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Abstract
A major technique in learning-augmented online
algorithms is combining multiple algorithms or
predictors. Since the performance of each pre-
dictor may vary over time, it is desirable to use
not the single best predictor as a benchmark, but
rather a dynamic combination which follows dif-
ferent predictors at different times. We design
algorithms that combine predictions and are com-
petitive against such dynamic combinations for
a wide class of online problems, namely, metri-
cal task systems. Against the best (in hindsight)
unconstrained combination of ℓ predictors, we ob-
tain a competitive ratio of O(ℓ2), and show that
this is best possible. However, for a benchmark
with slightly constrained number of switches be-
tween different predictors, we can get a (1 + ϵ)-
competitive algorithm. Moreover, our algorithms
can be adapted to access predictors in a bandit-
like fashion, querying only one predictor at a time.
An unexpected implication of one of our lower
bounds is a new structural insight about covering
formulations for the k-server problem.

1. Introduction
Motivated by the power of machine-learned predictions, the
field of learning-augmented algorithms has been growing
rapidly in recent years. In the classical field of online al-
gorithms, an input sequence is revealed to an algorithm
over time and it is assumed that at all times, no information
about the future part of the input is available. In contrast,
a learning-augmented algorithm additionally has access to
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predictions (e.g., machine-learned) related to the future in-
put. These predictions may be inaccurate, so a challenge
is to simultaneously utilize high-quality predictions to their
best advantage while at the same time avoiding to be misled
by erroneous predictions.

An important technique in the field of learning-augmented
algorithms is the method of combining multiple algorithms
into a single hybrid algorithm that leverages the advantages
of all individual algorithms. The basic idea goes back to
several decades before the area of learning-augmented algo-
rithms was born and also has applications, for example, in
pure online algorithms: Fiat et al. (1990) defined a MIN op-
erator on algorithms for the k-server problem that combines
several algorithms into one whose cost matches the best of
them up to a constant factor, and they used this technique
to obtain the first competitive algorithm for the k-server
problem.

In learning-augmented algorithms, similar combination tech-
niques are employed for several purposes. Firstly, they are
frequently used to make algorithms robust against predic-
tion errors by combining an algorithm that mostly follows
predictions with a classical online algorithm that ignores
predictions (see, e.g., Lykouris & Vassilvitskii (2021); Puro-
hit et al. (2018); Rohatgi (2020); Antoniadis et al. (2020);
Wei (2020); Bamas et al. (2020); Bansal et al. (2022)). In
fact, one might argue that almost all algorithms that uti-
lize predictions while being robust to their error are at least
implicitly a kind of combination of two algorithms. A sec-
ond purpose, as employed by Antoniadis et al. (2021), is to
combine several differently parameterized versions of the
same algorithm in order to perform nearly as well as the ver-
sion with the best parameter choice. These aforementioned
works, like the majority of research in learning-augmented
algorithms, focus on settings where a single predictor pro-
vides suggestions to the algorithm.

However, a third and perhaps the most relevant application
of combining several algorithms in the learning-augmented
realm is to be able to deal with multiple predictors. In
practice it is often the case that several predictors are avail-
able, but they produce potentially conflicting advice; for
example, there may be different ML models based on dif-
ferent methods or tailored to specific scenarios, or several
human experts with contrary opinions. Since it is not clear
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a priori which of the predictors will be most reliable for
the instance at hand, this creates the complication of de-
ciding how to choose between the predictors. Research on
learning-augmented algorithms with multiple predictions
was initiated by Gollapudi & Panigrahi (2019) for the ski
rental problem, and subsequently also considered for addi-
tional problems such as multi-shop ski rental (Wang et al.,
2020), facility location (Almanza et al., 2021), matching,
load balancing and non-clairvoyant scheduling (Dinitz et al.,
2022). For the objective of regret minimization, the case of
multiple predictions was studied for online linear optimiza-
tion (Bhaskara et al., 2020) as well as caching (Emek et al.,
2021). Recently, Anand et al. (2022) designed a generic
framework for online covering problems with multiple pre-
dictions, which they successfully applied to the problems of
set cover, weighted caching and facility location.

A particularly interesting aspect of the work of Anand et al.
(2022) is that the performance of their algorithm is compa-
rable not only to the best individual predictor, but even to
the best dynamic combination of predictors. This property
is especially valuable on instances which are composed of
several parts with different properties, as some predictor
may be of high quality for certain sections of the input, but
inferior to other predictors otherwise.

This raises the question of whether similar guarantees are
also achievable for other problems. Anand et al. (2022)
mention the k-server problem as a specific problem for
which this would be interesting.

Here, our goal is to obtain generic methods for combining
multiple predictors/algorithms applicable to a wide range
of problems. To this end, we consider the class of metrical
task systems (MTS). It was introduced by Borodin et al.
(1992) as a wide class of online problems, containing as
special cases many other fundamental online problems such
as k-server, caching, convex body/function chasing, layered
graph traversal, dynamic power management etc. Thus, our
results obtained for MTS directly translate to all these other
problems as well.

We study this class of problems in a variety of settings:
Against the best (in hindsight) dynamic combination of ℓ
predictors, we obtain a competitive ratio of O(ℓ2) and show
that this is the best possible. This follows, essentially, from
a reduction to the layered graph traversal problem. The
aforementioned result allows the benchmark offline combi-
nation to switch between the ℓ predictors arbitrarily often.
However, for more structured instances (for example, imag-
ine an instance composed of blocks with different patterns,
and different predictors specialized on these patterns), it is
reasonable to assume that an optimal combination of pre-
dictors would not switch between them too often. We there-
fore consider the question whether a better performance is
achievable under such an assumption. Indeed, against a

dynamic combination benchmark that switches between the
different predictors a moderately limited number of times,
we achieve a (1 + ϵ)-competitive algorithm.

Since querying predictors may be costly (Im et al., 2022;
Emek et al., 2021), we also consider a setting where the
learning-augmented algorithm can consult only one predic-
tor per time step (similar to multi-armed bandits). We show
that very similar guarantees can be achieved also for this
setting.

1.1. Preliminaries

Metrical Task Systems. In Metrical Task Systems (MTS),
we are given a metric space (M,d), whose points are called
states. An algorithm starts in some initial state s0 ∈ M . At
each time t = 1, 2, . . . , T , a task appears, specified by some
cost function ct : M → R≥0 ∪ {∞} that assigns to each
state the cost of serving the task in that state. In response, the
algorithm chooses a state st ∈ M , paying movement cost
d(st−1, st) and service cost ct(st). We emphasize that st
can be chosen after ct is known, but before ct+1 is revealed.

The k-server problem. In the k-server problem, we are
given a metric space (M,d), and k servers are located at
points of M . At each time t = 1, 2, . . . , T , a point rt ∈
M is requested, and an algorithm must choose one of the
servers to move to rt. The cost is the total distance travelled
by servers. Note that k-server is an MTS in the metric space
of server configurations.1

Competitive ratio. An algorithm A for an online mini-
mization problem is called ρ-competitive if

cost(A) ≤ ρ ·OPT+c (1)

for every instance of the problem, where cost(A) is the
cost of A on the instance (or the expected cost, if A is
randomized), OPT is the optimal (offline) cost, and c is a
constant independent of the input sequence. If we replace
OPT by some other benchmark B, we also say that A is
ρ-competitive against B. The minimal ρ satisfying (1) is
also called the competitive ratio.

Prediction setup. We consider the setting where there are
ℓ predictors denoted P1, . . . , Pℓ. At each time t, predictor
Pi produces a suggestion of a state φit ∈ M where the
algorithm should go. Note that we may think of each Pi

itself as an algorithm to serve the request sequence. The
case ℓ = 1 of a single predictor was studied by Antoniadis
et al. (2020).

1I.e., k-server in M can be cast as an MTS by taking the set of
k-server configurations (i.e., size-k-subsets of M ) as the metric
space for MTS. Then ct assigns cost 0 to configurations containing
rt and cost ∞ to other configurations.

2



Mixing Predictions for Online Metric Algorithms

To evaluate the performance of our algorithms, we consider
as benchmark algorithms the best dynamic combination
of the predictors. We write DYN for the cost of the best
(offline) algorithm that is in one of the predicted states at
each time step:

DYN := min
s1,...,sT :

st∈{φ1t,...,φℓt}

T∑
t=1

d(st−1, st) + ct(st)

If st = φit, we say that the algorithm follows Pi at time
t. We define DYN≤m similarly to DYN, but for an offline
algorithm that switches the predictor that it is following at
most m times.

For the k-server problem, note that φit is a configuration
(i.e., a set) of k points. Here, it is natural to consider pre-
dictors that are lazy, i.e., they move a server only to serve
a request; formally, φit ⊆ φi,t−1 ∪ {rt}. In this case, the
sequence of predictions produced by Pi can also be encoded
by specifying for each time t only the name of the server
that should serve the current request. This suggests an alter-
native definition of a dynamic combination for the k-server
problem: We write D̃YN for the cost of the best offline
algorithm that serves each request rt using a server named
by any of the predictors at time t.

To clarify the difference between DYN and D̃YN, con-
sider the following example for k = 2 servers and ℓ = 2
predictors P1 and P2: The servers start in configuration
{a, b} and the first two requests are to some different points
r1, r2 /∈ {a, b}. Predictor P1 uses the first server for both re-
quests, changing its configuration to {r1, b} and then {r2, b}.
Predictor P2 uses the second server for both requests, chang-
ing its configuration to {a, r1} and then {a, r2}. The algo-
rithm achieving cost D̃YN might use the first server for the
first request and the second for the second request, thus
reaching configuration {r1, r2} at time 2, but the algorithm
in the definition of DYN cannot be in that configuration
since it is only allowed to be in a configuration where P1 or
P2 currently is.

Full access and bandit access. We define two types of
learning-augmented algorithms for MTS, depending on the
type of access they have to the predictors. Note that in both
cases, they see the input cost function ct. In the full access
model, the algorithm receives at each time t as additional
input the ordered tuple (φ1t, φ2t, . . . , φℓt). In the bandit
access model, the algorithm chooses some it ∈ {1, . . . , ℓ}
at time t and only observes the state φitt and the (move-
ment + service) cost paid by Pit at time step t.2 For our

2In the full access model, the learning-augmented algorithm
also knows the cost of each algorithm Pi for all time steps, as it
can be deduced from its state at the current and previous time step.

algorithms, it does not matter whether it is chosen before
or after the cost function ct is observed. In all cases, the
learning-augmented algorithm has to choose its own state
st only after observing the full cost function ct as well as
the predicted state(s) for time t.

1.2. Our Results

We begin by stating a negative result concerning the bench-
mark D̃YN for the k-server problem, suggesting that this
benchmark is too strong, even if there are only two predic-
tors.

Theorem 1.1. For the k-server problem on the line metric
with full access to two predictors, every deterministic (resp.
randomized) learning-augmented algorithm has competitive
ratio at least k (resp. Ω(log k)) against D̃YN.

Since k is the exact deterministic competitive ratio and
Ω(log k) is the best known lower bound on the randomized
competitive ratio of k-server on the line metric without
predictions (Manasse et al., 1990; Chrobak et al., 1991;
Bubeck et al., 2023), predictions do not seem useful against
this benchmark. We therefore dismiss this benchmark for
the remainder.

For the benchmark DYN, we obtain the following result
for any MTS (and therefore also the k-server problem) by a
reduction to the layered graph traversal problem:

Theorem 1.2. For any MTS problem with full access to ℓ
predictors, there is an O(ℓ2)-competitive randomized algo-
rithm against DYN.

A similar connection to layered graph traversal (or the equiv-
alent metrical service systems problem) yields the following
matching lower bound:

Theorem 1.3. There exist instances of MTS and k-server
where no randomized learning-augmented algorithm with
full access to ℓ predictors can achieve a competitive ratio
better than Ω(ℓ2) against DYN.

We remark that the algorithm from Theorem 1.2 can be
made robust against prediction errors, so that it achieves a
cost of at most O

(
min{ρ ·OPT, ℓ2 ·DYN}

)
, where ρ is

the best competitive ratio of the given MTS problem in the
setting without predictions. To achieve this, we can take the
output of our algorithm and combine it with a ρ-competitive
algorithm using the methods discussed by Antoniadis et al.
(2020) (or alternatively, by invoking Theorem 1.2 a second
time with ℓ = 2, using the output of our algorithm and a
ρ-competitive algorithm as the two predictors). The exact
same combination method can be applied to all of our al-
gorithms to achieve analogous robust versions also of all
our subsequent upper bounds, and we will not mention it
explicitly each time.
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For the bandit-access model, we note that previous results
by Emek et al. (2009) allow to transfer the guarantees of
Theorem 1.2, losing only a factor ℓ:

Theorem 1.4. For any MTS problem with bandit access
to ℓ predictors, there is an O(ℓ3)-competitive randomized
algorithm against DYN.

As argued above, a more realistic benchmark might be a
dynamic combination whose number of switches between
predictors is somewhat bounded. In analogy to results about
tracking best experts in online learning (Cesa-Bianchi &
Lugosi, 2006), one might expect a competitive ratio of 1+ ϵ
against a dynamic combination that switches at most f(ϵ)T
times. However, T is not an adequate quantity to express
the length of an MTS instance, as dummy tasks of cost 0
can artificially inflate the length. Instead, we use the value
of DYN to scale our results based on the meaningful length
of the instance.

Theorem 1.5. For any MTS with full access to ℓ predic-
tors and any ϵ > 0, there is a (1 + ϵ)2-competitive ran-
domized algorithm against DYN≤m for m as large as
Ω
(

ϵ2

log ℓ ·
DYN
D

)
, where D is the diameter of the underlying

metric space.

Theorem 1.5 generalizes a result of Blum & Burch (2000),
who showed that a competitive ratio of 1 + ϵ is achiev-
able against DYN≤0 (i.e., a static benchmark that does not
switch at all). Our approach is based on a connection to
the unfair MTS problem and the bound of Theorem 1.5 is
achieved when using algorithm ODDEXPONENT by Bartal
et al. (1997) as a subroutine.

We remark that it is not necessary for our algorithm to know
the value of DYN. Note that the result also holds for large ϵ
(in which case ϵ would be the dominant term in (1 + ϵ)2).
The following result shows that the bound obtained is asymp-
totically optimal for large ϵ, and the dependency on DYN,
D and ℓ cannot be improved.

Theorem 1.6. For any ϵ > 0, there exists an MTS with
full access to ℓ predictors on which no randomized al-
gorithm can be (1 + ϵ)2-competitive against DYN≤m if
m ≥ 6(1+ϵ)2

log ℓ
DYN
D .

For the bandit access model with a limited number of
switches, we obtain the following result.

Theorem 1.7. For any MTS with bandit access to ℓ pre-
dictors and any ϵ > 0, there is a (1 + ϵ)3-competitive
randomized algorithm against DYN≤m for m as large as

Ω

(
ϵ3/ log(2 + ϵ−1)

ℓ log ℓ
· DYN

D

)
,

where D is the diameter of the underlying metric space.

We use the standard sampling approach (see, e.g., Slivkins
(2019)) to reduce the bandit setting to the full information
setting and analysis of Blum & Burch (2000) for the SHARE
algorithm of Herbster & Warmuth (1998).

Let us remark that prior to our work no such bandit-access
algorithm was known even against a static benchmark, i.e.,
the best individual predictor.

An unexpected consequence of the lower bound in Theo-
rem 1.3, combined with an upper bound for online covering
problems with multiple predictions by Anand et al. (2022),
is a structural insight into possible covering relaxations of
the k-server problem:

Theorem 1.8. There exists no configuration-encoding on-
line covering formulation of the k-server problem, even in
the special case of HST metrics.

The terminology in Theorem 1.8 is defined formally in Ap-
pendix C. Intuitively, by “configuration-encoding” we mean
that the server configuration at time t is uniquely determined
by the values of variables involved in constraints for time t.
Since configuration-encoding online covering formulations
exist for the weighted paging problem, Theorem 1.8 yields
a structural separation between star and HST metrics for the
k-server problem. We are not aware of any similar struc-
tural impossibility results about LP formulations of online
problems.

1.3. Organization of the Paper

In Section 2, we study upper and lower bounds on the achiev-
able competitive ratio against DYN with full access to pre-
dictors; the lower bound for k-server against D̃YN is de-
ferred to Appendix B. In Sections 3 and 4, we respectively
show positive and negative results when using DYN≤m as
a benchmark. We focus on the bandit access setting in Sec-
tion 5. Finally, in Appendix C we prove the impossibility
result regarding covering formulations for k-server.

2. Unbounded Number of Switches
The goal of this section is to show tight bounds against DYN
in the full access model. We show that in the competitive
ratio against DYN (with unlimited number of switches) is
O(ℓ2) and Ω(ℓ2), proving Theorems 1.2 and 1.3.

The problem of combining predictors P1, . . . , Pℓ on an MTS
instance (ℓ-MTS for short) can be formulated as a classical
MTS on the same underlying metric space: it is enough to
modify the losses: ℓ′t(s) := ℓt(s) if s is a state of some
predictor and ℓ′t(s) := +∞ otherwise. This formulation
does not yet make the problem easier: the underlying metric
space remains the same with the same number of points n,
seemingly keeping the complexity of the problem the same
as solving the input instance directly. However, having finite
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loss only on at most ℓ states at a time allow us to reduce
this problem to a more structured variant of MTS called
ℓ-width layered graph traversal (LGT). We will show this in
a similar way to a reduction from metrical service systems
to LGT from Fiat et al. (1998).

In layered graph traversal (LGT) we are given a graph with
non-negative edge weights, and a searcher that starts at
a designated vertex s. The graph has the property that its
vertices can be partitioned into layers L0 := {s}, L1, L2 . . .
such that any edge connects vertices of two consecutive
layers. In ℓ-width LGT, one has |Lt| ≤ ℓ for all t. The
problem is online, meaning that the searcher is only aware of
the edges (and corresponding weights) adjacent to the layers
visited so far. Each traversal of an edge by the searcher
incurs a cost equal to the weight of that edge. The goal is to
move the searcher along the edges to a target vertex in the
last layer. The cost is the distance travelled by the searcher.

It was shown recently that ℓ-width LGT admits an O(ℓ2)-
competitive randomized algorithm (Bubeck et al., 2022).

Proof of Theorem 1.2. Consider an instance I of ℓ-MTS.
We can construct a corresponding instance I ′ of ℓ-width
layered graph traversal as follows. Every layer Lt, t ≥ 1
in I ′ consists of exactly ℓ vertices v1t, v2t, . . . vℓt where
intuitively vertex vit corresponds to the state φit of predictor
Pi at time t. The edges between any two consecutive layers
form a complete bipartite graph, where the weight of edge
(vi,t−1, vjt) is set to d(φi,t−1, φjt) + ct(φjt). Finally, all
vertices of the last layer LT constructed in this way are
connected to single target vertex in layer LT+1 with edges
of weight 0.

It can be easily verified that I ′ is a feasible ℓ-width layered
graph traversal instance. Furthermore any solution to I ′ can
be naturally (and in an online-fashion) transformed into a
corresponding solution for I: If the searcher in I ′ moves to
vertex vit when layer Lt is revealed, then the correspond-
ing t’th request in I is served in state φit. Note that by
construction the costs of the two solutions are exactly the
same, as going back to a previous layer is never beneficial
because d is a metric. Similarly one can apply the opposite
transformation to the offline solution achieving cost DYN
for instance I to obtain an offline solution of the same cost
for instance I ′ for ℓ-width LGT.

The result follows, by the O(ℓ2)-competitive algorithm for
ℓ-width LGT by Bubeck et al. (2022).

On the other hand, our lower bound in Theorem 1.3 can
be derived via the Metrical Server Systems (MSS) prob-
lem (Chrobak & Larmore, 1991), which is in fact equivalent
to LGT. In MSS, a server can move between the points of a
metric space. In each round it is presented with a request,
which consists of w points of the metric. In response, the

server has to move to one of these w points. The goal is to
minimize the total distance traversed by the server.

The proof of Theorem 1.3 follows by observing the relation-
ship between MSS and respectively ℓ-MTS and k-server.

Proof of Theorem 1.3. By the result of Bubeck et al. (2023)
that any (randomized) algorithm for MSS with w = ℓ is
Ω(ℓ2)-competitive, and since k-server is an MTS, it suffices
to show that MSS with w = ℓ can be reduced to the k-server
problem with full access to ℓ predictors.

Consider an arbitrary input instance I to MSS on an n-point
metric space M, where the server initially is at a point
p0 ∈ M. We construct a k-server instance I ′ on the same
metric space with k = n − 1, so that at each time there is
exactly one point not covered by a server (called the hole).
The initial hole is p0. Fix a learning-augmented algorithm
A′ for k-server with full access to ℓ predictors. We define
an algorithm A for MSS via A′ as follows. Whenever a
request to a set Wt arrives in I in round t, in I ′ we repeat-
edly issue many requests at all the points outside Wt, so
that any competitive algorithm is forced to move its hole
eventually to a point in Wt. For each of these requests, let
the ℓ predictors collectively have their holes at each of the
points in Wt. After sufficiently many such requests, the
hole of A′ must move to a point q ∈ Wt with probability
arbitrarily close to 1. A serves the original request Wt in I
by moving to this point q.

By the triangle inequality, the cost of A is at most the cost of
A′. On the other hand, the optimal offline cost for instance I
is equal to the cost of DYN on instance I ′. Thus, if A′ were
o(ℓ2)-competitive against DYN, then A would be o(ℓ2)-
competitive for MSS, contradicting the result of Bubeck
et al. (2023).

3. Limited Number of Switches
Consider predictors P1, . . . , Pℓ for some MTS instance I
with diameter D. In order to construct an algorithm for com-
bining these predictors, we create a new MTS instance U on
a uniform metric space with ℓ points, each corresponding to
one of the predictors. At each time step, we calculate, for
each i = 1, . . . , ℓ, the cost ft(Pi) incurred by predictor Pi

on instance I at time t, which includes both the movement
and service cost of Pi, and issue the cost function cUt such
that cUt (i) =

1
Dft(Pi).

A solution to the instance U produced by some algorithm Ā
can be translated to a combination of the predictors: when-
ever Ā resides at state i, we move to the current state of the
predictor Pi. Service costs in U correspond to the scaled
costs of the individual predictors. Therefore, if Ā always
resides in state i, its total cost will be 1

D times the total cost
of Pi serving the instance I . However, this translation does
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not preserve switching costs: neither for our algorithm nor
for the optimal combination. While moving from i to j in
instance U always costs 1, switching from Pi to Pj may
cost anything between 0 and D. Algorithm 1 summarizes
this translation.

Algorithm 1: COMBINEĀ(P1, . . . , Pℓ)

1 D := diameter of the space;
2 foreach t = 1, . . . , T do
3 cUt (i) = D−1ft(Pi) for each i = 1, . . . , ℓ;
4 it := state of Ā after seeing cU1 , . . . , c

U
t ;

5 Move to the state of Pit ;

We choose algorithm Ā based on the following performance
metric.
Definition 3.1 (Unfair competitive ratio). Let r > 0. We
say that an MTS algorithm A is r-unfair competitive if there
is a constant α ≥ 0 such that for any instance the cost
incurred by A is

cost(A) =

T∑
t=1

(ct(xt) + d(xt−1, xt))

≤ R · min
y : y0=x0

{
T∑

t=1

(ct(yt) + rd(yt−1, yt))}+ α,

where x is the solution produced by the algorithm and the
minimum in the right-hand side is the cost of the optimal
solution whose movement costs are scaled by factor r. We
call R the r-unfair competitive ratio of A.

Unfair ratios are usually considered with r ≤ 1, i.e., the ref-
erence optimal solution pays cheaper costs for its movement
than the algorithm, since this setting is important in the de-
sign of general algorithms for MTS (Fiat & Mendel, 2003;
Bubeck et al., 2021). In our case, we are trying to prevent
the optimum solution from moving too much, that’s the intu-
ition due to which we are interested in r > 1. The algorithm
ODDEXPONENT by Bartal et al. (1997) achieves the follow-
ing bound also with r ≥ 1. We denote by r(ϵ) the minimal
r such that there is an algorithm with r-unfair competitive
ratio 1 + ϵ for the ℓ-point uniform metric. A description of
ODDEXPONENT can be found in Appendix A.1.
Proposition 3.2 (Bartal et al. (1997)). Given r, there is
an algorithm for the ℓ-point uniform metric space with r-
unfair competitive ratio 1 + 1

r2e ln ℓ. This gives r(ϵ) =
O(ϵ−1 ln ℓ).

The next lemma relates the cost of COMBINEĀ(P1, . . . , Pℓ)
to the cost of an optimal combination which has to pay a
fixed large cost for every switch between two predictors.
Lemma 3.3. Let Ā be an algorithm for uniform MTS and
rĀ(ϵ) be such that the rĀ(ϵ)-unfair competitive ratio of Ā

is (1 + ϵ), for some ϵ > 0. Let DYNρ denote the optimal
cost of a combination of predictors P1, . . . , Pℓ which pays
ρ = 2DrĀ(ϵ) for each switch between two predictors. Then
COMBINEĀ(P1, . . . , Pℓ) is (1+ϵ)-competitive with respect
to DYNρ.

Proof. Denote OPTU
rĀ(ϵ) the cost of the optimum solution

for U which pays rĀ(ϵ) instead of 1 for each movement.
We know that the cost of Ā is at most (1+ ϵ)OPTU

rĀ(ϵ) +α
for some constant α.

Now, COMBINEĀ pays ft(Pi) when following Pi or, if there
was a switch, at most D + ft(Pi). In the same situation, Ā
pays D−1ft(Pi) and 1+D−1ft(Pi) respectively. Therefore,
the total cost of COMBINEĀ is at most

T∑
t=1

D costt(Ā) ≤ D ·
(
(1 + ϵ)OPTU

rĀ(ϵ) +α
)
.

To show that OPTU
rĀ(ϵ) ≤ 1

D DYNρ, we translate DYNρ

into a (possibly suboptimal) solution on instance U as fol-
lows: If DYNρ follows Pi at time t and pays cost ft(Pi),
we stay at state i in U and pay cost 1

Dft(Pi). Otherwise,
DYNρ switches from Pj to Pi at time t and pays cost
2DrĀ(ϵ) + srv(Pi), where srv(Pi) denotes the service
cost paid by Pi. We move from state j to i in U and pay
r(ϵ) + 1

Dft(Pi) ≤ r(ϵ) + 1 + 1
D srv(Pi), because the mov-

ing cost of Pi is at most D. In both cases, the cost incurred
by DYNρ was D times larger than the constructed solution
on U , implying OPTU

rĀ(ϵ) ≤ 1
D DYNρ.

Theorem 1.5 follows from the following lemma translating
the competitive ratio with respect to DYNρ to a competitive
ratio with respect to DYN≤m.

Lemma 3.4. Let ϵ > 0 and ρ > 0. If an algorithm A
is (1 + ϵ)-competitive against DYNρ, then it is (1 + ϵ)2-
competitive against DYN≤m for any m ≤ ϵDYN /ρ.

Proof. Let us denote α such that cost(A) ≤ (1 +
ϵ)DYNρ +α. Relating its cost to DYN≤m for any m ≤
ϵDYN /ρ, we have

cost(A) ≤
(
(1 + ϵ)DYNρ +α)

≤ (1 + ϵ)(DYN≤m +ϵDYN) + α

≤ (1 + ϵ)2 DYN≤m +α,

because DYNρ ≤ DYN≤m +mρ and DYN ≤ DYN≤m.

Using Lemma 3.3 and choosing Ā from Proposition 3.2, we
get that COMBINEĀ is (1 + ϵ)2-competitive with respect
to DYN≤m whenever m ≤ ϵ2

4De ln ℓ DYN, as claimed by
Theorem 1.5.
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4. Hardness for Limited Number of Switches
In this section we show Theorem 1.6, stating that the bound
on the maximum number of allowed switches m given by
Theorem 1.5 is tight up to a constant factor, for fixed ϵ. In
particular, the asymptotic dependence on ℓ, D, and DYN is
optimal.

The randomized construction we use in this section is in-
spired by the classical coupon collector lower bound for
MTS (Borodin et al., 1992). We consider a uniform3 metric
space with ℓ points. There are also ℓ predictors, the ith of
them predicting to always stay at point i. Let σ1, . . . , σT

be T independent random variables, each drawn uniformly
from the metric space. Let α ∈ (0, 1] be a parameter. At
time step t, the cost function is

ct(x) =

{
1 if x = σt,

α/ℓ if x ̸= σt.

In each step, any online algorithm (even given access to
the above predictors, whose predictions are independent
from the random instance) has expected cost of at least 1/ℓ,
since with probability 1/ℓ the random point σt falls on the
old state of the algorithm, and the algorithm either moves
and incurs moving cost 1 or stays and incurs service cost 1.
After T steps, the expected total cost of an algorithm A is
at least E[cost(A)] ≥ T/ℓ.

Clearly, DYN ≥ Tα/ℓ. Let m = 2DYN
α ln ℓ ≥ 4T

ℓ ln ℓ . We will
upper bound the expected value of DYN≤m by considering
the following offline strategy. Whenever σt hits the cur-
rently followed predictor, switch to the predictor that will
be hit furthest in the future (i.e., akin to Belady’s rule for
the caching problem), unless the switching budget m has
already run out.

Let X be the random variable denoting the number of steps
from a given switch until the next switch. By a coupon-
collector analysis,

E[X] =

ℓ−1∑
i=1

E[Geo(i/ℓ)] =

ℓ−1∑
i=1

ℓ/i > ℓ ln ℓ,

where Geo(p) denotes a geometrically distributed random
variable with success probability p. Moreover,

Var(X) =

ℓ−1∑
i=1

Var(Geo(i/ℓ)) =

ℓ−1∑
i=1

1− i
ℓ(

i
ℓ

)2 ≤ π2

6
· ℓ2.

Let Y be the random variable denoting the expected number
of switches until time T when ignoring the upper bound m.

3I.e., the distance between any two different points is 1.

The central limit theorem for renewal processes shows that

lim
T→∞

E[Y ]

T
=

1

E[X]
< 1/(ℓ ln ℓ) and

lim
T→∞

Var[Y ]

T
=

Var[X]

E[X]3
< 1.

Therefore, for large enough T ,

E[Y ] ≤ T

ℓ ln ℓ
and Var[Y ] ≤ T.

For large enough T , the switching budget m ≥ 2T
ℓ ln ℓ is at

least E[Y ] +
√
T/ℓ ln ℓ ·

√
Var(Y ). Hence, by Chebyshev’s

inequality, the probability of running out of the switching
budget can be upper bounded by P (Y > m) ≤ ℓ2 ln2 ℓ/T ,
and in that case the expected total cost of following a fixed
predictor can be upper bounded by T (1+α)/ℓ. In the event
the strategy does not run out of the switching budget, the
total service cost is Tα/ℓ and the expected movement cost
is at most T/(ℓ ln ℓ). Summing up,

E[DYN≤m] ≤ Tα/ℓ+T/(ℓ ln ℓ)+P (Y > m)T (1+α)/ℓ.

For ℓ and T large enough, we get E[DYN≤m] < 3αT/ℓ.

Since for any online algorithm A (with predictions) we
have E[cost(A)] ≥ T/ℓ, we conclude that for any con-
stant c there exists T large enough such that E[cost(A)] ≥
E[DYN≤m]/(3α)+c for the random request sequence (and
hence there also exists a deterministic sequence for which
the inequality holds). We conclude that no algorithm can be
better than (1/3α)-competitive against a combination of pre-
dictors that allows 2

α ln ℓ DYN switches, on a metric space
with diameter D = 1. The generalization to arbitrary values
of D can be made by scaling distance and service costs by a
factor D and replacing DYN by DYN/D in the definition on
m. Setting α = 1/(3 · (1 + ϵ)2) yields m = 6(1+ϵ)2

ln ℓ
DYN
D ,

proving Theorem 1.6.

5. Bandit Access to Predictors
In this section, we focus on a more restrictive setting in-
spired by the multi-armed bandit model, and motivated by
the fact that querying many predictors may be expensive:
at each time t, the algorithm still has access to the full cost
function ct of the original MTS instance, but it is able to
query the state of only one predictor. Only after selecting
which predictor j to query at time t, the algorithm is aware
of its state φjt and of its (movement + service) cost ft(j)
incurred at this time step. Then, the algorithm chooses its
own state, which does not necessarily have to be φjt.

5.1. Unbounded Number of Switches

We propose an algorithm which queries the predictors round-
robin, i.e., for each i, predictor Pi is queried at time steps

7
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i, ℓ + i, 2ℓ + i, 3ℓ + i, . . . . It is known how to convert
these queries of Pi into an explicit algorithm P ′

i whose
performance is at most O(ℓ)-times worse than Pi.

Proposition 5.1 (Emek et al. (2009)). There is an algorithm
which, receiving knowledge of the state of an MTS algorithm
P every ℓ time steps, is O(ℓ)-competitive against P .

So, we apply Theorem 1.2 to P ′
1, . . . , P

′
ℓ , getting a combi-

nation which is O(ℓ2) competitive with respect to the best
combination of P ′

1, . . . , P
′
ℓ . By the above proposition, the

best combination of P ′
1, . . . , P

′
ℓ is at most O(ℓ)-times worse

than the best combination of P1, . . . , Pℓ. Our competitive
ratio is then O(ℓ3), proving Theorem 1.4.

5.2. Limited Number of Switches

We consider an MTS instance of finite diameter D. We
assume that, at each time step t, there is a state x such that
ct(x) = 0. This is without loss of generality: we can modify
the cost function by subtracting minx{ct(x)} from the cost
of each state at time t. Since this discounts the cost of all
algorithms (including the benchmark) by the same additive
quantity, the competitive ratio on the original instance is no
larger than on the modified instance. We can further assume
that ft(i) ≤ 2D for each i and t: if this is not the case, we
move to the state with cost 0 (guaranteed by the assumption
above), serve the task there and move back to φit, paying at
most 2D in total.

Let Ā be an algorithm for unfair MTS on uniform metric
spaces. Algorithm 2 for the bandit access model creates a
suitable MTS instance on the uniform metric space of size ℓ
and uses Ā to choose which predictor at to follow, moving
to state bt = φatt. However, with a small probability γ, it
does not query the state of at, querying a random predictor
instead – we call this an exploration step. This is a common
technique in multi-armed bandits, see (Slivkins, 2019) for
instance. During an exploration step at time t, it makes
greedy steps from bt−1 to a state gt. Once serving the cost
function at gt, it returns back to bt = bt−1. The algorithm is
described in Algorithm 2. It requires a parameter 0 < γ <
1/4 which denotes the exploration rate.

Observation 5.2. Let Xt = X ∩ [t] and It = (it)t∈Xt
.

Since each t was added to X independently at random and
it was also chosen independently, we have

E[f̂t|Xt−1, It−1] = E[f̂t] =
γ

2Dℓ
ft.

We choose Ā to be the algorithm SHARE by Herbster &
Warmuth (1998), which has the following advantages over
ODDEXPONENT. First, it does not require splitting cost
functions as far as they are bounded by 1. Splitting the cost
functions is problematic in the bandit access model, since
we are allowed to query only one algorithm per time step.

Algorithm 2: BANDITCOMBINE (P1, . . . , Pℓ)

1 Select X ⊆ [T ] by choosing each t ∈ [T ]
independently with probability γ;

2 For each t ∈ X: choose it ∈ {1, . . . , ℓ} uniformly
at random;

3 for t = 1, . . . , T do
4 if t ∈ X then /* exploration step */
5 Query predictor it;
6 set f̂t(it) := ft(it)/(2D) and

f̂t(j) = 0∀j ̸= it;
7 feed f̂t into Ā;
8 serve the request at

gt := minx{d(bt−1, x) + ct(x)} ;
/* greedy step */

9 return to bt := bt−1;
10 else /* exploitation step */

11 Feed f̂t := 0 into Ā;
12 Query predictor at chosen by Ā and set

bt := φatt;

Second, it chooses its state without lookahead, i.e., its state
at time t depends only on cost functions c1, . . . , ct−1. See
Appendix A for a description of both algorithms.
Proposition 5.3 (Blum & Burch (2000)). Given r > 0, con-
figure SHARE with α = 1/(2r+1) and β = max{1/2, 1−
γ}, where γ = 1

r ln(ℓ/α). Then, in the uniform metric
space on ℓ points, SHARE has r-unfair competitive ratio at
most Rr

ℓ := 1 + 8/r(ln ℓ+ ln(2r + 1)).

For ϵ > 0, let r(ϵ) = O(ϵ−1 ln(2 + ϵ−1) ln ℓ) be such that
R

r(ϵ)
ℓ = 1 + ϵ.

First, we analyze the following variant BANDITCOMBINE′

which queries two predictors during exploration steps. I.e.,
instead of the greedy step (Lines 8, 9), it makes an additional
query to the predictor at suggested by Ā and moves to
b′t := φatt.
Lemma 5.4. Choose Ā to be an algorithm for MTS on the
ℓ-point uniform metric whose ρ-unfair competitive ratio is
R with additive term α for instances with bounded cost
functions ct ≤ 1 and which does not use lookahead, i.e., its
state at depends only on costs up to time t − 1. Then the
expected cost of BANDITCOMBINE′ is at most

R ·DYNρ′ +
2Dℓ

γ
α, where ρ′ =

2Dℓρ

γ
.

Proof. Let p1, . . . pT ∈ [0, 1]ℓ be the probability distribu-
tions over the state of Ā at time steps 1, . . . , T . Note that the
expected service cost paid by BANDITCOMBINE′ at time t
equals ⟨ft, pt⟩, the scalar product between the vectors rep-
resenting the predictor costs and the predictor probabilities.
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We define dE as the earth mover’s distance between two
probability vectors over the uniform metric, which repre-
sents the total probability mass that has to be shifted to
transform one vector into the other. We may assume that the
probability that Ā changes states between times t− 1 and t
equals dE(pt−1, pt), as this is the best way to match given
probability vectors, which are the core of the algorithm Ā.
We have

E

[∑
t

⟨f̂t, pt⟩

]
=

∑
t

EXt−1,It−1

[
⟨E[f̂t|Xt−1, It−1], pt⟩

]
=

γ

2Dℓ
E

[∑
t

⟨ft, pt⟩

]
.

The first equation separates the random events before and
after time t, as pt and pt−1 depend solely on Xt−1 and It−1

while f̂t is uncorrelated to these events. This allows to use
Observation 5.2 to express f̂t in function of ft. The last
expectation is an upper bound on the expected cost paid by
BANDITCOMBINE′, excluding the cost it pays for switching
between predictors.

For any instantiation of f̂ and for any solution q, we have∑
t

(⟨f̂t, pt⟩+ dE(pt−1, pt))

≤ R
∑
t

(⟨f̂t, qt⟩+ ρ dE(qt−1, qt)) + α

by the performance guarantees of Ā. Therefore, the total
cost of BANDITCOMBINE′ is at most (noting that γ < 2ℓ)

E

[∑
t

(⟨ft, pt⟩+DdE(pt−1, pt)

]

≤ 2Dℓ

γ
· E

[∑
t

(⟨f̂t, pt⟩+ dE(pt−1, pt))

]

≤ 2Dℓ

γ
· E

[
R
∑
t

(⟨f̂t, qt⟩+ ρ dE(qt−1, qt)) + α

]

= R
∑
t

(⟨ft, qt⟩+
2Dℓρ

γ
dE(qt−1, qt)) +

2Dℓ

γ
α.

Since this is true for any solution q, we get the desired
bound.

Lemma 5.5. The cost of BANDITCOMBINE is at most

(1 + 6γ) · cost(BANDITCOMBINE′).

Proof. Note that states of BANDITCOMBINE and
BANDITCOMBINE′ are the same during exploitation steps,
i.e., bt = b′t for all exploitation steps. At time step t, the cost
paid by BANDITCOMBINE′ is C ′

t = d(b′t−1, b
′
t) + ct(b

′
t)

and its total cost is
∑T

t=1 C
′
t.

To bound the cost paid by BANDITCOMBINE we define
Ct := d(b′t−1, bt) + ct(bt) if t is an exploitation step, note
that bt = b′t in such case. For exploration steps, we define

Ct := d(b′t−1, gt) + ct(gt) + d(gt, bt) + d(bt, b
′
t).

The last term is to simplify the analysis: at step t + 1,
BANDITCOMBINE moves by a distance d(bt, bt+1) ≤
d(bt, b

′
t) + d(b′t, bt+1) and we split this cost counting the

first part to Ct and the second one to Ct+1. The total cost
of BANDITCOMBINE is then at most

∑T
t=1 Ct and we have

Ct = C ′
t for every exploitation step t.

Consider an exploration step t which is the ith consecutive
exploration step, i.e. step a = t− i is an exploitation step
(or a = 0) and all steps from a+ 1 until t are exploration.
Observe that BANDITCOMBINE does not change bt during
exploration steps and we have bt = ba = b′a. We can bound
Ct as follows. We have

d(bt, b
′
t) = d(ba, b

′
t) ≤ C ′

t−i+1 + · · ·+ C ′
t

d(b′t−1, gt) ≤ d(b′t−1, bt) + d(bt, gt)

d(bt, gt) + ct(gt) ≤ d(bt, b
′
t) + ct(b

′
t)

The first inequality holds because BANDITCOMBINE′ needs
to move from bt = bt−i to b′t. The second one follows
from the triangle inequality and the last one comes from the
definition of gt. In total, we have

Ct ≤
[
d(b′t−1, bt)

]
+
[
d(bt, gt)+ct(gt)+d(gt, bt)

]
+
[
d(bt, b

′
t)
]
.

The first and the third brackets are bounded by
∑t

j=a+1 C
′
j ,

because bt = b′a and BANDITCOMBINE′ moves from bt to
b′t−1 and b′t during that time. By the choice of gt, the second
bracket is at most 2(d(bt, b′t) + ct(b

′
t)) ≤ 2

∑t
j=a+1 C

′
j .

Since the probability of t being the ith exploration step in
a row is at most (1 − γ) γi, the expected cost of BANDIT-
COMBINE is at most

(1− γ)
∑
t

C ′
t +

T∑
i=1

(1− γ)γi ·
∑
t

4

t∑
j=t−i

C ′
j

≤ (1− γ)
∑
t

C ′
t +

T∑
i=1

γi4i
∑
t

C ′
t

which is at most (1 + 6γ)
∑

t C
′
t for γ ≤ 1/4.

Proof of Theorem 1.7. We choose γ = ϵ/6. By Lemma 5.4,
BANDITCOMBINE′ is (1 + ϵ)-competitive against DYNρ′

for ρ′ = 2Dℓ
γ ρ = 2Dℓ

γ r(ϵ). Hence, by Lemma 3.4 it
is (1 + ϵ)2-competitive against DYN≤m for any m ≤

ϵγ
2ℓr(ϵ)

DYN
D . By Proposition 5.3, the latter quantity is

Ω
(

ϵ3

ℓ ln ℓ ln(2+ 1
ϵ )

· DYN
D

)
. Lemma 5.5 implies the theo-

rem.
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Mixing Predictions for Online Metric Algorithms

A. Algorithms for Unfair MTS
A.1. Odd Exponent

There is a randomized algorithm ODDEXPONENT based on work functions proposed by Bartal et al. (1997).

Choose an odd number a close to ln ℓ as a parameter. State j is chosen with probability

pj :=
1

ℓ
+

1

ℓ

ℓ∑
i=1

(wt(i)− wt(j))
a,

where wt(i) is the work function of state i at time t:

wt(i) = min
{
d(i, xt) +

t∑
j=1

(cj(xj) + r · d(xj−1, xj))
∣∣ xj ∈ M

}
.

In order to be well defined (e.g., for all probabilities to be non-negative), the input sequence c1, . . . , cT needs to satisfy the
following properties:

• Each ct has only one non-zero coordinate

• If ct with non-zero value ct(i) would make ODDEXPONENT remove all probability mass from state i, we assume that
ct(i) is the smallest such value.

• If ODDEXPONENT already has 0 probability mass at state i, no cost function with ct(i) > 0 arrive.

These properties can be assumed without loss of generality, since they can be achieved by splitting each cost function into
several smaller ones and omitting those which do not imply any cost on the algorithm (this omission does not increase the
cost of the offline optimum either). We refer to Section 4.4.1 in Blum & Burch (2000) for more details on how to implement
this algorithm in the general MTS setting.

A.2. SHARE

SHARE is an algorithm for tracking the best expert regime in Online Learning proposed by Herbster & Warmuth (1998). It
requires two parameters: the sharing parameter α ∈ [0, 1/2] and β ∈ [0, 1] (logarithm of the learning rate).

We can apply it to unfair MTS in uniform metric space of size ℓ with cost functions bounded by 1 as follows. It starts with
weights w0(1) = · · ·w0(ℓ) = 1 and uniform probability distribution over the states, i.e., p0(i) = w0(i)/

∑ℓ
j=1 w0(j). At

time t, when its probability distribution over states is pt, it incurs cost ⟨pt, ct⟩ and updates the weights and its probability
distribution for the next time step:

wt+1(i) := wt(i) · βct(i) + α∆/ℓ,

pt+1(i) := wt+1(i)/

ℓ∑
j=1

wt+1(j),

where ∆ =
∑ℓ

i=1(wt(i)− wt(i)β
ct(i)). This way, its distribution pt depends only on c1, . . . , ct−1 and proposes only one

distribution pt at each time step. Proposition 5.3 by Blum & Burch (2000) states the performance guarantee of this algorithm
for unfair MTS. Note that this algorithm can be easily adapted to unbounded cost functions: we split each cost function into
several smaller cost functions bounded by 1. Due to this splitting, however, it may move several times during each time step.

B. Lower Bound for k-Server Against D̃YN
In their recent work, Anand et al. (2022) expressed the belief that their framework for multiple predictions can be applied to
problems other than set-cover, (weighted) caching and facility location. In particular “it would be interesting to consider the
k-server problem with multiple suggestions in each step specifying the server that should serve the new request”. For the
benchmark DYN, we gave a tight answer of Θ(ℓ2) in Section 2. But also for the benchmark D̃YN, we show that there exist
instances on which such predictors are not beneficial.

12
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Proof of Theorem 1.1. Consider the line metric with k + 1 distinct points indexed from left to right as p1, p2, . . . pk+1. As
mentioned in the introduction, we can restrict to lazy algorithms. Furthermore, we can assume without loss of generality that
for any algorithm, two servers never reside at the same point simultaneously.

It is known (Manasse et al., 1990; Bubeck et al., 2023) that any deterministic (resp. randomized) online algorithm has
competitive ratio at least k (resp. Ω(log k)) on any metric space of at least k + 1 points. Let the set of servers be indexed
s1, . . . sk from left to right in their initial configuration. In order to prove the theorem, it is sufficient to show that there
exists an optimal solution OPT on which every request to a point pi is served by servers si−1 or si. The result then follows
by having the two predictors produce suggestions si−1 and si respectively (for the border cases when i = 1 or i = k + 1 we
have both predictors suggest s1 or sk respectively) whenever point pi is requested. This implies that OPT is an algorithm
that serves each request pi using a server named by one of the predictors in that round and thus by definition cannot have
cost lower than D̃YN.

For the sake of contradiction assume that the claim is wrong, that is, there exists some optimal algorithm OPT which serves
some request pi in round r with a server sj such that j < i− 1 or j > i. In case there are more such algorithms, let OPT be
one maximizing r. We assume j < i− 1 as the other case is symmetrical. We modify OPT to obtain an algorithm OPT′ as
follows. The rounds up to (excluding) r are served identically to OPT. The request to pi in round r is served by server si−1

(which currently resides at pi−1). At the same time, the server sj moves to pi−1, so that servers si−1 and sj are swapped
compared to the current state of OPT. In later rounds, OPT′ imitates OPT but exchanging the roles of servers si−1 and sj .
This gives an algorithm with the same cost as OPT thus contradicting the definition of r.

If the learning-augmented algorithm is forced to follow a predictor’s suggestion in each step, then the above proof extends to
arbitrary metric spaces by fixing k+1 points p1, . . . , pk+1 to be used for the lower bound instance, and using two predictors
that keep their ith server always at one of the two points pi and pi+1 so that the set of usable edges constitutes a path.

C. Implications for Covering LPs for k-Server
An online covering problem is specified by a linear program of the following form, where the vector c is given upfront,
matrix At and vector bt are revealed at time t, and the entries of c, At and bt are all non-negative:

min c⊺x
s.t. Atx ≥ bt ∀t = 1, . . . , T

x ∈ [0, 1]n
(2)

We call a variable xi active at time t if the corresponding column of At contains a non-zero entry. We denote by act(t) the
indices of active variables (i.e., the indices of columns of At that contain a non-zero entry).

An online algorithm for an online covering problem maintains a solution x to the LP that is feasible for the constraints
revealed so far and is typically required to be monotone in the sense that the value of each variable xi is non-decreasing over
time.

Many online problems can be expressed in this form. Since such formulations lend themselves to the design of randomized
algorithms (Buchbinder & Naor, 2009), there is significant interest in finding online covering formulations for the k-server
problem (Bansal et al., 2007; 2010; Gupta et al., 2021).

An online covering formulation of the k-server problem is an LP of the form (2) that can be constructed alongside the
request arrivals (i.e., At and bt can be specified once the tth request is revealed) such that

• any monotone algorithm for the online covering problem can be converted online into a randomized algorithm for the
k-server instance whose expected cost is at most a constant factor greater,

• any (deterministic) lazy algorithm for the k-server instance can be converted online into a monotone algorithm for the
online covering problem of no greater cost.

For a lazy k-server algorithm A, we denote by x(t, A) the LP solution at time t resulting from the latter conversion.
Definition C.1. We call an online covering formulation of a k-server instance configuration-encoding if, for any two lazy
k-server algorithms A and A′ that are in the same configuration at some time t, it holds that xi(t, A) = xi(t, A

′) for all
i ∈ act(t).
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In other words, an online covering formulation is configuration-encoding if the current server configuration is uniquely
determined by the current values of the active variables of the corresponding LP solution.

For example, the weighted paging problem (equivalent to k-server on a weighted star metric) is captured by the following
configuration-encoding online covering formulation (Bansal et al., 2007), where wp is the weight of page p, variable xp,r

represents the probability that page p is evicted from the cache between the rth and (r + 1)st request to page p, B(t) is the
set of pages requested up to time t, pt is the page requested at time t, r(p, t) is the number of requests to page p up to time t,
and k is the cache size:

min
∑
p

∑
r

wpxp,r

s.t.
∑

p∈B(t)\{pt}

xp,r(p,t) ≥ |B(t)| − k ∀t = 1, . . . , T

xp,r ∈ [0, 1] ∀p, r

Here, each matrix At contains only a single row, and the active variables at time t are xp,r(p,t) for p ∈ B(t) \ {pt}. The
formulation is indeed configuration-encoding, since for the natural conversion of a paging algorithm A into an algorithm
x(·, A) for the covering problem, the cache of A at time t contains precisely pt and the pages p ∈ B(t) \ {pt} with
xp,r(p,t)(t, A) = 0.

The conversion of a monotone algorithm for the LP (which corresponds to a “fractional” algorithm) into a randomized
algorithm is non-trivial, but known to exist for weighted paging (Bansal et al., 2007). Similarly, for the more general case of
k-server on HST metrics it is also known how to convert a fractional algorithm into a randomized integral one (Bansal et al.,
2015). However, we will show now that unlike for weighted paging, no configuration-encoding online covering formulation
exists for this more general setting of HSTs:

Proof of Theorem 1.8. Anand et al. (2022, Theorem 2.1) considered the version of (2) where each matrix At contains
a single row and bt is a number, and at time t the algorithm receives ℓ predictions x(t, 1), . . . , x(t, ℓ) such that each
x(t, s) ∈ [0, 1]n is a feasible solution for the constraints up to time t. For this setting, they showed that there is an
O(log ℓ)-competitive algorithm against the benchmark4

DYNAGKP = min{c⊺x | ∀t ∈ [T ] ∃st ∈ [ℓ] ∀i ∈ [n] : xi ≥ xi(t, st)}.

The result directly extends to the case where At can have several rows and bt is a vector, as one can simulate their algorithm
by revealing the constraints in Atx ≥ bt row by row. Moreover, inspection of their proof shows that the result holds even
against the slightly stronger benchmark that requires xi ≥ xi(t, s) only for active variables at time t:

DYNact
AGKP = min{c⊺x | ∀t ∈ [T ] ∃st ∈ [ℓ] ∀i ∈ act(t) : xi ≥ xi(t, st)}.

Consider now an instance of the k-server problem with full access to ℓ predictors for which the lower bound of Theorem 1.3
holds. By the construction of Bubeck et al. (2023), on which the proof of Theorem 1.3 is based, this instance uses a
metric space of n points such that ℓ = O(log n/ log log n). Thus, by Fakcharoenphol et al. (2004), the metric space can be
probabilistically approximated by an HST with distortion O(log n) = O(ℓ log ℓ). Combined with Theorem 1.3, this means
that even on HSTs there exist instances of k-server where no randomized learning-augmented algorithm with full access to ℓ
predictors has competitive ratio better than Ω(ℓ2)/O(ℓ log ℓ) = Ω(ℓ/ log ℓ) against DYN.

Now, suppose there exists a configuration-encoding online covering formulation for the k-server problem on HSTs. Let
P1, . . . , Pℓ be predictors for the k-server instance, and assume without loss of generality that each Ps is lazy (the lower
bound still holds for lazy predictors, since it clearly cannot help the algorithm if each predictor defers its movements for as
long as possible). We can construct online the corresponding predictions x(t, s) = x(t, Ps) for the online covering problem.
We claim that DYNact

AGKP ≤ DYN. This will suffice to prove the theorem, because then the O(log ℓ)-competitive algorithm
of Anand et al. (2022) for the online covering problem against DYNact

AGKP can be converted to an O(log ℓ)-competitive
randomized algorithm for the k-server problem against DYN, contradicting the aforementioned lower bound of Ω(ℓ/ log ℓ).

4The original version of (Anand et al., 2022) states the order of quantifiers as “∀i∀t ∃s”, but this was a typographical error (Panigrahi,
2023).
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Abusing notation slightly, we write DYN also for the k-server algorithm achieving cost DYN. Since each predictor Ps is
lazy, and recalling that the lower bound instance uses a metric space of k + 1 points, we may also assume that DYN is lazy.
Thus, x( · ,DYN) is a well-defined monotone (offline) algorithm for the covering problem. For t ∈ [T ] and i ∈ act(t), we
have

xi(T,DYN) ≥ xi(t,DYN) = xi(t, st),

where st is the index of the predictor that DYN is following at time t, and the equation follows since the covering
formulation is configuration-encoding. Thus, x(T,DYN) is a feasible vector for the problem DYNact

AGKP and hence
DYNact

AGKP ≤ c⊺x(T,DYN) ≤ DYN.

15


