independent and have known
distributions and

S0 =

[
n nbT

nb (n− 1)Σ̂ + nbbT

]
replaces S in the standard model. More specifically, we have the following hierarchical model:

θ ∼ N (m,C), Σx ∼ IW(Λ, κ), Σ̂x|Σx ∼ W(n− 1,Σx), b|Σx ∼ N (µ,Σx/n),

z|θ, σ2
y, Σ̂x, b ∼ N (S0θ,S0σ

2
y), Ŝ|Σ̂x, b = N (S0, σ

2
s,εId+1), ẑ|z = N (z, σ2

zId+1).

C. Compared Methods
Here, we provide the details of the methods which we compare with the proposed methods in this paper. Those methods
are originally proposed for J = 1. However, for comparison, we implemented their natural extensions to the general
(distributed) case J ≥ 1. The implementations of those methods can be found in the code package provided for this paper.

C.1. MCMC of Bernstein & Sheldon (2019) Adapted to the Distributed Setting

In Bernstein & Sheldon (2019), J = 1 is considered only and the vector ss = [vec(S), z = XTy, u = yTy] is perturbed
with privacy-preserving noise to generate the observations of the model. For J ≥ 1, we consider the following natural
extension for generating perturbed observations ŝs = [vec(Ŝj), ẑj , ûj ], where

Ŝj = Sj + σdpMj , ẑj = zj + vj , vj ∼ N (0, σ2
dpId), ûj = uj + wj , wj ∼ N (0, σ2

dp), (13)

where σdp = σ(ε, δ)∆ss with ∆ss =
√
‖X‖4 + ‖X‖2‖Y ‖2 + ‖Y ‖4.

For completeness, we provide the further specifics of the model: We take (θ, σ2
y) ∼ NIG(a0, b0,m,C) and Px =

N (0,Σx), where Σx ∼ IW(Λ, κ).

During the comparisons, we set the a0, b0,m,C,Λ, κ to the same values for both this model and our proposed model that
assumes normally distributed features, i.e., Px = N (0,Σx). Then, we apply an extension of the method of Bernstein &
Sheldon (2019) suited to those observations. One iteration of that algorithm includes the following steps in order:

• Calculate the D × 1 mean vector and D ×D covariance matrix

µprior(θ) = Eθ[ss], Σprior(θ) = Covθ[ss]

This step requires the fourth moments N (0,Σx).

• For j = 1, . . . , J , sample ssj ∼ N (µ
(j)
post,Σ

(j)
post) with

Σ
(j)
post = ([njΣprior(θ)]

−1 + (1/σ2
dp)ID)−1, and µ

(j)
post = Σ

(j)
post(Σprior(θ)−1µprior(θ) + ŝsj/σ

2
dp).

• Sample Σx ∼ IW
(∑J

j=1 Sj + Λ, n+ κ
)

.

• Sample (θ, σ2) ∼ NIG(an, bn,µn,Λn) by sampling σ2 ∼ IG(an, bn), followed by sampling θ ∼ N (µn, σ
2
yΛ
−1
n )

with

Λn =

J∑
j=1

Sj + Λ0, µn = Λn

 J∑
j=1

zj + Λ0µ0

 , an = a0 + n/2, bn = 0.5u+ µT0 Λ0µ0 − µTnΛnµn.

C.2. A Variant of adaSSP for the Distributed Setting

The adaSSP algorithm of (Wang, 2018) is originally designed for a single data holder. In adaSSP, a differentially private
estimate of θ is released as

θ̂ = (Ŝ + λId)
−1ẑ. (14)
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Here Ŝ and ẑ are the privatised versions of S and z as in (2) and (3), except that ε and δ must be changed to 2ε/3 and 2δ/3
in those equations to provide ε, δ-DP. This is because adaSSP uses another parameter, λ, which is also calculated from the
sensitive data and a third of the privacy budget is spent for privatising that calculation. With v ∼ N (0, 1), λ is specifically
calculated as

λ = max
{

0, σ
√
d ln(6/δ) ln(2d2/ρ)− λ̃min

}
with σ = ‖X‖2/(ε/3), λmin = min(eig(S)), and λ̃min = max

{
λmin +

√
ln(6/δ)σv − ln(6/δ)σv, 0

}
. We consider an

extension of (Wang, 2018) for J ≥ 1. To perform the extension, we reflect on its tendency to approximate a (regularised)
least square solution and consider the following estimate

θ̂ =

 J∑
j=1

Ŝj + Id

J∑
j=1

λj

−1 J∑
j=1

ẑj

 . (15)

Here Ŝj , ẑj and λj are calculated in data node j separately from the other nodes. The estimation procedure in (15) does not
properly account for the Bayesian paradigm but aggregates the shared Ŝj’s and ẑj’s to approximate the (regulated) least
squares solution. Note that each node has separate λj because it depends on δj , and so the number of rows for each node.

D. Additional results
Figure 4 shows the MMD estimates for d = 2. The (squared) MMD between two distributions can be estimated unbiasedly
using i.i.d. samples from those distributions. Non-private posterior and private posteriors of Bayes-fixedS-fast
are in closed form and can be sampled easily. For the MCMC models, we use every 50th sample of the chain to avoid
autocorrelation and thus obtain nearly independent samples.

Figure 4. MMD2 estimates for each J and d = 2.

Table 2 shows the confidence intervals for the prediction MSE for the real-data experiments.

Table 2. 90% confidence interval for mean prediction MSE (over 50 runs) for the real-data experiments - ε = 1

J data sets MCMC-normalX MCMC-fixedS Bayes-fixedS-fast MCMC-B&S adaSSP

J = 1

PowerPlant [0.0128, 0.0129] [0.0128, 0.0129] [0.0128, 0.0129] [0.0128, 0.0129] [0.0137, 0.0140]
BikeSharing [0.0021, 0.0027] [0.0018, 0.0024] [0.0018, 0.0024] [0.0017, 0.0022] [0.0106, 0.0108]
AirQuality [0.0051, 0.0069] [0.0048, 0.0066] [0.0048, 0.0066] [0.0053, 0.0071] [0.0065, 0.0067]

3droad [0.0229, 0.0229] [0.0229, 0.0229] [0.0229, 0.0229] [0.0229, 0.0229] [0.0229, 0.0229]

J = 5

PowerPlant [0.0132, 0.0135] [0.0132, 0.0136] [0.0132, 0.0136] [0.0135, 0.0138] [0.0234, 0.0236]
BikeSharing [0.0137, 0.0210] [0.0041, 0.0049] [0.0040, 0.0049] [0.0076, 0.0095] [0.0380, 0.0383]
AirQuality [0.0109, 0.0175] [0.0089, 0.010] [0.0089, 0.0109] [0.0109, 0.0151] [0.0226, 0.0229]

3droad [0.0229, 0.0229] [0.0229, 0.0229] [0.0229, 0.0229] [0.0229, 0.0229] [0.0229, 0.0229]

J = 10

PowerPlant [0.0139, 0.0145] [0.0140, 0.0146] [0.0140, 0.0146] [0.0141, 0.0146] [0.0349, 0.0353]
BikeSharing [0.0671, 0.0954] [0.0072, 0.0092] [0.0072, 0.0092] [0.0116, 0.0158] [0.0524, 0.0527]
AirQuality [0.0733, 0.1236] [0.0099, 0.0135] [0.0099, 0.0135] [0.0175, 0.0257] [0.0313, 0.0315]

3droad [0.0229, 0.0229] [0.0229, 0.0229] [0.0229, 0.0229] [0.0229, 0.0229] [0.0229, 0.0229]
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