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Abstract
Generative models of biological sequences are
a powerful tool for learning from complex se-
quence data, predicting the effects of mutations,
and designing novel biomolecules with desired
properties. To evaluate generative models it is im-
portant to accurately measure differences between
high-dimensional distributions. In this paper we
propose the “KSD-B”, a novel divergence mea-
sure for distributions over biological sequences
that is based on the kernelized Stein discrepancy
(KSD). The KSD-B can be evaluated even when
the normalizing constant of the model is unknown;
it allows for variable length sequences and can
take into account biological notions of sequence
distance. Unlike previous KSDs over discrete
spaces the KSD-B (a) is theoretically guaranteed
to detect convergence and non-convergence of
distributions over sequence space and (b) can be
efficiently estimated in practice. We demonstrate
the advantages of the KSD-B on problems with
synthetic and real data, and apply it to measure
the fit of state-of-the-art machine learning models.
Overall, the KSD-B enables rigorous evaluation
of generative biological sequence models, allow-
ing the accuracy of models, sampling procedures,
and library designs to be checked reliably.

1. Introduction
Generative models of biological sequences have wide and
growing application in protein design, phylogenetic anal-
ysis, clinical human genetics, epidemiology and beyond
(Hopf et al., 2017; Riesselman et al., 2018; Russ et al., 2020;
Shin et al., 2021; Frazer et al., 2021; Davidsen et al., 2019;
Weinstein et al., 2022b; Thadani et al., 2022; Meier et al.,
2021; Madani et al., 2020; Alley et al., 2019; Marcou et al.,
2018). A central challenge in working with generative bi-
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ological sequence models, as for all generative models, is
model evaluation. How accurate are density estimates and
how realistic are sequences sampled from the model?

Common existing evaluation techniques for generative se-
quence models do not provide an absolute and reliable mea-
sure of model fit. For example, generative sequence models
are often evaluated based on their log likelihood; but this
only addresses whether one model fits to the data better than
another, not whether any model matches the data absolutely.
Another evaluation strategy is to draw sequences from the
model and test whether they match the data based on ex-
pertly chosen statistics or predictions of sequence properties
(hydrophobicity, secondary structure, etc.). However, a gen-
erative model that passes such a test may still poorly fit the
data outside of the chosen statistics.

In this article, we address the model evaluation problem
by developing a divergence to compare distributions over
sequences. We call this divergence the “KSD-B”, as it is
based on the kernelized Stein discrepancy (KSD) but applies
to biological sequences (B) (Chwialkowski et al., 2016; Liu
et al., 2016). The KSD-B allows us to answer whether or
not the distribution over sequences produced by a generative
model, p, equals the distribution of the data, q. That is, it
enables a goodness of fit test for biological sequences. The
KSD-B provides an absolute rather than a relative measure
of model quality, and, given enough data, it is able to detect
any difference between p and q.

KSDs compare distributions by (1) building a stochastic
process that is stationary for p, (2) applying it to q, and (3)
using a kernel to evaluate how much q changes. Much em-
phasis has been placed previously on the study of stochastic
processes and kernels over Euclidean space, i.e. Rd, such
as diffusion processes, and Gaussian, inverse multiquadric
or Matèrn kernels. The KSD-B, by contrast, is defined over
sequence space S = ∪∞

L=1BL, the set of all finite length
strings of an alphabet B, where B is nucleotides for DNA
or amino acids for proteins (Amin et al., 2021; Weinstein,
2022). The KSD-B uses a stochastic process based on sub-
stitutions, insertions and deletions (the sorts of mutations
often seen in biological sequences) and uses kernels such
as alignment kernels and kmer spectrum kernels (which
capture biological notions of sequence similarity).

Despite the shift in setting, we build the stochastic process
and kernel carefully so that the KSD-B shares with the orig-
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inal Euclidean KSD a number of desirable properties and
theoretical guarantees. First, it faithfully measures whether
p and q are equal for any p and q, i.e. KSD-Bp(q) = 0 if
and only if p = q. This means the KSD-B can detect any
difference between p and q. Second, the KSD-B detects con-
vergence and non-convergence: KSD-Bp(qn) converges to
0 as n → ∞ if and only if qn converges to p (Gorham &
Mackey, 2017). This protects against big mistakes by the
KSD-B in practice: if KSD-Bp(q) is very close to zero (say,
within the noise of estimation), q must at least be very simi-
lar to p, not completely different. Third, KSD-Bp(q) can be
computed using only unnormalized probabilities from p and
samples from q. This means the KSD-B can be used even
when the normalizing constant of the model is intractable,
as in energy-based generative models. Finally, the KSD-B
can be efficiently estimated in realistic settings.

As a computable divergence, the KSD-B is a broadly useful
tool for more than evaluating model fit. For instance, it
can be used to evaluate model samples. Often it is only
possible to draw approximate samples from a posterior, for
instance in the context of semi-supervised protein design
or ancestral sequence reconstruction. Since the KSD-B re-
quires only unnormalized probabilities, and can detect con-
vergence and non-convergence, it can be used to determine
whether the distribution of approximate samples matches the
model (Gorham & Mackey, 2017). The KSD-B can also be
used to design libraries based on generative models. Since
the KSD-B can detect convergence and non-convergence,
we can find a set of samples that are representative of p by
minimizing KSD-Bp(q) with respect to an empirical distri-
bution of samples q (Chen et al., 2018; 2010).

Sec. 2 provides background on kernelized Stein discrepan-
cies. Sec. 3 introduces a novel class of discrete Stein dis-
crepancies. Sec. 4 defines the KSD-B. Sec. 5 proves that it is
faithful and detects both convergence and non-convergence.
Sec. 6 describes how the KSD-B can be estimated efficiently.
Sec. 7 develops kernels for the KSD-B. Sec. 8 demonstrates
the KSD-B empirically. Sec. 9 concludes.

Related Work Computable Stein discrepancies were first
developed for Euclidean space (Gorham & Mackey, 2015;
Liu et al., 2016; Chwialkowski et al., 2016; Gorham &
Mackey, 2017). There have been a number of generaliza-
tions to discrete space (Shi et al., 2022; Yang et al., 2018a;
Han et al., 2020; Hodgkinson et al., 2020). However, these
methods only apply to finite discrete spaces, and so, biolog-
ically, they are only appropriate in the special case where
all sequences have the same length. Our method differs in
that it applies to the infinite discrete setting of S, and thus
allows for arbitrary length variation.
During preparation of this manuscript, Baum et al. (2022)
proposed a method similar to the KSD-B, that is applica-
ble to infinite discrete spaces such as S. We go further by
proving strong theoretical guarantees for the KSD-B, and

showing how the method of Baum et al. (2022) can fail
to satisfy these guarantees. We also introduce a rigorous
approximation method that is substantially more computa-
tionally efficient than that of Baum et al. (2022) in practice.

There are a small number of other approaches to nonpara-
metric testing of generative biological sequence models.
Amin et al. (2021) develop a Bayesian goodness of fit test
(BEAR), but it depends on access to normalized likelihoods
from the model and does not provide guarantees for conver-
gence detection. Amin et al. (2023) develop a maximum
mean discrepancy (MMD) two-sample test with guarantees
for convergence detection, but it requires samples from the
model. Even when these alternatives are applicable, we find
empirically that the KSD-B can outperform both.

2. Background
The KSD-B builds on and extends the notion of a Stein
discrepancy, which is a type of integral probability metric.

Integral Probability Metrics (IPMs) IPMs are a general
method for measuring the difference between two distribu-
tions p and q. They compute the maximum difference in
expectation between p and q over a set of test functions F ,
i.e. supf∈F |Eqf −Epf |. Here, Eqf =

∑
X∈S f(X)q(X)

is the expectation with respect to q of a function f on se-
quences. Many popular divergences can be written as IPMs,
e.g. choosing F to be the set of bounded functions gives the
total variation distance. In general, the success of an IPM
at detecting if p ̸= q depends on the size of F , with larger
function families offering better discrimination.
IPMs are an especially useful choice of discrepancy for bio-
logical sequence models, where the ultimate goal is often to
synthesize and test samples from a model p in the laboratory.
In particular, let f∗ denote the mapping from sequence to
phenotype of interest (protein stability, binding, etc.). In
general, f∗ is not known before performing extensive ex-
periments; however, if F is large, it can be reasonable to
assume f∗ ∈ F . Then, a small IPM guarantees that samples
from p will have similar phenotypes to samples from q, as
|Eqf

∗ − Epf
∗| ≤ supf∈F |Eqf − Epf | (Weinstein et al.,

2022b;a). This guarantees, for instance, that samples from
a generative model have similar phenotypes to the natural
sequences it was trained on.
Stein Discrepancies To evaluate an expectation such as
Epf , one would typically require samples or normalized
probabilities from p. However, these are not always avail-
able, for instance if p is an energy-based model, or the
posterior of a semi-supervised model. The Stein discrep-
ancy solves this problem by constructing a family of test
functions F for which Epf is exactly zero, but which is still
sufficiently large to detect any difference between p and q.

The basic idea is to use a continuous time Markov pro-
cess with p as its stationary distribution. In particu-
lar, consider a generator Lp, defined as (Lpf)(X) =
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limt→0
1
t (E[f(Xt)]− f(X)), where Xt is the position of

the Markov process initialized at X after evolving for time
t (Barbour, 1990; Gorham et al., 2019; Shi et al., 2022).
Now, EqLpf describes the amount that the expectation
of f changes as q evolves under the Markov process. If
q ̸= p, then evolving q will change it to be closer to p, so
intuitively, if F is large enough, there must exist some func-
tion f that changes expectation, i.e. supf∈F |EqLpf | > 0.
However, if q = p, the expectation of f will not change
at all since p is stationary, i.e. supf |EpLpf | = 0. Thus
if we set F = Lp(F ′) for a set of functions F ′, the IPM
becomes supf∈F |Eqf − Epf | = supf∈F ′ |EqLpf |, so it
no longer depends on an expectation with respect to p, but
can still detect if q ̸= p for F ′ sufficiently large. This IPM
is a “Stein divergence”, and Lp a “Stein operator”. Markov
chain Monte Carlo (MCMC) methods are a useful tool for
building Stein operators, as they allow construction of a
Markov processes with stationary distribution p even when
the normalizing constant of p is unknown.

Diffusion Stein Discrepancies On Euclidean space, a
classic choice of operator is the Langevin Stein operator,
which is derived from a Langevin sampler (Liu et al., 2016;
Chwialkowski et al., 2016; Gorham & Mackey, 2017). The
Langevin Stein operator is an instance of a diffusion Stein
discrepancy, which are derived from Itô diffusions, and
have strong theoretical properties, in particular they detect
non-convergence (Gorham et al., 2019; Barp et al., 2019).

The properties of diffusion Stein discrepancies stem in part
from a subtle but important extension of the discrepancy
supf∈F |EqLpf | to a larger set of test functions. When
the generator Lp comes from a diffusion, it can be written
in the form Lp = Tp∇, where Tp is another operator and
∇ is the gradient operator. This gives a Stein discrepancy
supf∈F |EqTp∇f | = supg∈∇F |EqTpg|, i.e. we can think
of the discrepancy as maximizing over the set of gradients of
functions in F . Now, F is a set of functions from Rd to R, so
∇F is a set of functions from Rd to Rd, i.e. each g ∈ ∇F is
a vector field rather than scalar field. However, not all vector
field functions can be written as the gradient of scalar field
functions. One can therefore consider expanding the class of
test functions to the larger set of all vector fields, G ⊃ ∇F ,
making the Stein discrepancy supg∈G |EqTpg|. Since the set
of test functions is larger, diffusion Stein discrepancies can
more easily detect whether or not q matches p. Critically,
the properties of Itô diffusions guarantee that we still have
supg∈G |EpTpg| = 0 (Gorham et al., 2019).

3. Discrete Vector Field Stein Discrepancies
In this section we describe Stein discrepancies for distribu-
tions on discrete spaces. (Our discussion in this section is
not specific to sequence space S; it applies to any infinite
discrete space.) On discrete spaces, diffusion Stein discrep-
ancies are not applicable, since they depend on gradients.
We introduce a novel approach to expanding the set of test

functions on discrete spaces, which will be essential for
guaranteeing that our new discrepancy, the KSD-B, detects
non-convergence and convergence. The idea is analogous to
diffusion Stein discrepancies, with finite differences replac-
ing gradients, and the property of detailed balance replacing
the condition that the Markov process is an Itô diffusion.

To construct a Stein operator for a discrete space S, we first
consider a generic continuous time Markov process (Shi
et al., 2022). Let Tp,X→Y denote the transition rate of the
process from sequence X to sequence Y . We assume this
transition rate is zero except to a finite number of sequences
Y that are near X , i.e. “mutants” of X; we write YMX if
Y is a mutant of X , where M is a relation on S. Then, the
Stein operator is,

(Lpf)(X) =
∑

Y ∈S|YMX

Tp,X→Y (f(Y )− f(X)),

since in a continuous time Markov process, the transition
rate out of X must equal the total transition rate to other
states, i.e. Tp,X→X = −

∑
YMX Tp,X→Y = −fluxp(X).

We can think of the quantity f(Y ) − f(X) for YMX as
a discrete analogue of the gradient of f , as it looks at the
difference between the value of f at adjacent points Y and
X . We therefore define ∇f for any function f on S as
∇f(X,Y ) = f(Y ) − f(X) for YMX , following Chow
et al. (2018). Now, we can write Lpf in the form Tp∇f , so
the discrete Stein discrepancy is supf∈F |EqTp∇f |.
Assume the Markov process also satisfies detailed balance,
i.e. Tp,X→Y p(X) = Tp,Y→Xp(Y ). We can rearrange the
Stein discrepancy (Proposition B.8), so EqTp∇f =

1

2

∑
YMX

q(X)Tp,Y→X

(
p(Y )

p(X)
− q(Y )

q(X)

)
∇f(X,Y ), (1)

where we have used the fact that ∇f(X,Y ) = −∇f(Y,X).
This equation gives some intuition for the discrete Stein
discrepancy: the term p(Y )/p(X)− q(Y )/q(X) compares
the likelihood ratios of q and p at nearby points X and Y
rather than their likelihoods at a single point, and so does not
depend on the normalizing constant of p or q. If p = q, the
difference in likelihood ratios is zero, so the entire equation
is zero regardless of the value of ∇f .

We now expand the set of test functions. Instead of
considering the Stein discrepancy supf∈F |EqTp∇f | =
supg∈∇F |EqTpg|, we consider supg∈G |EqTpg|, where
G ⊃ ∇F is a set of functions from S×S to R which satisfy
the anticommutative property g(X,Y ) = −g(Y,X). We
refer to such functions g as “vector fields”, following Chow
et al. (2018). Thanks to the anticommutative property, Eqn. 1
still holds, with ∇f replaced by g. Using G instead of ∇F ,
we can have, for example, test functions g that are non-zero
for just one edge (X,Y ) in M ; this is impossible for gradi-
ents ∇f , and allows the Stein discrepancy to test for more
subtle differences between p and q. Moreover, Eqn. 1 shows
that despite expanding the class of functions, the Stein dis-
crepancy is still zero at p = q, i.e. supg∈G |EpTpg| = 0.
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We will refer to discrete Stein discrepancies that use vec-
tor fields, supg∈G |EqTpg|, as “vector field Stein discrep-
ancies”, in contrast to the “scalar field Stein discrepancies”
supf∈F |EqTp∇f | that have been studied previously (Shi
et al., 2022; Baum et al., 2022). We will find that vector
field Stein discrepancies have distinct theoretical and practi-
cal advantages over scalar field Stein discrepancies in the
context of biological sequence data.

4. A Stein Discrepancy for Biological
Sequences

In this section we define the KSD-B, a kernelized vector
field Stein discrepancy for biological sequences.

Mutation We start by considering the relation M , that is,
what pairs of sequences should be considered nearby. Typ-
ically in biology, two sequences are considered similar if
they differ by a small number of mutations. We therefore
say YMX if Y differs from X by a single mutation, ei-
ther a substitution (changing a single letter of X), insertion
(adding a single letter anywhere in X) or deletion (removing
a single letter anywhere in X). This choice of M ensures
that there are only a relatively small number of neighbors of
each sequence, but one can still reach any point in S from
any other by jumping from neighbor to neighbor.
Zanella Stein Operator To construct the Markov process
over sequences, we use the framework of locally informed
proposals, which is a general strategy for building Markov
chain Monte Carlo methods on discrete spaces that satisfy
detailed balance (Zanella, 2020; Shi et al., 2022). Consider
any continuous non-negative, non-decreasing, and non-zero
function χ that satisfies χ(t) = tχ(1/t) for all t > 0 and
χ(0) = 0; examples are χ(t) =

√
t and χ(t) = min{t, 1}.

For any YMX , define the transition rate from X to Y ,
Tp,X→Y as

χ

(
p(Y )

p(X)

)
×#{single mutations taking X to Y }, (2)

with Tp,X→Y = ∞ if p(X) = 0. The first term depends
on the difference in probability under p of X and Y ; in
the case χ(t) = min{t, 1}, we can recognize it as the
Metropolis-Hastings-Rosenbluth correction. The second
term accounts for variation in sequence length, which cre-
ates situations where different mutations to X can lead
to the same Y ; for example, if X = AA, we can reach
Y = A by deleting either the first or the second position
of X , so #{single mutations taking X to Y } = 2. With
this construction, the Markov process satisfies detailed bal-
ance, i.e. Tp,X→Y p(X) = Tp,Y→Xp(Y ) where we define
∞× 0 = 0 throughout. The resulting Stein operator Tp∇
is called the “Zanella Stein operator” (Hodgkinson et al.,
2020). With this operator, we can define not only a scalar
field Stein discrepancy but also a vector field Stein discrep-
ancy, supg∈G |EqTpg|.
Kernelization To make the discrepancy tractable and ensure

G is sufficiently large to detect when q ̸= p, we turn to
reproducing kernel Hilbert spaces (RKHSs). As with the
original kernelized Stein discrepancy, we let the set of test
functions G be a unit ball in an RKHS Hk with kernel
k, i.e. G = {g : ∥g∥k ≤ 1} where ∥ · ∥k is the norm
on Hk (Gorham & Mackey, 2017; Liu et al., 2016). To
ensure that Hk only contains vector fields, i.e. functions
g : S × S → R that satisfy anticommutivity, it is sufficient
to use a kernel that also satisfies anticommutivity,

k((X,Y ), (X ′, Y ′)) = −k((Y,X), (X ′, Y ′)). (3)

Note, since kernels are symmetric, the analogous equation
holds flipping X ′, Y ′. We will see in Sec. 7 and Appx. B.4.3
how to construct vector field kernels that capture biological
notions of sequence similarity.

Starting from a kernel k : S×S → R describing scalar fields
on S, one can derive a kernel k∇ satisfying Eqn. 3 such that
the functions in Hk∇ are the gradients of the functions in
Hk (Appx. B.3.2). We can thus obtain kernelized scalar
field Stein discrepancies as a special case of kernelized
vector field Stein discrepancies, using a “scalar field kernel”,
instead of a more general “vector field kernel”.

KSD-B The KSD-B is defined as KSD-Bp,k(q) =
sup∥f∥k≤1 |EqTpf |. We can compute the supremum an-
alytically (proof in Appx. B.3.1).

Proposition 4.1. Say k is a vector field kernel and
q is a p, k-integrable distribution on S, meaning
EX∼q

∑
YMX Tp,Y→X

√
k((X,Y ), (X,Y )) < ∞. Now,

KSD-Bp,k(q)
2 = (sup∥g∥k≤1 |EqTpf |)2 is equal to

EX,X′∼q

∑
YMX,Y ′MX′

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)).

(4)
If p is p, k-integrable, then for all f ∈ Hk, EpTpf = 0.

5. Detecting convergence and non-convergence
In this section we establish the key theoretical properties of
the KSD-B that makes it useful for goodness of fit tests, eval-
uating sample quality, and other applications. Our proofs
are inspired by those for Euclidean space KSDs in Gorham
& Mackey (2017); Gorham et al. (2019).

KSD-B is Faithful For the KSD-B to be useful as a measure
of goodness of fit, it must be able to detect if a model
distribution p matches a data distribution q. To do so, the
divergence must be faithful: KSD-Bp,k(q) → 0 ⇐⇒ p =
q. Faithfulness holds if the set of test functions is sufficiently
large. For KSDs on Euclidean spaces, faithfulness is usually
guaranteed by using a kernel that is universal, meaning Hk

is dense on some function space (such as Lp space).

Over a discrete space such as S, we can use a set of test
functions that is, in some sense, even larger. More pre-
cisely, there are kernels on S (but not Rd) that have discrete
masses, meaning their RKHS Hk includes delta functions
(Def. B.11) (Jorgensen & Tian, 2015). Kernels with discrete
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masses are always universal, but not the other way around
(Amin et al., 2023). If we use a kernel with discrete masses,
the KSD-B is faithful (proof in Appx. B.3.4).

Proposition 5.1. Assume the support of p is connected,
i.e. supp(p) is a connected set in the graph with vertices
S and edges M . If either (a) k is a vector field kernel
with discrete masses or (b) k is a scalar field kernel with
discrete masses on S and Eq

∑
YMX Tp,Y→X < ∞, then

KSD-Bp,k(q) = 0 if and only if p = q.

KSD-B Detects Convergence and Non-convergence Now,
rather than consider a fixed distribution q, we consider a se-
quence of distributions q1, q2, . . .. We are interested in show-
ing the KSD-B can detect convergence and non-convergence
of qn to p, meaning KSD-Bp,k(qn) → 0 if and only if qn
converges to p in distribution, or in some closely related
metric. This is useful for goodness of fit testing, because it
says that if KSD-Bp,k(q) is close to but not exactly zero, the
difference between q and p cannot be very large, suggesting
that we are unlikely to make a big mistake if our estimate of
KSD-Bp,k(q) is slightly off in practice. It is also useful for
evaluating sample quality; in this case, qn corresponds to the
empirical distribution of n samples, and we are interested
in whether the sample distribution converges to p (Gorham
& Mackey, 2017). Another setting in which detecting con-
vergence and non-convergence is important is when we are
optimizing q to match p using KSD-Bp,k(q) as the objec-
tive. In this case, we want lower values of KSD-Bp,k(qn)
to correspond to distributions qn closer to the target p.

We first show that the KSD-B detects non-convergence, i.e.
KSD-Bp,k(qn) → 0 implies qn → p in distribution. In the
Euclidean case, KSDs based on diffusions can only detect
non-convergence if the stochastic process converges quickly
enough, which occurs if p is not heavy tailed (Gorham et al.,
2019; Gorham & Mackey, 2017). In sequence space, the
“tail” of a distribution describes how it depends on sequence
length (Amin et al., 2021). For the KSD-B to detect non-
convergence, we also need to control the tail of p; Prop.
B.15 shows what can go wrong otherwise. We assume that
p has uniformly quickly decreasing tails (Asm. B.3). By
constructing a Lyapunov function for stochastic processes
on sequences, we show this implies sufficiently fast con-
vergence of the stochastic process Lp (Thm. B.4). Our tail
assumption is reasonable for many generative models of
sequences trained on real data sets; for example, we prove
that profile HMMs, a widely used model of protein domains,
always satisfy the assumption, regardless of the data they are
trained on (for χ(t) = t ∧ 1; Sec. B.2.5). Note the second
term in Eqn. 2 is crucial for ensuring our tail assumption
implies fast convergence of Lp.

Another important condition needed in the Euclidean case is
that the kernel k is heavy tailed (Gorham & Mackey, 2017).
In Props. B.16 and B.17 we show that the KSD-B, too, may
fail to detect non-convergence if we allow k to have thin

tails. The crucial issue is that to detect non-convergence of
distributions qn that become more and more spread out as
n → ∞, there has to exist a test function Tpg, for g ∈ Hk,
that has thick tails. To guarantee this, we assume k has
heavy tails (Appx. B.4.3).

Theorem 5.2. Say p is a distribution on S obeying Asm. B.3
and k is either a vector field kernel with discrete masses
obeying Asm. B.18A or a scalar field kernel with discrete
masses obeying Asm. B.18B. Say (qn)n is a sequence of
distributions on S. If KSD-Bp,k(qn) → 0 then qn converges
to p in distribution.
Proof in Appx. B.3.5. Next, we show that the KSD-B de-
tects convergence, i.e. if qn → p then KSD-Bp,k(qn) → 0
(proof in Appx. B.3.5). In the Euclidean case, the KSD is
guaranteed to detect convergence in a reweighted Wasser-
stein metric (Gorham & Mackey, 2017). We show that the
KSD-B detects convergence in a reweighted total variation
metric.

Proposition 5.3. Say k is a vector field kernel and
p, q1, q2, . . . are p, k-integrable distributions on S. Call
A(X) =

∑
YMX Tp,Y→X

√
k((X,Y ), (X,Y )). If∑

X |p(X)− qn(X)|A(X) → 0 then KSD-Bp,k(qn) → 0.

Scalar Field Case If we use a scalar field kernel, rather
than a vector field kernel, we can still guarantee detection
of non-convergence, but only if we assume that the kernel
is unbounded (Asm. B.18B), implying that k(X,X) grows
arbitrarily large as the length of X increases (Prop. B.16).
This in turn implies that the discrepancy will consider longer
sequences arbitrarily more important than shorter sequences
when judging the similarity between p and q. Biologically,
this judgment rarely makes sense. It is also contrary to the
common practice of normalizing kernels so that k(X,X) =
1 for all X ∈ S (Saigo et al., 2004).

Scalar field discrepancies can also detect convergence,
but with an unbounded kernel, they cannot do so very
well. In particular, Prop. 5.3 still holds (since scalar field
kernels are a special case of vector field kernels), but
A(X) is now unbounded. It is thus harder to achieve∑

X |p(X) − qn(X)|A(X) → 0, and so there are fewer
cases in which the discrepancy can detect convergence.

6. Approximating the KSD-B
In this section we develop an efficient stochastic approxi-
mation to the KSD-B, improving its ability to scale to long
sequences. Our approach centers on reducing the cost of
evaluating each of the terms,∑
XMY,X′MY ′

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)), (5)

which appear inside the expectation in Eqn. 4. Evaluating
these terms exactly is expensive for longer sequences, since
the number of possible single mutations of X , that is |{Y ∈
S |YMX}|, scales linearly with sequence length |X|.
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Baum et al. (2022) study a discrepancy that is essentially, in
our terminology, a KSD-B with a scalar field kernel. They
propose to reduce the computational cost of Eqn. 5 by re-
ducing the size of the neighborhood around each sequence,
shrinking M to M(τ) where τ is a parameter controlling
the size of the graph. For example, they have YM(τ)X
only if Y differs from X by a single substitution, with only
substitutions within a distance τ allowed; distance between
letters in B is measured by assigning each letter to an integer
between 1 and |B|, then computing their difference modulo
|B|. This approach has weaknesses in that (a) removing con-
nections between sequences of different lengths results in a
discrepancy that is no longer faithful, and (b) biologically,
there is no canonical ordering of amino acids or nucleotides.

Instead of shrinking neighborhoods deterministically, we ap-
proximate Eqn. 5 stochastically, by sampling mutants of X .
We do so by taking a single step of a discrete time Markov
process initialized at X , with transition matrix K, where
KX→Y = Tp,X→Y /fluxp(X) if X ̸= Y and KX→Y = 0
if X = Y (Appx. B.2).

Proposition 6.1. Let p be a distribution on S, and (qn)n
a sequence of distributions on S with supn Eqnfluxp < ∞.
Say k is a bounded vector field kernel. Let (Nn,X)n,X∈S

be a set of numbers. For each X,n, let (Y n
X,m)

Nn,X

m=1 be a
set of iid samples, each drawn by taking a single step of a
Markov chain with the transition matrix KX→Y initialized
at X . Define the approximation K̂SD-B

n

p,k(qn)
2, as

EX,X′∼q

[
fluxp(X)fluxp(X

′)×
1

Nn,XNn,X′

∑
m,m′

k((X,Y n
X,m), (X ′, Y n

X′,m′))
]
.

If Nn,X/(log(n) + |X|) → ∞ then almost surely∣∣∣KSD-Bp,k(qn)− K̂SD-B
n

p,k(qn)
∣∣∣→ 0.

The proof is in Appx. B.3.7 and is roughly based on the use
of a sub-Gaussian concentration inequality as in Thm. 4
of Gorham et al. (2020). The result shows that we can ac-
curately approximate the KSD-B by sub-sampling mutants.
Note it requires that the kernel is bounded, which is impos-
sible for scalar field kernels that detect non-convergence.
Thus, a further advantage of vector field over scalar field
kernels is access to a good approximation of the KSD-B.

In summary, there are two computationally intensive steps in
approximating the KSD-B. Given a fixed Nn and maximum
sequence length L, we need to (1) calculate the likelihood
under p of all mutational neighbours of all n sequences and
(2) perform (n×Nn)

2 evaluations of k. So, in principle, the
computational cost scales as O(n×L× [p scaling with L]+
n2 × N2

n × [k scaling with L]). The second term usually
dominates.

7. Kernels for the KSD-B
In this section we describe kernels for the KSD-B. The chal-
lenge is to construct kernels that simultaneously satisfy the
requirements of our theoretical guarantees and capture bio-
logical notions of sequence similarity. Common approaches
to measuring biological sequence similarity include (1) com-
paring sequences position by position (e.g. Hamming ker-
nels), (2) comparing sequences based on pairwise align-
ments (e.g. alignment kernels), (3) comparing sequences
based on their kmer content (e.g. kmer spectrum kernels),
and (4) comparing sequences using learned embeddings into
Euclidean space. Amin et al. (2023) develop kernels on S
that use these biological notions of sequence similarity but
are also highly flexible, having discrete masses.

To build kernels for the KSD-B, we first extend these scalar
field kernels to vector fields, while preserving the discrete
mass property. General techniques for doing so are devel-
oped in Proposition B.34; here we introduce two concrete
examples, one based on Hamming distance and the other
based on pairwise alignment distance. To define the kernels,
we give their value for just one ordering of each pair of
sequences related by M . More precisely, let σ be a function
that takes every pair of sequences (X,Y ) satisfying XMY
to {−1, 1}, with the restriction that σ(X,Y ) = −σ(Y,X)
and σ(X,Y ) = 1 if |X| > |Y |. Define Mσ = {(X,Y ) ∈
M | σ(X,Y ) = 1}. In Prop. B.33 we show that any ker-
nel k defined on Mσ can be uniquely extended to a vector
field kernel on M by applying the anticommutivity prop-
erty (Eqn. 3). Now, let dH(X,Y ) be the Hamming distance
between X and Y . The exponential Hamming kernel is
exp(−λdH(X,Y )) with λ > 0; it has discrete masses by
Thm. 21 of Amin et al. (2023). Now, the exponential Ham-
ming vector field kernel (Exp-H) is,

(exp(−λdH(X,X ′)) + exp(−λdH(Y, Y ′)))2,

for (X,Y ), (X ′, Y ′) ∈ Mσ. Similarly, if kali is an align-
ment kernel with discrete masses (Amin et al., 2023, Thm.
23), we can construct the vector field alignment kernel (Ali),(

r|X|kali(X,X ′)r|X
′| + r|Y |kali(Y, Y

′)r|Y
′|
)2

for r > 0 sufficiently small. The Ali and Exp-H kernels
have discrete masses, guaranteeing the KSD-B will be faith-
ful (Prop. 5.1).

Discrete masses are not sufficient, however, to guarantee the
kernel can be used to detect non-convergence; for this we
need kernels that are, roughly speaking, heavy tailed. We
consider kernels k((X,Y ), (X ′, Y ′)) of the form,

k̆(Y, Y ′)1(|X| ≥ |Y |)1(|X ′| ≥ |Y ′|)

for (X,Y ), (X ′, Y ′) ∈ Mσ. Setting k̆(Y, Y ′) = (C +
dH(Y, Y ′))−β gives an inverse multiquadric Hamming vec-
tor field kernel (IMQ-H). It is heavy tailed in the sense that

6
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it decays as a power law of Hamming distance, rather than
exponentially. We also consider setting k̆(X,X ′) to

|X|−3/2

(∑
V ∈S

#{V in X}#{V in X ′}

)
|X ′|−3/2,

where #{V in X} is the number of occurrences of the sub-
string (kmer) V in X . This gives an infinite kmer spectrum
vector field kernel (ISK), which decays as a power law of
sequence length.

By adding together a kernel with discrete mass kδ and
one with heavy tails kHT we can build a kernel kδ + kHT

that meets the requirements of Thm. 5.2. In particu-
lar, Prop. B.39 shows that if p is a pHMM and χ(t) =
min{t, 1}, we can add either of the discrete mass kernels
(Exp-H or Ali) to either of the heavy tail kernels (IMQ-H
or ISK) and satisfy all the assumptions of Thm. 5.2.

Embedding Kernels Another approach to constructing
kernels for biological sequences is to leverage represen-
tations. Consider in general an embedding function F :
S → RD that maps sequences to a low-dimensional Eu-
clidean space. For example, F may come from a deep
generative model trained on a large data set of biological
sequences; we use UniRep64 (Alley et al., 2019). We can
apply a Euclidean kernel kE to the embedding space to
build a scalar field kernel: for X,Y ∈ S, kF,Emb(X,Y ) =
kE(F (X), F (Y )) (Yang et al., 2018b; Amin et al., 2021).
This approach allows for learned, rather than hand-crafted,
notions of sequence similarity. It also allows for fast evalua-
tion of the KSD-B. The cost of using the Hamming kernel
scales as O(n2 ×N2

n ×L), and that of the alignment kernel
as O(n2 ×N2

n × L2). With an embedding kernel, using an
F defined by an autoregressive sequence model, we can (1)
embed all sequences and their mutants in O(n×Nn × L)
time (since the cost of evaluating F scales linearly with
L), and then (2) calculate the kernel kE applied to the em-
beddings in O(n2 ×N2

n) time, as the embedding space is
independent of L. Though embedding kernels are less theo-
retically tractable than the other kernels we have considered,
our theory can nonetheless help guide their design. First, we
extend scalar field embedding kernels to vector fields. Then,
we construct an embedding kernel that is likely to have dis-
crete masses by rescaling F , following the recommendation
of Amin et al. (2023). We then add to it an embedding kernel
that uses a heavy tailed Euclidean kernel (Appx. C.10).

Scalar Field Kernels We will compare our vector field
kernels to scalar field alternatives. We develop unbounded
versions of the inverse multiquadric Hamming kernel, IMQ-
H (U), alignment kernel, Ali (U), and infinite kmer spectrum
kernel, ISK (U), which have discrete masses and are guar-
anteed to detect non-convergence (Prop. B.38). We also
consider scalar field embedding kernels that are likely to
have discrete masses.

(a) qm,n ̸→ p (b) qn → p

Figure 1. Detecting Convergence and Non-convergence Vector
field kernels are shown in turquoise, unbounded scalar field kernels
in blue, and bounded scalar field kernels in red. The y-axis gives
the KSD-B, normalized to its value at q1,6 or q3.

8. Empirical Results
In this section we examine the empirical performance of the
KSD-B on simulated and real data. Details are in Appx. C.

Detecting Convergence and Non-convergence We first
illustrate our theoretical results on detecting convergence
and non-convergence. To start, we consider a simple ex-
ample model with a single letter in the alphabet, |B| = 1,
and p(X) ∝ e−|X|. We consider a sequence of distribu-
tions defined by qm,n(X) ∝ |X|−1

1(m ≤ |X| < n). As
m,n → ∞, qm,n does not converge to p. In line with our
theoretical results (Thm. 5.2), the KSD-B with vector field
kernels does not converge to zero, nor does the KSD-B
with unbounded scalar field kernels (Fig. 1(a)). However,
if we use bounded versions of the scalar field kernels, nor-
malized to have k(X,X) = 1 for all X (IMQ-H (N), Ali
(N), and ISK (N)), we find that the KSD-B fails to detect
non-convergence (Prop. B.16).

Next, consider the heavy tailed distribution p(X) ∝
|X|−1.4, and qn(X) ∝ |X|−1.4

1(|X| ≤ n). Now, qn con-
verges to p as n → ∞. In line with our theoretical results
(Prop. 5.3), the KSD-B with vector field kernels converges
to zero, as does the KSD-B with bounded scalar field kernels
(Fig. 1(b)). However, with an unbounded scalar field kernel,
it does not. In short, vector field Stein discrepancies enable
detection of both convergence and non-convergence, while
bounded scalar field discrepancies cannot reliably detect
non-convergence, and unbounded scalar field discrepancies
cannot reliably detect convergence.
Goodness of Fit Testing In this section we evaluate the
ability of the KSD-B to detect mismatches between models
and data. We start with a generative biological sequence
model p, then perturb its parameters to form q, and draw
samples; we then evaluate the goodness of fit of p on the
samples from q, for differing perturbation strengths. We are
interested in how well the KSD-B can detect small pertur-
bations. To construct a hypothesis test, we bootstrap the
KSD-B as in Liu et al. (2016), and set a significance thresh-
old of 0.1. In the following examples, we use the DNA
alphabet and Nn = 20 samples in the KSD-B approxima-
tion. We draw 100 samples from q to form each data set,
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and report the mean and standard error of the test’s rejec-
tion rate (power) across independent samples of the entire
data set. We compare tests based on a vector field kernel,
IMQ-H+Exp-H (labelled vf KSD-B in Fig. 2), unbounded
scalar field kernel, IMQ-H (U) (sf (U) KSD-B), and nor-
malized scalar field kernel, IMQ-H (N) (sf (N) KSD-B).
Where possible, we also compare to an MMD two-sample
test with the IMQ-H (N) kernel (MMD), which requires
samples from p (Gretton et al., 2012; Amin et al., 2023),
and a nonparametric Bayesian goodness of fit test (BEAR),
which requires normalized likelihoods for p (Amin et al.,
2021). In principle, the KSD-B test is most powerful when
the “slopes” of p and q differ (Eqn. 1), while the MMD and
BEAR tests focus on differences in the likelihood of p and
q. We expect the KSD-B and MMD tests to be powerful
when the differences between p and q lead to large changes
in the chosen kernel, while we expect the BEAR test to be
powerful when the differences between p and q lead to large
changes in the parameters of an autoregressive model fit to
each distribution.1

First, we consider testing profile hidden Markov models
(pHMMs). We let p be a pHMM with latent sequence length
20, and with a high probability of generating the letter C
at position 5. We then perturb the model by decreasing
the probability of the C at position 5. The KSD-B test
should easily detect the presence of sequences which are one
mutation away from a much more likely sequence. We see
the KSD-B indeed has high power to detect this perturbation,
as compared to the MMD and BEAR tests (Fig. 2(a)).

Next we consider a Potts model with a mutational emission
(MuE) distribution (Marks et al., 2011; Weinstein & Marks,
2021). Potts models are often used for evolutionary protein
families, and have been applied to design novel proteins and
predict 3D structure and mutational effects. The MuE adds
insertions and deletions to samples from the Potts model.
We set the Potts model length to 15. We start with no
interaction energies between sites in the Potts model, and
perturb by adding stronger and stronger interactions. Here,
we find the MMD test outperforms the KSD-B test, which
in turn outperforms the BEAR test (Fig. 2(b)).

Next we examine an autoregressive model; such models
have been used, for example, to design novel proteins (Shin
et al., 2021; Amin et al., 2021). We set p to be a linear
autoregressive model of lag 2 which generates sequences
that range in length from 1 to 60. We perturb p by adding a
nonlinear term. Here, we find that the vector field KSD-B
test and the MMD test are the most powerful (Fig. 2(c)).

Finally, we consider an ancestral sequence reconstruction
model; such models have been used, for example, to res-

1Note also the computational cost of the KSD-B and MMD
tests scales quadratically in the number of datapoints, while that
of the BEAR test scales roughly linearly; hence the BEAR test is
typically more tractable for massive data sets (Amin et al., 2021).

(a) pHMM (b) Potts + MuE

(c) autoregressive (d) ancestral reconstruction

Figure 2. Goodness of Fit Testing We evaluate the power of good-
ness of fit tests, based on the KSD-B and alternatives, to reject the
null hypothesis that p = q. In each plot, the x-axis corresponds to
different values of q, which come from perturbing p by different
amounts. We also plot the 10% significance threshold.

urrect ancient proteins (Pillai et al., 2020). We consider a
star-shaped phylogeny, in which an ancestral sequence X is
drawn from a pHMM prior, π(X), and descendants Yi are
drawn by evolving X for time t according to a stochastic
mutational process κ(Y | X, t), parameterized by a MuE
distribution. We are interested in the posterior over ances-
tors, p(X | Y1, . . . , Y5) ∝ π(X)

∏5
i=1 κ(Yi | X, t). We set

p to the posterior with t = 1, then perturb p by modifying
t. In this example, the normalizing constant of p is unavail-
able, and sampling from p requires approximation methods.
To have a point of comparison, we applied the MMD to
samples from p drawn by a long run of an efficient discrete
MCMC method (Sun et al., 2022). We find the KSD-B can
accurately detect model-data mismatches, without samples
or normalized likelihoods (Fig. 2(d)).

Figure 3. Approximating the KSD-B We compare the power of a
goodness of fit test using our stochastic approximation (green) to
one using neighborhood reduction (black). We set τ ∈ {1, 2, 3}
for the neighborhood size and Nn ∈ {2, 4, 10, 20} for the number
of mutation samples. The solid lines are for tests performed on
samples from a perturbed distribution and the dotted lines are for
tests performed on samples from p. In the latter case, the test
matches the 10% significance threshold, showing good calibration.

Approximating the KSD-B Next we evaluate our stochas-
tic KSD-B approximation strategy, and compare its effi-
ciency to the reduced neighborhood approach of Baum et al.
(2022) (Sec. 6). We set p to a pHMM, with B the amino
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Figure 4. Evaluating Variational Synthesis Models Goodness
of fit tests comparing a target model p to synthesis models q.
Each subplot is a different DNA synthesis technology. The x-axis
shows the number of templates, which corresponds roughly to
the complexity and cost of the synthesis procedure, with larger
numbers of templates allowing better matches to p (Weinstein
et al., 2022b). Legend is identical to Fig. 2

acids. The approach of Baum et al. (2022) requires assign-
ing an ordering to the amino acids; we do so on the basis
of hydrophobicity. We then consider perturbations of p that
increase the probability of hydrophobic residues. Since the
reduced graph M(τ) does not have connections between
strongly hydrophilic and strongly hydrophobic residues
(even when those amino acids are similar in another re-
spect, such as size), tests based on M(τ) can struggle to
detect this perturbation.

We compare the power of tests using reduced neighbor-
hoods to those using stochastic sub-sampling, as a function
of computational cost (solid lines, Fig. 3). Cost is measured
by the total number of kernel evaluations required for each
pair of sequences in the data set. Our approach yields an
order-of-magnitude decrease in kernel evaluations while
achieving the same power. It also maintains good calibra-
tion, as we confirm by evaluating the test on samples from
the unperturbed model p (dashed lines).

Evaluating Synthesis Strategies Next we consider an
application of the KSD-B to a specific library design prob-
lem where goodness of fit tests have been used previously,
variational synthesis (Weinstein et al., 2022b). Here, the
aim is to design a stochastic synthesis procedure which pro-
duces approximate samples from a target generative model
in the laboratory at very large scale. As a target p, we
consider a pHMM trained on a data set of human T cell
receptor CDR3 sequences, which range in length from 10
to 27 amino acids (10x Genomics, 2022). We optimize syn-
thesis models q based on different synthesis technologies:
finite nucleotide mixtures, enzymatic mutagenesis, finite
codon mixtures, and arbitrary codon mixtures. Previously,
BEAR tests were used to evaluate the match between the
synthesis model q and target p; here, we apply the KSD-B.
We find that the KSD-B test can still detect mismatches even
when the BEAR test cannot, and that vector field kernels
outperform scalar field kernels and the MMD test.

Figure 5. Evaluating Large Models Fit to Protein Families We
perform a goodness of fit test for two deep generative models,
Wavenet (top row) and Tranception (bottom row), using scalar
field (turquoise) and vector field (red) embedding kernels. Each
column is a different protein family dataset. We perform the test
for 5 independent samples of the Nn = 10 mutants for four protein
families and plot how often the null hypothesis was rejected at
level 0.05 for increasing data n.

Evaluating Large Models Fit to Protein Families Fi-
nally, we use the KSD-B to evaluate the fit of state-of-the-art
deep generative models of proteins. We considered data sets
consisting of evolutionarily related protein families (Shin
et al., 2021). We trained a deep autoregressive model on
each data set (Wavenet; Shin et al. (2021)), and tested its
goodness of fit on held-out sequences using the KSD-B.
We also tested the goodness of fit of a transformer model
trained on a data set of all known proteins (Tranception;
Notin et al. (2022)); in Appx.C.10.1 we explain why the
KSD-B is particularly suitable for evaluating such “protein
universe” models. To scale the KSD-B to n = 1000 proteins
of length roughly L = 250, we sample Nn = 10 mutants
and use an embedding kernel. Despite the small Nn, we see
little variation in our KSD-B estimates when we resample
mutants, particularly as compared to the differences in the
KSD-B between different models (Fig. 7).

The KSD-B is capable of detecting model-data mismatch
for both Wavenet and Tranception, even when given fewer
than 100 sequences for evaluation (Fig. 5). Moreover, the
test’s power does not fall on data sets with longer sequences
(though this is not always true in other scenarios; see Fig. 6).
In almost all cases, our vector-field KSD-B test is more
powerful than a scalar-field KSD-B test (this holds even for
different kernels; see Fig. 8).
9. Conclusion
In this paper we have developed the KSD-B, a novel dis-
crepancy for distributions over biological sequences, with
strong theoretical guarantees. One possible direction for
future work is to further scale the KSD-B using methods
for KSDs in Euclidean space (Jitkrittum et al., 2017; Hug-
gins & Mackey, 2018; Gorham et al., 2020). Another is
to apply the KSD-B to develop better samplers for biologi-
cal sequences (Gorham & Mackey, 2017; Grathwohl et al.,
2021). Overall, we hope the KSD-B can help ensure the ac-
curacy, reliability, and trustworthiness of methods based on
generative sequence models as they see growing use across
biology, biotechnology and biomedicine.
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Jitkrittum, W., Xu, W., Szabó, Z., Fukumizu, K., and Gret-
ton, A. A linear-time kernel goodness-of-fit test. In Pro-
ceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, pp. 261–270,
Red Hook, NY, USA, December 2017. Curran Associates
Inc.

Jorgensen, P. and Tian, F. Discrete reproducing kernel
hilbert spaces: Sampling and distribution of dirac-masses.
Journal of Machine Learning Research, 2015.

10



Kernelized Stein Discrepancies for Biological Sequences

Leslie, C. S., Eskin, E., Cohen, A., Weston, J., and Noble,
W. S. Mismatch string kernels for discriminative protein
classification. 20(4):467–476, 2004.

Liggett, T. M. Continuous time Markov processes: An
introduction. Graduate studies in mathematics. American
Mathematical Society, Providence, RI, March 2010.

Liu, Q., Lee, J. D., and Jordan, M. A kernelized Stein
discrepancy for goodness-of-fit tests. International Con-
ference on Machine Learning (ICML), 2016.

Madani, A., McCann, B., Naik, N., Keskar, N. S., Anand,
N., Eguchi, R. R., Huang, P.-S., and Socher, R. ProGen:
Language modeling for protein generation. March 2020.

Marcou, Q., Mora, T., and Walczak, A. M. High-throughput
immune repertoire analysis with IGoR. Nat. Commun., 9
(1):561, February 2018.

Marks, D. S., Colwell, L. J., Sheridan, R., Hopf, T. A.,
Pagnani, A., Zecchina, R., and Sander, C. Protein 3D
structure computed from evolutionary sequence variation.
PLoS One, 6(12):e28766, December 2011.

Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., and Rives,
A. Language models enable zero-shot prediction of the
effects of mutations on protein function. July 2021.

Nijkamp, E., Ruffolo, J., Weinstein, E. N., Naik, N., and
Madani, A. ProGen2: Exploring the boundaries of protein
language models. June 2022.

Notin, P., Dias, M., Frazer, J., Marchena-Hurtado, J.,
Gomez, A., Marks, D. S., and Gal, Y. Tranception: pro-
tein fitness prediction with autoregressive transformers
and inference-time retrieval. May 2022.

Pillai, A. S., Chandler, S. A., Liu, Y., Signore, A. V., Cortez-
Romero, C. R., Benesch, J. L. P., Laganowsky, A., Storz,
J. F., Hochberg, G. K. A., and Thornton, J. W. Origin of
complexity in haemoglobin evolution. Nature, 2020.

Riesselman, A. J., Ingraham, J. B., and Marks, D. S. Deep
generative models of genetic variation capture the effects
of mutations. Nat. Methods, 15(10):816–822, 2018.

Russ, W. P., Figliuzzi, M., Stocker, C., Barrat-Charlaix, P.,
Socolich, M., Kast, P., Hilvert, D., Monasson, R., Cocco,
S., Weigt, M., and Ranganathan, R. An evolution-based
model for designing chorismate mutase enzymes. Science,
369(6502):440–445, 2020.

Saigo, H., Vert, J.-P., Ueda, N., and Akutsu, T. Protein ho-
mology detection using string alignment kernels. Bioin-
formatics, 20(11):1682–1689, July 2004.

Shi, J., Zhou, Y., Hwang, J., Titsias, M. K., and Mackey,
L. Gradient estimation with discrete stein operators.
Advances in Neural Information Processing Systems
(NeurIPS), February 2022.

Shin, J.-E., Riesselman, A. J., Kollasch, A. W., McMahon,
C., Simon, E., Sander, C., Manglik, A., Kruse, A. C., and
Marks, D. S. Protein design and variant prediction using
autoregressive generative models. Nat. Commun., 12(1):
2403, April 2021.

Sperling, A. K. and Li, R. W. Repetitive sequences. In
Maloy, S. and Hughes, K. (eds.), Brenner’s Encyclopedia
of Genetics (Second Edition), pp. 150–154. Academic
Press, San Diego, January 2013.

Sriperumbudur, B. K., Gretton, A., Fukumizu, K.,
Schölkopf, B., and Lanckriet, G. R. G. Hilbert space em-
beddings and metrics on probability measures. J. Mach.
Learn. Res., 11(50):1517–1561, 2010.

Sriperumbudur, B. K., Fukumizu, K., and Lanckriet, G. R. G.
Universality, characteristic kernels and RKHS embedding
of measures. J. Mach. Learn. Res., 12(70):2389–2410,
2011.

Sun, H., Dai, H., Xia, W., and Ramamurthy, A. Path auxil-
iary proposal for MCMC in discrete space. International
Conference on Learning Representations (ICLR), 2022.

Thadani, N. N., Gurev, S., Notin, P., Youssef, N., Rollins,
N. J., Sander, C., Gal, Y., and Marks, D. S. Learning from
pre-pandemic data to forecast viral antibody escape. July
2022.

Vershynin, R. High-Dimensional Probability: An Introduc-
tion with Applications in Data Science. 2020.

Weinstein, E. N. Generative Statistical Methods for Bio-
logical Sequences. PhD thesis, Harvard University, Ann
Arbor, United States, 2022.

Weinstein, E. N. and Marks, D. A structured observation
distribution for generative biological sequence predic-
tion and forecasting. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 11068–11079. PMLR, 2021.

Weinstein, E. N., Amin, A. N., Frazer, J., and Marks, D. S.
Non-identifiability and the blessings of misspecification
in models of molecular fitness and phylogeny. Advances
in Neural Information Processing Systems (NeurIPS),
2022a.

Weinstein, E. N., Amin, A. N., Grathwohl, W., Kassler, D.,
Disset, J., and Marks, D. S. Optimal design of stochastic
DNA synthesis protocols based on generative sequence

11



Kernelized Stein Discrepancies for Biological Sequences

models. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2022b.

Yang, J., Liu, Q., Rao, V., and Neville, J. Goodness-of-fit
testing for discrete distributions via stein discrepancy. In
International Conference on Machine Learning (ICML),
2018a.

Yang, K. K., Wu, Z., Bedbrook, C. N., and Arnold, F. H.
Learned protein embeddings for machine learning. Bioin-
formatics, 34(15):2642–2648, August 2018b.

Zanella, G. Informed proposals for local MCMC in discrete
spaces. J. Am. Stat. Assoc., 115(530):852–865, 2020.

12



Kernelized Stein Discrepancies for Biological Sequences

A. Broader Impact Statement
The present work has the potential to impact a variety of procedures in biotechnology and health. Through its use in model
criticism and sequence design, the KSD-B could facilitate the design of novel therapeutics. Biological sequence design may,
however, also be used in applications with negative societal impact. The KSD-B may also be used to critique generative
sequence models used for diagnosis and disease discovery. This could lead to more reliable models, which could lead to
more accurate patient diagnoses, and a deeper understanding of the genetic underpinnings of disease. Research in this
direction, however, also has the potential to exacerbate health outcome disparities that affect marginalized groups, and to do
so based on the genetics of such groups.

B. Proofs
In this appendix we prove the assertions in the main text. First in Section B.1 we lay out our notation. Next, in Section B.2
we study stochastic processes on sequence space, and perform a Lyapunov function analysis of their convergence rates.
In Section B.3 we show that the KSD-B is faithful, can detect convergence and non-convergence, and can be efficiently
approximated. Finally, in Section B.4, we develop kernels that satisfy our theoretical requirements for detecting convergence
and non-convergence.

B.1. Notation

Let our alphabet, B, be a finite set, and let the set of all sequences be defined as S = ∪∞
L=0BL where B0 is defined to only

contain the empty string ∅. If p is a distribution on S let supp(p) = {X | p(X) > 0} and Mp,p = {(X,Y ) ∈ M | X,Y ∈
supp(p)}. We will say p has connected support if supp(p) is a connected set in the graph with vertices S and edges M .
Finally, for X ∈ S, define fluxp(X) =

∑
YMX Tp,X→Y .

Let Cb(S) be the set of bounded functions on S, let C0 be the set of functions on S vanishing at infinity, and let CC(S)
be the set of functions on S that are non-zero at only finitely many points. We also define the set of all vector fields that
are non-zero on only finitely many points in M as CC,vf (M). We define ∥ · ∥∞ as the infinity norm on Cb(S). For two
distributions µ, ν on S, call ∥ν − µ∥TV their distance in total variation.

For two sequences of real numbers (an)n∈N, (bn)n∈N, both possibly undefined for small n, we write an ≲ bn to mean that
there is a positive constant C such that eventually an ≤ Cbn. We write an ∼ bn when an ≲ bn and an ≳ bn. We write
an = O(bn) if an ≲ bn and an = o(bn) if |an|

|bn| → 0. We define a∧ b as the minimum of a and b, and a∨ b as the maximum.
Define 1(P ) to be the indicator function that is 1 if P is true and 0 otherwise.

A kernel on a set H is a symmetric function k : H ×H → R that is ”non-negative definite”, i.e. for all X1, . . . , XN ∈ H ,
α1, . . . , αN ∈ R,

∑N
n=1

∑N
n′=1 αnαn′k(Xn, Xn′) ≥ 0. We also require that k(X,X) > 0 for all X ∈ S. For every

X ∈ S define the function kX = k(X, ·). Define the dot product (·|·)k on linear combinations of these functions with
(kX |kY ) = k(X,Y ) and call the associated norm ∥ · ∥k. Let Hk be the Hilbert space completion of the span of {kX}X∈H

under (·|·)k and call this the reproducing kernel Hilbert space (RKHS) of k. Elements of the RKHS can be understood as
functions on H by (f |kX) = f(X).

Say k is a kernel on a space H and A : H → (0,∞). We call kA(X,Y ) = A(X)k(X,Y )A(Y ) the kernel k ”tilted” by A.
kA is a kernel on H and it is a well known fact that the transformation that takes g ∈ Hk to X 7→ g(X)A(X) is a unitary
isomorphism to HkA (see for example Proposition 35 of Amin et al. (2023)).

We let χ be some non-zero, non-negative, and non-decreasing function on the non-negative real numbers [0,∞) such that
χ(t) = tχ(1/t) for all t > 0.

B.2. Stochastic Processes on Sequences

In this section we study stochastic processes on sequences. Our aim is to understand the convergence rate of continuous-time
Markov processes. These results will be essential in proving the KSD-B detects non-convergence. They are also of much
wider relevance, as Markov processes over sequences appear in many other contexts, including (a) mathematical models of
evolution and (b) Markov chain Monte Carlo (MCMC) methods for sampling sequences, such as in the context of ancestral
sequence reconstruction or conditional generation. We leave detailed exploration of these applications, including extensions
to discrete-time Markov processes, to future work.
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B.2.1. CONTINUOUS-TIME MARKOV PROCESSES

We study the continuous time Markov process on sequence space S defined by the transition rates Tp,X→Y . Here, Tp,X→Y

can be the transition probability of any continuous time Markov process that satisfies detailed balance, and p is a distribution
on sequence space S. The operator Lp of the stochastic process is Lp = Tp∇. It acts on functions; if δY is a delta function
at Y , we have Lp(δY )(X) = Tp,X→Y . Notationally, to avoid switching back and forth between Lp and T , we will define
Lp,X,Y = Tp,X→Y .

To simulate from a continuous time Markov process, one can first sample the sequence of distinct states the Markov process
visits, and then sample how long the process stays at each state. In particular, let KX→Y = Lp,X,Y /fluxp(X) if X ̸= Y
and 0 if X = Y . The entries of K are positive and its rows sum to 1 so it defines a discrete-time stochastic process
(Z0, Z1, . . . ), known as the “underlying stochastic process”. The continuous-time process stays at each state for time
τn ∼ Exp(fluxp(Zn)). Thus, the continuous-time process (Xt)t with operator Lp is defined as Xt = Zn for τn−1 ≤ t < τn
and all n.

If we start at X0 and run the continuous-time Markov process forward for time t, we obtain a distribution over S, denoted
Pt(X0) (note Pt(X0) is a distribution; its value at x ∈ S is denoted Pt(X0)(x)). For any f ∈ CC(S), we define Ptf(X) to
be its expectation under Pt(X), that is Ptf(X) = EPt(X)f . Note Ptf(X) is continuously differentiable in t and satisfies
the backwards Kolmogorov equation, i.e. d

dtPtf(X) = LpPtf(X) (see section 2.5 of Liggett (2010)). If we sample the
starting position X0 from a distribution p on S, and this distribution does not change under the stochastic process – in the
sense that EpPtf = Epf for all f ∈ CC(S) – then we call p stationary. We use the notation Tp and Lp to emphasize that
the stationary distribution of the stochastic process they define is, by construction, p.

B.2.2. EXISTENCE AND OTHER USEFUL PROPERTIES

Sequence space S is infinite. Whenever the state space of a continuous time Markov process is infinite, the process may not,
for any given Lp, exist. Fundamentally, this is because (Xt)t can “explode” by transitioning infinitely many times over
some finite time period. This can result in a situation where Pt is not an actual distribution (that is,

∑
Y Pt(X)(Y ) < 1) or

the forward Kolmogorov equation no longer holds (that is, d
dtPtf(X) ̸= PtLpf(X)). To avoid these pathologies, we add

an integrability condition on p, namely that Epfluxp < ∞. The below lemma shows that in this case the (Pt)t are valid
probability distributions and the forward Kolmogorov equation holds. We also list some additional consequences that will
help prove future results.

Lemma B.1. Say p has connected support and Epfluxp < ∞.

(A) There is a Markov process (Xt)t on supp(p) such that for all f ∈ CC(S), Ptf(X) is continuously differentiable in t
and d

dtPtf(X) = LpPtf(X) = PtLpf(X).

(B) p is stationary under Pt for all t. If q is another distribution with Eqfluxp < ∞, then q = p if and only if EqLpf = 0
for all f ∈ CC(S).

(C) If f ∈ CC(S), f(Xt)−
∫ t

0
Lpf(Xs)ds is a martingale in t conditional on X0 = X for every X ∈ supp(p).

Proof. Take K, (Zn)n, (τn)n, (Xt)t and Pt defined as above. (Zn)n is an irreducible Markov chain by definition as
supp(p) is connected. To show that the Pt indeed define probability distributions, note that ν = fluxpp is a finite measure
on S that is stationary with respect to K since fluxp(X)p(X)KX→Y = fluxp(Y )p(Y )KY→X . This implies that (Zn)n
will visit each X ∈ supp(p) infinitely many times almost surely. To see this, assume (Zn)n, starting at some point, visits an
X ∈ supp(p) only finitely many times with positive probability. Since (Zn)n is irreducible, every time Zn hits X there is a
fixed chance that it never hits X again, so, almost surely, Zn hits X only finitely many times. Let ν̂ = ν(X)/ν(S) so, since
ν̂ is stationary for K,

ν̂(X) =

∫
dν̂(Y )(Km)Y→X = EZ0∼ν̂ [1(Zm = X)] → 0

as m → ∞ by dominated convergence, a contradiction. Thus, by Corollary 2.34 (b) of Liggett (2010), Pt are distributions
on S and

∑
n τn = ∞ almost surely, that is, (Xt)t is a well defined Markov process. We also have that Ptf(X) =

E[f(Xt)|X0 = X] for all X, t.

For the second claim, first note Eqfluxp < ∞ implies supp(q) ⊆ supp(p) since if X ̸∈ supp(X), Tp,X→Y is defined to
be ∞. By equation 2.40 of Liggett (2010), if q is a distribution on S such that Eqfluxp(X) < ∞, q is stationary for all
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Pt if and only if EqLpδX = 0 for all X ∈ supp(p). In particular, p is stationary for all Pt. On the other hand, by our
construction of (Xt)t, since supp(p) is connected, by Proposition 2.6 of Hairer (2021), each Pt has at most one stationary
distribution for t > 0. Thus, p = q if and only if EqLpf = 0 for all f ∈ CC(S).

To show that we also have the forward Kolmogorov equation it suffices by Theorem 2.39 of Liggett (2010) to show that
Ptfluxp(X) < ∞ for all t,X . To see this, note by the fact that p is stationary for Pt,

Epfluxp ≥ Ep (fluxp1(|X| < N))) = EpPt (fluxp1(|X| < N)) → EpPtfluxp

as N → ∞ by monotone convergence so that Ptfluxp(X) < ∞ for all t > 0, X ∈ supp(p).

The statement about martingales holds by the backwards and forwards Kolmogorov equations and Theorem 3.32 of Liggett
(2010).

B.2.3. ESTABLISHING CONVERGENCE RATES

We are interested in studying the convergence of continuous time Markov processes on sequences. In other words, we
would like to know whether the process defined by Lp approaches the stationary distribution p, and if so, how quickly. We
can quantify closeness in terms of total variation distance, ∥Pt(X)− p∥TV. We are interested in how the total variation
distance shrinks as a function of t. To investigate this question, we will use the following general theorem on Markov
process convergence rates, which specializes Theorem 4.1 of Hairer (2021) to the infinite discrete space S. This theorem
defines the convergence rate using a Lyapunov function, V .

Theorem B.2 (Theorem 4.1 of Hairer (2021)). Say p has connected support and Epfluxp < ∞. Say V : S → [1,∞) is
a function such that V (X) → ∞ as |X| → ∞. Assume LpV ≤ R − φ ◦ V on supp(p) for some number R and strictly
concave φ : [0,∞) → [0,∞) with φ(0) = 0 and increasing to infinity. Now define H(u) =

∫ u

1
φ(s)−1ds. Then there is a

C > 0 such that for all X ∈ supp(p),

∥Pt(X)− p∥TV ≤ CV (X)

H−1(t)
+

C

φ ◦H−1(t)
.

Proof. All conditions of Theorem 4.1 of Hairer (2021) are obviously satisfied except for the fact that V (Xt) −∫ t

0
ds (R− φ ◦ V (Xt)) is a local super-martingale conditioned on X0 = X for some X ∈ supp(p). This follows

from Theorem 3.4 of Douc et al. (2009) if Qt = V (Xt)−
∫ t

0
LV (Xs)ds defines a local martingale when X0 = X for all

X ∈ supp(p).

To show this, for every number N and X ∈ S, call V N (X) = V (X)1(V (X) < N) so that VN ∈ CC(S). Also define
TN = inf{t | ∃Y s.t. Y MXt and V (Y ) ≥ N}. TN is a stopping time and TN → ∞ almost surely. By Lemma B.1,
QN

t = V N (Xt)−
∫ t

0
LV N (Xs)ds is a martingale conditioned on X0 = X for any X ∈ supp(p) and, by the definition of

TN , Qt = QN
t for all t ≤ TN . Thus, (Qt)t is a local martingale.

B.2.4. CONVERGENCE RATES FOR SEQUENCE DISTRIBUTIONS

We now establish convergence rates for continuous time Markov processes on sequences. The fundamental challenge is to
construct Lyapunov functions that are appropriate for biological sequences. In general, Lyapunov functions are constructed
based on the tails of the stationary distribution p; the thinner the tails, the faster the convergence of the stochastic process. In
Euclidean space, the tail of a probability distribution p refers to its value at large X . In sequence space, the tail refers to its
value at long X (Amin et al., 2021). We will find that if p falls off quickly with sequence length, the stochastic process will
be able to explore p rapidly, and so converge quickly; if p falls off slowly, convergence is slowed.
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To describe the tails of probability distributions over sequences, we introduce the quantities,

delp(X) =
∑

|Y |=L−1,XMY

Tp,X→Y

insp(X) =
∑

|Y |=L+1,XMY

Tp,X→Y

gapp(L) = inf
X∈S | |X|=L

delp(X)− insp(X).

(If X ̸∈ supp(p), take delp(L) = ∞, and insp(X) = 0.) Now, delp(X) describes the propensity to gain a deletion, insp(L)
the propensity to gain an insertion, and gapp(L) describes the difference between the two. The intuition is that gapp(L)
characterizes how much probability mass will move towards shorter sequences under the stochastic process. If p falls off
quickly with L, then at long sequence lengths L, gapp(L) will be big (for p to to be the stationary distribution, the stochastic
process must be very likely to head back towards shorter sequences). Conversely, if p falls off slowly with L, then at long
sequence lengths L, gapp(L) will be small. We can thus use gapp(L) to describe the tail of p.

We now translate our description of the tail of p into a Lyapunov function Vp, and from there into a convergence rate.

Assumption B.3. We assume p has connected support, Epfluxp < ∞, and there is some concave function Vp : [0,∞) →
[0,∞) such that limL→∞ Vp(L) = ∞ and

gapp(L) ≳
Vp(L)

1+ϵV
2+ϵV

Vp(L)− Vp(L− 1)
(6)

for some ϵV > 0.

If a function Vp exists that satisfies this assumption, we can guarantee convergence. If Vp is small, we can guarantee fast
convergence.

Theorem B.4. Recall Pt(X) is the distribution of a stochastic process with operator Lp = Tp∇, after being initialized at
X and evolving for time t. Say the stationary distribution p obeys Assumption B.3. Then, the stochastic process converges to
the stationary distribution in total variation. It does so with rate,

∥Pt(X)− p∥TV ≲ t−(1+ϵ) + Vp(|X|)t−(2+ϵ).

Proof. Define ∆Vp,L = Vp(L)− Vp(L− 1) and define Vp(X) as Vp(|X|). If X ∈ supp(p) with |X| = L,

LpVp(X) =
∑

YMX,|Y |=|X|+1

Tp,X→Y ∆Vp,L+1 −
∑

YMX,|Y |=|X|−1

Tp,X→Y ∆Vp,L

=insp(X)∆Vp,L+1 − delp(X)∆Vp,L

≤insp(X) (∆Vp,L+1 −∆Vp,L)− gapp(L)∆Vp,L

Since Vp in concave, the first term is negative. As well, by Assumption B.3, gapp(L)∆Vp,L ≳ φ(Vp(L − 1)) where
φ(x) = x(1+ϵ)/(2+ϵ). Thus there are constants C1, C2 such that for all X ∈ supp(p),

LpVp(X) ≤ C1 − C2φ ◦ Vp(X).

By Theorem B.2, with H =
∫ u

1
dsφ−1(s) = C3(u

1
2+ϵ − 1), we have

∥Pt(X)− p∥TV ≲ Vp(X)t−(2+ϵ) + t−(1+ϵ).

Theorem B.4 tells us that the rate of convergence of the stochastic process depends on Vp(|X|), the value of the Lyapunov
function at the initialization point X . Larger values of Vp(|X|) translate into a looser bound on the total variation, and thus
slower convergence rates.
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To understand the connection between the tail of p (as quantified by gapp) and the convergence rate of the stochastic process
(as quantified by Vp) in greater depth, we investigate Equation 6 further. We are interested in the smallest value of Vp that
satisfies Equation 6 for a given value of gapp; this tells us how fast a convergence rate we can guarantee. Note first that
since Vp is concave and goes to ∞, the right hand side of Equation 6 is eventually less than

Vp(L)
1+ϵV
2+ϵV

V ′
p(L)

=
Vp(L)

V ′
p(L)

Vp(L)
− 1

2+ϵV =

(
(log Vp)

′(L)V
1

2+ϵV
p (L)

)−1

. (7)

where V ′
p is the derivative of Vp. This quantity is larger when Vp grows more slowly with L. Let’s now consider three

example choices of gapp and Vp. First, consider Vp of the form Vp(L) = Lα. Now, Equation 7 is proportional to L
1− α

2+ϵV .
So, we can satisfy Equation 6 if gapp(L) ≳ Lβ for some β > 1/2, if we choose Vp = Lα with 0 < α ≤ 1. Alternatively,
we can consider Vp of the form Vp(L) = (log(L))α, which is slower growing. In this case Equation 7 is proportional to
L log(L)

1− α
2+ϵV . We can thus satisfy Equation 6 for gapp(L) ≳ L if we choose Vp(L) = (log(L))α with α > 2. Finally,

define log◦N as log composed with itself N times, and consider the very slow growing Vp(L) = (log◦N (L))α, which
corresponds to gapp(L) ≳ L log(L) log log(L) . . . log◦(N−1)(L)(log◦N (L))

1− α
2+ϵV . Now, if gapp(L) ≳ Lβ for some

β > 1, then we can pick a Vp that grows as slowly as desired, ensuring very fast convergence. Also note that this is satisfied
by supp(p) being finite. Thus, in general, the faster gapp increases, the slower we can make Vp increase, and the faster
convergence rate we can guarantee.

In summary, in this section, we have studied the implications of a basic biological fact: sequences come in different lengths.
We have found that length variation has a major impact on the convergence rate of stochastic processes over sequences.
If the tail of the probability distribution falls off quickly with sequence length, convergence is rapid; if it falls off more
gradually, convergence slows; if it falls off very gradually, convergence is no longer guaranteed at all. We will later find that
in order for the KSD-B to detect non-convergence to a distribution p, the stochastic process used in the KSD-B (as defined
by the Stein operator) must in fact converge to p.

B.2.5. TAILS OF COMMON SEQUENCE DISTRIBUTIONS

We now consider some examples of distributions p on sequence space, and study their tail behavior. This gives us the rate
of convergence to p of the stochastic process defined by the Zanella Stein operator. It will also tell us whether or not the
KSD-B can detect non-convergence to p.

We start with some relatively simple examples. We then study profile hidden Markov models (pHMMs), a type of model
which is ubiquitous in biological sequence analysis. We show that we can guarantee convergence to any pHMM, and
quantify the rate. pHMMs are often successful models of real biological sequence distributions, especially distributions over
evolutionarily related proteins or protein domains. Our results are thus informative not just about pHMMs specifically, but
also about biological sequence distributions found in nature.

Examples with Convergence We start with some simple examples of distributions p for which we can prove convergence
and quantify the rate. Consider p(X) ∝ |B|−Le−µL, which falls off exponentially with sequence length. We have,

gapp(L) = Lχ(|B|eµ)− (L+ 1)|B|χ(|B|−1e−µ) = Lχ(|B|eµ)
(
1− L+ 1

L
e−µ

)
∼ L.

Thus, by the discussion above, we can satisfy Equation 7 with Vp(L) = (log(L))2+ϵ for any ϵ > 0. This translates into a
convergence rate of t−(1+ϵ) + Lϵt−(2+ϵ) by Theorem B.4.

Alternately, consider p(X) ∝ |B|−LL!−1 where L! is L factorial; this distribution falls off even faster with sequence
length. Choose χ such that χ(t) = tα when t ≤ 1 and χ(t) = t1−α when t ≥ 1 for some 0 < α < 1. Then, whenever
|X| = |Y | − 1, we have p(X)/p(Y ) = L|B|. As a result gapp(L) ∼ L2−α. We can now satisfy Equation 7 with
Vp(L) = log◦N (L) for any N , ensuring very fast convergence of the stochastic process.

Example without Convergence We next consider an example of a distribution p for which convergence is not guaranteed.
The distribution p is defined by an autoregressive model, with lag 2. The idea is that, for letters A,B ∈ B, the motif ABA
is high probability while AAA is low probability. Thus a sequence such as X = AAAA may increase in probability by
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gaining an insertion of B and so delp(X) < insp(X). This results in a situation where Assumption B.3 cannot be satisfied,
and so we cannot guarantee convergence by Theorem B.4.

Proposition B.5. Let A ̸= B ∈ B. Let p be a distribution on S such that X ∼ p all start with two A’s, i.e. X(0:2) = AA,
and the rest of the sequence is sampled autoregressively with lag 2 as X(l) ∼ p(b|X(l−2:l)). We set p(A|AA) = 0.1,
p(B|AA) = 0.8, p($|AA) = 0.1, p(A|AB) = 0.8, p(B|AB) = 0.1, p($|AB) = 0.1, p(A|BA) = 0.8, p(B|BA) = 0.1,
and p($|BA) = 0.1, and p(·|BB) to be anything, where $ represents the end of the sequence. Then gapp(L) < 0 for large
enough L and so p does not satisfy Assumption B.3.

Proof. Call X = L×A. p(X) = 0.1L−1, so delp(X) = Lχ(0.1−1). However, for L1, L2 ≥ 2, p(L1×A+B+L2×A) =
0.1L1+L2−2−10.83, so, if L1 + L2 = L, p(L1 ×A+B + L2 ×A)/p(L×A) = 0.830.1−2 > 0.1−1. Thus,

delp(L×A)− insp(L×A) ≤Lχ(0.1−1)−

∑
L1,L2

χ

(
p(L1 ×A+B + L2 ×A)

p(L×A)

)
+ (L+ 1)χ

(
p((L+ 1)×A)

p(L×A)

)
≤Lχ(0.1−1)−

(
(L− 3)χ(0.1−1) + (L+ 1)χ (0.1)

)
=3χ(0.1−1)− (L+ 1)χ(0.1)

where we have used our assumption that χ is non-decreasing. Thus, gapp(L) ≤ 0 for large enough L.

Profile Hidden Markov models We now study the tails of pHMMs, a widely used probabilistic model of biological
sequences. In this section, for a sequence X ∈ S we define X(l) as its l-th letter, starting counting at l = 0, and X(l:l′) as
the sequence of l′ − l letters X(l), X(l+1), . . . , X(l′−1). For an X ∈ S and a number L define L×X as X concatenated to
itself L times. Let X + Y for X,Y ∈ S be their concatenation.

To define a pHMM, we start with a Markov model with “match” states Js = {s1, s2, . . . , sL̃}, “insertion” states Ji =
{i0, i1, . . . , iL̃}, a start state s0, and a termination state ∆. sl and il may only transfer to sl′ for l′ > l or il′ for l′ ≥ l. Then
each of these hidden states, except s0 and ∆, emits a b ∈ B with probability p(b|Z) for a state Z. Thus a probability of a
sequence X with |X| = L can be written as

p(X) =
∑
Z∈IL

p(Z)p(X|Z) =
∑
Z∈IL

p(ZL|ZL−1)

L−1∏
l=0

p(Zl|Zl−1)p(X(l)|Zl)

where we define IL = {(Z−1, Z0, Z1, . . . , ZL) | Zi ∈ Js ∪ Ji for 1 ≤ i ≤ L,ZL = ∆, Z−1 = s0}. We add a few mild
conditions to our pHMM. The first is that infinite length insertions are not allowed, i.e. supl p(il|il) ≤ e−µ for some µ > 0.
We also require that emission probabilities are non-zero, i.e. p(b|Z) > 0 for all states Z and b ∈ B. Call η = minb,Z p(b|Z).
Finally, we require that if p(Z|il) > 0 for some state Z and p(il|sl′) > 0, then p(Z|sl′) > 0, that is, if a state can be reached
by sl′ by first adding an insertion, then it can be reached by sl′ directly as well. This last condition guarantees that removing
an insertion from any sequence of states Z does not make the sequence probability 0.

Before our proof let us build some intuition. For long sequences X we will see that the latent alignment p(Z|X) has almost
all its mass on Z for which almost all states have Zl = il∗ where il∗ is the insertion state that maximizes p(il|il). In this
case, p(X) ≈ p(X||X| × il∗)p(|X| × il∗) =

(∏|X|−1
l=0 p(X(l)|il∗)

)
e−µ|X|. Let us thus consider the toy situation where

p(X) = e−µ|X|∏|X|−1
l=0 q(X(l)) for some distribution q over B (note this is also technically a pHMM). For every sequence

X in this case,

insp(X) = (L+ 1)
∑
b∈B

χ(e−µq(b)) = (L+ 1)e−µ
∑
b

q(b)χ(eµq(b)−1) = (L+ 1)e−µEb∼qχ(e
µq(b)−1),

delp(X) =

|X|−1∑
l=0

χ(eµq(X(l))
−1).

Thus, if b∗ maximizes q(b),

gapp(L) = Lχ(eµq(b∗)−1)− (L+ 1)e−µEb∼qχ(e
µq(b)−1) = L

(
χ(eµq(b∗)−1)− L+ 1

L
e−µEb∼qχ(e

µq(b)−1)

)
.
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If q(b) = |B|−1 for all b then Eb∼qχ(e
µq(b)−1) = χ(eµq(b∗)−1) and we recover the situation of our example with p(X) ∝

|B|−Le−µL. However if q(b) is not uniform and χ is strictly increasing, we can have Eb∼qχ(e
µq(b)−1) > χ(eµq(b∗)−1). In

this case, if µ is sufficiently small, then gapp(L) < 0 for large enough L. Thus for general pHMMs p and χ, whether or not
p has uniformly decreasing tails can depend on µ and the emission probabilities at the most likely insertion. Note however,
by selecting χ(t) = t ∧ 1, Eb∼qχ(e

µq(b)−1) = χ(eµq(b∗)−1) = 1 so gapp(L) ∼ L, and thus p satisfies Assumption B.3
regardless of q and µ. We will therefore take χ(t) = t∧1, and show that in this case pHMMs always satisfy Assumption B.3.

We now characterize the tails of pHMMs by lower bounding gapp(L). Note, our analysis also allows us to prove that
pHMMs are subexponential, i.e. if p is a pHMM then Epe

t|X| < ∞ for any t small enough (Amin et al., 2021); this will be
useful later for proving the pHMM is p, k-integrable.

Proposition B.6. If p is a pHMM and χ(t) = t ∧ 1 then gapp(L) ≳ L. Also, insp(X) ≲ delp(X) ∼ fluxp(X) ∼ |X| and
Epe

t|X| < ∞ for any t < µ.

Proof. Let |X| = L. Applying our choice of χ, we have

insp(X) =
∑

|Y |=L+1,XMY

Tp,X→Y ≤ 1

p(X)

L∑
l=0

∑
b∈B

p(Xb,+l)

where Xb,+l is the sequence X with an inserted letter b at position l. Now we use the sum over B to marginalize out the
emission at position l:

∑
b∈B

p(Xb,+l) =
∑
b∈B

∑
Z∈IL+1

p(Z)p(Xb,+l|Z)

=
∑
b∈B

∑
Z∈IL+1

p(Z)

(
l−1∏
l′=0

p(Xb,+l,(l′)|Zl′)

L∏
l′=l

p(Xb,+l,(l′+1)|Zl′+1)

)
p(Xb,+l,(l)|Zl)

=
∑

Z∈IL+1

p(Z)

l−1∏
l′=0

p(X(l′)|Zl′)

L∏
l′=l

p(X(l′)|Zl′+1)

(∑
b∈B

p(b|Zl)

)
=

∑
Z∈IL+1

p(Z)p(X|Z̃)

where, for Z ∈ IL+1, Z̃ ∈ IL is defined to be Z but with Zl removed. The idea of the proof is to show that the leading
terms of the last sum are ones in which Zl is in the middle of a multiple insertion. For these Z, Z 7→ Z̃ is an injection and
we can replace p(Z) with its upper bound e−µp(Z̃). Then summing over Z̃ will give us e−µp(X) and finally summing over
l and dividing by p(X) will give our bound |X|e−µ on insp(X).

We take L to be sufficiently large such that L > 3L̃, where recall L̃ is the number of match states and the number of
insertion states in the pHMM. For every L̂, l, define IL̂,s(l) = {Z ∈ IL̂ | Zl ∈ Js} and IL̂,i(l) = {Z ∈ IL̂ | Zl ∈ Ji}.
First we consider Z with a match state at position l, i.e. Z ∈ IL+1,s(l). For each Z ∈ IL+1,s(l) pick a position lZ such
that ZlZ = ZlZ+1 = ZlZ−1 ∈ Ji, i.e. lZ is in the middle of a multiple insertion. Define Ẑ to be Z with lZ removed; note
that Ẑ ∈ IL,s(l − 1) ∪ IL,s(l). First note, by our choice of lZ , p(Z)/p(Ẑ) < 1. Next, note Ẑ differs from Z̃ in at most 2L̃
positions, since there are 2L̃ states (excluding the start and termination states). Using the fact that the emission probability
is lower bounded by η, we have p(X|Z̃) ≤ p(X|Ẑ)η−2L̃. Finally, note that at most L̃+ 1 different Z map to the same Ẑ,
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i.e. Ẑ has at most L̃+ 1 multiple insertions (since there are L̃+ 1 insertion states). Now write

∑
Z∈IL+1,s(l)

p(Z)p(X|Z̃) =
∑

Z∈IL+1,s(l)

p(Z)

p(Ẑ)

p(X|Z̃)

p(X|Ẑ)
p(Ẑ)p(X|Ẑ)

≤η−2L̃
∑

Z∈IL+1,s(l)

p(Ẑ)p(X|Ẑ)

≤η−2L̃(L̃+ 1)
∑

Z′∈IL,s(l−1)∪IL,s(l)

p(Z ′)p(X|Z ′)

=η−2L̃(L̃+ 1)p(X,Z ′ ∈ IL,s(l − 1) ∪ IL,s(l))

≤η−2L̃(L̃+ 1) (p(X,Zl ∈ Js) + p(X,Zl−1 ∈ Js)) .

For the first term in the sum write

1

p(X)

L∑
l=0

η−2L̃(L̃+ 1)p(X,Zl ∈ Js) =η−2L̃(L̃+ 1)

L∑
l=0

p(Zl ∈ Js|X)

=η−2L̃(L̃+ 1)

L∑
l=0

E [1(Zl ∈ Js)|X]

=η−2L̃(L̃+ 1)E

[
L∑

l=0

1(Zl ∈ Js)

∣∣∣∣X
]

≤η−2L̃(L̃+ 1)L̃ = O(1)

Where the last inequality follows from the fact that if p(Z) > 0, then at most L̃ states are letters. The second term is similar.

Next we consider Z ∈ IL+1,i(l). Note that at most L̃+ 1 elements Z of IL+1,i(l) map to the same Z̃. (The bound L̃+ 1

comes from considering the L̃+ 1 possible values of the deleted state. For example, consider a Z with entries Zl′ = iL̃
for all l′ ∈ {1, . . . , L̃}. If we delete the zeroth entry of Z to obtain Z̃, i.e. we set l = 0, then we always obtain the same
value of Z, regardless of Z0. Since Z0 can take any value il′ for l′ ∈ {0, 1, . . . , L̃}, we have L̃+ 1 possibilities.) Note also
that by the fact that p(Z) = p(Z0|Z−1)× . . . p(ZL+1|ZL) and our assumption that removing an insertion does not make
the sequence probability 0, there is a γ > 0 such that p(Z)/p(Z̃) ≤ γ for all Z ∈ IL+1,i(l). We will split IL+1,i(l) into
two parts: define A1 = {Z ∈ IL+1,i(l) | Zl−1 ̸= Zl+1} and A2 = {Z ∈ IL+1,i(l) | Zl−1 = Zl+1}. That is, if Z ∈ A2

then Zl−1 = Zl+1, so position l is in a multiple insertion and Zl = Zl−1. Thus, if Z ∈ A2, then p(Z)/p(Z̃) ≤ e−µ, and,
Z 7→ Z̃ is injective on A2. On the other hand, if Z ∈ A1 then Z̃l−1 ̸= Z̃l. Thus,∑

Z∈A1

p(Z)p(X|Z̃) ≤γ
∑
Z∈A1

p(Z̃)p(X|Z̃) ≤ (L̃+ 1)γp(X,Zl−1 ̸= Zl)∑
Z∈A2

p(Z)p(X|Z̃) ≤e−µ
∑
Z∈A2

p(Z̃)p(X|Z̃) ≤ e−µp(X)

and, since there are 2L̃+ 3 total states in the Markov chain,

1

p(X)

L∑
l=0

∑
Z∈A1

p(Z)p(X|Z̃) ≤(L̃+ 1)γE

[
L∑

l=0

1(Zl−1 ̸= Zl)

∣∣∣∣X
]
≤ (L̃+ 1)γ(2L̃+ 3) = O(1)

1

p(X)

L∑
l=0

∑
Z∈A2

p(Z)p(X|Z̃) ≤e−µL.

Combining the above results we finally have

insp(X) ≤ Le−µ +O(1)
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Considering deletions now, we have

delp(X) =
∑

|Y |=L−1,XMY

Tp,X→Y =

L−1∑
l=0

p(X−l)

p(X)
∧ 1

with X−l defined to be X with position l deleted. In this case,

p(X−l) =
∑

Z∈IL−1

p(Z)

l−1∏
l′=0

p(X(l′)|Zl′)

L−1∏
l′=l+1

p(X(l′)|Zl′−1).

For Z ∈ IL−1,i(l − 1), let Z̃ be Z but with an extra ik in position l if Zl−1 = ik. For Z ∈ IL−1,i(l − 1), p(Z)/p(Z̃) ≥
eµ ≥ eµp(Xl|Z̃l) and Z 7→ Z̃ is a bijection to elements Z of IL such that Zl−1 = Zl ∈ Ji. Thus we have,

1

p(X)
p(X−l) ≥ eµ

1

p(X)

∑
Z∈IL−1,i(l−1)

p(Z̃)p(X|Z̃) = eµp(Zl−1 = Zl ∈ Ji|X).

Now let R =
∑L

l=0 (e
µ
1(Zl−1 = Zl ∈ Ji)) ∧ 1 =

∑L
l=0 1(Zl−1 = Zl ∈ Ji), which is lower bounded by L− 3L̃. Thus

delp(X) =
∑

|Y |=L−1,XMY

Tp,X→Y ≥ Ep [R|X] ≥
(
L− 3L̃

)
= L−O(1).

On the other hand we clearly have delp(X) ≤ L. Note we similarly have fluxp(X) must be less than the number
of neighbours of X , L + (|B| − 1)L + |B|(L + 1). Thus we have insp(X) ≲ delp(X) ∼ fluxp(X) ∼ |X| and
gapp(L) ≥ (L−O(1))− (Le−µ +O(1)) ≳ L.

Finally, recall out bound for any sequence X ,

insp(X) ≤ 1

p(X)

L∑
l=0

∑
b∈B

p(Xb,+l) ≤ Le−µ +O(1) ≤ (L+ 1)(e−µ + o(1)).

Thus,

∑
|X|=L

p(X) ≥
∑

|X|=L

p(X)
1

(L+ 1)(e−µ + o(1))

(
1

p(X)

L∑
l=0

∑
b∈B

p(Xb,+l)

)
= (e−µ + o(1))−1

∑
|X|=L+1

p(X)

so p(|X| = L) ≲ e−tL if e−t > e−µ. In particular, if t < µ, then Epe
t|X| =

∑
L p(|X| = L)etL < ∞.

Now, for any pHMM, we can guarantee convergence of the stochastic process and characterize its convergence rate.

Corollary B.7. If p is a pHMM and χ(t) = t ∧ 1 then Epfluxp(X) < ∞ and Assumption B.3 is satisfied with Vp(L) =
(logL)2+ϵ for any ϵ > 0.

This convergence speed is faster than that we obtained in the scenario where p decayed exponentially with L, but slower
than when p decayed as L! or when p had zero probability past a certain length. It suggests that for many real biological
sequence distributions – those for which the pHMM is a good model – we can expect reasonably fast convergence of the
stochastic process.

B.3. Proofs of the KSD-B’s Properties

In this section we prove the results described in the main text for KSD-Bs. Section B.3.1 shows how to tractably compute the
KSD-B. Section B.3.2 shows that scalar field KSD-Bs can be written as a special case of vector field KSD-Bs. Section B.3.3
introduces the property of discrete masses and describes its generalization to vector field kernels. Section B.3.4 establishes
conditions under which the KSD-B is faithful and detects tight non-convergence. Section B.3.5 establishes conditions under
which the KSD-B can detect non-convergence more generally, and also proves that the KSD-B detects convergence. Section
B.3.6 details examples of scenarios where the KSD-B can fail, if the kernel is not chosen appropriately or p is pathological.
Section B.3.7 shows how to accurately approximate the KSD-B.
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B.3.1. CALCULATING THE KSD-B

In this section we develop a tractable expression for computing the KSD-B. First note that by our definition that Tp,X→Y = ∞
if p(X) = 0, any p, k integrable distribution q must have supp(q) ⊆ supp(p).

Proposition B.8. (Proof of Eq. 1 and Proposition 4.1) Say k is a vector field kernel and q is a p, k-integrable distribution
on S. Then for all f ∈ Hk,

EqTpf =
1

2

∑
(X,Y )∈Mp,p

p(Y )Tp,Y→X

(
q(X)

p(X)
− q(Y )

p(Y )

)
f(X,Y ). (8)

Note when q(X) > 0, for (X,Y ) ∈ Mp,p,

p(Y )

(
q(X)

p(X)
− q(Y )

p(Y )

)
= q(X)

(
p(Y )

p(X)
− q(Y )

q(X)

)
and we recover Eq. 1. As well,

KSD-Bp,k(q)
2 = EX,X′∼q

∑
YMX,Y ′MX′

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)).

If p is p, k-integrable, then for all f ∈ Hk, EpTpf = 0.

Proof. Say q is p, k-integrable. Define ϕq(f) = EqTpf . For f ∈ Hk,

ϕq(f) =EX∼q

∑
YMX

Tp,X→Y (f |k(X,Y ))k

≤∥f∥kEX∼q

∑
YMX

Tp,X→Y

√
k((X,Y ), (X,Y )).

(9)

by Cauchy Schwarz. Thus ϕq is a bounded linear operator on Hk and is thus a member of Hk, by the Riesz representation
theorem. As well, KSD-Bp,k(q) = ∥ϕk∥k. We now have,

(ϕq|ϕq)k =ϕq(ϕq)

=EX∼q

∑
YMX

Tp,X→Y ϕq(k(X,Y ))

=EX∼q

∑
YMX

Tp,X→Y EX′∼q

∑
Y ′MX′

Tp,X′→Y ′k(X,Y )(X
′, Y ′)

=EX,X′∼q

∑
YMX

∑
Y ′MX′

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)).

Note that since all quantities in the expectation and sum are positive, Eqn. 9 shows the absolute integrability of the
expectation and sum. Thus we can rearrange terms to get

ϕq(f) =EX∼q

∑
YMX

Tp,X→Y f(X,Y )

=
∑

(X,Y )∈Mp,p

q(X)Tp,X→Y f(X,Y )

=
1

2

∑
(X,Y )∈Mp,p

(q(X)Tp,X→Y f(X,Y ) + q(Y )Tp,Y→Xf(Y,X))

=
1

2

∑
(X,Y )∈Mp,p

p(Y )Tp,Y→X

(
q(X)

p(X)
− q(Y )

p(Y )

)
f(X,Y )

where the last line follows from detailed balance, Tp,X→Y p(X) = Tp,Y→Xp(Y ). If we set p = q we have q(X)
p(X) =

q(Y )
p(Y ) for

all (X,Y ) ∈ Mp,p, so EpTpf = 0.

22



Kernelized Stein Discrepancies for Biological Sequences

B.3.2. SCALAR FIELD KSD-BS AS AN INSTANCE OF VECTOR FIELD KSD-BS

Here we demonstrate that every scalar field KSD-B can be written as a special case of a vector field KSD-B. Recall that
scalar field Stein discrepancies take the form supg∈∇F |EqT g|, whereas vector field Stein discrepancies take the more
general form supg∈G |EqT g|. We will show that if the family of functions F is an RKHS Hk with kernel k, then the set of
functions ∇F – that is, the set of gradients of functions in Hk – is itself an RKHS with kernel k∇. This implies that the
scalar field Stein discrepancy with kernel k is equivalent to a vector field Stein discrepancy with kernel k∇. To show this,
we start by defining k∇.
Proposition B.9. For any given scalar field kernel k on S,

k∇((X,Y ), (X ′, Y ′)) = (kY − kX |kY ′ − kX′)k = k(Y, Y ′)− k(X,Y ′)− k(Y,X ′) + k(X,X ′)

for (X,Y ), (X ′, Y ′) ∈ M defines a vector field kernel. For every f ∈ Hk∇ there is a g ∈ Hk with f = ∇g and
∥f∥k∇ = ∥g∥k.

Proof. k∇ is non-negative definite as if (X1, Y1). . . . , (XN , YN ) ∈ M and α1, . . . , αN ∈ R then, calling f =
∑

n αnkXn

and g =
∑

n αnkYn
,∑

n,m

αnαmk∇((Xn, Yn), (Xm, Ym)) = (g|g)k − (f |g)k − (g|f)k + (f |f)k = ∥f − g∥k ≥ 0.

One can also verify that k∇(X,Y ) = −k∇(Y,X) for all (X,Y ) ∈ M , so for every f ∈ Hk∇ ,

f(X,Y ) = (f |k∇(X,Y ))k∇ = −(f |k∇(Y,X))k∇ = −f(Y,X).

Thus k∇ is a vector field kernel.

Let f =
∑n

i=1 αik
∇
(Xi,Yi)

and g =
∑n

i=1 αi(kYi
− kXi

).

f(X,Y ) =

n∑
i=1

αi(kYi
− kXi

|kY − kX)k = g(Y )− g(X) = ∇g(X).

As well,

∥f∥2k∇ =

n∑
i=1

n∑
j=1

αiαj(kYi
− kXi

|kYj
− kXj

)k = (g|g)k = ∥g∥2k.

Now say f ∈ Hk∇ and (fn)n is a sequence of finite linear combinations of (k∇(X,Y ))(X,Y )∈M such that fn → f . Say
gn ∈ Hk such that ∇gn = fn. Since ∥fn − fm∥k∇ = ∥gn − gm∥k, (gn)n is a Cauchy sequence and thus converges to a
g ∈ H. ∥g∥k = limn ∥gn∥k = limn ∥fn∥k∇ = ∥f∥k∇ and finally,

f(X,Y ) = (f |k∇(X,Y ))k∇ = lim
n
(fn|k∇(X,Y ))k∇ = lim

n
(gn|kY − kX)k = (g|kY − kX)k = ∇g(X,Y ).

Now we show that k∇ defines a vector field KSD-B that is identical to a scalar field KSD-B with k.
Proposition B.10. Say k is a scalar field kernel on S. If q is a p, k∇-integrable distribution on S, then,

sup
∥f∥k∇≤1

EqTpf = sup
∥f∥k≤1

EqTp∇f.

Proof. Define, similar to Proposition B.8, ϕ̃q : Hk → R | f 7→ EqTp∇f . For f ∈ Hk,

ϕ̃q(f) =EX∼q

∑
YMX

Tp,X→Y (f |kY − kX)k

≤∥f∥kEX∼q

∑
YMX

Tp,X→Y ∥kY − kX∥k

≤∥f∥kEX∼q

∑
YMX

Tp,X→Y

√
k∇((X,Y ), (X,Y )).
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Thus ϕ̃q is a bounded linear operator on Hk and, by the Riesz representation theorem, is a member of Hk. As well,(
sup∥f∥k≤1 EqTp∇f

)2
= ∥ϕk∥2k. Now,

(ϕ̃q|ϕ̃q)k =ϕ̃q(ϕ̃q)

=EX∼q

∑
YMX

Tp,X→Y

(
ϕ̃q(kY − kX)

)
=EX∼q

∑
YMX

Tp,X→Y

×

(
EX′∼q

∑
Y ′MX′

Tp,X′→Y ′ ((kY (Y
′)− kX(Y ′))− (kY (X

′)− kX(X ′)))

)
=EX,X′∼q

∑
YMX,Y ′MX′

Tp,X→Y Tp,X′→Y ′k∇((X,Y ), (X ′, Y ′))

=KSD-Bp,k(q)
2.

B.3.3. KERNELS WITH DISCRETE MASSES

We want the KSD-B to be able to be faithful, i.e. KSD-Bp,k(q) = 0 if and only if p = q. For this to hold, the set of test
functions the KSD-B uses for comparing qn and p – that is, Hk – must be sufficiently large. In Euclidean space, one can
make sure Hk is sufficiently large by using a kernel that is universal (Gorham & Mackey, 2017). In our infinite discrete case,
we will use kernels with discrete masses, i.e. kernels whose RKHS contains delta functions (Jorgensen & Tian, 2015). In
this section we introduce the property of discrete masses, generalize it to vector fields, and discuss its implications. Later we
will show how the discrete mass property, together with additional conditions on the kernel’s tail, ensures the KSD-B can
detect non-convergence (Section B.3.4-B.3.5); we then construct practical kernels with discrete masses (Section B.4).

A standard, scalar field kernel has discrete masses if for every point X ∈ S, the RKHS contains a delta function at X . For
vector field kernels, we generalize this idea from single points to pairs of neighboring points.

Definition B.11 (Kernel with discrete masses). (A) If k is a scalar field kernel on S, then we say k has discrete masses if
δX ∈ Hk for all X ∈ S, where δX is the function that is 1 at X and 0 elsewhere.

(B) If k is a vector field kernel, then we say k has discrete masses if δ(X,Y ) ∈ Hk for all (X,Y ) ∈ M , where δ(X,Y ) is the
vector field on M that is 1 at (X,Y ), −1 at (Y,X), and 0 elsewhere.

To see that having discrete masses implies that Hk is large in some absolute sense, note that a scalar field kernel has
discrete masses if and only if CC(S) ⊂ Hk, and a vector field kernel k has discrete masses if and only if CC,vf (M) ⊂ Hk.
Moreover, Hk is dense in any space for which CC,vf (M) or CC(S) are dense. Thus, a kernel with discrete masses is
C0 and Lp-universal, meaning that any function in C0 or Lp-space can be approximated arbitrarily well by a function
in Hk (Sriperumbudur et al., 2011; Amin et al., 2023). Note also that kernels on Euclidean space cannot have discrete
masses (Amin et al., 2023).

Kernels with discrete masses are guaranteed to detect non-convergence when used in a maximum mean discrepancy
(MMD) (Sriperumbudur et al., 2010; Amin et al., 2023). Although the KSD-B is closely related to the MMD, the
same results do not transfer directly. In the MMD, the set of test functions is the RKHS Hk itself, i.e. we have
sup∥f∥k≤1:f∈Hk

|Eqf − Epf |. In the KSD-B, however, the set of test functions is the Stein operator applied to the
RKHS, supf̃∈Tp({∥f∥k≤1:f∈Hk}) |Eq f̃ − Epf̃ |.

We introduced vector field KSD-Bs as a generalization of scalar field KSD-Bs with a larger set of test functions. One way in
which this notion of a larger set of test functions manifests itself is in terms of discrete masses. Consider a scalar field kernel
k; even if this kernel has discrete masses, its corresponding vector field kernel k∇ (Proposition B.10) cannot have discrete
masses. In other words, even if k can describe a very large set of functions on S, k∇ cannot describe a very large set of
vector field functions on M ⊂ S × S. This is one important way in which scalar field KSD-Bs are limited.

Proposition B.12. Say k is a kernel on S. Then k∇ does not have discrete masses.
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Proof. Let X1, X2, X3 be three distinct sequences in S such that X1MX2MX3MX1. For any (X,Y ) ∈ M , calling
f = k∇(X,Y ), we have

f(X1, X2) + f(X2, X3) + f(X3, X1) =

=k∇((X,Y ), (X1, X2)) + k∇((X,Y ), (X2, X3)) + k∇((X,Y ), (X3, X1))

=(kY − kX |(kX2
− kX1

) + (kX3
− kX2

) + (kX1
− kX3

))k

=0.

Thus, for all f ∈ Hk∇ , f(X1, X2) + f(X2, X3) + f(X3, X1) = 0. However,

δ(X1,X2)(X1, X2) + δ(X1,X2)(X2, X3) + δ(X1,X2)(X3, X1) = 1.

B.3.4. FAITHFULNESS AND TIGHT NON-CONVERGENCE

In this section we show that the KSD-B is faithful, meaning that KSD-Bp,k(q) = 0 if and only if p = q. We also show
that the KSD-B can detect tight non-convergence, meaning KSD-Bp,k(qn) ̸→ 0 if qn ̸→ p and (qn)n is uniformly tight.
Intuitively, uniform tightness says that the distributions qn do not become too diffuse or spread out as n → ∞ – a scenario
that may occur, for instance, if qn is the empirical distribution of samples drawn by a biased sampler that “spins out of
control” (Gorham & Mackey, 2017). In the next section, we will relax the tightness assumption, guarding against such a
possibility.

The basic idea behind our proof is that, if we use a kernel with discrete masses, KSD-Bp,k(q) = 0 implies Eqf = 0 for all f
in Tp(CC,vf (M)) (or, for a scalar field kernel, for all f in Tp∇(CC(S))). This in turn implies q = p, as we show in the
following lemma. A brief technical point: when k is a scalar field kernel, we will rely on the fact that the only distribution
stationary for the stochastic process induced by Lp is p (Lemma B.1 (B)). Thus we must add additional integrability
assumptions to ensure that this process exists, namely that Epfluxp and Eqfluxp are finite. In the vector field case, such
extra assumptions are unnecessary as we can appeal directly to Equation 1.
Lemma B.13. Say p has connected support and q is a distribution on S. If EqTpf ̸= ∞ for all f ∈ CC,vf (M), or if
EqTp∇f ̸= ∞ for all f ∈ CC(S), then supp(q) ⊆ supp(p). If EqTpf = 0 for all f ∈ CC,vf (M), then q = p. Or, if
Eqfluxp < ∞, Epfluxp < ∞ and EqTp∇f = 0 for all f ∈ CC(S), then q = p.

Proof. Assume EqTpf is well defined and finite for all f ∈ CC,vf (M). If supp(q) ̸⊆ supp(p) then there is a X ∈ supp(q)\
supp(p) such that there is a YMX where either q(Y ) = 0 or Y ∈ supp(p). In either case, we have q(Y )Tp,Y→X = 0
(recall we define 0×∞ = 0). Thus, from the definition of Tp,

EqTpδ(X,Y ) = q(X)Tp,X→Y − q(Y )Tp,Y→X = ∞,

since Tp,X→Y is defined to be ∞ when X ̸∈ supp(p). This contradicts the assumption that EqTpf is finite, so supp(q) ⊆
supp(p).

The proof for the scalar field kernel proceeds analogously. Assume EqTp∇f ̸= ∞ for all f ∈ CC(S), and say supp(q) ̸⊆
supp(p). Again pick X ∈ supp(q) \ supp(p) such that there is a YMX such that q(Y ) = 0 or Y ∈ supp(p). We have,

EqTp∇δY = q(Y )Tp∇δY (Y ) +
∑
ZMY

q(Z)Tp∇δY (Z) = −q(Y )fluxp(Y ) +
∑
ZMY

q(Z)Tp,Z→Y ,

and in either case the first term is finite and the second is ∞, a contradiction.

Now say EqTpf = 0 for all f ∈ CC,vf (M). If X ∈ supp(q), Y ∈ supp(p) and YMX , we have from Equation 1,

0 = EqTpδ(X,Y ) = q(X)Tp,Y→X

(
p(Y )

p(X)
− q(Y )

q(X)

)
.

Thus, q(Y )/q(X) = p(Y )/p(X). Thus supp(q) = supp(p) and q(Y )/q(X) = p(Y )/p(X) for all (X,Y ) ∈ Mp,p. Since
the support of p in connected this implies that q = p.

Now if Epfluxp < ∞ and EqTp∇f = 0 for all f ∈ CC(S) then q = p by Lemma B.1 (B).
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We now show the KSD-B is faithful and detects tight non-convergence, proving Proposition 5.1 in the main text.

Proposition B.14. Say supp(p) is connected. Assume either (a) k is a vector field kernel with discrete masses or (b) k is a
scalar field kernel on S with discrete masses and Epfluxp < ∞.

(A) The KSD-B is faithful. If k is a scalar field kernel on S, assume further that Eqfluxp < ∞. Now, KSD-Bp,k(q) = 0
only if p = q.

(B) The KSD-B detects tight non-convergence. Say (qn)n is a tight sequence of distributions on S satisfying
KSD-Bp,k(qn) → 0 as n → ∞. If k is a scalar field kernel, assume further that supn Eqnfluxp < ∞. Then,
qn → p in distribution.

Proof. Assume k is a vector field kernel with discrete masses. Say KSD-Bp,k(qn) → 0 as n → ∞ but (qn)n does not
converge in distribution to p. Since (qn)n is tight, we can, by Prokhorov’s theorem, pass to a sub-sequence (qnk

)k
that converges in distribution to a distribution q on S. Now, for all f ∈ CC,vf (M), Tpf is non-zero on only finitely
many points, so EqTpf = limk Eqnk

Tpf . Recall that having discrete masses implies we also have f ∈ Hk. Therefore,
Eqnk

Tpf ≤ ∥f∥kKSD-Bp,k(qnk
), and so limk Eqnk

Tpf = 0. We thus have EqTpf = 0, which by Lemma B.13 implies
q = p, a contradiction.

If k is a kernel on S with discrete masses by the same logic as above we have that for all f ∈ CC(M), EqTpf = 0. By
Fatou’s lemma we also have

Eqfluxp ≤ lim inf
k

Eqnk
fluxp < ∞.

By Lemma B.13 we again have q = p, a contradiction.

If the support of p is finite – for instance, if p describes only sequences of fixed length – then any sequence of distributions
(qn)n that sends KSD-Bp,k(qn) → 0 must be uniformly tight. The reason is that if KSD-Bp,k(qn) → 0, Lemma B.13 implies
we must have supp(qn) ⊂ supp(p) eventually. Therefore, if supp(p) is finite, the KSD-B can detect non-convergence in
general.

B.3.5. DETECTING CONVERGENCE AND NON-CONVERGENCE IN GENERAL

We now establish conditions under which the KSD-B can detect convergence and non-convergence for any sequence of
distributions (qn)n, no matter whether it is tight or not. In this more general setting, we require additional assumptions on p;
we must also choose our kernel k more carefully.

Conditions on p For the KSD-B to detect non-convergence to p for any sequence (qn)n, the stochastic process the KSD-B
uses – namely, the continuous time Markov process on sequences defined by the Zanella Stein operator – must in fact
converge to p quickly. Intuitively, the KSD-B is evaluating how the expectation of functions in the test set Hk changes under
an infinitesimal step of the stochastic process. If the stochastic process is guaranteed to converge to p quickly, we know the
KSD-B can only become very small when qn is very near to the stationary distribution p. We will therefore require that p
satisfies Assumption B.3. Recall that in Corollary B.7, we saw that Assumption B.3 is satisfied for the pHMM, a biological
sequence model that is widely successful in practice.

Concretely, to see that an assumption like Assumption B.3 is in fact necessary for detecting non-convergence, consider the
following example. We construct a p that does not satisfy Assumption B.3, along with a sequence of distributions (qn)n that
does not converge to p, such that the KSD-B nonetheless goes to zero.

Proposition B.15. Say α1, α2, . . . is a decreasing positive sequence such that χ(αL) = L−1|B|−2L. For a distribution p̃ on
N, for a sequence X ∈ S with L = |X|, let p(X) ∝ |B|−L/2αL+1p̃(L/2) if L is even and p(X) ∝ |B|−(L−1)/2p̃((L−1)/2)
if L is odd. Say k is a bounded vector field kernel. Then there is a sequence (qn)n such that KSD-Bp,k(qn) → 0 and qn does
not converge to p in distribution.

The proof is in Section B.3.6. The intuition is that the tail of p is not “uniformly decreasing”: p(X) alternates back and forth
between large and small values as |X| increases. Since only sequences that differ in length by one letter (rather than two)
are related by M , the KSD-B is fooled into detecting convergence. Note that Assumption B.3 demands that the tail of p falls
off not only sufficiently slowly, but also uniformly, as gapp(L) depends on the difference between the stochastic process’s
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propensity to delete and to insert a letter. Biologically, this result suggests we should be cautious when applying the KSD-B
to distributions over sequences with variable-length tandem repeats: if having a complete repeat motif is much more likely
than a partial repeat, it may produce a non-uniform tail for p, breaking Assumption B.3 (Sperling & Li, 2013).

Conditions on k Next, we describe what kinds of kernels we must use to guarantee detection of non-convergence. Recall
that for Euclidean KSDs to detect non-convergence, one needs kernels that are heavy tailed, such that their RKHS includes
”coercive” functions that have thick tails (Gorham & Mackey, 2017). Intuitively, the situation in sequence space is analogous:
we will need RKHSs that include coercive functions.

To motivate our conditions, we consider examples of scalar and vector field kernels that fail to detect non-convergence. First,
we show that if we use a scalar field kernel that is bounded, the KSD-B cannot detect convergence.
Proposition B.16. Say k is a kernel on S that is bounded. Then there exists a distribution p on S that satisfies Assumption B.3,
and a sequence of distributions qn that does not converge to p, such that KSD-Bp,k(qn) → 0.

The proof is in Section B.3.6. The distribution p in our construction does not have particularly heavy or non-uniform tails;
in fact, p decays exponentially in sequence length, and satisfies gapp(L) ∼ L. The issue therefore is the kernel, not p.

Next we give an example of a vector field kernel that fails to detect non-convergence. The construction is similar in idea to
the example in Theorem 6 of Gorham & Mackey (2017).
Proposition B.17. Let p(X) ∝ e−µ|X||B|−|X| for some µ > 0 and k be a vector field kernel such that, for
(X,Y ), (X ′, Y ′) ∈ M with |X| = |X ′|,

|k((X,Y ), (X ′, Y ′))| ≤ C(dH(X,X ′) + 1)−4−ϵ

for some C, ϵ > 0 where dH is the Hamming distance. Then there is a sequence of distributions (qn)n in S such that
KSD-Bp,k(qn) → 0 but qn doesn’t converge to p.

The proof is in Section B.3.6. Here again, the distribution p decays exponentially in sequence length; the problem is the
kernel.

Motivated by these examples, we will require that the RKHS of our kernel includes functions with thick tails. More precisely,
we require that there is a f̃ ∈ Hk such that Tpf̃ increases sufficiently quickly with respect to the tail of p.
Assumption B.18. Say p is a distribution on S that satisfies Assumption B.3 with Vp. We assume either:

(A) k is a vector field kernel such that there is a f̃ ∈ Hk with lim|X|→∞ Tpf̃(X) = ∞ and∑
L

inf |X|=L Tpf̃(X)(
sup|X|=L insp(X)

)
Vp(L+ 1)

= ∞. (10)

(B) k is a kernel on S such that supp(p) is finite or there is a f̃ ∈ Hk with lim|X|→∞ Tp∇f̃(X) = ∞ and∑
L

CL ∧ CL+1 = ∞ where CL =
inf |X|=L Tp∇f̃(X)(

sup|X|=L fluxp(X)
)
Vp(L+ 1)

. (11)

To understand this condition, first consider part (A). The denominator in the sum is the maximum propensity for insertions,
sup|X|=L insp(X), multiplied by our Lyapunov function, Vp(L + 1). In Section B.4.3, we will construct f̃ such that

inf |X|=L Tpf̃(X) ≳ gapp(|X|)f̃(X). If gapp(|X|) ≳ insp(X), then the assumption is satisfied if
∑

L
inf|X|=L f̃(X)

Vp(L+1) = ∞.

Recall that Vp must diverge to infinity with increasing L to meet Assumption B.3. Thus, part (A) in essence requires that f̃
has thick tails. Note also that if p has thinner tails, Vp can be smaller, and this assumption is easier to satisfy.

Part (B) is similar to (A), except (1) it uses of the operator Tp∇ instead of Tp, (2) the insp terms have been replaced by a
fluxp term, which can be much larger, and (3) the sum over L takes the minimum of sequential terms. The last difference (3)
implies that the sequence C1, C2, . . . cannot alternate between large and small values.

Assumption B.18 is analogous to the coercitivity assumption used in Euclidean KSDs, which similarly requires that Hk

includes functions f̃ such that Tpf̃ increases sufficiently quickly; see Theorem 8 of Gorham & Mackey (2017) and Theorem
3.2 of Huggins & Mackey (2018).
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Non-convergence With Assumption B.3 on p and Assumption B.18 on k, we can prove the the KSD-B detects non-
convergence. Our proof strategy is inspired by that of Theorem 8 of Gorham & Mackey (2017). We start by using the fact
that the stochastic process converges to p (Theorem B.4) to prove the following lemma, which is similar to Theorem 5 of
(Gorham et al., 2019).
Lemma B.19. Say p is a distribution on S obeying Assumption B.3. If g ∈ Cb(S) and g(X) = 0 for X ̸∈ supp(p), then
there is a fg : S → R such that fg(X) = 0 for X ̸∈ supp(p), Tp∇fg = g − Epg, and fg(X) ≤ CVp(X)∥g∥∞ for a
universal constant C.

Proof. Recall that by Theorem B.4, we have

∥Pt(X)− p∥TV ≲ Vp(X)t−(2+ϵ) + t−(1+ϵ).

Now since g ∈ Cb(S),
|Ptg(X)− Epg| ≤ ∥g∥∞∥Pt(X)− p∥TV,

so
∫∞
0

dt|Ptg(X)− Epg| ≤ C ′∥g∥∞Vp(X) for some large enough C ′ > 0. Thus we can define

fg(X) =

∫ ∞

0

dt (Epg − Ptg(X))

with |fg|(X) ≤ C ′∥g∥∞Vp(X). Because we have absolute integrability, and by Lemma B.1 (A), we can also write

Lpfg(X) =

∫ ∞

0

dt (−LpPtg(X)) =

∫ ∞

0

dt

(
− d

dt
Ptg(X)

)
= g(X)− Epg.

We now show that the KSD-B can detect non-convergence for any sequence of distributions qn, giving Theorem 5.2.
Theorem B.20. Say p is a distribution on S obeying Assumption B.3 and k is a scalar or vector field kernel with discrete
masses obeying Assumption B.18. Say (qn)n is a sequence of distributions on S. If KSD-Bp,k(qn) → 0 then qn converges to
p in distribution.

Proof. First note that by Lemma B.13, supp(qn) ⊆ supp(p) for all n eventually. Let g ∈ Cb(S) with g(X) = 0 for
X ̸∈ supp(p) and ∥g∥∞ ≤ 1, so by Lemma B.19, there is an fg : S → R such that fg ≤ C̃Vp for some C̃ > 0 and
Tp∇fg = g − Epg. We will show that Eqng − Epg = EqnTp∇fg → 0, which will be enough to prove the theorem,
since it implies qn converges to p in total variation. We will do so by picking a sequence of hm ∈ Hk such that
supn Eqn |Tphm − Tp∇fg| → 0 as m → ∞. This will show that

|EqnTp∇fg| ≤ |EqnTphm|+ Eqn |Tphm − Tp∇fg| ≤ ∥hm∥kKSD-Bp,k(qn) + Eqn |Tphm − Tp∇fg|,

which goes to zero as n → ∞ and as m → ∞ slowly enough.

First assume k is a scalar field kernel with discrete masses. For a sequence v = (v1, v2, . . . ) of numbers 0 ≤ vn ≤ 1
such that vn is eventually equal to 0, define the vector field on M given by hv(X,Y ) = v|X|∨|Y |∇fg(X,Y ). Since v is
eventually zero, hv(X,Y ) > 0 for only a finite set of X,Y ∈ S; since k has discrete masses, hv ∈ Hk. As well,

Tphv(X) =
∑

YMX

Tp,X→Y v|X|∨|Y |∇fg(X,Y )

=v|X|
∑

YMX | |Y |≤|X|

Tp,X→Y ∇fg(X,Y ) + v|X|+1

∑
YMX | |Y |=|X|+1

Tp,X→Y ∇fg(X,Y )

=v|X|Tp∇fg(X) + (v|X|+1 − v|X|)
∑

YMX,|Y |=|X|+1

Tp,X→Y ∇fg(X,Y ).

The first term is a better and better approximation of Tp∇fg as v → 1. We will bound the second term using Assumption
B.18 (A) and the fact ∣∣∣∣∣∣

∑
YMX,|Y |=|X|+1

Tp,X→Y ∇fg(X,Y )

∣∣∣∣∣∣ ≤ 2C̃Vp(|X|+ 1)insp(X).
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Assume k satisfies Assumption B.18 (A). Let f̃ ∈ Hk satisfy Equation 10 and have Tpf̃(X) → ∞ as |X| → ∞. There is

thus a ζ ∈ R such that Tpf̃(X) + ζ > 0 for all X ∈ S. Now call ∆vL = |vL+1 − vL| and RL :=
Vp(L+1) sup|X|=L insp(X)

inf|X|=L Tpf̃(X)+ζ
,

so,
Eqn |Tphv − Tp∇fg| ≤Eqn [(1− v|X|)|Tp∇fg|] + Eqn

[
∆v|X|2C̃Vp(|X|+ 1)insp(X)

]
≤2∥g∥∞Eqn [1− v|X|] + 2C̃Eqn

[(
Tpf̃ + ζ

)
∆v|X|

Vp(|X|+ 1)insp(X)

Tpf̃ + ζ

]
≤2Eqn [1− v|X|] + 2C̃Eqn

[
Tpf̃ + ζ

]
sup
L

(∆vLRL)

≤2Eqn

[
Tpf̃ + ζ

]
sup
L

1− vL

inf |X|=L Tpf̃(X) + ζ
+ 2C̃Eqn

[
Tpf̃ + ζ

]
sup
L

(∆vLRL)

=Eqn

[
Tpf̃ + ζ

](
2 sup

L

1− vL

inf |X|=L Tpf̃(X) + ζ
+ 2C̃ sup

L
(∆vLRL)

)

≤
(
∥f̃∥kKSD-Bp,k(qn) + ζ

)(
2 sup

L

1− vL

inf |X|=L Tpf̃(X) + ζ
+ 2C̃ sup

L
(∆vLRL)

)

≲ sup
L

1− vL

inf |X|=L Tpf̃(X) + ζ
+ sup

L
(∆vLRL) .

By assumption Tpf̃ + ζ → ∞ and
∑

L R−1
L = ∞. For ϵ, L′ > 0 define vϵ,L

′

L = 1 for L ≤ L′ and ∆vϵ,L
′

L = ϵR−1
L ∧

(vϵ,L
′

L ) for L′ ≥ L. By assumption
∑

L R−1
L = ∞ so vϵ,L

′
is eventually 0. We thus have supL

(
∆vϵ,L

′

L RL

)
= ϵ and

supL
1−vϵ,L′

L

inf|X|=L Tpf̃(X)+ζ
≤ 1

inf|X|≥L Tpf̃+ζ
. By our assumption that Tpf̃ → ∞, both of these quantities go to 0 as L′ → ∞

and ϵ → 0.

Now assume k is a vector field kernel with discrete masses obeying Assumption B.18 (B). The case that supp(p) is finite was
shown in Proposition 5.1 so assume supp(p) is infinite. The proof is very similar. This time, for a sequence v = (v1, v2, . . . )
of decreasing numbers 0 ≤ vn ≤ 1 such that vn is eventually equal to 0, define the function on S, hv(X) = v|X|fg(X).
Since v is eventually 0, and since k has discrete masses, hv ∈ Hk. Then, by similar reasoning to the previous case,

Tp∇hv(X) =v|X|Tp∇fg(X) + (v|X|+1 − v|X|)
∑

YMX,|Y |=|X|+1

Tp,X→Y ∇fg(X,Y )

+ (v|X|−1 − v|X|)
∑

YMX,|Y |=|X|−1

Tp,X→Y ∇fg(X,Y ).

Note that since Vp is increasing, the sum of the later two terms is upper bounded by

2C̃∆̃vLVp(|X|+ 1)fluxp(X),

defining ∆̃vL = |vL+1 − vL| ∨ |vL − vL−1|. Now call R̃L :=
Vp(L+1) sup|X|=L fluxp(X)

inf|X|=L Tp∇f̃(X)+ζ
, so,

Eqn |Tp∇hv − Tp∇f | ≤Eqn [(1− v|X|)|Tp∇fg|] + Eqn

[
∆̃v|X|2C̃Vp(|X|+ 1)fluxp(X)

]
≤2Eqn

[
Tp∇f̃ + ζ

](
sup
L

1− vL

inf |X|=L Tp∇f̃(X) + ζ
+ 2C̃ sup

L

(
∆̃vLR̃L

))

≤
(
∥f̃∥kKSD-Bp,k(qn) + ζ

)(
2 sup

L

1− vL

inf |X|=L Tp∇f̃(X) + ζ
+ 2C̃ sup

L

(
∆̃vLR̃L

))

≲ sup
L

1− vL

inf |X|=L Tp∇f̃(X) + ζ
+ sup

L

(
∆̃vLR̃L

)
.

By assumption Tpf̃ + ζ → ∞ and
∑

L R̃−1
L ∧ R̃−1

L+1 = ∞. For ϵ, L′ > 0 define vϵ,L
′

L = 1 for L ≤ L′ and vϵ,L
′

L =

vϵ,L
′

L−1 − ϵR̃−1
L−1 ∧ R̃−1

L ∧ (vL−1) for l ≥ L. Thus ∆̃vL ≤ ϵR̃−1
L . By assumption

∑
L R̃−1

L ∧ R̃−1
L+1 = ∞ so vϵ,L

′
is
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eventually 0. We thus have supL

(
∆̃vϵ,L

′

L R̃L

)
= ϵ and supL

1−vϵ,L′
|X|

inf|X|=L Tp∇f̃(X)+ζ
≤ 1

inf|X|≥L Tpf̃+ζ
. By our assumption

that Tp∇f̃ → ∞, both of these quantities go to 0 as L′ → ∞ and ϵ → 0.

Convergence Finally, we prove that the KSD-B can detect convergence, giving Proposition 5.3.

Proposition B.21. Say k is a vector field kernel and p, q1, q2, . . . are p, k-integrable distributions on S. Call A(X) =∑
YMX Tp,Y→X

√
k((X,Y ), (X,Y )).∑

X

|p(X)− qn(X)|A(X) → 0 =⇒ KSD-Bp,k(qn) → 0.

Proof. Say f ∈ Hk. Now,

|EpTpf − EqnTpf | ≤ ∥f∥k
∑
X

|p(X)− qn(X)|
∑

YMX

Tp,Y→X

√
k((X,Y ), (X,Y ))

which proves the result.

One implication of this result is that when the kernel is large, in the sense that A(X) is big, convergence will be harder to
detect. To ensure that the KSD-B can reliably detect convergence, we will want to choose kernels that are not very large.

B.3.6. PROOFS OF EXAMPLES

Here, we give the proofs of the examples discussed in the previous section.

Proposition B.22. (Proposition B.15) Say α1, α2, . . . is a decreasing positive sequence such that χ(αL) = L−1|B|−2L.
For a distribution p̃ on N, for a sequence X ∈ S with L = |X|, let p(X) ∝ |B|−L/2αL+1p̃(L/2) if L is even and
p(X) ∝ |B|−(L−1)/2p̃((L− 1)/2) if L is odd. Say k is a bounded vector field kernel. Then there is a sequence (qn)n such
that KSD-Bp,k(qn) → 0 and qn does not converge to p in distribution.

Proof. We will consider a sequence of distributions indexed by even sequence lengths L, that is, qL for L ∈ {2, 4, 6, . . .}.
Define q̃L = p1|X|>L and qL = q̃L/

∑
X q̃L(X). Call qL(L′) = qL(X) for any |X| = L′. Call NL = {(X,Y ) ∈

M | |X| = L+ 1, |Y | = L}. The terms of the sum in Equation 8 are non-zero only for (X,Y ) ∈ NL. Thus,

KSD-Bp,k(qL)
2 =

 sup
∥f∥k≤1

∑
(X,Y )∈NL

qL(X)Tp,X→Y f(X,Y )

2

=qL(L+ 1)2

 sup
∥f∥k≤1

f

∣∣∣∣∣ ∑
(X,Y )∈NL

Tp,X→Y k(X,Y )


k

2

=qL(L+ 1)2

∥∥∥∥∥∥
∑

(X,Y )∈NL

Tp,X→Y k(X,Y )

∥∥∥∥∥∥
2

k

=qL(L+ 1)2
∑

(X,Y )∈NL

∑
(X′,Y ′)∈NL

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)).

If (X,Y ) ∈ NL, then Tp,X→Y ≤ (L+ 1)χ(αL+1) = |B|−2(L+1); this comes from the fact that the maximum number of
mutations which can take X to Y is L+ 1 (corresponding to the case where X = L× A and Y = (L+ 1) × A, where
A ∈ B, i.e. X and Y are homopolymers). Thus, if k is bounded by a number C > 0,

KSD-Bp,k(qL)
2 ≤ qL(L+ 1)2|B|2(L+1)|B|−4(L+1)C ≤ |B|−2(L+1)C → 0.
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Proposition B.23. (Proposition B.16) Say k is a kernel on S that is bounded, such that k(X,Y ) ≤ N < ∞ for all
X,Y ∈ S. Then there exists a distribution p on S that satisfies Assumption B.3, and a sequence of distributions qn that does
not converge to p, such that KSD-Bp,k(qn) → 0.

Proof. Note that since k is bounded by N , we have for all X ∈ S and f ∈ {f ∈ Hk : ∥f∥k ≤ 1}, f(X) = (f |kX)k ≤
∥f∥k

√
k(X,X) ≤ N . Thus ∥f∥∞ ≤ N for all f ∈ {f ∈ Hk : ∥f∥k ≤ 1}. So, to prove the result, it is sufficient to find p

and qn such that sup∥f∥∞≤1 EqnTp∇f → 0.

Let p be the distribution supported on {∅, A,AA,AAA, . . . } for A ∈ B with p(L) = p(L×A) = 2−(L+1) for any number
L. Note that this distribution satisfies gapp(L) ∼ L (as discussed in Section B.2.5). As a consequence, Assumption B.3 is
met.

Now, define r = χ
(

p(L)
p(L−1)

)
= χ(1/2) for any L and r̃ = χ

(
p(L−1)
p(L)

)
= χ(2) = 2χ(1/2) = 2r > r for any L. Let

r̃0 = 0. Say q is a distribution supported on finitely many {∅, A,AA,AAA, . . . }, and f is a function on S with ∥f∥∞ ≤ 1,

EqTp∇f =

∞∑
L=0

q(L) ((L+ 1)r(f(L+ 1)− f(L)) + Lr̃(f(L− 1)− f(L)))

=

∞∑
L=0

f(L)

(
q(L+ 1)(L+ 1)r̃ + q(L− 1)Lr

− q(L) (Lr̃ + (L+ 1)r)

)
=

∞∑
L=0

f(L)

(
q(L+ 1)(L+ 1)r̃ − q(L)Lr̃

+ q(L− 1)Lr − q(L)(L+ 1)r

)
.

Let q̃m,n(L) = L−1 for m ≤ L < n and q̃m,n(L) = 0 for L ≥ n and L < m. Now let qm,n = q̃m,n/Zm,n where
Zm,n =

∑n−1
L=m L−1 which goes to ∞ as n → ∞. Thus,

Eqm,n
Tp∇f =f(m− 1)Z−1

m,nr̃ − f(n− 1)Z−1
m,nr̃

+

n−1∑
L=m+1

f(L) (qm,n(L− 1)Lr − qm,n(L)(L+ 1)r)

− f(m)qm,n(m)(m+ 1)r + f(n)qm,n(n− 1)nr

=Z−1
m,n

(
r̃f(m− 1)− r̃f(n)− rf(m)

m+ 1

m
+ rf(n)

n

n− 1

)
+

n−1∑
L=m+1

qm,n(L− 1)f(L)r

(
L− L− 1

L
(L+ 1)

)

≤6r̃Zm,n
−1 + r

n−1∑
L=m+1

qm,n(L− 1)L

∣∣∣∣1− L2 − 1

L2

∣∣∣∣
=6r̃Zm,n

−1 + r

n−1∑
L=m+1

qm,n(L− 1)L−1

≤6r̃Zm,n
−1 + r(m+ 1)−1

(12)

This expression goes to 0 as n,m → ∞.

Proposition B.24. (Proposition B.17) Let p(X) ∝ e−µ|X||B|−|X| for some µ > 0 and k be a vector field kernel such that,
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for (X,Y ), (X ′, Y ′) ∈ M with |X| = |X ′|,

|k((X,Y ), (X ′, Y ′))| ≤ C(dH(X,X ′) + 1)−4−ϵ

for some C, ϵ > 0 where dH is the Hamming distance. Then there is a sequence of distributions (qn)n in S such that
KSD-Bp,k(qn) → 0 but qn doesn’t converge to p.

Proof. First note that for (X,Y ) ∈ M , calling χ (eµ|B|) = c, Tp,X→Y ≤ c(|X|+1). For distinct points X1, . . . , XN ∈ BL

let q = 1
N

∑N
n=1 δXn

. Call R = minn̸=m dH(Xn, Xm) > 0. Then by equation 4,

KSD-Bp,k(q)
2 ≤c2(L+ 1)2

N2

N∑
n=1

N∑
m=1

∑
YMXn

∑
Y ′MXm

|k((Xn, Y ), (Xm, Y ′))|

=
c2(L+ 1)2

N2

( N∑
n=1

∑
YMXn

∑
Y ′MXn

|k((Xn, Y ), (Xn, Y
′))|

+
∑
n ̸=m

∑
YMXn

∑
Y ′MXm

|k((Xn, Y ), (Xm, Y ′))|
)

≲
(L+ 1)2

N2

(
NL2 +N2L2R−(4+ϵ)

)
=O

(
L4
(
N−1 +R−(4+ϵ)

))
.

We now set RL = L(1− |B|−1)/20 and pick, for each L, X1, . . . , XNL
∈ BL to be the largest set of sequences such that

minn ̸=m dH(Xn, Xm) > RL. We will show L4N−1
L → 0, so that we will have L4

(
N−1

L +R
−(4+ϵ)
L

)
→ 0 and the proof

will be complete.

For X ∈ BL, r > 0, define the Hamming ball B(X, r) = {Y ∈ BL | dH(X,Y ) ≤ r}. Thus BL = ∪nB(Xn, RL),
otherwise we could add another sequence to (Xn)n. Thus |B|L ≤

∑
n |B(Xn, RL)| = NL|B(X1, RL)|. Now, consider

the Hamming distance from X1 to a sequence drawn uniformly at random from BL. This distance is a random variable Z
distributed as a Binomial with parameters L and 1− |B|−1. Then N−1

L ≤ |B(X1, RL)|/|B|L = P (Z ≤ RL). On the other

hand, calling γ = 1 − |B|−1 and t = − log
(

RL

Lγ

)
= log 20, and using the moment generating function of the Binomial

distribution,
P (Z ≤ RL) =P (e−tZ ≥ e−tRL)

≤etRLEe−tZ

=etRL
(
γe−t + (1− γ)

)L
=etRL

(
1 + γ(e−t − 1)

)L
≤ exp

(
tRL + Lγ(e−t − 1)

)
=exp (RL(1 + t)− Lγ)

= exp

(
−Lγ

(
1− 1

20
(1 + log 20)

))
≤ exp

(
−1

2
Lγ

)
.

Thus, NL ≥ e
1
2L(1−|B|−1) so that L4N−1

L → 0 as L → ∞.

B.3.7. EFFICIENT APPROXIMATE KERNELIZED STEIN DISCREPANCIES

In this section prove Proposition 6.1, which establishes an efficient approximation for the KSD-B.

Proposition B.25. (Proposition 6.1) Let p be a distribution on S, and (qn)n a sequence of distributions on S with
supn Eqnfluxp < ∞. Say k is a bounded vector field kernel. Let (Nn,X)X∈S,n be a family of numbers. For each X,n, let
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(Y n
X,m)

Nn,X

m=1 be a set of iid samples, each drawn by taking a single step of a Markov chain with the transition matrix KX→Y

initialized at X . Define the approximate KSD-B,

K̂SD-B
n

p,k(qn)
2 = EX,X′∼qfluxp(X)fluxp(X

′)
1

Nn,XNn,X′

∑
m,m′

k((X,Y n
X,m), (X ′, Y n

X′,m′)).

If Nn,X/(log(n) + |X|) → ∞ then almost surely∣∣∣KSD-Bp,k(qn)− K̂SD-B
n

p,k(qn)
∣∣∣→ 0.

Proof. Call p(Y |X) = KX→Y . Sample (Y n
X,m)

Nn,X

m=1 iid from p(Y |X) for all X,n. Call p̂n(Y |X) = 1
Nn,X

∑Nn,X

m=1 δY n
X,m

.
We have

EX∼qnfluxp(X)Ep̂n(Y |X)

√
k((X,Y ), (X,Y )) < ∞

by assumption since k is bounded. Thus the functional ϕn : Hk → R | f 7→ EX∼qnfluxp(X)Ep̂n(Y |X)f(X,Y ) is bounded,
and is thus in Hk by the Reisz representation theorem. Applying the definition of KX→Y , we can derive, as in the proof of
Proposition B.8,

K̂SD-B
n

p,k(qn) = ∥ϕn∥k = sup
f∈F

EX∼qnfluxp(X)Ep̂n(Y |X)f(X,Y ).

We will show that supX ∥p(Y |X)− p̂n(Y |X)∥TV → 0 as n → ∞ almost surely below; for now, assume this is the case.
Say k is bounded by a number c2, so ∥f∥k ≤ 1 implies ∥f∥∞ ≤ sup(X,Y )∈M |(f |k(X,Y ))k| ≤ c. Thus, using the definition
of the total variation metric as an integral probability metric over bounded functions,∣∣KSD-Bp,k(qn)−K̂SD-B

n

p,k(qn)
∣∣

≤ sup
∥f∥k≤1

EX∼qnfluxp(X)
∣∣Ep(Y |X)f(X,Y )− Ep̂n(Y |X)f(X,Y )

∣∣
≤cEX∼qnfluxp(X) ∥p(Y |X)− p̂n(Y |X)∥TV

≤c (EX∼qnfluxp(X)) sup
X

∥p(Y |X)− p̂n(Y |X)∥TV

→0.

Now we will show that supX ∥p(Y |X)− p̂n(Y |X)∥TV → 0 almost surely. Let X ∈ supp(p) and call M |X = {Y ∈
S | YMX}. Call FX = {h : M |X → {−1, 1}} so

∥p(Y |X)− p̂n(Y |X)∥TV =
1

2

∑
Y ∈M |X

|p(Y |X)− p̂n(Y |X)| = 1

2
max
h∈FX

Ep(Y |X)h(Y )− Ep̂n(Y |X)h(Y ).

Note for each h ∈ FX , Ep̂n(Y |X)[h(Y )− Ep(Y ′|X)h(Y
′)] is an average of Nn,X mean-zero iid random variables that take

values [−2, 2] and are therefore sub-Gaussian; the average is thus also a sub-Gaussian random variable, with variance-proxy
C ′/
√
Nn,X for some C ′ (Vershynin, 2020, Prop. 2.6.1). Then by a union bound, since |FX | ≤ 2C

′′|X| for some C ′′ > 0,

P (∥p(Y |X)− p̂n(Y |X)∥TV > ϵn) ≤ eC1|X| exp
(
−C2Nn,Xϵ2n

)
for some constants C1, C2 > 0. Pick a sequence of positive numbers ϵ1, ϵ2, . . . and choose Nn,X such that
Nn,X/ (|X|+ (log n)) → ∞. If ϵn decreases slowly enough, then eventually C2Nn,Xϵ2n ≥ (C1+log |B|+1)|X|+2 log n,
so, ∑

X,n

P (∥p(Y |X)− p̂n(Y |X)∥TV > ϵn) ≤
∑
n

∑
X

eC1|X| exp
(
−C2Nn,Xϵ2n

)
≲
∑
n

∑
L

∑
|X|=L

|B|−Le−L exp (−2 log n)

≲
∑
n

n−2 < ∞.

By the Borel-Cantelli lemma, the probability that ∥p(Y |X)− p̂n(Y |X)∥TV > ϵn for infinitely many X,n is 0. Thus, with
probability 1, as n → ∞,

sup
X

∥p(Y |X)− p̂n(Y |X)∥TV → 0

33



Kernelized Stein Discrepancies for Biological Sequences

B.4. Designing Kernels for the KSD-B

In this section we design practical kernels for the KSD-B. Our theoretical results suggest that we want kernels that (1) have
discrete masses, (2) have thick tails (Assumption B.18) and (3) are not very large (Proposition B.21). We also want our
kernels to capture a sensible biological notion of sequence similarity, so that sequences which are closer together, as judged
by the kernel, are more likely to be functionally similar and evolutionarily related.

Section B.4.1 reviews existing results on scalar field sequence kernels that (a) have discrete masses and (b) capture biological
notions of sequence similarity. Section B.4.2 develops vector field kernels with the same virtues. Section B.4.3 adds thick
tails; it relies in part on a combinatoric analysis of alignment kernels, which is deferred to Section B.4.5. Section B.4.4
confirms that the proposed kernels are not too large.

B.4.1. SCALAR FIELD BIOLOGICAL SEQUENCE KERNELS WITH DISCRETE MASSES

In this section we review some scalar field kernels for biological sequences with discrete masses, proposed in Amin et al.
(2023).

Position-wise Comparison Kernels We start by introducing kernels that compare sequences position-by-position. Such
kernels have strong biological justification for many problems; for instance, amino acids at the same position in related
proteins are likely to have similar biological functions. A standard position-wise measure of sequence similarity is the
Hamming distance dH(X,Y ) which counts the number of positions l at which X(l) does not match Y(l); if Y is longer
than X , positions past the length of X are counted as mismatches (i.e. we treat each sequence as ending with an infinite
tail of stop symbols $). We consider two kernels that rely on the Hamming distance to measure sequence similarity: the
exponential Hamming kernel (Exp-H),

kExp−H(X,Y ) = exp(−λdH(X,Y ))

with λ > 0, and the inverse multiquadric Hamming kernel (IMQ-H),

kIMQ−H(X,Y ) = (C + dH(X,Y ))−β

with C, β > 0. Amin et al. (2023) showed that both have discrete masses.

Theorem B.26. (Theorem 21 and Example 6 of Amin et al. (2023)) kExp−H and kIMQ−H have discrete masses.

Alignment Kernels We next consider alignment kernels, which compare sequences based on pairwise alignments (Haus-
sler, 1999). Position-wise comparison kernels will judge two sequences to be very different even if they differ by a single
insertion; in many biological settings, however, a small insertion is unlikely to change a sequence’s biological function
dramatically. Alignment kernels, by contrast, consider sequences that differ by a small number of inserted or deleted letters
to be similar.

To define alignment kernels, we first introduce two simpler kernels that will later be combined. The first is for comparing
letters; the second is for penalizing insertions. To compare letters, let ks(X,Y ) = σ−1|B|δX(Y )× 1(|X| = 1)1(|Y | = 1);
note that ks is only non-zero if X and Y both consist of the same single letter. To penalize insertions, let kI(X,Y ) =
exp (−µ(|X|+ |Y |)−∆µ (1(|X| ≥ 1) + 1(|Y | ≥ 1))) for 0 < µ < ∞ and 0 ≤ ∆µ ≤ ∞. Sequences compared by kI
are interpreted as insertions, and penalized with an insertion start penalty ∆µ and insertion length penalty µ. We also
consider a variant without the start penalty, k̃I(X,Y ) = exp (−µ(|X|+ |Y |)).

The alignment kernel sums over all possible pairwise alignments of two sequences, and for each pairwise alignment scores
matched positions with ks and insertions with kI . It can be written as,

k̃ali(X,Y ) =
∑

l,X(1)+···+X(2l+1)=X,Y (1)+···+Y (2l+1)=Y

kI(X
(1), Y (1))

l∏
i=1

ks(X
(2i), Y (2i))kI(X

(2i+1), Y (2i+1)) (13)

where the sum is over all numbers l and partitions of X and Y into 2l + 1 substrings. The
even substrings X(2), X(4), . . . , Y (2), Y (4), . . . correspond to the matched positions, while the odd substrings
X(1), X(3), . . . , Y (1), Y (3), . . . are the intervening insertions. (See e.g. Amin et al. (2023) for a detailed explanation.) We
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also define the local alignment kernel, which does not penalize the creation of an insertion at the beginning or end of the
alignment,

k̃la(X,Y ) =
∑

k̃I(X
(1), Y (1))

(
l−1∏
i=1

ks(X
(2i), Y (2i))kI(X

(2i+1), Y (2i+1))

)
ks(X

(2l), Y (2l))k̃I(X
(2l+1), Y (2l+1)).

Amin et al. (2023) showed that kali and kla have discrete masses, provided the hyperparameters ∆µ and ζ = 2µ− log σ +
log |B| are set appropriately.

Theorem B.27. (Theorems 23 and 25 of Amin et al. (2023)) k̃ali and k̃la have discrete masses if and only if ∆µ = ∞; or
∆µ > 0 and ζ ≥ log |B|; or ∆µ = 0 and ζ > log |B|.

It is common in practice to work with tilted versions of the alignment kernel, for instance to normalize the kernel. To
enable our theoretical analysis of the alignment kernel’s tails, we will use the tilting Ã(X) = exp(µ|X|), which gives the
kernels kali(X,Y ) = Ã(X)k̃ali(X,Y )Ã(Y ) and kla = Ã(X)k̃la(X,Y )Ã(Y ). Note that this particular tilting is equivalent
to setting µ = 0. Thus kali and kla in effect have only two parameters, ∆µ and ζ, since the choice of ζ determines σ.

Infinite kmer Spectrum Kernels Next we consider kmer spectrum kernels, which compare sequences based on how
many times substrings (kmers) occur in each sequence (Leslie et al., 2004). Like alignment kernels, kmer spectrum kernels
judge two sequences to be similar even if they differ by insertions or deletions rather than just substitutions. In fact, Amin
et al. (2023) showed that for a particular tilting and parameter choice, the local alignment kernel is equivalent to a kmer
spectrum kernel. The kmer counts of a sequence are its features under the local alignment kernel.

Proposition B.28. (Proposition 27 in Amin et al. (2023)) Say ∆µ = ∞ and ζ = 0. For X,Z ∈ S call ϕZ(X) the number
of times Z appears in X . Then, kla(X,Y ) =

∑
Z∈S ϕZ(X)ϕZ(Y ). This kernel has discrete masses.

We refer to this special case of the local alignment kernel, with ∆µ = ∞ and ζ = 0, as an infinite kmer spectrum kernel
kISK, since it sums over an infinite number of kmers Z ∈ S (typical kmer spectrum kernels just consider all kmers shorter
than a given length, see Leslie et al. (2004)).

Embedding Kernels Finally we consider embedding kernels. These kernels are built using a learned embedding of
sequences into Euclidean space F : S → RD. We compare embedded sequences using a translation invariant kernel
kE(z, z

′) = Ψ(z − z′) with Ψ a positive continuous function on RD that has a strictly positive Fourier transform. The
embedding kernel is defined as kF,Emb(X,Y ) = kE(F (X), F (Y )). In this paper we always use Unirep64 as F , for which
D = 64 (Alley et al., 2019).

Now we look at when embedding kernels have discrete masses. Amin et al. (2023) proved that k has discrete masses if the
image of F doesn’t have accumulation points.

Proposition B.29. (Proposition 31 in Amin et al. (2023)) kE has discrete masses if and only if F (S) has no accumulation
points, that is, there is no X ∈ S such that F (X) is in the closure of F (S \ {X}).

Amin et al. (2023) suggests that F from regularized representation learning methods may struggle to avoid accumulation
points in their image as S is infinite and F outputs representations with small norm. However they suggest this can be solved
by rescaling embeddings so that longer sequences have embeddings with larger norm. They demonstrate this theoretically
for a random embedding:

Proposition B.30. Consider an embedding F̃ where each F̃ (X) for X ∈ S is drawn from the uniform distribution on the
sphere, {x ∈ RD | ∥x∥ ≤ 1}. Then, a kernel using the rescaled embedding F (X) = |B|(1+ϵ)|X|/DF̃ (X), for ϵ > 0, has
discrete masses almost surely.

To make it likely that our kernels have discrete masses, we use a rescaled embedding below Frescaled(X) =
|B|1.1×|X|/64F (X).

By picking different kE we can build different Embedding kernels. For example we define 1) the IMQ embedding kernel
kF,IMQ,σ(X,Y ) = (1 + ∥Frescaled(X) − Frescaled(Y )∥2/σ2)−0.5 and 2) the EXP embedding kernel kF,EXP (X,Y ) =
exp(−∥Frescaled(X)− Frescaled(Y )∥2/(2σ2)), where the scaling σ is a bandwidth parameter.
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Kernel Transformations Tilting a kernel with discrete masses preserves discrete masses. So do several other common
kernel transformations.

Proposition B.31. (Section 6.2 in Amin et al. (2023)) If k is a kernel with discrete masses and A : S → (0,∞), then the
tilted kernel kA(X,Y ) = A(X)k(X,Y )A(Y ) has discrete masses. If k, k′ are kernels with discrete masses, the tensorized
kernel k ⊗ k′((X,Y ), (X ′, Y ′)) = k(X,X ′)k′(X ′, Y ′) has discrete masses. If k is a kernel with discrete masses and k′ is
another kernel then k + k′ has discrete masses. If k is a kernel with discrete masses and S′ ⊆ S then k restricted to S′ has
discrete masses.

We can use these transformations to craft new scalar field kernels with discrete masses out of existing ones.

B.4.2. VECTOR FIELD KERNELS WITH DISCRETE MASSES

In this section we construct vector field kernels that have discrete masses and that capture biological notions of sequence
similarity. The basic idea is to develop transformations from scalar field to vector field kernels that preserve the discrete mass
property. Recall that we cannot simply take the gradient of the scalar field kernel (Proposition B.9). Instead, our approach is
to tensorize scalar field kernels so that they can be applied to pairs of sequences, and then to enforce anticommutativity.

We first explain how anticommutativity is enforced. The idea is to first define a canonical ordering of sequences; once we
have chosen a value of the kernel for the canonical ordering, its value for all other orderings follows by anticommutativity.
The canonical ordering itself is defined in terms of a sign.

Definition B.32. A sign on M is a σ : M → {−1, 1} such that σ(X,Y ) = −σ(Y,X) for all (X,Y ) ∈ M . Define
Mσ = {(X,Y ) ∈ M | σ(X,Y ) = 1}. For a (X,Y ) ∈ M , define (X,Y )σ = (X,Y ) if σ(X,Y ) = 1 and (Y,X)
otherwise. We say σ is “proper” if σ(X,Y ) = 1 if |Y | = |X| − 1 for (X,Y ) ∈ M .

Once we have chosen a value of the kernel for the canonical ordering (i.e. Mσ) we can extend it to all orderings (i.e. M ) by
symmetry. If the kernel has discrete masses on Mσ then its extension to M will be a vector field kernel with discrete masses.

Proposition B.33. Let σ be a sign on M . There is a bijective correspondence between kernels on Mσ and vector field
kernels, such that a kernel k on Mσ corresponds to the vector field kernel

((X,Y ), (X ′, Y ′)) 7→ σ(X,Y )σ(X ′, Y ′)k((X,Y )σ, (X ′, Y ′)σ) (14)

and a vector field kernel corresponds to its restriction to Mσ . Kernels k on Mσ with discrete masses, i.e. kernels such that
δ(X,Y ) ∈ Hk for all (X,Y ) ∈ Mσ , correspond to vector field kernels with discrete masses.

Proof. We first show that any given kernel on Mσ corresponds to a well-defined, non-negative definite vector field kernel.
Provided this holds, it is clear that the correspondence indeed describes a bijection between kernels on Mσ and vector field
kernels, since every vector field kernel must fit the form of Eqn. 14 due to the anticommutivity property (Eqn. 3). Let k be a
kernel on Mσ, (Zn)

N
n=1 ⊂ M be distinct, and (αn)

N
n=1 ⊂ R. For Z ∈ M , call αZ = αn if Z = Zn and 0 if Z ̸= Zn for

any n. We have non-negative definiteness of the proposed kernel on M from:∑
n

∑
m

σ(Zn)σ(Zm)αnαmk(Zσ
n , Z

σ
m) =

∑
Z∈M

∑
Z′∈M

σ(Z)σ(Z ′)αZαZ′k(Zσ, Z ′σ)

=
∑

Z∈Mσ

∑
Z′∈Mσ

(αZ − αZ−σ ) (αZ′ − αZ′−σ ) k (Z,Z ′) ≥ 0.

Next we need to check that the kernel on M is indeed a vector field kernel, which satisfies anticommutivity. Call k̃ the
extension of the kernel k to M . Then if f̃ ∈ Hk̃,

f̃(X,Y ) =

(
f̃

∣∣∣∣k̃ ((X,Y ), ·)
)

k̃

= −
(
f̃

∣∣∣∣k̃ ((Y,X), ·)
)

k̃

= −f̃(Y,X).

The first equality follows from the fact that for any f ∈ Hk there is a f̃ ∈ Hk̃ such that f̃(X,Y ) = σ(X,Y )f((X,Y )σ).
To see this, note that k(X,Y ) 7→ k̃(X,Y ) defines a unitary linear transformation on finite linear combinations of
{k(X,Y )}(X,Y )∈Mσ . This transformation takes f that are finite linear combinations of {k(X,Y )}(X,Y )∈Mσ to f̃ as de-
fined above, and can be extended to all of Hk to obey the same property.
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The discrete mass property of the vector field kernel on M follows by setting f = δ(X,Y ), in which case the corresponding
f̃ is a delta function on M (Def. B.11)

Now, to construct a kernel on Mσ with discrete masses, we can tensorize two scalar field kernels with discrete masses.
In the following proposition, we also give some examples of kernels on Mσ that are valid kernels (they are non-negative
definite) but are not guaranteed to have discrete masses.

Proposition B.34. Let k, k′ be scalar field kernels on S. The following are all valid kernels on Mσ .

((X,Y ), (X ′, Y ′)) 7→ k(X,X ′)k′(Y, Y ′)

((X,Y ), (X ′, Y ′)) 7→ (k(X,X ′) + k′(Y, Y ′))
2

((X,Y ), (X ′, Y ′)) 7→ k(X + Y,X ′ + Y ′)

((X,Y ), (X ′, Y ′)) 7→ k(X,X ′)

((X,Y ), (X ′, Y ′)) 7→ k(Y, Y ′)1(|X| ≠ |Y |, |X ′| ≠ |Y ′|).

If k, k′ have discrete masses, then the first two kernels have discrete masses on Mσ . By Proposition B.33, their extension to
M is a vector field kernel with discrete masses.

Proof. The first four of these kernels are non-negative definite because they are restrictions of non-negative definite kernels
on S×S. The last kernel can be constructed by first defining the kernel ((X,Y ), (X ′, Y ′)) 7→ k(Y, Y ′) on S×S, restricting
to {(X,Y ) ∈ Mσ | |X| ≠ |Y |} and then extending to the rest of Mσ by setting k(X,Y ) = 0 if |X| = |Y |. Each of these
operations preserved non-negative definiteness.

If k, k′ have discrete masses, the first kernel described above has discrete masses by Proposition B.31 as it is the restriction
of k ⊗ k′ on S × S. The second kernel also has discrete masses by Proposition B.31 as (k(X,X ′) + k′(Y, Y ′))

2
=(

k(X,X ′)2 + k′(Y, Y ′)2
)
+ 2k ⊗ k′((X,Y ), (X ′, Y ′)) so that is the sum of two kernels, one with discrete masses.

We can now employ scalar field kernels with discrete masses to construct vector field kernels with discrete masses. If
the scalar field kernel we use captures sensible biological notions of sequence similarity – such as Hamming distance or
alignment distance – then the resulting vector field kernel will also.

B.4.3. THICK TAILED VECTOR FIELD KERNELS WITH DISCRETE MASSES

So far, we have shown how to construct vector field kernels with discrete masses that satisfy biological notions of sequence
similarity. The next step is to add thick tails. Recall that the thickness of a kernel’s tails is measured with respect to the
base distribution p (Assumption B.18). Our analysis in this section will focus on the setting where p is a pHMM, and take
χ(t) = t ∧ 1, so that Proposition B.6 and Corollary B.7 hold.

Establishing Thick Tails in Practice For the KSD-B to be guaranteed to detect non-convergence, the kernel must satisfy
Assumption B.18. To prove this holds for our actual proposed kernels, we will use the following technical lemma. The
lemma asks for an h ∈ Hk that can be written as a small perturbation g(X,Y ) of a vector field f(X,Y ) that is zero if X
and Y are the same length, and which depends only on |X| when X and Y have different lengths. So long as f does not
increase or decrease too quickly with |X|, we will be guaranteed that Tph is large, and Assumption B.18 satisfied.

Lemma B.35. Say p is a pHMM and k is either (a) a vector field kernel with a h ∈ Hk such that h = f + g for vector
fields f, g which satisfy the following conditions, or (b) a scalar field kernel with a h ∈ Hk such that ∇h = f + g for f, g
that satisfy the following conditions.

1. (f only detects differences of sequence length) f(X,Y ) = 0 if |X| = |Y | and f(X,Y ) depends only on |X| if
|X| > |Y |. Call f(L) = f(X,Y ) for |X| = L and |Y | = L− 1.

2. (g is small) g(X,Y ) = o(f(|X|)) as |X| → ∞. Note g = 0 satisfies this condition.

3. (f does not increase too fast) As L → ∞, f(L) is eventually positive. Moreover, for small enough c > 0, (f(L+ 1)−
f(L)) ≤ cf(L) eventually. Note this latter condition is satisfied if f is non-increasing in L.
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4. (f does not decrease too fast) f(L) ≳ L−(1−δ) for some δ > 0. Note this condition is satisfied if f is non-decreasing
in L.

Then, k satisfies Assumption B.18 for p.

Proof. Note first that if c is small enough, since gapp(L) ≳ sup|X|=L insp(X) by Proposition B.6, we eventually have
gapp(L) ≥ c sup|X|=L insp(X). Thus, eventually,(

sup
|X|=L

insp(X)

)
(f(L+ 1)− f(L)) ≤ gapp(L)f(L).

Say X ∈ S and |X| = L. Since fluxp(X) ∼ gapp(|X|) by Proposition B.6, for large enough L,

Tp(f + g)(X) =− insp(X)f(L+ 1) + delp(X)f(L) + fluxp(X)o(f(L))

≥gapp(L)f(L) + insp(X) (f(L)− f(L+ 1)) + fluxp(X)o(f(L))

≥gapp(L)f(L)(1 + o(1)).

Since insp(X) ≲ gapp(|X|) ∼ fluxp(X) and we can set Vp(X) = (log |X|)2+ϵ for some ϵ > 0 by Proposition B.6 and
Corollary B.7,

∑
L

inf |X|=L Tp(f + g)(X)(
sup|X|=L fluxp(X)

)
Vp(L)

≳
∑
L

f(L)

(logL)2+ϵ
≳
∑
L

(logL)−(2+ϵ)L−(1−δ) = ∞

and the same is true replacing fluxp with insp.

Alignment Kernel Tails In the case of the alignment kernel, finding an h that satisfies Lemma B.35 is non-trivial. In
Section B.4.5 we deploys tools from combinatorics to unpack the asymptotic behavior of the alignment kernel; this allows
us to construct such an h. Here, we summarize the key conclusions of Section B.4.5. Define ξ = 1− e−∆µ < 1 and the
function,

r1(x, ξ) =
1

2

(
1 + x+

√
(1 + x)2 − 4ξx

)
.

Note that to ensure discrete masses, we need ζ ≥ log |B| (Theorem B.27); in this case, r1(eζ/2, ξ) ≥ r1(e
ζ/2|B|−1/2, ξ) > 1.

We first study the alignment and local alignment kernels.

Proposition B.36. Say ∆µ < ∞. Then,

L1/2r1(e
ζ/2, ξ)|X| ≤

√
kali(X,X) ≤ r1(e

ζ/2, ξ)|X|

and for any π < 1, there is a h ∈ Hk such that h(X) depends only on |X| and

h(X) = r1(πe
ζ/2|B|−1/2, ξ)|X| +O(|X|).

As well, for any X ∈ S, kali,X ≲ h. The same proposition is true replacing kali with kla.

We next study the infinite kmer spectrum kernel. (Recall that this is equivalent to a local alignment kernel with ∆µ = ∞
and ζ = 0.)

Proposition B.37. Let A(X) = |X|−3/2. kAISK is a bounded C0 kernel, i.e. for all f ∈ Hk, f ∈ C0(S). kAISK is also

non-vanishing, i.e.
√
kAISK(X,X) ̸→ 0 as |X| → ∞. Moreover, if we set h =

∑
Y ∈B kAISK,Y , then h(X) depends only on

|X| and h(X) = |X|−1/2 + |B||X|−3/2.
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Scalar Field Kernels with Thick Tails We now describe our proposed scalar field kernels. These kernels have discrete
masses, capture biological notions of sequence similarity, and possess thick tails.

Proposition B.38. The following kernels have discrete masses and satisfy Assumption B.18 for any pHMM p with
χ(t) = t ∧ 1.

1. Unbounded IMQ-H (IMQ-H (U)): k(X,Y ) = A(X)kIMQ−H(X,Y )A(Y ) for A(X) = (|X|+ C)β+1.

2. Unbounded alignment kernel (Ali (U)): k(X,Y ) = A(X)kali(X,Y )A(Y ) for 0 < ∆µ < ∞, ζ ≥ log |B| and

A(X) = r1(e
ζ/2|B|−1/2, ξ)

(1−ϵ)|X|
for some ϵ > 0. One can replace kali with kla.

3. Unbounded infinite kmer spectrum kernel (ISK (U)): k(X,Y ) = kISK(X,Y ).

Proof. First note all three of these kernels have discrete masses by Theorems B.26, B.27 and B.28, since tilting preserves
discrete masses (Proposition B.31). Now we show they satisfy the conditions of Lemma B.35.

1. IMQ-H (U) Let h = −k∅, so h(X) = −(|X| + C). ∇h(X,Y ) = |X| − |Y | depends only on |X|, |Y | and is 0 if
|X| = |Y |. Setting f = ∇h and g = 0 we have f(L) = 1 for all L and we satisfy the conditions of Lemma B.35.

2. Ali (U) Let h be as defined in Proposition B.36, picking π < 1 such that r1(πe
ζ/2|B|−1/2,ξ)

r1(eζ/2|B|−1/2,ξ)1−ϵ = 1 + δ for a small δ. h

is a function only of the length of the sequence and h(X) = (1 + δ)|X| + o(1). Call f = −∇
(
X 7→ (1 + δ)|X|) and

g = f −∇(−h) = o(1). Now,

f(X,Y ) = 0 if |X| = |Y |
f(X,Y ) = δ(1 + δ)|X|−1 if |Y | = |X| − 1

f(Z,X)− f(X,Y ) = δ2(1 + δ)|X|−1 = δ(1 + δ)−1f(X,Y ) if |Y | < |X| < |Z|.

Clearly f and g satisfy conditions 1, 2, and 4 of Lemma B.35 and, picking small enough δ, condition 3 is also satisfied.

3. ISK (U) Let h be as defined in Proposition B.37 so that h is a function only of sequence length and A(X)h(X) = |X|+4.
By similar reasoning to the IMQ-H (U), setting f = ∇h and g = 0 we satisfy the conditions of Lemma B.35.

Vector Field Kernels with Thick Tails We now describe our proposed vector field kernels. These kernels have discrete
masses, capture biological notions of sequence similarity, and possess thick tails. To construct the kernels, we add together a
thick tailed kernel that does not have discrete masses and a thin tailed kernel that does. In this section, we assume σ is a
proper ordering (Definition B.32). We may for example let σ be the lexicographic ordering for some ordering of the letters
in B.

Proposition B.39. Let k = kHT + kδ for vector field kernels kHT, kδ . Any of the following choices of kHT and kδ result in
a vector field kernel k that is bounded and satisfies Assumption B.18 for a pHMM p and χ(t) = t ∧ 1. kHT can be,

1. IMQ-H (IMQ-H): kHT((X,Y ), (X ′, Y ′)) = kIMQ−H(Y, Y
′)1(|X| ≠ |Y |, |X ′| ≠ |Y ′|) for (X,Y ) ∈ Mσ, with

β < 1 in kIMQ−H.

2. Infinite kmer spectrum kernel (ISK): kHT((X,Y ), (X ′, Y ′)) = A(Y )kISK(Y, Y
′)A(Y ′)1(|X| ̸= |Y |, |X ′| ̸= |Y ′|)

for (X,Y ) ∈ Mσ with A(X) = |X|−3/2.

kδ can be,

1. Alignment kernel (Ali): kδ((X,Y ), (X ′, Y ′)) = (kAali(X,X ′) + kAali(Y, Y
′))2 for (X,Y ) ∈ Mσ, with 0 < ∆µ < ∞

and ζ ≥ log |B|, and A(X) =
(
r1(e

ζ/2, ξ)
)−|X|

. One can also use kla instead of kali.

2. Exponential Hamming kernel (Exp-H): kδ((X,Y ), (X ′, Y ′)) = (kExp−H(X,X ′) + kExp−H(Y, Y
′))

2 for (X,Y ) ∈
Mσ .
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Proof. Note the vector field alignment kernel Ali has discrete masses by Propositions B.33 and B.34, since the tilted scalar
field alignment kernel has discrete masses by Theorem B.27 and tilting preserves discrete masses by Proposition B.31.
Similarly, by Theorem B.26 the vector field exponential Hamming kernel Exp-H has discrete masses. Finally, since kδ has
discrete masses, by Proposition B.31, k = kHT+kδ has discrete masses when restricted to Mσ . Finally by Proposition B.33
k has discrete masses as a vector field kernel on M .

Also note that all of these kernels are bounded: the alignment vector field kernel is bounded by Proposition B.36 and the
ISK kernel is bounded by Proposition B.37.

We prove that k = kHT + kδ satisfies the conditions of Lemma B.35 when kδ is chosen to be the alignment kernel Ali, using
Proposition B.36. The logic is similar when we choose kδ to be the exponential Hamming kernel Exp-H.

1. Let kHT be the IMQ-H kernel. Let h = k(A,∅) for some A ∈ B. Now let f = kHT,(A,∅) so that f(X,Y ) =

(|Y |+ C ′)−β = (|X| − 1 + C ′)−β if |Y | < |X| and f(X,Y ) = 0 if |X| = |Y |, which satisfies conditions 1, 3, and 4 of
Lemma B.35. Define g = h− f = kδ,(A,∅). Let h̃ be as defined as the h in Proposition B.36 for some 0 < π < 1. We have,
applying the bound on kali from Proposition B.36, that

kAali(X,X ′) ≲ h̃(X)A(X) ∼
(
r1(πe

ζ/2|B|−1/2, ξ)

r1(eζ/2, ξ)

)|X|

+O(|X|r1(eζ/2, ξ)−|X|) ∼ exp(−c|X|)

for some c > 0 when |X ′| = 0 or |X ′| = 1. Thus, g(X,Y ) = kδ,(A,∅)(X,Y ) = O(e−2c|X|). Thus, condition 2 of
Lemma B.35 is also satisfied.

2. Let kHT be the ISK kernel. Let h =
∑

b∈B k(b+b,b). Now let hHT =
∑

b∈B kHT,(b+b,b) so that, by Proposition B.37,
hHT(X,Y ) = (|X|−1)−1/2+Co(|X|−1/2) if |Y | < |X| and hHT(X,Y ) = 0 if |X| = |Y |. Let f(X,Y ) = (|X|−1)−1/2

if |Y | < |X| and f(X,Y ) = 0 if |X| = |Y |. Finally define g(X,Y ) = (h − f)(X,Y ) =
∑

b∈B kδ,(b+b,b)(X,Y ) +

o(|X|−1/2). As in the previous example, g(X,Y ) = O(e−c|X|) + o(|X|−1/2). Thus, k satisfied the conditions of
Lemma B.35.

B.4.4. KERNEL INTEGRABILITY

For the KSD-B to reliably detect convergence to p, Proposition 5.3 says we need k to not be too large. At a minimum,
the KSD-B should be zero when evaluated exactly at p itself. Proposition 5.1 says that for KSD-Bp,k(p) = 0 we need p
to be p, k-integrable. In this section we show that for all of our proposed vector field kernels, if χ(t) = 1 ∧ t then any
subexponential p is p, k-integrable (recall p is subexponential if EX∼pe

t|X| < ∞ for small enough t (Amin et al., 2021)).
All pHMMs are subexponential (Proposition B.6). Another important class of subexponential distributions are autoregressive
models (Proposition 5 of Amin et al. (2021)).

Only some of our proposed scalar field kernels, however, have the same guarantee. This reflects a fundamental disadvantage
of scalar field kernels: they must be unbounded, and hence very large, to detect non-convergence.

Our results rely on the following lemma, which gives conditions on the kernel that ensure p, k-integrability when p is
sub-exponential.

Lemma B.40. Say χ(t) = t ∧ 1 and p is subexponential. If
√
k((X,Y ), (X,Y )) ≤ et

′|X| for small enough t′ then p is
p, k integrable.

Proof. Note that since χ(t) = t ∧ 1, Tp,X→Y ≤ |X| for all XMY . Now we have

EX∼p

∑
YMX

Tp,X→Y

√
k((X,Y ), (X,Y )) ≤ EX∼p|X|2et

′|X| < ∞

if t′ is small enough.

We can now guarantee integrability for all of our proposed kernels, besides Ali (U).

Corollary B.41. Say χ(t) = t∧1 and p is subexponential. If k is any of the vector field kernels considered in Proposition B.39
then p is p, k integrable. If k is the IMQ-H (U) or ISK (U) kernels considered in Proposition B.38 then p is p, k∇ integrable.
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Proof. The first statement follows from Lemma B.40 and the fact that the kernels in Proposition B.39 are bounded. The
second statement follows from the fact that for the IMQ-H (U) kernel,

√
k(X,X) = (1 + |X|)1+β and for the ISK (U)

kernel
√
k(X,X) ≤ (1 + |X|)3/2 by Proposition B.37.

Next we consider the unbounded scalar field alignment kernel, Ali (U). If p is a pHMM and k is Ali (U), it is possible that
under certain conditions p is not p, k-integrable. By Proposition B.36,

L−1/2

(
r1(e

ζ/2, ξ)

r1(eζ/2|B|−1/2, ξ)1−ϵ

)L

≤ sup
|X|=L

√
k(X,X).

One can check that the ratio on the left hand side is minimized in the limit ϵ = 0, ξ = 0, ζ = log |B| in which case

r1(e
ζ/2, ξ)

r1(eζ/2|B|−1/2, ξ)1−ϵ
≥ r1(|B|1/2, 0)

r1(1, 0)
=

|B|1/2 + 1

2
.

Now, 1
2

(
|B|1/2 + 1

)
is 3/2 in the case when B is the set of nucleotides (where |B| = 4) and approximately 2.74 in the

case when B is the set of amino acids (where |B| = 20). So on real biological sequence data, sup|X|=L

√
k(X,X) grows

exponentially, and thus the unbounded scalar field alignment kernel may be too large to ensure p, k integrability.

B.4.5. PROOFS FOR THE ALIGNMENT KERNEL

In this section we bound
√
k(X,X) and find a thick tailed h ∈ Hk for the alignment kernel k.

Let us review some results for the case when |B| = 1 that will be useful. If B = {A}, call k(L,L′) = k(L×A,L′ ×A).
Section 9 of Amin et al. (2023) showed that there is an orthogonal basis (uL)L such that ∥uL∥k = e−ζL/2 where
ζ = 2µ+ log k(A,A). In this case, (uL′ , kL)k ≥ 0 for all L,L′ and (uL′ , kL)k = 0 if L′ > L. Then, defining the infinite
upper triangular matrix Q such that QL′,L = (uL′ , kL)k, we get

k(L,L′) = (kL|kL′)k =

(∑
L′′

QL′′,Le
ζL′′

uL′′

∣∣∣∣∑
L′′

QL′′,L′eζL
′′
uL′′

)
k

=

∞∑
L′′=0

QL′′,LQL′′,L′eL
′′ζ . (15)

The same equation holds for kla for another matrix Qla. The exact values of the entries of the matrix Q and the matrix Qla

will be important to achieve bounds on the tails of the alignment kernel. Amin et al. (2023) showed in Appendix I and J that
if we define ξ = 1− e−∆µ, fξ(y) = 1−ξy

1−y , and the formal power series

Fξ(x, y) =
fξ(y)

1− xyfξ(y)
=

1− ξy

1− (1 + x)y + ξxy2

Fξ,la(x, y) = xy

(
1

1−y

)2
1− xyfξ(y)

+
1

1− y
=

xy

(1− y) (1− (1 + x)y + ξxy2)
+

1

1− y

then QL′,L = [xL′
yL]Fξ(x, y) and Qla,L′,L = [xL′

yL]Fξ,la(x, y) where [xL′
yL] denotes the coefficient in front of the term

xL′
yL of the formal power series.

We now show that we can use these formal power series to describe the size of k(X,X).

Proposition B.42. Calling CL = [yL]Fξ(e
ζ/2, y), we have L−1/2CL ≤ sup|X|=L

√
k(X,X) ≤ CL. The same inequality

is true for kla and Fξ,la.

Proof. First, by equation 13, if A ∈ B, we clearly have k(X,X) ≤ k(|X| × A, |X| × A), since the alignment ker-
nel takes its largest value if every letter in the sequence matches every other. ks(A,A) = σ−1|B|, so k restricted to
{∅, A,AA,AAA, . . . } is identical to the string kernel in the case |B| = 1 and with ζ = 2µ − log σ + log |B|. Thus, by
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equation 15,

k(L,L) =

L∑
L′=0

eL
′ζQ2

L′,L

≤

( ∞∑
L′=0

eL
′ζ/2QL′,L

)2

=

( ∞∑
L′=0

(
eζ/2

)L′

[xL′
yL]Fξ(x, y)

)2

=
(
[yL]Fξ(e

ζ/2, y)
)2

.

The result is identical with Fξ,la. On the other hand, using Jensen’s inequality,

k(L,L) =L

(
1

L

L∑
L′=0

(
eL

′ζQL′,L

)2)

≥L

(
1

L

L∑
L′=0

eL
′ζ/2QL′,L

)2

=
1

L

(
[yL]Fξ(e

ζ/2, y)
)2

.

Now we build a thick tailed h ∈ Hk.

Proposition B.43. Say 0 < π < 1. For the alignment kernel, there is an h ∈ Hk such that (h|kX)k =
[y|X|]Fξ

(
πeζ/2|B|−1/2, y

)
. For the local alignment kernel, there is a h ∈ Hkla

such that (h|kla,X)k = C +

[y|X|]Fξ,la

(
πeζ/2|B|−1/2, y

)
for some constant C. In both cases, for any X ∈ S, we have kX ≲ h.

Proof. Define kL = |B|−L
∑

|X|=L kX . If Y, Y ′ ∈ S and |Y | = |Y ′| = L′, one can check that (kL|kY )k = (kL|kY ′)k,
thus (kL|kY )k = (kL|kL′)k. One can show that k restricted to {k0, k1, . . . } is identical to the string kernel in the case
|B| = 1 with ζ = − log |B|. We will create a h for this kernel with (h|kL)k = [yL]Fξ

(
eζ/2|B|−1/2π, y

)
and the Proposition

will follow from the fact that (h|kY )k = (h|k|Y |)k.

We define h =
∑

L αLkL for some α > 0. Note that since k(X,Y ) ≥ 0 for all X,Y , kX ≲ h for any X . Now write

(h|uL′)k =
∑
L

αL[xL′
yL]Fξ(x, y) = [xL′

]Fξ(x, α).

Thus, since Fξ(x, y) = fξ(y)(1− xyfξ(y))
−1 = fξ(y)

∑∞
L=0 x

L(yfξ(y))
L,

∥h∥2k =
∑
L

eζL|B|−L
(
[xL]Fξ(x, α)

)2
=fξ(α)

2
∑
L

eζL|B|−L (αfξ(α))
2L

which is finite as long as π = αfξ(α)e
ζ/2|B|−1/2 < 1. We can pick α to let π be any positive value < 1. In this case

(h|kL′)k =
∑
L

eζL|B|−L(h|uL)kQL,L′

=
∑
L

eζL|B|−L
(
fξ(α)(αfξ(α))

L
)
[xLyL

′
]Fξ(x, y)

=fξ(α)
∑
L

(
πeζ/2|B|−1/2

)L
[xLyL

′
]Fξ(x, y)

=fξ(α)[y
L′
]Fξ

(
πeζ/2|B|−1/2, y

)
.
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We now turn to the very similar case of kla. The norm of h =
∑

L αLkla,L is

∑
L

eζL|B|−L
(
[xL]Fξ,la(x, α)

)2
=

(
1

1− α

)2

+

(
α

1− α

)2 ∞∑
L=1

eζL|B|−L (αfξ(α))
2(L−1)

which is finite again as long as π = αfξ(α)e
ζ/2|B|−1/2 < 1.

(h|kla,L′)k =
∑
L

eζLQla,L,L′
(
[xL]Fξ,la(x, α)

)
=

1

1− α
Qla,0,L′ +

α

(1− α)2αfξ(α)

∞∑
L=1

eζL/2|B|−L/2Qla,L,L′πL

=
1

1− α
− α

(1− α)αfξ(α)
Qla,0,L +

α

(1− α)αfξ(α)
[yL

′
]Fξ,la(e

ζ/2|B|−1/2π, y).

Finally note Qla,0,L = 1.

Thus, to analyze the tails of the alignment kernel, we will need to analyze [yL]Fξ(x, y) and [yL]Fξ,la(x, y). The coefficients
will turn out to depend on the polynomial 1−(1+x)y+ξy2. We rewrite the polynomial 1−(1+x)y+ξy2 = (1−r1y)(1−r2y)
for roots r1(ξ, x) ≥ r2(ξ, x), which are

1

2

(
1 + x±

√
(1 + x)2 − 4ξx

)
.

These values are decreasing with ξ, positive, and distinct when ξ < 1 since (1+x)2−4ξx > (1+x)2−4x = (x−1)2 ≥ 0.
When ξ < 1, r1 is also always > 1 since it is > 1

2 (1 + x+ |x− 1|) = x ∨ 1. When ξ = 0, r1 = x+ 1, r2 = 0. We now
see that if ∆µ < ∞ then the coefficients grow exponentially. However, if ∆µ = ∞ the coefficients may grow or shrink
exponentially or, in the case of Fξ,la grow exponentially or polynomially.

Proposition B.44. If ξ < 1 and x > 0, both [yL]Fξ(x, y) and [yL]Fξ,la(x, y) are equal to Cr1(x, ξ)
L + O(L) for some

(different) C > 0 . If ξ = 1 then for the alignment kernel, [yL]F1(x, y) = xL; for the local alignment kernel, if x > 1,
then [yL]F1,la(x, y) = xL +O(L); if x < 1, then [yL]F1,la(x, y) = CL+ C ′ + o(1) for some C > 0, C ′; if x = 1, then
[yL]F1,la(x, y) = L(L+ 1)/2 + 1.

Proof. First let us consider the case of ξ = 0.

F0(x, y) =
1

1− (1 + x)y
=

∞∑
L=0

(1 + x)LyL

F0,la(x, y) =
xy

(1− y)(1− (1 + x)y)
+

1

1− y
.

By partial fraction decomposition, for some A,B with A,B ̸= 0 and , constant c1, c2,

F0,la(x, y) =
Axy

1− (1 + x)y
+

Bxy

1− y
+

1

1− y

=c1 + c2y +

∞∑
L=2

(
Ax(1 + x)L−1 +Bx+ 1

)
yL.

The leading term in the brackets is Ax(1 + x)L−1 and, since the coefficients of F0,la are positive, A > 0.

Now we consider the case when 0 < ξ < 1.

Fξ(x, y) =
(1− ξy)

(1− r1y)(1− r2y)

43



Kernelized Stein Discrepancies for Biological Sequences

so by partial fraction decomposition, for A,B ̸= 0,

Fξ(x, y) = (1− ξy)

(
A

1− r1y
+

B

1− r2y

)
= c1

∞∑
L=0

(
ArL1 −AξrL−1

1 +BrL2 −BξrL−1
2

)
yL.

Since r1 > 1 > ξ, the leading term in the brackets is A(1− ξ/r1)r
L
1 . Similarly, [yL]Fξ,la = CrL1 +O(L) for some C > 0.

Now we look at when ξ = 1. Here fξ(y) = 1. Thus,

F1(x, y) =
1

1− xy
=

∞∑
L=0

xLyL

F1,la(x, y) =
xy

(1− y)2(1− xy)
+

1

1− y
.

If x ̸= 1, again, by partial fraction decomposition, for some A,B,C with A,B ̸= 0 and C ̸= 1, and constants c1, c2,

F1,la(x, y) =
Axy

1− xy
+

Bxy(y − C)

(1− y)2
+

1

1− y

=c0 + c1y +

∞∑
L=2

(
AxL +Bx

(
L+ 1− 2

1

)
−BCx

(
L+ 1− 1

1

)
+ 1

)
yL

So that the leading term is AxL if x > 1 or Bx
(
L−1
1

)
−BCx

(
L
1

)
if x < 1. Since C ̸= 1, the latter term is = CL+ C ′ for

some C,C ′ > 0. If x = 1,

F1,la(x, y) =
1

1− y
+

y

(1− y)3
= 1 +

∞∑
L=1

((
L+ 2− 1

2

)
+ 1

)
yL

so that [yL]F1,la(x, y) = L(L+ 1)/2 + 1.

Now, combining the results of these last three propositions, we have proven Proposition B.36. To begin proving Proposition
B.37, we first tighten our estimate of

√
k(X,X) in the case ∆µ = ∞.

Proposition B.45. Say ∆µ = ∞. sup|X|=L

√
k(X,X) = eLζ/2 and sup|X|=L

√
kla(X,X) is ∼ eLζ/2 if ζ > 0, is

∼ L3/2 if ζ = 0, and is ∼ L if ζ < 0.

Proof. When ∆µ = ∞, Q is the identity matrix, so that

k(L×A,L×A) = eLζ .

On the other hand, Qla,0,L = 1 for all L and, for L ≥ L′ > 0,

[xL′
yL]F1,la(x, y) = [yL]

y

(1− y)2
yL

′−1 = [yL−L′
](1− y)−2 = L− L′ + 1.

Thus,

k(L×A,L×A) =1 +

L∑
L′=1

eL
′ζ(L− L′ + 1)2

=1 + e(L+1)ζ
L∑

L′=1

e−(L−L′+1)ζ(L− L′ + 1)2

=1 + e(L+1)ζ
L∑

L′=1

e−L′ζL′2.
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If eζ > 1, the sum is increasing and bounded, so, k(L×A,L×A) = 1 + CeLζ(1 + o(1)) for some C > 0. If eζ = 1, we
have k(L×A,L×A) = 1 + CL3(1 + o(1)) for some C > 0. Finally, if eζ < 1, since

k(L×A,L×A) = 1 + L2
L∑

L′=1

eL
′ζ

(
1− L′ − 1

L

)2

,

the sum is increasing and bounded with L so that k(L×A,L×A) = 1 + CL2(1 + o(1)) for some C > 0.

Next we must look at when a tilted alignment kernel is C0.
Proposition B.46. Say Ã : N → (0,∞) and A(X) = Ã(|X|). If kA is a bounded kernel, then it is C0 if and only if
Ã(L)[yL]Fξ(πe

ζ/2|B|−1/2, y) → 0 for some π < 1. If the latter condition holds for some value of π then it holds for any
value of 0 < π < 1. The same is true with kla and Fξ,la.

Proof. Let h be defined as in Proposition B.43 for some 1 > π > 0. h ∈ Hk so Ah ∈ HkA . kAX ≲ Ah for all X by Propo-
sition B.43 so kA is C0 if and only if Ah ∈ C0(S). Finally, Ah ∈ C0(S) if and only if Ã(L)[yL]Fξ(πe

ζ/2|B|−1/2, y) → 0.
Similar logic proves the same for kla and Fξ,la.

Finally we prove Proposition B.37. Recall that kISK is the special case of kla with ζ = 0 and ∆µ = ∞.
Proposition B.47. (Proof of Proposition B.37) Let A(X) = |X|−3/2. kAISK is a bounded C0 kernel, i.e. for all f ∈ Hk,

f ∈ C0(S). kAISK is also non-vanishing, i.e.
√
kAISK(X,X) ̸→ 0 as |X| → ∞. Moreover, if we set h =

∑
X∈B kAISK,X ,

then h(X) depends only on |X| and h(X) = |X|−1/2 + 4|X|−3/2.

Proof. Note by proposition B.45, sup|X|=L

√
kISK(X,X) ∼ L3/2. Thus, kAISK is bounded and non-vanishing. On the

other hand, if π < 1, [yL]Fξ(πe
ζ/2|B|−1/2, y) ∼ L Proposition B.44, so, by Proposition B.46, kAISK is C0.

Finally, letting h =
∑

X∈B kISK,X and noting that if X ∈ B, kISK,X(Y ) = #(X in Y ) + 1 (the plus one for ϕ∅), we have
that h(Y ) = |Y |+ |B|. After tilting by A(X), we obtain the proposition statement.

C. Experimental Details
In this section we describe the details of our experiments. Note we used χ(t) = t ∧ 1 in all cases unless otherwise specified.

C.1. Goodness of Fit Test Bootstrap

To get p-values for our goodness of fit tests, we used a bootstrap procedure as in Liu et al. (2016). Given X1, . . . , Xn ∈ S,
for each i we sampled YXi,1, . . . , YXi,Nn

drawn by taking a single step of a Markov chain with transition matrix KX→Y

defined in Section B.3.7. We defined our test U-statistic as

U =
1

n2

∑
i ̸=j

fluxp(Xi)fluxp(Xj)
1

N2
n

∑
m,m′

k((Xi, YXi,m), (Xj , YXj ,m)).

We bootstrapped by sampling, for each b = 1, . . . , B, (w(b),i)
n
i=1 ∼ Multinomial((1/n, . . . , 1/n), n) and defining

U(b) =
1

n2

∑
i ̸=j

(w(b),i − 1)(w(b),j − 1)fluxp(Xi)fluxp(Xj)
1

N2
n

∑
m,m′

k((Xi, YXi,m), (Xj , YXj ,m)).

Then we defined a p-value p = #{b | U(b) ≥ U}/B. Throughout we use B = 1000.

C.2. Kernel Parameters

In every case we used λ = 1/5 for the Exp-H kernel, β = 1/2 for the IMQ-H kernel, ζ = log |B| and ∆µ = 0.2 for the
alignment kernel, and ϵ = 0.2 for the tilting parameter of the alignment kernel. We set C = 1 for the IMQ-H kernel when in
a vector field kernel and C = 3 when in a scalar field kernel. For embedding kernels, we set the bandwidth parameter σ to
be the median distance between rescaled embeddings.

Given a kernel k we define its normalized tilting as k̃(X,Y ) = k(X,Y )/
√

k(X,X)k(Y, Y ). This is how we define the
IMQ (N), Ali (N) and ISK (N) kernels.
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Figure 6. Dependence of the Power of the Goodness of Fit Test on Sequence LengthPerformance of the KSD-B, using a vector field
kernel (vf KSD-B), with increasing sequence length. Dotted lines show the results for data sampled from the unperturbed model p, to
evaluate calibration.

C.3. pHMM Model

Throughout our simulations we used a random profile hidden Markov models (pHMMs). We now define the prior from
which we draw random pHMMs.

We first defined a site-wise independent model for sequences of length L. First we sampled the logits

h−2
l,b ∼ β−1

h Gamma(αh).

Then we defined our site-wise independent model as

p̃(X) ∝ exp

∑
l,b

hl,b1(X(l) = b)

 .

p̃ is supported on the set of sequences of length L.

Next we added insertions and deletions using a MuE model we sampled with with indel prior bias = 5.0 (We-
instein & Marks, 2021). In particular, we set the latent sequence of the MuE model to be a sample from p̃. The final
distribution we call p. p is a pHMM and its likelihoods can be calculated in closed form (Weinstein & Marks, 2021). To
sample from and calculate likelihoods for this pHMM we used code from https://github.com/pyro-ppl/pyro/
tree/dev/pyro/contrib/mue under the MIT licence.

C.4. Powerful Goodness of Fit Test with the KSD-B (Fig. 2(a))

For this experiment only we used χ(t) =
√
t. We sampled a pHMM p with L = 20, |B| = 4, αh = 1, βh = 0.5. We then

set h4 = 5001(X(4) = C) so that the 5-th letter of the latent sequence very likely a C (recall indexing of the sequence
begins at 0). To make position 5 of the latent sequence coincide with position 5 of the sampled sequence, we subtracted
5 from the first 5 positions of the insertion and deletion logit matrices of the MuE indel model. We finally made a C in
position 6 unlikely by subtracting 500 from h5,C .

We then perturbed the pHMM by making other letters more probable as the 5-th letter: we defined, for perturbation weight
γ, h̃4,b = log(γ/3) if b ̸= C and h̃4,C = log(1− γ) so that the probability of the 5-th letter being a C is 1− γ. Finally we
sampled and tested from a pHMM with h̃ for a variety of perturbation weights γ. We sampled and tested 25 times from the
same models and reported the fraction of null hypotheses rejected.

C.5. Testing pHMM Models (Figures 2(b) and 6)

We now define the Potts model for sequences of length L that we used in the experiment. First we sampled the mean field
parameters h−2

l,b ∼ β−1
h Gamma(αh) and the couplings parameters el,l′,b,b′ ∼ σl,l′N(0, 1.22) where σl,l′ ∼ Bern(0.9).
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Then, for a cross-term perturbation weight γ, we defined our Potts model as

p̃(X) ∝ exp

∑
l,b

hl,b1(X(l) = b) + γ
∑

l,l′,b,b′

el,l′,b,b′1(X(l) = b,X(l′) = b′)

 .

p̃ is supported on the set of sequences of length L. We then sampled from a Potts model using code from https:
//github.com/debbiemarkslab/plmc under the MIT licence (Hopf et al., 2017).

We used αh = 1, βh = 3, |B| = 4 to define a Potts model. We added insertions and deletions using a MuE model we
sampled with with indel prior bias = 5.0 to get a distribution p that depends on γ. Note when γ = 0, p is a
pHMM and we can calculate its likelihoods. Finally, we sample and test for a variety of perturbation weights γ, and we
repeat the experiment 25 times. We sampled and tested 50 times from the same models and reported the fraction of null
hypotheses rejected.

To produce Fig. 6 we first sampled 3 pHMMs for each latent sequence length with the parameters above. For γ = 0, 0.3 we
performed the same testing procedure this time using Nn = 10 and repeating the sampling and testing 25 times.

C.6. Testing Autoregressive Models (Fig. 2(c))

We defined a lag 2 linear autoregressive model as
X1 = C

XL ∼ Categorical
(
B ∪ {$}, (q(X(L−2:L), b

′′))b′′∈B∪{$}
)

where, for tensors A,B and perturbation weight γ > 0

(q(X(L−2:L), b
′′))b′′∈B∪{$} = softmax

( 2∑
l=1

∑
b∈B

Al,b,b′′1(X(L−l) = b)

+ γ

2∑
l=1

2∑
l′=1

∑
b,b′∈B

Bl,l′,b,b′,b′′1(X(L−l) = b and X(L−l′) = b′)

)
b′′∈B∪{$}

where $ represents a stop. We set X1 = C to avoid empty sequences. We set Al,b,$ = 5 and Bl,l′,b,b′,$ = 1/2. We sampled

(Al,b,b′)b′∈B ∼ 5

2
Multinomial((1/|B|)b∈B),

(Bl,l′,b,b′,b′′)b′′∈B ∼ 5

4
Multinomial((1/|B|)b∈B).

We set p to be this autoregressive model and perturb p by increasing γ. We sampled and tested 100 times from the same
models and reported the fraction of null hypotheses rejected.

C.7. Testing without Normalized Likelihoods (Fig. 2(d))

First we sampled a pHMM model with L = 10, |B| = 4, αh = 1, βh = 0.5 which we call π. We then sampled X0 ∼ π.

We now define a distribution for sequences “descended from X0” given a parameter t that controls the substitution rate,
κ(·|X, t). We let κ(·|X, t) be a pHMM with the same indel process as π but with

hl,b|X, t = log
(
1 + t−1

1(X(l) = b)
)

so that sequences are less likely to have substitutions when t is smaller, i.e. “the sequence is more closely related to X”.

Next we sampled Y1, . . . , Y5 ∼ κ(·|X0, t = 1). Finally, we defined the posterior reconstruction of X0 as
p(X|Y1, . . . , Y5, t) ∝ π(X)

∏5
i=1 κ(Yi|X, t). To sample from this model, we performed path-auxiliary MCMC sam-

pling (Sun et al., 2022). Finally we sampled from p(X|Y1, . . . , Y5, t) for a variety of perturbation weights γ = t− 1 and
test whether sequences came from the correct posterior p(X|Y1, . . . , Y5, t = 1) for which we can calculate unnormalized
likelihoods. We sampled and tested 25 times from the same models and reported the fraction of null hypotheses rejected.
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C.8. Comparing Approximating the KSD-B and Shrinking the Graph (Fig. 3)

Baum et al. (2022) suggested constructing a computationally tractable KSD-B by replacing the graph M with a smaller
altered graph. To do so, we identify each letter in B with a number modulo |B|, 0, 1, . . . , 19 ∈ Z|B|. Conceptually, we
assume letters that are closer to 0 in Z|B|, that is 0, 1,−1 = 19, 2,−2 = 18, . . . are more hydrophobic and those close to 10
are hydrophilic. Next we define the altered graph M(τ) so that XM(τ)Y if X and Y differ by a single substitution of a letter
b to b′ with |b − b′| ≤ τ . For instance, if τ = 2, b = 1 is connected only to b′ ∈ {−1, 0, 1, 2, 3} in M(τ). Then the KSD
according to this method is

EX,X′∼q

∑
YM(τ)X

∑
Y ′M(τ)X′

Tp,X→Y Tp,X′→Y ′k((X,Y ), (X ′, Y ′)).

We sampled a pHMM p with L = 15, |B| = 20, αh = 0.1, βh = 0.5. We then perturbed p to generate sequences with more
hydrophobic residues by defining a perturbed mean field parameter h̃ with h̃l,b = hl,b +0.16|b− 10|, so that h̃l,b were made
larger when b is far from 10, i.e. close to 0. We then sampled and tested 100 samples from the perturbed and unperturbed
pHMM. We then calculated the KSD as in Baum et al. (2022) with τ = 1, 2, 3. We sampled and tested 100 times from the
same model and reported the fraction of null hypotheses rejected.

C.9. Designing Synthesis Procedures (Fig. 4)

First we downloaded 115 thousand CDR3 protein sequences varying in length from 10 to 27 from patient 1 from 10x
Genomics (2022). We train a MuE model with latent sequence length 17 with |B| = 20 using the code from https://
github.com/pyro-ppl/pyro/tree/dev/pyro/contrib/mue. We then train 16 stochastic synthesis models
described in Weinstein et al. (2022b) varying Ntemplates = 1, 10, 100, 1000 and the synthesis strategy from finite nucleotide
mixtures with alphabet size 8, enzymatic mutagenesis with mutazymeII, finite codon mixtures with alphabet size 24 and
arbitrary codon mixtures. We trained these models using the code at https://github.com/debbiemarkslab/
variational-synthesis under the MIT liscence. After training each model, we sampled 100 sequences from each
and performed a goodness of fit test on each set of 100 sequences. We sampled and tested 25 times using Nn = 20 from the
same models and reported the fraction of null hypotheses rejected.

C.10. Evaluating Large Models Fit to Protein Families (Fig. 5)

We first gathered data sets of evolutionarily related sequences of four protein regions studied in Shin et al. (2021):
YAP1 HUMAN (36 AA), IF1 ECOLI (72 AA), CALM1 HUMAN (149 AA), and TRPC THEMA (252 AA). We held out
20% of the sequence from each set and trained a deep generative autoregressive model (Wavenet; Shin et al. (2021)) on
the held-in sequences. To do so we used code from https://github.com/debbiemarkslab/SeqDesign/. We
then performed the KSD-B goodness of fit test, comparing the trained model to the held-out sequences. We also tested the
goodness of fit of a large transformer model trained on a data set of all known proteins (Tranception; Notin et al. (2022))
using code from https://github.com/OATML-Markslab/Tranception. For n varying from 10 to 1000, we
sample 5 sets of Nn = 10 mutants for each observed sequence and calculate the KSD-B for Wavenet and Tranception. We
then performed a goodness of fit test for each set of sequences and models.

We chose k to be a scalar or vector field embedding kernel in our KSD-B. In particular, we considered the scalar
field kernel kF,IMQ,σ. We also build a vector field kernel kF,vf = kδ + kHT with kHT((X,Y ), (X ′, Y ′)) =

kF,IMQ,sigma(Y, Y
′)1(|X| ≥ |Y |)1(|X ′| ≥ |Y ′|) and kδ((X,Y ), (X ′, Y ′)) = (kF,EXP,σ(X,X ′) + kF,EXP,σ(Y, Y

′))
2

for (X,Y ), (X ′, Y ′) ∈ Mσ. Note that our theoretical results on discrete masses in vector field kernels show that these
kernels, like the scalar field kernels, are likely to have discrete masses; moreover, though we have not proven that the
proposed kernel satisfies the assumptions of Thm. 5.2 (detecting non-convergence), its form is chosen based on our
theoretical analysis in Section 7 and B.4.3.

We also compare the power of goodness of fit tests of two scalar field kernels kF,IMQ,σ and kF,vf in Fig. 5. In Fig. 7 we
evaluate how accurate our KSD-B approximations are. Finally we also compare the power of goodness of fit tests of two
scalar field kernels kF,IMQ,σ and kF,EXP,σ in Fig. 8.
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Figure 7. Reliability of KSD-B Approximations We examine the variance of KSD-B estimated across 5 independent samples of the
Nn = 10 mutants for four protein families. We plot our estimates for different n for Wavenet (Blue) and Tranception (Orange) and for
the vector field KSD-B (top row) and the scalar field KSD-B (bottom row).

C.10.1. TESTING PROTEIN UNIVERSE MODELS WITH THE KSD-B

There has been some debate over the value of family-specific protein models versus models of the entire “protein universe”,
such as Tranception (Notin et al., 2022), Progen2 (Nijkamp et al., 2022), ESM1v (Meier et al., 2021), and UniRep (Alley
et al., 2019). Of course, a model trained to fit the set of all proteins will achieve much smaller likelihoods on a particular
protein family than a model trained to only fit that family. Despite their low likelihoods, “protein universe” models are able
to predict the effects of mutations on a protein just as well as generative models trained on a single protein family (Notin
et al., 2022). It is hypothesised that this is due to the fact that protein-universe models fit the distribution of sequences well
“locally”.

The KSD-B can be used to help compare family-specific and protein universe models, and understand their relative
performance. In particular, the KSD-B is an excellent tool for evaluating protein universe models’ performance on specific
protein families, because it uses only local differences in likelihood (the likelihood’s “slope”) to evaluate goodness of fit,
rather than the likelihood itself (Eqn. 1). Formally, one can hypothesise that for a particular protein family, say YAP1, the
distribution learned by a protein universe model may be written as pProteinUniverse = αµ+(1−α)ν, where µ is a distribution
just over the YAP1 protein family, ν is a distribution over everything else (which has little mass on YAP1), and α is a very
small number that represents the fraction of the protein universe that is in the YAP1 family. We can think of µ as describing
the “local fitness landscape” of YAP1; it is the part of the model responsible for accurate mutation effect predictions for YAP1.
Now, if q is the true distribution of YAP1 sequences found in nature, we have KSD-BpProteinUniverse,k(q) ≈ KSD-Bµ,k(q),
where equality holds when the support of ν is not connected to µ at all, i.e. the protein family is completely isolated in
sequence space. Thus, the KSD-B can be used to check the local fit of the model, µ, to the protein family distribution q.

In Fig.5 we see no evidence that the protein universe model (Tranception) learns a better model of local, family sequence
distributions than a family-specific model (Wavenet).

D. Supplementary Code
The supplementary code (https://github.com/AlanNawzadAmin/KSD-B/) provides a Jupyter notebook
(KSD-B theory example.ipynb) recreating Fig. 1(a) and 1(b) using the IMQ-H (U), IMQ-H (N), and IMQ-H+Exp-H
kernels.
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Figure 8. Scalar Field KSD-B Power using Embedding Kernels We perform a goodness of fit test with two scalar field embedding
kernels across 5 independent samples of the Nn = 10 mutants for four protein families. We use the IMQ (solid) and EXP (dashed)
embedding kernels and see that our goodness of fit tests have similar power for the two kernels.
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