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Abstract
We study the use of amortized optimization
to predict optimal transport (OT) maps from
the input measures, which we call Meta OT.
This helps repeatedly solve similar OT prob-
lems between different measures by leverag-
ing the knowledge and information present from
past problems to rapidly predict and solve new
problems. Otherwise, standard methods ignore
the knowledge of the past solutions and sub-
optimally re-solve each problem from scratch.
We instantiate Meta OT models in discrete and
continuous settings between grayscale images,
spherical data, classification labels, and color
palettes and use them to improve the computa-
tional time of standard OT solvers. Our source
code is available at http://github.com/
facebookresearch/meta-ot.

1. Introduction
Optimal transportation (Villani, 2009; Ambrosio, 2003;
Santambrogio, 2015; Peyré et al., 2019; Merigot and Thib-
ert, 2021) is thriving in domains including economics
(Galichon, 2016), reinforcement learning (Dadashi et al.,
2021; Fickinger et al., 2022), style transfer (Kolkin et al.,
2019), generative modeling (Arjovsky et al., 2017; Seguy
et al., 2018; Huang et al., 2021; Rout et al., 2022), geometry
(Solomon et al., 2015; Cohen et al., 2021), domain adapta-
tion (Courty et al., 2017; Redko et al., 2019), signal pro-
cessing (Kolouri et al., 2017), fairness (Jiang et al., 2019),
and cell reprogramming (Schiebinger et al., 2019). These
settings couple two measures (α, β) supported on domains
(X ,Y) by solving a transport optimization problem such
as the primal Kantorovich problem defined by

π⋆(α, β, c) ∈ argmin
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y), (1)
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where the optimal coupling π⋆ is a joint distribution over
the product space, U(α, β) is the set of admissible cou-
plings between α and β, and c : X ×Y → R is the ground
cost, that represents a notion of distance between elements
in X and elements in Y .

Challenges. Unfortunately, solving eq. (1) once is compu-
tationally expensive between general measures and com-
putationally cheaper alternatives are an active research
topic: Entropic optimal transport (Cuturi, 2013) smooths
the transport problem with an entropy penalty, and sliced
distances (Kolouri et al., 2016; 2019b;a; Deshpande et al.,
2019) solve OT between 1-dimensional projections of the
measures, where eq. (1) can be solved easily.

When an optimal transport method is deployed in practice,
eq. (1) is not just solved once, but is repeatedly solved for
new scenarios between different input measures (α, β). For
example, the measures could be representations of images
we care about optimally transporting between and in de-
ployment we would receive a stream of new images to cou-
ple. Repeatedly solving optimal transport problems also
comes up in the context of comparing seismic signals (En-
gquist and Froese, 2013) and in single-cell perturbations
(Bunne et al., 2021; 2022b;a). Standard optimal transport
solvers deployed in this setting re-solve the optimization
problems from scratch and ignore the shared structure and
information present between different coupling problems.

Overview. We study the use of amortized optimization and
machine learning methods to rapidly solve multiple opti-
mal transport problems and predict the solution from the in-
put measures (α, β). This setting involves learning a meta
model to predict the solution to the optimal transport prob-
lem, which we will refer to as Meta Optimal Transport. We
learn Meta OT models to predict the solutions to optimal
transport problems and significantly improve the computa-
tional time and number of iterations needed to solve eq. (1).

Settings that are not Meta OT. Meta OT is not useful
in settings that do not repeatedly solve OT problems, e.g.
1) generative modeling settings, such as Arjovsky et al.
(2017), that estimate the OT distance between the data and
model distributions, and 2) out-of-sample settings (Seguy
et al., 2018; Perrot et al., 2016) that couple measures and
then extrapolate the map to larger measures.
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2. Preliminaries and background
2.1. Entropic OT between discrete measures

We review foundations of OT, following the notation of
Peyré et al. (2019) in most places. The discrete setting of-
ten favors the entropic regularized version since it can be
computed efficiently and in a parallelized way using the
Sinkhorn algorithm. While the primal Kantorovich for-
mulation in eq. (1) provides an intuitive problem descrip-
tion, OT problems are rarely solved directly in this form
due to the high-dimensionality of the couplings π and the
difficulty of satisfying the coupling constraints U(α, β).
Instead, most computational OT solvers use the dual of
eq. (1), which we build our Meta OT solvers on top of.

Let α :=
∑m
i=1 aiδxi

and β :=
∑n
i=1 biδyi be discrete

measures, where δz is a Dirac at point z and a ∈ ∆m−1

and b ∈ ∆n−1 are in the probability simplex defined by

∆k−1 := {x ∈ Rk : x ≥ 0 and
∑
i

xi = 1}. (2)

Discrete OT. Eq. (1) becomes the linear program

P ⋆(α, β, c) ∈ argmin
P∈U(a,b)

⟨C,P ⟩ (3)

where U(a, b) := {P ∈ Rn×m+ : P1m = a, P⊤1n = b},
P is a coupling matrix, P ⋆(α, β) is the optimal coupling,
and the cost can be discretized as a matrix C ∈ Rm×n with
entries Ci,j := c(xi, yj), and ⟨C,P ⟩ :=

∑
i,j Ci,jPi,j ,

Entropic OT. The linear program above can be regular-
ized adding an entropy term to smooth the objective as in
Cominetti and Martín (1994); Cuturi (2013), resulting in:

P ⋆(α, β, c, ϵ) ∈ argmin
P∈U(a,b)

⟨C,P ⟩ − ϵH(P ) (4)

where H(P ) := −
∑
i,j Pi,j(log(Pi,j)− 1) is the discrete

entropy of a coupling matrix P .

Entropic OT dual. As presented in Peyré et al. (2019,
Prop. 4.4), setting K ∈ Rm×n to the Gibbs kernel Ki,j :=
exp{−Ci,j/ϵ}, the dual of eq. (4) is

f⋆, g⋆ ∈ argmax
f∈Rn,g∈Rm

⟨f, a⟩+ ⟨g, b⟩ − ϵef/ϵKeg/ϵ (5)

where the dual variables or potentials f ∈ Rn and g ∈ Rm
are associated, respectively, with the marginal constraints
P1m = a and P⊤1n = b. We omit the dependencies of the
duals on the context, e.g. f⋆ is shorthand for f⋆(α, β, c, ϵ).

Recovering the primal solution from the duals. Given
optimal duals f⋆, g⋆ that solve eq. (5) the optimal coupling
P ⋆ to the primal problem in eq. (4) can be obtained by

P ⋆i,j(α, β, c, ϵ) := exp{f⋆i /ϵ}Ki,j exp{g⋆j /ϵ}. (6)

The Sinkhorn algorithm. Algorithm 1 summarizes the
log-space version, which takes closed-form block coordi-
nate ascent updates on eq. (5) obtained from the first-order

Algorithm 1 Sinkhorn(α, β, c, ϵ, f0 = 0)
for iteration i = 1 to N do

gi ← ϵ log b− ϵ log
(
K⊤ exp{fi−1/ϵ}

)
fi ← ϵ log a− ϵ log (K exp{gi/ϵ})

end for
Compute PN from fN , gN using eq. (6)
return PN ≈ P ⋆

Algorithm 2 W2GN(α, β, φ0)
for iteration i = 1 to N do

Sample from (α, β) and estimate L(φi−1) (eq. (13))
Update φi with approximation to∇φL(φi−1)

end for
return TN (·) := ∇xψφN (·) ≈ T ⋆(·)

optimality conditions (Peyré et al., 2019, Remark 4.21).
We will fine-tune Meta OT predictions with Sinkhorn.

Computing the error. Standard implementations of the
Sinkhorn algorithm, such as Flamary et al. (2021); Cuturi
et al. (2022), measure the error of a candidate dual solution
(f, g) by computing the deviation from the marginals:

err(f, g;α, β, c) := ∥P1m−a∥1+∥P⊤1n−b∥1, (7)

where P is computed from eq. (6).

Mapping between the duals. The first-order optimality
conditions of eq. (5) also provide an equivalence between
the optimal dual potentials that we will make use of

g(f ; b, c) := ϵ log b− ϵ log
(
K⊤ exp{f/ϵ}

)
. (8)

2.2. OT between continuous (Euclidean) measures

Let α and β be continuous measures in Euclidean space
X = Y = Rd (with α absolutely continuous with respect to
the Lebesgue measure) and the ground cost be the squared
Euclidean distance c(x, y) := ∥x−y∥22. Then the minimum
of eq. (1) defines the square of the Wasserstein-2 distance:

W 2
2 (α, β) := min

π∈U(α,β)

∫
X×Y

∥x− y∥22dπ(x, y) (9)

=min
T

∫
X
∥x− T (x)∥22dα(x), (10)

where T is a transport map pushing α to β, i.e. T#α =
β with the pushforward operator defined by T#α(B) :=
α(T−1(B)) for any measurable set B.

Convex dual potentials. The primal in eq. (10) is diffi-
cult to solve due to the constraints and many computational
methods (Makkuva et al., 2020; Taghvaei and Jalali, 2019;
Korotin et al., 2021a;c; 2022; Amos, 2023) solve the dual

ψ⋆( · ;α, β) ∈ argmin
ψ∈convex

∫
X
ψ(x)dα(x) +

∫
Y
ψ(y)dβ(y),

(11)
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Figure 1. Meta OT uses objective-based amortization for optimal transport. In the general formulation, the parameters θ capture shared
structure in the optimal couplings π⋆ between multiple input measures and costs over some distribution D. In practice, we learn this
shared structure over the dual potentials which map back to the coupling: f⋆ in discrete settings and ψ⋆ in continuous ones.

where ψ is a convex function referred to as a potential, and
ψ(y) := maxx∈X ⟨x, y⟩ − ψ(x) is the Legendre-Fenchel
transform or convex conjugate of ψ (Fenchel, 1949; Rock-
afellar, 2015). The potential may be approximated with an
input-convex neural network (ICNN) (Amos et al., 2017).

Recovering the primal solution from the dual. Given an
optimal dual ψ⋆ for eq. (11), Brenier (1991) shows that an
optimal map T ⋆ for eq. (10) can be obtained with

T ⋆(x) = ∇xψ
⋆(x). (12)

Wasserstein-2 Generative Networks (W2GNs). Korotin
et al. (2021a) model ψφ and ψφ in eq. (11) with two sep-
arate ICNNs parameterized by φ. The separate model for
ψφ is useful because the conjugate operation in eq. (11) be-
comes computationally expensive. They optimize the loss

L(φ) := E
x∼α

[ψφ(x)] + E
y∼β

[
⟨∇ψφ(y), y⟩ − ψφ(∇ψφ(y))

]
︸ ︷︷ ︸

Cyclic monotone correlations (dual objective)

+ γ E
y∼β

∥∇ψφ ◦ ∇ψφ(y)− y∥22,︸ ︷︷ ︸
Cycle-consistency regularizer

(13)

where φ is a detached copy of the parameters and γ is a
hyper-parameter. The first term are the cyclic monotone
correlations (Chartrand et al., 2009; Taghvaei and Jalali,
2019), that optimize the dual objective in eq. (11), and the
second term provides cycle consistency (Zhu et al., 2017)
to estimate the conjugate ψ. Algorithm 2 shows how L
is typically optimized using samples from the measures,
which we use to fine-tune Meta OT predictions.

2.3. Amortized optimization and learning to optimize

Our paper is an application of amortized optimization
methods that predict the solutions of optimization prob-
lems, as surveyed in, e.g., Chen et al. (2021); Amos (2022).
We use the setup from Amos (2022), which considers un-

constrained continuous optimization problems

z⋆(ϕ) ∈ argmin
z

J(z;ϕ), (14)

where J is the objective, z ∈ Z is the domain, and
ϕ ∈ Φ is some context or parameterization. In other words,
the context conditions the objective but is not optimized
over. Given a distribution over contexts P(ϕ), we learn a
model ẑθ parameterized by θ to approximate eq. (14), i.e.
ẑθ(ϕ) ≈ z⋆(ϕ). J will be differentiable, so we optimize
the parameters using objective-based learning with

min
θ

E
ϕ∼P(ϕ)

J(ẑθ(ϕ);ϕ), (15)

which does not require ground-truth solutions z⋆ and can
be optimized with a gradient-based solver.

3. Meta Optimal Transport
We refer to Meta Optimal Transport as the setting when
amortized optimization (sect. 2.3) is used for predicting
solutions to optimal transport problems such as eq. (1).
We refer to the distribution over the OT problems (mea-
sures and costs) as the meta-distribution and denote it as
D(α, β, c), which we call meta to distinguish it from the
measures α, β. For example, sects. 4.1.1 and 4.1.2 consid-
ers meta-distributions over the weights of the atoms, i.e.
(a, b) ∼ D, where D is a distribution over ∆m−1 ×∆n−1.
While a model could directly predict the primal solution to
eq. (1), i.e. Pθ(α, β, c) ≈ P ⋆(α, β, c) for (α, β, c) ∼ D,
this is difficult due to the coupling constraints. We instead
opt to predict the dual variables. Figure 1 illustrates Meta
OT in discrete and continuous settings.

3.1. Meta OT between discrete measures

We build on standard methods for entropic OT reviewed in
sect. 2.1 between discrete measures α :=

∑m
i=1 aiδxi

and
β :=

∑n
i=1 biδxi with a ∈ ∆m−1 and b ∈ ∆n−1 coupled

using a cost c. In the Meta OT setting, the measures and
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cost are the contexts for amortization and sampled from a
meta-distribution, i.e. (α, β, c) ∼ D(α, β, c). For exam-
ple, sects. 4.1.1 and 4.1.2 considers meta-distributions over
the weights of the atoms, i.e. (a, b) ∼ D, where D is a
distribution over ∆m−1 ×∆n−1.

Amortization objective. We will seek to predict the op-
timal potential. At optimality, the pair of potentials are
related to each other via eq. (8), i.e. g(f ;α, β, c) :=
ϵ log b − ϵ log

(
K⊤ exp{f/ϵ}

)
where K ∈ Rm×n is the

Gibbs kernel from eq. (5). Hence, it is sufficient to predict
one of the potentials, e.g. f , and recover the other. We thus
re-formulate eq. (5) to just optimize over f with

f⋆(α, β, c, ϵ) ∈ argmin
f∈Rn

J(f ;α, β, c), (16)

where −J(f ;α, β, c) := ⟨f, a⟩ + ⟨g, b⟩ −
ϵ ⟨exp{f/ϵ},K exp{g/ϵ}⟩ is the (negated) dual ob-
jective. Even though most solvers optimize over f and g
jointly as in eq. (16), amortizing over these would likely
need to have a higher capacity than a model just predicting
f and learn how f and g are connected through eq. (8)
while in eq. (16) we explicitly provide this knowledge.

Amortization model. We predict the solution to eq. (16)
with f̂θ(α, β, c) parameterized by θ, resulting in a compu-
tationally efficient approximation f̂θ ≈ f⋆. Here we use
the notation f̂θ(α, β, c) to mean that the model f̂θ depends
on representations of the input measures and cost. In our
settings, we define f̂θ as a fully-connected MLP mapping
from the atoms of the measures to the duals.

Amortization loss. Applying objective-based amortization
from eq. (15) to the dual in eq. (16) completes the learning
setup. The model should optimize the expected dual value:

min
θ

E
(α,β,c)∼D

J(f̂θ(α, β, c);α, β, c), (17)

which is appealing as it does not require ground-truth solu-
tions f⋆. The ground-truth solutions may be expensive to
obtain, but if they are available, a regression term can also
be added (Amos, 2022). Algorithm 3 shows a basic train-
ing loop for eq. (17) using a gradient-based optimizer such
as Adam (Kingma and Ba, 2015).

Sinkhorn fine-tuning. The dual prediction made by f̂θ
with an associated ĝ can be used to initialize a standard
Sinkhorn solver. This allows for the predicted solution to
be refined to an optimality threshold.

On accelerated solvers. While we have considered fine-
tuning the Meta OT prediction with a log-Sinkhorn solver,
Meta OT can also be combined with accelerated variants
of entropic OT solvers such as Thibault et al. (2017);
Altschuler et al. (2017); Alaya et al. (2019); Lin et al.
(2019) that otherwise solve every problem from scratch.

Algorithm 3 Training Meta OT
Initialize amortization model with θ0
for iteration i do

Sample (α, β, c) ∼ D
Predict duals f̂θ or φ̂θ on the sample
Estimate the loss in eq. (17) or eq. (18)
Update θi+1 with a gradient step

end for

Table 1. Sinkhorn runtime (seconds) to reach a marginal error of
10−2. Meta OT’s initial prediction takes ≈ 5 · 10−5 seconds. We
report the mean and std across 10 test instances.

Initialization MNIST Spherical

Zeros (tzeros) 4.5 · 10−3 ±1.5 · 10−3 0.88 ±0.13
Gaussian 4.1 · 10−3 ±1.2 · 10−3 0.56 ±9.9 · 10−2

Meta OT (tMeta) 2.3 · 10−3 ±9.2 · 10−6 7.8 · 10−2 ±3.4 · 10−2

Improvement (tzeros/tMeta) 1.96 11.3

3.2. Meta OT between continuous measures

We take an analogous approach to predicting the
Wasserstein-2 map between continuous measures for
Wasserstein-2 as reviewed in sect. 2.2. Here the mea-
sures α, β are supported in continuous space X = Y =
Rd and we focus on computing Wasserstein-2 couplings
from instances sampled from a meta-distribution (α, β) ∼
D(α, β). The cost c is not included in D as it remains fixed
to the squared Euclidean cost everywhere here.

One challenge here is that the optimal dual potential
ψ⋆( · ;α, β) in eq. (11) is a convex function and not sim-
ply a finite-dimensional real vector. The dual potentials in
this setting are approximated by, e.g., an ICNN. We thus
propose a Meta ICNN that predicts the parameters φ of
an ICNN ψφ that approximates the optimal dual potentials,
which can be seen as a hypernetwork (Stanley et al., 2009;
Ha et al., 2017). The dual prediction made by φ̂θ can eas-
ily be input as the initial value to a standard W2GN solver.
App. D.2 discusses other modeling choices we considered:
we tried models based on MAML (Finn et al., 2017) and
neural processes (Garnelo et al., 2018b;a).

Amortization objective. We build on the W2GN for-
mulation (Korotin et al., 2021a) and seek parameters φ⋆

optimizing the dual ICNN potentials ψφ and ψφ with
L(φ;α, β) from eq. (13). We chose W2GN due to the
stability, but could also easily use other losses optimizing
ICNN potentials.

Amortization model: the Meta ICNN. We predict the so-
lution to eq. (13) with φ̂θ(α, β) parameterized by θ, re-
sulting in a computationally efficient approximation to the
optimum φ̂θ ≈ φ⋆. Figure 11 instantiates a convolutional
Meta ICNN model using a ResNet-18 (He et al., 2016) ar-
chitecture for coupling image-based measures. We again
emphasize that α, β used with the model here are represen-
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Sinkhorn (converged, ground-truth)
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Figure 2. Interpolations between MNIST test digits using couplings obtained from (left) solving the problem with Sinkhorn, and (right)
Meta OT model’s initial prediction, which is ≈100 times computationally cheaper and produces a nearly identical coupling.
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Figure 3. Meta OT successfully predicts warm-start initializations that significantly improve the convergence of Sinkhorn iterations on
test data. The error is the marginal error defined in eq. (7).

tations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization
from eq. (15) to the W2GN loss in eq. (13) completes our
learning setup. We optimize the loss

min
θ

E
(α,β)∼D

L(φ̂θ(α, β);α, β). (18)

As in the discrete setting, this loss does not require ground-
truth solutions φ⋆ and we find the solution with Adam.

4. Experiments
We demonstrate how Meta OT models improve the con-
vergence of the state-of-the-art solvers in settings where
solving multiple OT problems naturally arises. We im-
plemented our code in JAX (Bradbury et al., 2018) as an
extension to the the Optimal Transport Tools (OTT) pack-
age (Cuturi et al., 2022). App. B covers further experi-
mental and implementation details, and shows that all of
our experiments take a few hours to run on our single
Quadro GP100 GPU. The source code to reproduce all of
our experiments is available at http://github.com/
facebookresearch/meta-ot.

4.1. Discrete OT

4.1.1. GRAYSCALE IMAGE TRANSPORT

Images provide a natural setting for Meta OT where the
distribution over images provide the meta-distribution D
over OT problems. Given a pair of images α0 and α1,
each grayscale image is cast as a discrete measure in 2-
dimensional space where the intensities define the prob-

abilities of the atoms. The goal is to compute the opti-
mal transport interpolation between the two measures as
in, e.g., Peyré et al. (2019, §7). Formally, this means com-
puting the optimal coupling P ⋆ by solving the entropic op-
timal transport problem between α0 and α1 and computing
the interpolates as αt = (tprojy +(1 − t) projx)#P

⋆, for
t ∈ [0, 1], where projx(x, y) := x and projy(x, y) := y.
We selected ϵ = 10−2 as app. A shows that it gives inter-
polations that are not too blurry or sharp.

Our Meta OT model f̂θ (sect. 3) is an MLP that predicts
the transport map between pairs of MNIST digits. We train
on every pair from the standard training dataset. Figure 2
shows that even without fine-tuning, Meta OT’s predicted
Wasserstein interpolations between the measures are close
to the ground-truth interpolations obtained from running
the Sinkhorn algorithm to convergence. We then fine-tune
Meta OT’s prediction with Sinkhorn. Figure 3 shows that
the near-optimal predictions can be quickly refined in fewer
iterations than running Sinkhorn with the default initializa-
tion, and table 1 shows the runtime required to reach an
error threshold of 10−2, showing that the Meta OT initial-
ization help solve the problems faster by an order of mag-
nitude. We compare our learned initialization to the stan-
dard zero initialization, as well as the Gaussian initializa-
tion proposed in Thornton and Cuturi (2022), which takes
a continuous Gaussian approximation of the measures and
initializes the potentials to be the known coupling between
the Gaussians. This Gaussian initialization assumes the
squared Euclidean cost, which is not the case in our spheri-
cal transport problem, but we find it is still helpful over the
zero initialization.

Out-of-distribution generalization We now test the abil-
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Sinkhorn (converged, ground-truth) Meta OT (initial prediction)

Figure 4. Test set coupling predictions of the spherical transport problem. Meta OT’s initial prediction is ≈37500 times faster than
solving Sinkhorn to optimality. Supply locations are shown as black dots and the blue lines show the spherical transport maps T going
to demand locations at the end. The sphere is visualized with the Mercator projection.

ity of Meta OT to predict potentials for out-of-distribution
input data. We consider the pairwise training and evalua-
tion on the following datasets: 1) MNIST; 2) USPS (Hull,
1994) (upscaled to have the same size as the MNIST); 3)
Google Doodles dataset* with classes Crab, Cat and Faces;
4) sparsified random uniform data in [0,1] where sparsity
(zeroing values below 0.95) is used to mimic the sparse sig-
nal in black-and-white images. For each pair, eg, MNIST-
USPS, we train on one dataset and use the other to pre-
dict the potentials. The comparison is done using the same
metric as before, i.e., the deviation from the marginal con-
straints defined in eq. (7). App. C shows how well the
learned models are capable of transferring to new domains.

4.1.2. SUPPLY-DEMAND TRANSPORTATION ON
SPHERICAL DATA

We next set up a synthetic transport problem between sup-
ply and demand locations where the supply and demands
may change locations or quantities frequently, creating an-
other Meta OT setting to be able to rapidly solve the new
instances. We specifically consider measures living on the
2-sphere defined by S2 := {x ∈ R3 : ∥x∥ = 1}, i.e.
X = Y = S2, with the transport cost given by the spher-
ical distance c(x, y) = arccos(⟨x, y⟩). We then randomly
sample supply locations uniformly from Earth’s landmass
and demand locations from Earth’s population density to
induce a class of transport problems on the sphere obtained

*https://quickdraw.withgoogle.com/data

from the CC-licensed dataset from Doxsey-Whitfield et al.
(2015). Figure 4 shows that the predicted transport maps on
test instances are close to the optimal maps obtained from
Sinkhorn to convergence. Similar to the MNIST setting,
fig. 3 and table 1 show improved convergence and runtime.

4.1.3. WASSERSTEIN ADVERSARIAL REGULARIZATION

Wasserstein losses has recently attracted a considerable at-
tention in the field of multi-label (Frogner et al., 2015; Yang
et al., 2018; Jawanpuria et al., 2021; Toyokuni et al., 2021)
and multi-class classification (Liu et al., 2020a;b; 2019;
Han et al., 2020; Fatras et al., 2021) as they both require
finding an informative way of comparing discrete distribu-
tions given by the true labeling of the data points and those
predicted by the classification model. In this experiment,
we aim to show that meta OT model can be learned along-
side the training of the multi-class classification model and
used to make predictions for the Wasserstein loss term ap-
pearing in the objective function of the latter. For this, we
consider as an example the setup of Fatras et al. (2021)
where the authors define an adversarial loss term (called
WAR) aiming at limiting the effect of label noise on the
generalization capacity of deep vision neural networks. In
particular, given a neural network pθ predicting a vector of
class memberships in Rc, the regularization term is

RWAR(xi) =W ϵ
C(pθ(xi + rai ), pθ(xi))

rai = argmax
ri,||ri||≤ε

W ϵ
C(pθ(xi + ri), pθ(xi)). (19)
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Figure 5. Marginal errors throughout WAR training for CIFAR-100 classification. The bumps correspond to when the loss and learning
rate are updated during training as described in Fatras et al. (2021)

Methods
Dataset Noise level WAR (5 iter.) WAR (20 iter.) Meta OT + 5 iter.

Fashion MNIST
0% 94.75 ±0.05 94.16 ±0.02 94.70 ±0.05

20% 93.00 ±0.15 93.41 ±0.08 93.53 ±0.01
40% 88.67 ±0.10 88.08 ±0.10 89.08 ±0.61

Cifar-10
0% 91.96 ±0.13 91.76 ±0.25 91.98 ±0.16

20% 88.80 ±0.11 90.59 ±0.05 90.13 ±0.21
40% 81.09 ±0.06 87.07 ±0.08 83.57 ±1.13

Cifar-100
0% 70.93 ±0.23 69.79 ±0.34 70.25 ±0.04

20% 66.23 ±0.29 66.18 ±0.18 66.59 ±0.38
40% 52.69 ±0.12 61.63 ±0.33 61.13 ±0.17

Table 2. Comparison of the original WAR implementation with WAR implementation using only 5 Sinkhorn iterations and our Meta OT
model with 5 Sinkhorn iterations on top of initial predictions. We report the mean and std across 3 random seeds.

where W ϵ
C is the Wasserstein distance with entropic reg-

ularization introduced in eq. (4) with a cost matrix C ∈
Rc×c. Learning pθ is done by optimizing the cross entropy
loss together with RWAR(xi) using stochastic optimization.
This means that OT problems in eq. (19) are solved repeat-
edly, for every batch in the input dataset and during mul-
tiple epochs thus making the meta OT warm-starts partic-
ularly computationally attractive in this context. For this
task, we optimize a meta OT model defined as a MLP with
3 hidden layers over the same data alongside the main opti-
mization procedure. We use meta OT model to predict the
solutions to both OT problems in eq. (19) and use only 25%
of iterations in the Sinkhorn loop to computeW ϵ

C . As in Fa-
tras et al. (2021), we evaluate the efficiency of such learning
strategy on three computer vision datasets, namely: Fash-
ion MNIST, Cifar-10 and Cifar-100. For each of them, we
consider the clean version of the data (0% noise), and two
variations with 20% and 40% of noise in labels. The au-
thors of Fatras et al. (2021) experiment with two cost ma-
trices: one is defined based on the distances between the
class centroids of 30000 samples from the original dataset
when embedded with ResNet18; second one is defined as
the Euclidean distance between the word2vec embeddings
of the classes of the original dataset. To show the versatil-
ity of our approach with respect to different geometries, we

use the first cost matrix for Fashion MNIST dataset, and
the second one for Cifar-10 and Cifar-100 datasets.

We evaluate meta OT for this task based on three criteria.
First, we want to make sure that reducing the number of it-
erations in the Sinkhorn loop is not detrimental for the over-
all performance of the learned classification model. These
results are presented in table 2, where we can see that meta
OT leads to the same performance as the original WAR
model while doing only 5 iterations of Sinkhorn on top of
the initial predictions. Second, we show in sect. 4.1.2 that
our meta OT model predicts warm-start initializations that
have a low marginal error so that even its initial predictions
are become at least as qualitative as the solution obtained
using 20 iterations of the Sinkhorn algorithm. Finally, we
show in table 3, that training a meta OT model alongside
the main model doesn’t introduce any additional overhead
in terms of computational time. In this table, we compare
the average runtime of each of the considered baselines and
account for the time needed to make a backward pass for
the meta OT model. This result is important as once a meta
OT model is trained, it can be further used to make pre-
dictions without any finetuning for other training runs with
different hyperparameters leading to an important reduc-
tion in terms of computational time.
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α β T#α T−1
# β

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6. Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally transport the continuous RGB measure
of the first image α to the second β, producing an invertible transport map T . Meta OT’s prediction is ≈1000 times faster than training
W2GN (Korotin et al., 2021a) from scratch. The image generating α is Market in Algiers by August Macke (1914) and β is Argenteuil,
The Seine by Claude Monet (1872), obtained from WikiArt.

Table 3. Runtime (s) per epoch of training of the WAR model.
Iter Fashion MNIST Cifar-10 Cifar-100

Zero Init 5 11.51 ±0.07 12.88 ±0.02 13.13 ±0.02
Meta OT 5 14.37 ±0.04 14.07 ±0.15 14.17 ±0.02
Zero Init 20 17.04 ±0.12 14.36 ±0.02 14.37 ±0.02

Table 4. Color transfer runtimes and values. We report the mean
and std across 10 test instances.

Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10−3 ±2.7 · 10−4 0.90 ±6.08 · 10−2

+ W2GN 1k 0.93 ±2.27 · 10−2 1.0 ±2.57 · 10−3

2k 1.84 ±3.78 · 10−2 1.0 ±5.30 · 10−3

W2GN 1k 0.90 ±1.62 · 10−2 0.96 ±2.62 · 10−2

2k 1.81 ±3.05 · 10−2 0.99 ±1.14 · 10−2

4.2. Continuous OT for color transfer

The problem of color transfer between two images con-
sists in mapping the color palette of one image into the
other one. The images are required to have the same num-
ber of channels, for example RGB images. The continu-
ous formulation that we use from Korotin et al. (2021a),
takes i.e. X = Y = [0, 1]3 with c being the squared Eu-
clidean distance. We collected ≈200 public domain im-
ages from WikiArt and trained a Meta ICNN model from
sect. 3.2 to predict the color transfer maps between every
pair of them. Figure 6 shows the predictions on test pairs
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Figure 7. Convergence on color transfer test instances using
W2GN. Meta ICNNs predicts warm-start initializations that sig-
nificantly improve the (normalized) dual objective values.

and fig. 7 shows the convergence in comparison to the stan-
dard W2GN learning. Table 4 reports runtimes. App. D.3
show additional color transfer App. D.2

5. Related work
Efficiently estimating OT maps. To compute OT maps
with fixed cost between pairs of measures efficiently, neu-
ral OT models (Korotin et al., 2021a;b; Mokrov et al., 2021;
Korotin et al., 2021c) leverage ICNNs to estimate maps be-
tween continuous high-dimensional measures given sam-
ples from these, and Litvinenko et al. (2021); Scetbon et al.
(2021); Forrow et al. (2019); Sommerfeld et al. (2019);
Scetbon et al. (2022); Muzellec and Cuturi (2019); Bonet
et al. (2021) leverage structural assumptions on coupling
and cost matrices to reduce the computational and memory
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complexity. In the meta-OT setting, we consider learning
to rapidly compute OT mappings between new pairs mea-
sures. All these works can hence benefit from an accelera-
tion effect with amortization.

Embedding measures where OT distances are discrimi-
native. Effort has been invested in learning encodings/pro-
jections of measures through a nested optimization prob-
lem, which aims to find discriminative embeddings of the
measures to be compared (Genevay et al., 2018; Desh-
pande et al., 2019; Nguyen and Ho, 2022). While these
works share an encoder and/or a projection across task with
the aim of leveraging more discriminative alignments (and
hence an OT distance with a metric different from the Eu-
clidean metric), our work differs in the sense that we find
good initializations to solve the OT problem itself with
fixed cost more efficiently across tasks.

Optimal transport and amortization. Courty et al.
(2018) learn a latent space in which the Wasserstein dis-
tance between the measure’s embeddings is equivalent to
the Euclidean distance. Nguyen and Ho (2022) amor-
tizes the estimation of the optimal projection in the max-
sliced objective, which differs from our work where we in-
stead amortize the estimation of the optimal coupling di-
rectly. Lacombe et al. (2021) learns to predict Wasserstein
barycenters of pixel images by training a convolutional net-
works that, given images as input, outputs their barycen-
ters. Our work is hence a generalization of this pixel-based
work to general measures – both discrete and continuous.
One limitation is that the barycenter predictions do not pro-
vide the optimal couplings. Gracyk and Chen (2022) learn
a neural operator, e.g. from Kovachki et al. (2021); Li et al.
(2020) to amortize the solution to the PDE from the dy-
namic OT formulation. Bunne et al. (2022a) predict the
solutions to continuous neural OT problems.

6. Conclusions
We have presented foundations for modeling and learning
to solve OT problems with Meta OT by using amortized
optimization to predict optimal transport plans. This works
best in applications that require solving multiple OT prob-
lems with shared structure. We instantiated it to speed
up entropic regularized optimal transport and unregular-
ized optimal transport with squared cost by multiple orders
of magnitude. We envision extensions of the work in: 1)
Continuous settings. Learning solutions continuous OT
problems is a budding topic in the community: Gracyk and
Chen (2022) amortize solutions to dynamic OT problems
between continuous measures, and Bunne et al. (2022a)
uses a partially input-convex neural network (PICNN) from
Amos et al. (2017) to predict continuous OT solutions from
contextual information. Related to these, app. D presents a
more general extension of Meta OT and provides a demon-

stration on transferring color palettes, which is shown in
fig. 6. Future directions for amortizing continuous OT
problems include exploring modeling (PICNN vs. a hyper-
network), loss, and fine-tuning choices. 2) Meta OT mod-
els. While we mostly consider models based on hypernet-
works, other meta-learning paradigms can be connected in.
In the discrete setting, we only considered settings where
the cost remains fixed, but the Meta OT model can also be
conditioned on the cost by considering the entire cost ma-
trix as an input (which may be too large for most models to
handle), or considering a lower-dimensional parameteriza-
tion of the cost that changes between the Meta OT problem
instances. Another modeling dimension is the ability to
capture variable-length input measures. Design decisions
for this can be inspired from by VeLO (Metz et al., 2022),
which learns a generic optimizer for large-scale machine
learning models that can predict updates to models with
500M parameters. 3) OT algorithms. While we instan-
tiated models on top of log-Sinkhorn, Meta OT could be
built on top of other methods, and 4) OT applications that
are computationally expensive and repeatedly solved, e.g.
in multi-marginal and barycentric settings, or for Gromov-
Wasserstein distances between metric-measure spaces.

Limitations. While we have illustrated successful applica-
tions of Meta OT, it is also important to understand the limi-
tations that also arise in more general amortization settings:
1) Meta OT does not make previously intractable prob-
lems tractable. All of the baseline OT solvers we con-
sider solve our problems within milliseconds or seconds.
2) Out-of-distribution generalization. Meta OT may not
generate good predictions on instances that are not close to
the training OT problems from the meta-distribution D over
the measures and cost. If the model makes a bad prediction,
one fallback option is to re-solve the instance from scratch.
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A. Selecting ϵ for MNIST
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Figure 8. We selected ϵ = 10−2 for our MNIST coupling experiments as it results in transport maps that are not too blurry or sharp.

B. Additional experimental and implementation details
Our Jax source code is available at http://github.com/facebookresearch/meta-ot and contains:

meta_ot Meta OT Python library code

conjugate.py Exact conjugate solver for the continuous setting

data.py

models.py

utils.py

config Hydra configuration for the experiments (containing hyper-parameters)

train_discrete.py Train Meta OT models for discrete OT

train_color_single.py Train a single ICNN with W2GN between 2 images (for debugging)

train_color_meta.py Train a Meta ICNN with W2GN

plot_mnist.py Visualize the MNIST couplings

plot_world_pair.py Visualize the spherical couplings

eval_color.py Evaluate the Meta ICNN in the continuous setting

eval_discrete.py Evaluate the Meta ICNN for the discrete tasks

Connecting to the data is one difficulty in running the experiments. The easiest experiment to re-run is the MNIST one,
which will automatically download the dataset:

1 ./train_discrete.py # Train the model, outputting to <exp_dir>
2 ./eval_discrete.py <exp_dir> # Evaluate the learned models
3 ./plot_mnist.py <exp_dir> # Produce further visualizations
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B.1. Hyper-parameters

We briefly summarize the hyper-parameters we used for training, which we did not extensively tune. In the discrete setting,
we use the same hyper-parameters for the MNIST and spherical settings.

Table 5. Discrete OT hyper-parameters.

Name Value

Batch size 128
Number of training iterations 50000

MLP Hidden Sizes [1024, 1024, 1024]
Adam learning rate 1e-3

Table 6. Continuous OT hyper-parameters.

Name Value

Meta batch size (for α, β) 8
Inner batch size (to estimate L) 1024

Cycle loss weight (γ) 3.
Adam learning rate 1e-3
ℓ2 weight penalty 1e-6

Max grad norm (for clipping) 1.
Number of training iterations 200000

Meta ICNN Encoder ResNet18
Encoder output size (both measures) 256×2

Meta ICNN Decoder Hidden Sizes [512]

B.2. Sinkhorn convergence times, varying thresholds

In the main paper, table 1 reports the runtime of Sinkhorn to reach a convergence threshold of the marginal error being
below a tolerance of 1023. Tables 7 and 8 report the results from sweeping over other thresholds and show that Meta OT’s
initialization is consistently able to help.

Table 7. Sinkhorn runtime to reach a thresholded marginal error on MNIST.

Initialization Threshold=10−2 Threshold=10−3 Threshold=10−4 Threshold=10−5

Zeros 4.5 · 10−3 1.5 · 10−3 7.7 · 10−3 1.2 · 10−3 1.1 · 10−2 1.8 · 10−3 1.5 · 10−2 2.3 · 10−3

Gaussian 4.1 · 10−3 1.2 · 10−3 7.7 · 10−3 1.4 · 10−3 1.1 · 10−2 1.7 · 10−3 1.4 · 10−2 2.4 · 10−3

Meta OT 2.3 · 10−3 9.2 · 10−6 3.9 · 10−3 1.6 · 10−3 6.7 · 10−3 1.4 · 10−3 1.0 · 10−2 2.4 · 10−3

Table 8. Sinkhorn runtime to reach a thresholded marginal error on the spherical transport problem.

Initialization Threshold=10−2 Threshold=10−3 Threshold=10−4 Threshold=10−5

Zeros 8.8 · 10−1 ±1.3 · 10−1 1.4 ±1.9 · 10−1 2.1 ±3.6 · 10−1 2.8 ±5.6 · 10−1

Gaussian 5.6 · 10−1 ±9.9 · 10−2 1.1 ±2.0 · 10−1 1.7 ±3.5 · 10−1 2.4 ±5.4 · 10−1

Meta OT 7.8 · 10−2 ±3.4 · 10−2 0.44 ±1.5 · 10−1 0.97 ±3.2 · 10−1 1.7 ±6.8 · 10−1
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B.3. Experimental runtimes and convergence

App. B.3 shows the convergence during training of Meta OT models in the discrete and continuous settings over 10 trials
on our single Quadro GP100 GPU. The MNIST models are consistently trained to optimality within 2 minutes (!) while
the continuous model takes a few hours to train.
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Figure 9. Convergence of Meta OT models during training, reported over iterations and wall-clock time. We run each experiment for 10
trials with different seeds and report each trial as a line.
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C. Cross-domain experimental results
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Figure 10. Cross-domain experiments evaluating how well a model trained on one dataset generalizes to another dataset. Notably, we are
able to train only on a uniform distribution and transfer reasonable initializations to the image datasets. This indicates that training larger-
scale Meta OT models for more general classes of discrete OT problems may be able to provide a fast and reasonable initialization.

D. More information: Meta OT between continuous measures
D.1. Meta ICNN Diagram
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(·)

Transport map

ResNetθ

ResNetθ

MLPθ

Figure 11. A Meta ICNN for image-based input measures. A shared ResNet processes the input measures α and β into latents z that are
decoded with an MLP into the parameters φ of an ICNN dual potential ψφ. The derivative of the ICNN provides the transport map T̂ .

D.2. Other models for continuous OT

We explored a hyper-network model because it is conceptually the most similar to predicting the optimal dual variables
in the continuous setting and results in rapid predictions. However, it may not scale well to predicting high-dimensional
parameters of ICNNs. This section presents two alternatives based on MAML (Finn et al., 2017) and neural processes
(Garnelo et al., 2018b;a), and conditional OT maps (Bunne et al., 2022a).
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D.2.1. OPTIMIZATION-BASED META-LEARNING (MAML-INSPIRED)

The model-agnostic meta-learning setup proposed in MAML (Finn et al., 2017) could also be applied in the Meta OT setting
to learn an adaptable initial parameterization. In the continuous setting, one initial version would take a parameterized dual
potential model ψφ(x) and seek to learn an initial parameterization φ0 so that optimizing a loss such as the W2GN loss L
from eq. (13) results in a minimal L(φK) after adapting the model for K steps. Formally, this would optimize:

argmin
φ0

L(φK) where φt+1 = φt −∇φL(φt) (20)

Tancik et al. (2021) explores similar learned initializations for coordinate-based neural implicit representations for 2D
images, CT scan reconstruction, and 3d shape and scene recovery from 2D observations.

Challenges for Meta OT. The transport maps given by T = ∇ψ can significantly vary depending on the input measures
α, β. We found it difficult to learn an initialization that can be rapidly adapted, and optimizing eq. (20) is more computa-
tionally expensive than eq. (18) as it requires unrolling through many evaluations of the transport loss L. And, we found
that only learning to predict the optimal parameters with eq. (18), conditional on the input measures, and then fine-tuning
with W2GN to be stable.

Advantages for Meta OT. Exploring MAML-inspired methods could further incorporate the knowledge that the model’s
prediction is going to be fine-tuned into the learning process. One promising direction we did not try could be to integrate
some of the ideas from LEO (Rusu et al., 2019) and CAVIA (Zintgraf et al., 2019), which propose to learn a latent space
for the parameters where the initialization is also conditional on the input.

D.2.2. NEURAL PROCESS AND CONDITIONAL MONGE MAPS

The (conditional) neural process models considered in Garnelo et al. (2018b;a) can also be adapted for the Meta OT setting,
and is similar to the model proposed in Bunne et al. (2022a). In the continuous setting, this would result in a dual potential
that is also conditioned on a representation of the input measures, e.g. ψφ(x; z) where z := f emb

φ (α, β) is a learned
embedding of the input measures that is learned with the parameters of ψ. This could be formulated as

argmin
φ

E
(α,β)∼D

L(φ, f emb
φ (α, β)), (21)

where L modifies the model used in the loss eq. (13) to also be conditioned on the context extracted from the measures.

Challenges for Meta OT. This raises the issue on best-formulating the model to be conditional on the context. One way
could be to append z to the input point x in the domain. Bunne et al. (2022a) proposes to use the Partially Input-Convex
Neural Network (PICNN) from (Amos et al., 2017) to make the model convex with respect to x and not z.

Advantages for Meta OT. A large advantage is that the representation z of the measures α, β would be significantly
lower-dimensional than the parameters φ that our Meta OT models are predicting.
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D.3. Continuous Wasserstein-2 color transfer

The following public domain images are from WikiArt:

• Distant View of the Pyramids by Winston Churchill (1921)

• Charing Cross Bridge, Overcast Weather by Claude Monet (1900)

• Houses of Parliament by Claude Monet (1904)

• October Sundown, Newport by Childe Hassam (1901)

• Landscape with House at Ceret by Juan Gris (1913)

• Irises in Monet’s Garden by Claude Monet (1900)

• Crystal Gradation by Paul Klee (1921)

• Senecio by Paul Klee (1922)

• Váza s květinami by Josef Capek (1914)

• Sower with Setting Sun by Vincent van Gogh (1888)

• Three Trees in Grey Weather by Claude Monet (1891)

• Vase with Daisies and Anemones by Vincent van Gogh (1887)
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α β T#α T−1
# β

Figure 12. Meta ICNN (initial prediction). The sources are given in the beginning of app. D.3.
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α β T#α T−1
# β

Figure 13. Meta ICNN + W2GN fine-tuning. The sources are given in the beginning of app. D.3.
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α β T#α T−1
# β

Figure 14. W2GN (final). The sources are given in the beginning of app. D.3.
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