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Abstract
We study the problem of privately estimating the
parameters of d-dimensional Gaussian Mixture
Models (GMMs) with k components. For this, we
develop a technique to reduce the problem to its
non-private counterpart. This allows us to priva-
tize existing non-private algorithms in a blackbox
manner, while incurring only a small overhead
in the sample complexity and running time. As
the main application of our framework, we de-
velop an (ε, δ)-differentially private algorithm to
learn GMMs using the non-private algorithm of
Moitra & Valiant (2010) as a blackbox. Conse-
quently, this gives the first sample complexity
upper bound and first polynomial time algorithm
for privately learning GMMs without any bound-
edness assumptions on the parameters. As part of
our analysis, we prove a tight (up to a constant
factor) lower bound on the total variation distance
of high-dimensional Gaussians which can be of
independent interest.

1. Introduction
The problem of learning the parameters of a Gaussian Mix-
ture Model (GMM) is a fundamental problem in statistics,
dating back to the early work of Pearson (1894) A GMM
with k components in d dimensions can be represented as
(wi, µi,Σi)

k
i=1, where wi is a mixing weight (wi ≥ 0, and∑

i∈[k] wi = 1), µi ∈ Rd is a mean, and Σi ∈ Rd×d is
a covariance matrix (of the i-th Gaussian component). To
draw a random instance from this GMM, one first samples
an index i ∈ [k] (with probability wi) and then returns a ran-
dom sample from the Gaussian distribution N (µi,Σi). In
this work we consider the problem of parameter estimation
in the probably approximately correct (PAC) model, where
the goal is to “approximately recover”1 the parameters of
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1See Definition 1.4 for the precise notion of distance.

an unknown GMM given only independent samples from it.

The sample complexity and computational complexity of
learning the parameters of GMMs has been studied exten-
sively. A breakthrough in this line of work was the de-
velopment of polynomial-time methods (with respect to
d) for learning GMMs with minimal separation require-
ments (Moitra & Valiant, 2010; Belkin & Sinha, 2010). The
running time and sample complexity of these methods is
exponential k, which is generally necessary for parameter
estimation (Moitra & Valiant, 2010).

The above approaches, however, may not maintain privacy
of the individuals whose data has been used for the estima-
tion. To address this issue, we adopt the rigorous and widely
accepted notion of differential privacy (DP) (Dwork et al.,
2006b). At a high-level, DP ensures that the contribution of
each individual has only a small (indistinguishable) effect
on the output of the estimator. The classical notion of ε-DP
(pure DP) is, however, quite restrictive. For instance, even
estimating the mean of an unbounded univariate Gaussian
random variable in this model is impossible. Therefore, in
line with recent work on private estimation in unbounded
domains, we consider the (ε, δ)-DP (i.e. approximate differ-
ential privacy (Dwork et al., 2006a)) model.

For the simpler case of multivariate Gaussians (without any
boundedness assumptions on the parameters), it has been
shown that learning with a finite number of samples is pos-
sible in the (ε, δ)-DP model (Aden-Ali et al., 2021a). More
recently, computationally efficient estimators have been de-
vised for the same task (Ashtiani & Liaw, 2022; Kamath
et al., 2022b; Kothari et al., 2022). This begs answering the
corresponding question for GMMs.

Is there an (ε, δ)-DP estimator with a bounded
sample complexity for learning unbounded
GMMs? Is there a polynomial time estimator
(in terms of d) for the same task?

Note that if additional boundedness2 and strong separation3

2They assume there are known quantities R, σmax, σmin such
that ∀i ∈ [k], ∥µi∥2 ≤ R and σ2

min ≤ ||Σi|| ≤ σ2
max.

3They assume ∀i ̸= j, ||µi−µj ||2 ≥ Ω̃
(√

k +
√

1
wi

+ 1
wj

)
·

max
{
||Σ1/2

i ||, ||Σ1/2
j ||

}
.
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assumptions are made about the GMM, then the work of
Kamath et al. (2019b) offers a positive answer to the above
question in the ε-DP model. It has also been shown that
the separation condition between the components can be
significantly weakened (Cohen et al., 2021; Chen et al.,
2023). Our aim is, however, learning unbounded GMMs
with minimal separation assumptions.

To approach this problem, it is natural to ask if there is a
general reduction from the private learning of GMMs to its
non-private counterpart. If so, this would enable us to easily
reuse existing results for non-private learning of GMMs.

Is there a reduction from private to non-private
learning of GMMs that incurs only a polynomial
time and polynomial sample overhead?

The main result of this paper is the existence of such a
reduction; see Theorem 6.2 for a rigorous version.

Theorem 1.1 (Private to Non-private Reduction for
GMMs, Informal). There is a reduction from learning
the parameters of a GMM in the (ε, δ)-DP model to its non-
private counterpart. Moreover, this reduction adds only
polynomial time and sample overhead in terms of d and k.

This reduction, along with the non-private learner of Moitra
& Valiant (2010) gives the first finite sample complexity up-
per bound for learning the parameters of unbounded GMMs
in the (ε, δ)-DP model. Moreover, the resulting estimator
essentially inherits all the properties of the non-private es-
timator of Moitra & Valiant (2010); it runs in time that is
polynomial in d (for fixed k) and shares the advantage of
requiring provably minimal separability assumptions on the
components of the GMM. We refer the reader to the related
work section for a comparison with Cohen et al. (2021) and
Chen et al. (2023).

1.1. Related Work

Private Learning of a Single Gaussian. Karwa & Vad-
han (2017) established polynomial time and sample efficient
methods for learning the mean and variance of a univari-
ate Gaussian in both the pure and approximate-DP settings.
Namely, in the (ε, δ)-DP setting, they can recover the mean
and variance of the Gaussian without any boundedness as-
sumption on the parameters. This result can be generalized
to the multivariate setting (Kamath et al., 2019a; Biswas
et al., 2020), where one finds Gaussians that approximate
the underlying Gaussian in terms of total variation distance.
However, the sample complexity of these methods depends
on the condition number of the covariance matrix, and re-
quires a priori bounds on the range of the parameters. The
first finite sample complexity bound for privately learning
unbounded Gaussians appeared in (Aden-Ali et al., 2021a),

nearly matching the sample complexity lower bound of (Ka-
math et al., 2022a). The work of (Aden-Ali et al., 2021a)
relies on a private version of the minimum distance estimator
(Yatracos, 1985) and is based on ideas from the private hy-
pothesis selection method (Bun et al., 2019). However, this
method is not computationally efficient. Recently, several
papers offered (ε, δ)-DP and computationally efficient algo-
rithms for learning unbounded Gaussians (Ashtiani & Liaw,
2022; Kamath et al., 2022b; Kothari et al., 2022), where the
work of Ashtiani & Liaw (2022) achieved a near-optimal
sample complexity for this task. Part of the approach of Ash-
tiani & Liaw (2022) is a sub-sample-and-aggregate scheme
which we modify and use in this paper. FriendlyCore (Ts-
fadia et al., 2022) is an alternative sample-and-aggregate
framework that can be used for privately learning unbounded
Gaussians. It is noteworthy that the approaches of (Ashtiani
& Liaw, 2022; Kothari et al., 2022) work in the robust set-
ting as well albeit with sub-optimal sample complexities.
The recent work of Alabi et al. (2022) offers a robust and
private learner with near-optimal sample requirements in
terms of dimension. Finally, Hopkins et al. (2023) ticks all
the boxes by offering a sample near-optimal, robust, and
efficient learner for unbounded Gaussians.

Another related result is a sample-efficient and computa-
tionally efficient method for learning bounded and high-
dimensional Gaussians in the ε-DP model (Hopkins et al.,
2022). There is also work on the problem of private mean
estimation with respect to Mahalanobis distance (Brown
et al., 2021; Duchi et al., 2023). Finding private and robust
estimators (Liu et al., 2021) and also the interplay between
robustness and privacy (Dwork & Lei, 2009; Georgiev &
Hopkins, 2022; Liu et al., 2022b; Hopkins et al., 2023; Asi
et al., 2023) are subjects of a few recent papers.

Parameter Learning for GMMs with PAC Guarantees.
Given i.i.d. samples from a GMM, can we approximately
recover its parameters? There has been an extensive amount
of research in developing sample efficient and computa-
tionally efficient methods for learning the parameters of a
GMM (Dasgupta, 1999; Sanjeev & Kannan, 2001; Vempala
& Wang, 2004; Achlioptas & McSherry, 2005; Brubaker
& Vempala, 2008; Kalai et al., 2010; Feldman et al., 2006;
Belkin & Sinha, 2009; Hardt & Price, 2014; Hsu & Kakade,
2013; Anderson et al., 2014; Regev & Vijayaraghavan, 2017;
Kothari et al., 2018; Hopkins & Li, 2018; Liu & Li, 2022).
Remarkably, Moitra & Valiant (2010); Belkin & Sinha
(2010) presented the first polynomial time algorithms for
learning general GMMs with unbounded components and
under minimal separation assumptions. Here, the focus is
on designing polynomial methods with respect to dimension,
since having an exponential dependence on the number of
components is inevitable (Moitra & Valiant, 2010) (unless
the components are well-separated). These results haven
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been recently extended to the robust setting (Bakshi et al.,
2022; Liu & Moitra, 2021; 2022).

In the private setting, the early work of Nissim et al. (2007)
offered an (ε, δ)-DP estimator for the means of a GMM, in
the special case where the components share the same mix-
ing weight and the same (known) covariance matrix. Note
that this result also inherits the strong separation assumption
(of Ω(k1/4)) between the Gaussian components from Vem-
pala & Wang (2004). The recent (and independent) work
of Chen et al. (2023) shows that this separation can be sig-
nificantly relaxed. These results are, however, for learning
(unbounded) spherical Gaussian mixtures and unlike our
work, they do not learn the covariance matrices.

Perhaps more related to our paper is the work of Kamath
et al. (2019b), which offers an (ε, δ)-DP parameter learning
method for GMMs with unknown mixing weights, means,
and covariance matrices. In fact, their approach is a priva-
tized version of Achlioptas & McSherry (2005). However,
their method only works when the parameters of the Gaus-
sian components are bounded and the means are strongly
separated (i.e., Ω(

√
k)-separated). In a related work, Bie

et al. (2022) show how can one use public data to improve
this approach.

Finally, the more recent work of Cohen et al. (2021) im-
proves over Kamath et al. (2019b) by offering a better sam-
ple complexity and requiring weaker separation between the
clusters. They show we can learn GMMs privately if we
are given (i) a private learner for Gaussians and (ii) a non-
private clustering method (i.e., an algorithm that can label
the data points accurately based on their clusters). Given
the generality of their reduction, one can plug a non-private
clustering method that requires weaker separation between
the components. On top of the separation requirements for
the clustering method, their result also requires an Ω(log n)
separation between the means, where n is the number of
samples. Given, that n is polynomial in 1/ε, k and d, their
approach requires mild separation (i.e., logarithmic in these
parameters).

Unlike Kamath et al. (2019b); Cohen et al. (2021), our ap-
proach does not require a priory bounds on the range of
the Gaussian means or on the condition numbers of the
covariance matrices. It may be possible to extend the re-
sult of Cohen et al. (2021) to the unbounded setting, e.g.,
using the private Gaussian estimator of Ashtiani & Liaw
(2022); yet, there are some subtle challenges for cluster-
ing when the condition number of Gaussian components
are high. Another difference lies in the separation require-
ments. While Cohen et al. (2021) relaxes the separation
requirements of Kamath et al. (2019b), it still requires a
(mild) separation of log(kd/ε) between the components.
Moreover, additional separation requirements must be met
for the non-private clustering method to work. While for

spherical Gaussians this requirement is rather weak (i.e.,√
log k separation (Liu & Li, 2022), we are not aware of

clustering methods that work for non-spherical Gaussians
and require weak separation (e.g., independent of the condi-
tion number of the Gaussian components). In contrast, our
approach uses non-private parameter estimation (rather than
clustering) and requires only “minimal separation” that is
independent of ϵ, k, d (see Definition 6.4).

Density Estimation for GMMs. In the density estimation
problem for GMMs, the goal is to recover a distribution
that is close (often in total variation distance) to the under-
lying GMM. From the statistical point of view, the sample
complexity of this problem has been settled up to loga-
rithmic factors (Devroye & Lugosi, 2001; Ashtiani et al.,
2018b;a; 2020). Unlike the parameter learning setting, the
sample complexity is actually polynomial both in terms of
the dimension and the number of components. There are
also computationally efficient algorithms for learning one-
dimensional GMMs (Chan et al., 2014; Acharya et al., 2017;
Liu et al., 2022a; Wu & Xie, 2018; Li & Schmidt, 2017).
Designing a polynomial time (with respect to dimension and
number of components) algorithm for learning GMMs with
respect to total variation distance remains an important open
problem. Solving this problem is challenging as it requires
overcoming known statistical query lower bounds for the
problem (Diakonikolas et al., 2017).

In the private setting, one can use the private hypothesis se-
lection framework Bun et al. (2019) or the private minimum
distance estimator (Aden-Ali et al., 2021a) to learn classes
that admit a finite cover. Therefore, GMMs with bounded
parameters admit an ε-DP finite sample complexity guar-
antee (Bun et al., 2019). A polynomial sample complexity
upper bound is known for learning axis-aligned GMMs in
the (ε, δ)-DP model without any boundedness assumptions
on the parameters (Aden-Ali et al., 2021b). Extending this
results to general GMMs remains an open problem. Fur-
thermore, designing private and computationally efficient
estimators for GMMs remains open even in the one dimen-
sional setting. Another relevant result is a lower bound
on the sample complexity of learning GMMs with known
covariance matrices (Acharya et al., 2021).

1.2. Preliminaries

We use ∥v∥2 to denote the Euclidean norm of a vector
v ∈ Rd and ∥A∥F (resp. ∥A∥) to denote the Frobenius
(resp. spectral) norm of a matrix A ∈ Rd×d.

In this paper, we write Sd to denote the positive-definite
cone in Rd×d. Let G(d) = {N (µ,Σ) : µ ∈ Rd,Σ ∈ Sd}
be the family of d-dimensional Gaussians. We can now
define the class G(d, k) of mixtures of Gaussians as follows.

Definition 1.2 (Gaussian Mixtures). The class of mix-
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tures of k Guassians in Rd is defined by G(d, k) :={
k∑

i=1

wiGi : Gi ∈ G(d), wi ≥ 0,
∑k

i=1 wi = 1

}
.

We represent the Gaussian Mixture Model (GMM) by a
set of k tuples (wi, µi,Σi)

k
i=1, where each tuple represents

the mean, covariance matrix, and mixing weight of one of
its components. Note that the order of the components is
important in our notation, since the order of the output may
have an impact on the privacy.

In the following definition and the remainder of the paper,
we may abuse terminology and refer to a distribution via its
probability density function (p.d.f.).

Definition 1.3 (Total Variation Distance). Given two abso-
lutely continuous probability measures f(x), g(x) on Rd,
the total variation (TV) distance between f and g is defined
as dTV (f(x), g(x)) = 1

2

∫
Rd |f(x)− g(x)|dx.

A standard way to define the distance between two GMMs
is as follows ((Moitra & Valiant, 2010), Definition 2).

Definition 1.4 (The Distance between Two GMMs). The
distGMM distance between two GMMs is defined by

distGMM

(
(wi, µi,Σi)

k
i=1 , (w

′
i, µ

′
i,Σ

′
i)

k
i=1

)
= min

π
max
i∈[k]

max
{
|wi − w

′

π(i)|,

dTV

(
N (µi,Σi),N (µ

′

π(i),Σ
′

π(i))
)}

where π is chosen from the set of all permutations over [k].

If X (resp. Y ) is a random variable distributed according
to f (resp. g), we write dTV (X,Y ) = dTV (f, g). We drop
the reference to the p.d.f. of the random variable when it is
clear or implicit from context.

1.3. Differential Privacy Basics

At a high-level, an algorithm is differentially private if, given
two datasets that differ only in a single element, the output
distribution of the algorithm are nearly the same4.

Definition 1.5 (Neighbouring Datasets). Let X ,Y denote
sets and n ∈ N. Two datasets D = (X1, . . . , Xn), D

′ =
(X1, . . . , Xn) ∈ Xn are said to be neighbouring if
dH(D,D′) ≤ 1 where dH denotes Hamming distance,
i.e., dH(D,D′) = |{i ∈ [n] : Xi ̸= X ′

i}|.
Definition 1.6 ((ε, δ)-Indistinguishable). Let D,D′ be
two distributions defined on a set Y . Then D,D′ are

4For sake of simplicity, we consider data sets to be ordered
and therefore the neighboring data sets are defined based on their
Hamming distances. However, one can easily translate guarantees
proven for the ordered setting to the unordered one; see Proposi-
tion D.6 in (Brown et al., 2021).

said to be (ε, δ)-indistinguishable if for all measurable
S ⊆ Y , PY∼D [Y ∈ S] ≤ eεPY∼D′ [Y ∈ S] + δ and
PY∼D′ [Y ∈ S] ≤ eεPY∼D [Y ∈ S] + δ.

Definition 1.7 ((ε, δ)-Differential Privacy (Dwork et al.,
2006b)). A randomized mechanism M : Xn → Y is
said to be (ε, δ)-differentially private if for all neighbour-
ing datasets D,D′ ∈ Xn, M(D) and M(D′) are (ε, δ)-
indistinguishable.

1.4. Techniques

The techniques in this paper are inspired by the techniques
in Ashtiani & Liaw (2022) which are based on the Propose-
Test-Release framework (Dwork & Lei, 2009) and the
Subsample-And-Aggregate framework (Nissim et al., 2007).
Given a dataset D, we first split D into t sub-datasets and
run a non-private algorithm A on each of the sub-datasets.
Next, we privately check if most of the outputs of A are
“well-clustered” (i.e., are close to each other). If not, then
the algorithm fails as this suggests that the outputs of the
non-private algorithm are not very stable (either due to lack
of data or simply that the non-private algorithm is sensi-
tive to its input). On the other hand, if most of the outputs
are well-clustered then we can aggregate these clustered
outputs and release a noisy version of it. There are, how-
ever, multiple additional technical challenges that need to
be addressed.

One core difficulty is the issue of the ordering of the Gaus-
sian components. Namely, the non-private GMM learners
may output GMM components in different orders. There-
fore, aggregating these non-private solutions (e.g., by tak-
ing their weighted average in the style of Ashtiani & Liaw
(2022) seems impossible. We therefore propose to skip the
aggregation step all together by simply picking an arbitrary
solution from the cluster. Therefore, our private populous
estimator (PPE) simplifies and generalizes the private pop-
ulous mean estimator (PPME) framework of Ashtiani &
Liaw (2022), making it applicable to general semimetric
spaces (and therefore GMMs). A precise discussion of this
framework is presented in Subsection 2.1.

Another challenge is designing an appropriate mechanism
for adding noise to GMMs. As discussed above, our frame-
work requires that we are able to release a noisy output of a
candidate output. More precisely, given two neighbouring
datasets Y1, Y2, we want to design a mechanism B such
that B(Y1), B(Y2) are indistinguishable whenever Y1, Y2

are sufficiently close. As in Ashtiani & Liaw (2022), we
refer to such a mechanism as a “masking mechanism”. In
the context of mixture distributions with k components, a
candidate output corresponds to a k-tuple where each el-
ement of the tuple contain the parameters and the mixing
weight of a single component. We prove that, if one can
design a masking mechanism for a single component then
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it is possible to use this masking mechanism as a blackbox
to design a masking mechanism for the k-tuple with only a
poly(k) overhead in the running time. One important ingre-
dient is that we randomly shuffle the components, making
the output invariant to the order of the components.

Another challenge related to the order of components is
that computing the distance between two GMMs based on
Definition 1.4 requires minimizing over all permutations.
A naive method for computing this distance could require
exponential time but we show this task can be done in poly-
nomial time using a simple reduction to bipartite matching.

To showcase the utility of the above framework, we show
that it is straightforward to apply the framework to pri-
vately learning mixtures of Gaussians. We design a masking
mechanism of a single Gaussian component which consists
of mixing the weight, the mean, and the covariance ma-
trix. Masking the mixing weight is fairly standard while
masking the mean and the covariance matrix can be done
using known results (e.g. by using (Ashtiani & Liaw, 2022),
Lemma 5.2) for the covariance matrix and a similar tech-
nique for the mean).

Finally, we note that, in some of the literature for Gaussian
mixtures, the results usually assert that for each Gaussian
component N (µ,Σ), the algorithm returns µ̂, Σ̂ such that
N (µ,Σ) and N (µ̂, Σ̂) are close in total variation distance
(e.g. (Moitra & Valiant, 2010)). Our framework requires
that µ̂ (resp. Σ̂) is close to µ (resp. Σ) for some appropriate
norm. Intuitively, this ought to be the case but no tight
characterization was previously known unless the Gaussians
had the same mean ((Devroye et al., 2018), Theorem 1.1).
In this paper, we prove the following tight characterization
between the TV distance of a Gaussian and its parameters.
We believe that such a result may be of independent interest.

Theorem 1.8. Let µ1, µ2 ∈ Rd and Σ1,Σ2 be d ×
d positive-definite matrices. Suppose that we have
dTV(N (µ1,Σ1),N (µ2,Σ2)) <

1
600 . Let

∆ = max
{
∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id∥F , ∥Σ−1/2

1 (µ1 − µ2)∥2
}
.

Then

1

200
∆ ≤ dTV (N (µ1,Σ1),N (µ2,Σ2)) ≤

1√
2
∆.

Remark 1.9. Note that the total variation distance between
N (µ1,Σ1) and N (µ2,Σ2) is symmetric (i.e. swapping
µ1,Σ1 and µ2,Σ2 does not affect the total variation dis-
tance) while the definition of ∆ is not. Thus, the theorem
can be automatically strengthened to show that the bounds
also hold when ∆ is defined by swapping Σ1 and Σ2.

2. Private Populous Estimator
In this section, we describe our main framework which we
call the “private populous estimator” (PPE). Before that, we
need a few definitions.

Semimetric spaces. In our application, we need to deal
with distance functions which only satisfy an approximate
triangle inequality that hold only when the points are suffi-
ciently close together. To that end, we first define the notion
of a semimetric space.

Definition 2.1 (Semimetric Space). We say (F ,dist) is
a semimetric space if for every F, F1, F2, F3 ∈ F , the
following conditions hold.

1. Non-negativity. dist(F, F ) = 0; dist(F1, F2) ≥ 0.

2. Symmetry. dist(F1, F2) = dist(F2, F1).

3. z-approximate r-restricted triangle inequality. Let
r > 0 and z ≥ 1. If dist(F1, F2),dist(F2, F3) ≤ r
then dist(F1, F3) ≤ z · (dist(F1, F2) + dist(F2, F3)).

Masking mechanism. Intuitively, a masking mechanism
B is a random function that returns a noisy version of its
input, with the goal of making close inputs indistinguishable.
Formally, we define a masking mechanism as follows.

Definition 2.2 (Masking Mechanism ((Ashtiani & Liaw,
2022), Definition 3.3)). Let (F ,dist) be a semimetric
space. A randomized function B : F → F is a (γ, ε, δ)-
masking mechanism for (F ,dist) if for all F, F ′ ∈ F sat-
isfying dist(F, F ′) ≤ γ, we have that B(F ),B(F ′) are
(ε, δ)-indistinguishable. Further, B is said to be (α, β)-
concentrated if for all F ∈ F , P[dist(B(F ), F ) > α] ≤ β.

2.1. The Private Populous Estimator (PPE)

In this section, we define the PPE framework which allows
us to use non-private algorithms to design private algorithms.
We represent the non-private algorithm by A : X ∗ → Y
which takes elements from a dataset as inputs and outputs
an element in Y . PPE requires two assumptions. Firstly,
we assume that (Y,dist) is a semimetric space. Secondly,
we assume that we have access to an efficient masking
mechanism for (Y,dist).

The PPE framework we introduce in this section can be seen
as a somewhat generalized version of the framework used
in Ashtiani & Liaw (2022) and requires fewer assumptions.
Given a dataset D as inputs, we partition D into t disjoint
subsets. Next, we run the non-private algorithm A on each
of these subsets to produce t outputs Y1, . . . , Yt. We then
privately check if most of the t outputs are close to each
other. If not, PPE fails. Otherwise, it chooses a Yj that is
close to more than 60% of other Yi’s. It then adds noise to
Yj using a masking mechanism B, and returns the masked
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version of Yj . The formal details of the algorithm can be
found in Algorithm 1.

Algorithm 1 Private Populous Estimator
Input: Dataset D = (X1, . . . , Xm), any algorithm
A : X ∗ → Y , parameters r, ε, δ > 0, z ≥ 1, t ∈ N≥1.

1: Let s← ⌊m/t⌋.
2: For i ∈ [t], let Yi ← A({Xℓ}isℓ=(i−1)s+1).
3: For i ∈ [t], let qi ← 1

t |{j ∈ [t] : dist(Yi, Yj) ≤
r/2z}|.

4: Let Q← 1
t

∑
i∈[t] qi.

5: Let Z ∼ TLap(2/t, ε, δ).
6: Let Q̃← Q+ Z.
7: If Q̃ < 0.8 + 2

tε ln
(
1 + eε−1

2δ

)
, fail and return ⊥.

8: j = min{i : qi > 0.6}.
9: Return Ỹ = B(Yj).

The following theorem establishes the privacy and accuracy
of Algorithm 1. The proof can be found in Appendix D.1.

Theorem 2.3. Suppose that (Y,dist) satisfies a z-
approximate r-restricted triangle inequality. Further, sup-
pose that B is a (r, ε, δ)-masking mechanism.

• Privacy. For t > 5, Algorithm 1 is (2ε, 4eεδ)-DP.

• Utility. Suppose α ≤ r/2z and t ≥ ( 20ε ln
(
1 + eε−1

2δ

)
.

Let B be (α/2z, β)-concentrated. If there exists Y ∗

with the property that for all i ∈ [t],dist(Y ∗, Yi) <

α/2z, then P
[
dist(Ỹ , Y ∗) > α

]
≤ β.

The utility guarantee asserts that if the outcome of all non-
private procedures are close to each other, then the output
of the PPE will be close to those non-private outcomes.
Remark 2.4. Let TA be the running time of the algorithm
A in Line 2, Tdist be the time to compute dist(Yi, Yj) for
any Yi, Yj ∈ Y in Line 3, and TB be the time to compute
Ỹ in Line 9. Then Algorithm 1 runs in time O(t · TA +
t2 · Tdist + TB). We will see that TA, TB, and Tdist can be
polynomially bounded for GMMs.

To apply Algorithm 1 for private learning of GMMs, we
need to introduce a masking mechanism for them.

In order to do that, we start by defining how one can convert
a masking mechanism for a component to one for mixtures
(Section 3). We then define a masking mechanism for a
single Gaussian component (presented in Section 4). Finally,
we apply this to come up with a masking mechanism for
GMMs as shown in Section 5.

3. Masking Mixtures
The goal of this section is to show how to “lift” a masking
mechanism for a single component to a masking mechanism

for mixtures. We can do this by adding noise to each of the
components and randomly permute the output components.

Formally, let F denote a space and let Fk = F × . . .×F
(k times). The following definition is useful in defining the
distance between two mixtures, as it is invariant to the order
of components.

Definition 3.1. Let dist denote a distance function on F .
We define distk : Fk ×Fk → R≥0 as

distk((F1, . . . , Fk), (F
′
1, . . . , F

′
k))

:= min
π

max
i∈[k]

dist(Fi, F
′
π(i)),

where the minimization is taken over all permutations π.

Note that computing distk requires computing a minimum
over all permutations π. Naively, one might assume that this
requires exponential time to try all permutations. However,
it turns out that one can reduce the problem of computing
distk to deciding whether a perfect matching exists in a
weighted bipartite graph. The details of this argument can
be found in Appendix E.1.

Lemma 3.2. If Tdist is the running time to compute dist
then distk can be computed in time O(k2Tdist + k3 log k).

The following definition is useful for extending a masking
mechanism for a component to a masking mechanism for
a mixture. The important thing is that the components are
shuffled randomly in this mechanism, making the outcome
independent of the original order of the components.

Definition 3.3. Suppose that B is a (γ, ε, δ)-masking
mechanism for F . We define the mechanism Bkσ as
Bkσ(F1, . . . , Fk) = (B(Fσ(1)), . . . ,B(Fσ(k))), where σ is
a uniform random permutation.

We also note that Bkσ can be computed with only polynomial
overhead. The proof can be found in Appendix E.2.

Lemma 3.4. If TB is the running time of B then Bkσ can be
computed in time O(k · TB + k log k).

The next lemma shows that Bkσ is indeed a masking mecha-
nism w.r.t. (Fk,distk) and that Bkσ is accurate provided that
B is accurate. The proof can be found in Appendix E.3.

Lemma 3.5. If B is an (α, β)-concentrated (γ, ε, δ)-
masking mechanism for (F ,dist) then, for any δ′ > 0, Bkσ
is an (α, kβ)-concentrated (γ, ε′, kδ + δ′)-masking mecha-
nism for (Fk,distk) where

ε′ =
√
2k ln(1/δ′)ε+ kε(eε − 1).

Recall that Theorem 2.3 requires that the distance func-
tion satisfies an r-restricted z-approximate. The following
lemma shows that distk indeed does satisfy this property
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provided that dist does. The proof can be found in Ap-
pendix E.4.

Lemma 3.6. If dist satisfies an r-restricted z-approximate
triangle inequality then so does distk.

4. Masking a Single Gaussian Component
In this section, we develop a masking mechanism for a sin-
gle Gaussian component. For that we define a new distance
measure between Gaussian components.

Let FCOMP = R×Rd ×Rd×d (corresponding to the weight
w, mean µ, and covariance matrix Σ, respectively). Define
distCOMP : FCOMP ×FCOMP → R≥0 as

distCOMP((w1, µ1,Σ1), (w2, µ2,Σ2)) = max{
|w1 − w2|,distMEAN((µ1,Σ1), (µ2,Σ2)),

distCOV(Σ1,Σ2)},
(1)

where

distCOV(Σ1,Σ2) = max{

∥Σ1/2
1 Σ−1

2 Σ
1/2
1 − Id∥F , ∥Σ1/2

2 Σ−1
1 Σ

1/2
2 − Id∥F }

and

distMEAN((µ1,Σ1), (µ2,Σ2))

= max{∥µ1 − µ2∥Σ1
, ∥µ1 − µ2∥Σ2

}.

First, we show that distCOMP satisfies an approximate trian-
gle inequality; this is useful in order to use Theorem 2.3.

Lemma 4.1. distCOMP satisfies a 1-restricted (3/2)-
approximate triangle inequality.

Proof. For any positive-definite matrix Σ, ∥ · ∥Σ is a metric
and thus, distMEAN is a metric (and therefore satisfies the
1-restricted (3/2)-approximate triangle inequality). Next,
distCOV satisfies the 1-restricted (3/2)-approximate triangle
inequality (see Lemma A.8). A straightforward calcula-
tion concludes that, as a result, distCOMP also satisfies a
1-restricted (3/2)-approximate triangle inequality.

The following lemma gives a masking mechanism for a
single Gaussian mechanism. The proof can be found Ap-
pendix F. The mechanism essentially noises the mixing
weight, the mean, and the covariance matrix separately. For
noising the mixing weight, one can do this using the Gaus-
sian mechanism. Care must be taken to noise the mean and
the covariance matrix. In both cases, we use the empirical
covariance matrix itself to re-scale both the mean and the
covariance matrix. Note that the parameters γ (how close
the inputs must be) as well as ηW, ηMEAN, ηCOV (the noise

magnitude) must be set correctly to ensure privacy and ac-
curacy. Roughly speaking, for a vector of size d, we should
take the noise η to about α/

√
d to ensure that accuracy is

within an error of α. So ηW ∼ α, ηMEAN ∼ α/
√
d and

ηCOV ∼ α/d. To ensure (ε, δ)-DP, we need to ensure that
the outputs are guaranteed to be close enough (otherwise
the noise is not enough to make the inputs indistinguish-
able). The bottleneck comes from noising the covariance
matrix which requires that γ ∼ εηCOV/

√
d ∼ αε/d3/2.

More details about the parameter choices can be found in
Appendix F.
Lemma 4.2. For γ ≤ εα

C2

√
d2(d+ln(4/β))·ln(2/δ)

, there

exists a (γ, 3ε, 3δ)-masking mechanism, BCOMP, for
(FCOMP,distCOMP) that is (α, 3β)-concentrated, where C2

is a universal constant.

5. A Masking Mechanism for GMMs
In this section, we show how to mask a mixture of k Gaus-
sians. LetFGMM = FCOMP×. . .×FCOMP (k times). Note we
drop k from FGMM (and related notation below) since k is
fixed and implied from context. Let distCOMP be as defined
in Eq. (1) and define the distance

distPARAM({(wi, µi,Σi)}i∈[k], {(w′
i, µ

′
i,Σ

′
i)}i∈[k]) =

min
π

max
i∈[k]

distCOMP((wπ(i), µπ(i),Σπ(i)), (w
′
i, µ

′
i,Σ

′
i)),

(2)

where π is chosen from the set of all permutations over [k].
Now define the masking mechanism

BGMM({(wi, µi,Σi)}i∈[k]) =

{BCOMP(wσ(i), µσ(i),Σσ(i))}i∈[k],

where BCOMP is the masking mechanism from Lemma 4.2
and σ is a permutation chosen uniformly at random from
the set of all permutations over [k]. In words, BGMM applies
the masking mechanism BCOMP from Section 4 to each com-
ponent separately and then permutes the components. To
summarize the entire masking mechanism for GMMs, we
provide pseudocode in Algorithm 2.

The following lemma asserts that BGMM is indeed a mask-
ing mechanism. At a high-level, it follows by combining
Lemma 4.2 with Lemma 3.5. The details can be found in
Appendix G.1.
Lemma 5.1. Let ε < ln(2)/3. There is a
sufficiently large constant C2 such that for γ ≤

εα

C2

√
k ln(2/δ)

√
d2(d+ln(12k/β))·ln(12k/δ)

, BGMM is a (γ, ε, δ)-

masking mechanism with respect to (FGMM,distPARAM).
Moreover, BGMM is (α, β)-concentrated.

Note that distPARAM also satisfies a 1-restricted (3/2)-
approximate triangle inequality since distCOMP does (see

7
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Appendix G.2 for a proof).

Lemma 5.2. distPARAM satisfies a 1-restricted (3/2)-
approximate triangle inequality.

Algorithm 2 GMM Masking Mechanism
Input: GMM given by {(wi, µi,Σi)}i∈[k] and parameters
ηW, ηMEAN, ηCOV > 0

1: functionRW(w) ▷ Noise mixing weights
2: Return max(0, w + ηWg) where g ∼ N (0, 1).
3: end function
4: functionRMEAN(µ,Σ) ▷ Noise mean
5: Return µ+ ηMEANg where g ∼ N (0,Σ)
6: end function
7: functionRCOV(Σ) ▷ Noise covariance
8: Let G ∈ Rd×d matrix with independent N (0, 1)

entries.
9: Return Σ1/2(Id + ηCOVG)(Id + ηCOVG)⊤Σ1/2

10: end function
11: function BCOMP(w, µ,Σ) ▷ Mask component
12: Return (RW(w),RMEAN(µ,Σ),RCOV(Σ))
13: end function
14: function BGMM({(wi, µi,Σi)}i∈[k]) ▷ Mask GMM
15: Let σ be uniformly random permutation.
16: {(ŵi, µ̂, Σ̂i)} ← {BCOMP(wσ(i), µσ(i),Σσ(i))}.
17: Normalize: ŵi ← ŵi/

∑
i∈[k] ŵi.

18: Return {(ŵi, µ̂, Σ̂i)}i∈[k].
19: end function

6. Privately Learning GMMs
At this point, we have everything we need to develop a
private algorithm for learning the parameters of a GMM.
First, we define the problem more formally.

Definition 6.1 (PAC Learning of Parameters of GMMs).

Let F =

{(
wj

i , µ
j
i ,Σ

j
i

)k

i=1

}j

be a class of d-dimensional

GMMs with k components5. LetA be function that receives
a sequence S of instances in Rd and outputs a mixture
F̂ = (ŵi, µ̂i, Σ̂i)

k
i=1. Let m : (0, 1)2 × N2 → N. We say

A learns the parameters of F with m samples if for every
α, β ∈ (0, 1) and every F ∈ F , if S is an i.i.d. sample of
size m(α, β, k, d) from F , then distGMM(F, F̂ ) < α with
probability at least 1− β.

Plugging the masking mechanism developed in Section 5
(in particular, Lemma 5.1 and Lemma 5.2) into PPE (Theo-
rem 2.3) gives a private to non-private reduction for GMMs.

Theorem 6.2 (Private to Non-Private Reduction). Let F
be a subclass of GMMs with k components in Rd. Let A

5For examples, it is standard to pick F to be those GMMs that
are separable/identifiable.

be a non-private Algorithm that PAC learns the parameters
of F with respect to distGMM using mNON-PRIVATE(α, β, k, d)
samples. Then for every ε < ln(2)/3, δ ∈ (0, 1),
γ ≤ εα

C2

√
k ln(2/δ)

√
d2(d+ln(12k/β))·ln(12k/δ)

for a suffi-

ciently large constant C and t = max{5, ⌈ 20ε ln(1 +
eε−1
2δ )⌉}, there is a learnerAPRIVATE with the following prop-

erties:

1. APRIVATE is (2ε, 4eεδ)-DP.

2. APRIVATE PAC learns the parameters of F using
O(mNON-PRIVATE(γ, β/2t, k, d) log(1/δ)/ε) samples.

3. APRIVATE runs in time O((log(1/δ)/ε) · TA +
(log(1/δ)/ε)2 · (k2d3 + k3 log k)), where TA is the
running time for the non-private algorithm.

To prove Theorem 6.2, we require the following lemma
whose proof can be found in Appendix H.

Lemma 6.3. Let F = (wi, µi,Σi)
k
i=1 and F ′ =

(w′
i, µ

′
i,Σ

′
i)

k
i=1 be two d-dimensional GMMs where Σi

and Σ′
i are positive-definite matrices. Suppose that

distGMM (F, F ′) < 1
600 . Then 1

200 distPARAM(F, F
′) ≤

distGMM(F, F
′) ≤ 1√

2
distPARAM(F, F

′).

Proof of Theorem 6.2. Let z = 3/2, r = 1, and t ≥
20
ε ln

(
1 + eε−1

2δ

)
= O(log(1/δ)/ε). We run Algorithm 1

with the following.

• For the non-private algorithm A, we use the algorithm
from Theorem 6.5 with accuracy parameter α/2z and
failure probability β/2t.

• For the masking mechanism, we use the (r, ε, δ)-
masking mechanism BGMM which is defined in
Lemma 5.1. Further, this mechanism is (α/2z, β/2)-
concentrated.

• Finally, note that the distance function distPARAM satis-
fies the z-approximate r-restricted triangle inequality
(Lemma 5.2).

Let F ∗ be the true GMM. Let Fi be the estimated GMMs
computed by A in Line 2 of Algorithm 1. Then the first
item above guarantees that distPARAM(F

∗, Fi) ≤ α/2z for
all i ∈ [t] with probability at least 1− β/2.

We thus conclude that we have a private algorithm for learn-
ing GMMs that is (2ε, 4eεδ)-DP and that returns F̃ satis-
fying distPARAM(F̃ , F ∗) ≤ α with probability 1 − β. By
Lemma 6.3, we further conclude that distGMM(F̃ , F ∗) ≤
O(α) with probability 1− β.

It remains to check the sample complexity and com-
putational complexity of our algorithm. Since we
run t independent instances of the non-private algo-
rithm A, we require t · mPRIVATE(α/2z, β/2t, k, d) =

8
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O(mPRIVATE(α/2z, β/2t, k, d) · log(1/δ)/ε) samples. Fi-
nally, we bound the running time. Lemma 3.4 shows
that the running time to apply the masking mechanism is
O(k · d3 + k log k) and Lemma 3.2 shows that the running
time to compute dist is O(k2d3 + k3 log k). The claimed
running time now follows from Remark 2.4.

6.1. Application

As a concrete application, we apply Theorem 6.2 with the
algorithm of Moitra & Valiant (2010) to obtain the first pri-
vate algorithm for learning the parameters of a GMM with
sample and computational complexity that is polynomial
in d (for a fixed k) with minimal separation assumptions.
Note that our algorithm does not require any boundedness
assumptions on the parameters.

Definition 6.4 (γ-Statistically Learnable (Moitra & Valiant,
2010)). We say a GMM F = (wi, µi,Σi)

k
i=1 is γ-

statistically learnable if (i) mini wi ≥ γ and (ii)
mini̸=j dTV (N (µi,Σi),N (µj ,Σj)) ≥ γ.

If a GMM is γ-statistically learnable, we will be able to
recover its components accurately.

Theorem 6.5 (Non-private Learning of GMMs (Moitra &
Valiant, 2010)). There exists an algorithm A and a function
mA(d, k, α, β) with the following guarantee. Fix α, β ∈
(0, 1), k, d ∈ N.

• For fixed k, the sample complexity mA(d, k, α, β) is
polynomial in d/αβ.

• For fixed k, A runs in time poly(d/αβ).

• Let F∗ be an α-statistically learnable subclass of
GMMs with k components in Rd and let F ∗ ∈ F∗.
Given an i.i.d. sample D of size mA(d, k, α, β) drawn
from F ∗, with probability at least 1 − β, A return F̂
such that distGMM(F̂ , F ∗) ≤ α.

The following corollary follows immediately by plugging
Theorem 6.5 into Theorem 6.2.

Corollary 6.6. There exists an algorithm A and a func-
tion mA(d, k, α, β, ε, δ) with the following guarantee. Fix
α, β, ε, δ ∈ (0, 1), k, d ∈ N.

• A is (ε, δ)-DP.

• For fixed k, the sample complexity mA(d, k, α, β, ε, δ)
is polynomial in d log(1/δ)/αβε.

• For fixed k, A runs in time poly(d log(1/δ)/αβε).

• Let F∗ be an α-statistically learnable subclass of
GMMs with k components in Rd and let F ∗ ∈ F∗.
Given an i.i.d. sample D of size mA(d, k, α, β, ε, δ)
drawn from F ∗, with probability at least 1 − β, A
return F̂ such that distGMM(F̂ , F ∗) ≤ α.
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A. Standard Facts
Fact A.1. Let X1, X2, Y1, Y2 be random variables such that X1, X2 (resp. Y1, Y2) are independent. Then
dTV ((X1, X2), (Y1, Y2)) ≤ dTV (X1, Y1) + dTV (X2, Y2).

Fact A.2. Let X,Y be random variables. For any measurable function f , dTV (f(X), f(Y )) ≤ dTV (X,Y ).

The equality in the following fact is standard; for example, see Equation 2.3 in Williams & Rasmussen (2006). For the
inequality, see the proof of Lemma 2.9 in Ashtiani et al. (2020).

Fact A.3. Let µ1, µ2 ∈ Rd and Σ1,Σ2 ≻ 0. Then

DKL (N (µ1,Σ1) ∥ N (µ2,Σ2)) =
1

2

[
tr(Σ−1

2 Σ1 − I) + (µ2 − µ1)
⊤Σ−1

2 (µ2 − µ1)− ln det(Σ−1
2 Σ1)

]
.

Moreover, suppose that all the eigenvalues of Σ−1/2
2 Σ1Σ

−1/2
2 are at least 1

2 . Then

DKL (N (µ1,Σ1) ∥ N (µ2,Σ2)) ≤
1

2

[
∥Σ−1/2

2 Σ1Σ
−1/2
2 − I∥2F + (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

]
.

Lemma A.4 (Pinsker’s Inequality). Let P and Q be two distributions for which KL-divergence is defined. Then
dTV (P,Q) ≤

√
0.5DKL (P ∥ Q).

Lemma A.5 ((Laurent & Massart, 2000), Lemma 1). Let g1, . . . , gk be i.i.d. N (0, 1) random variables. Then

P

[
k∑

i=1

g2i ≥ k + 2
√
kt+ 2t

]
≤ e−t.

Lemma A.6 ((Ashtiani & Liaw, 2022), Lemma D.2). Let µ1, µ2 ∈ Rd and let Σ1,Σ2 be full-rank d× d PSD matrices. Let
Y ∼ N (µ1,Σ1). Then

LN (µ1,Σ1)∥N (µ2,Σ2)(Y ) ≤ DKL (N (µ1,Σ1) ∥ N (µ2,Σ2))

+ 2∥Σ1/2
1 Σ−1

2 Σ
1/2
1 − Id∥F ·

√
ln(2/δ) + 2∥Σ1/2

1 Σ−1
2 Σ

1/2
1 − Id∥ · ln(2/δ)

+ ∥Σ1/2
1 Σ−1

2 Σ
1/2
1 ∥ · ∥Σ

−1/2
1 · (µ2 − µ1)∥2 ·

√
2 ln(2/δ)

(3)

with probability at least 1− δ.

Fact A.7. For x ∈ (0, ln(2)), we have ex ≤ 1 + 2x

Proof. Consider the function f(x) = 1 + 2x − ex. Then f ′′(x) = −ex so f is concave. Note that f(0) = 0 and
f(ln(2)) = 1 + 2 ln(2)− 2 > 0 so f(x) ≥ 0 for x ∈ [0, ln(2)] (by concavity).

Lemma A.8 ((Ashtiani & Liaw, 2022), Lemma 3.2). Let Sd be the set of all d× d positive definite matrices. For A,B ∈ Sd
let dist(A,B) = max{∥A−1/2BA−1/2− I∥, ∥B−1/2AB−1/2− I∥}. Then (Sd,dist) is a semimetric space which satisfies
a (3/2)-approximate 1-restricted triangle inequality.

Fact A.9. Let Σ1,Σ2 be d× d positive-definite matrices. Then Σ
−1/2
2 Σ1Σ

−1/2
2 and Σ

1/2
1 Σ−1

2 Σ
1/2
1 have the same spectrum.

Proof. Suppose that x ∈ Rd is an eigenvector of Σ−1/2
2 Σ1Σ

−1/2
2 with eigenvalue λ. Let y = Σ

1/2
1 Σ

−1/2
2 x. Then

Σ
1/2
1 Σ−1

2 Σ
1/2
1 y = Σ

1/2
1 Σ

−1/2
2

(
Σ

−1/2
2 Σ1Σ

−1/2
2

)
x = λΣ

1/2
1 Σ

−1/2
2 x = λy.

In other words, y is an eigenvector of Σ1/2
1 Σ−1

2 Σ
1/2
1 with eigenvalue λ.
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B. TV Distance of Gaussian Distributions
In this section, we prove the following theorem.

Theorem 1.8. Let µ1, µ2 ∈ Rd and Σ1,Σ2 be d × d positive-definite matrices. Suppose that we have
dTV(N (µ1,Σ1),N (µ2,Σ2)) <

1
600 . Let

∆ = max
{
∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id∥F , ∥Σ−1/2

1 (µ1 − µ2)∥2
}
.

Then
1

200
∆ ≤ dTV (N (µ1,Σ1),N (µ2,Σ2)) ≤

1√
2
∆.

Our proof makes use of the following two theorems from (Devroye et al., 2018).

Theorem B.1 ((Devroye et al., 2018), Theorem 1.1). Let µ ∈ Rd, Σ1, Σ2 ∈ Sd, The total variation distance between
Gaussians with the same mean is bounded by

min
{
1, ∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id∥F

}
100

≤ dTV (N (µ,Σ1),N (µ,Σ2))

Theorem B.2 ((Devroye et al., 2018), Theorem 1.3). The total variation distance between one-dimensional Gaussians is
bounded by

1

200
min

{
1,max

{
|σ2

1 − σ2
2 |

σ2
1

,
40|µ1 − µ2|

σ1

}}
≤ dTV

(
N (µ1, σ

2
1),N (µ2, σ

2
2)
)
≤ 3|σ2

1 − σ2
2 |

2σ2
1

+
|µ1 − µ2|

2σ1
.

Lemma B.3. dTV (N (0,Σ1),N (0,Σ2)) ≤ 2 · dTV (N (µ1,Σ1),N (µ2,Σ2)).

Proof. Let X1, X2, Y1, Y2 be independent random variables where X1, X2 ∼ N (µ1,Σ1) and Y1, Y2 ∼ N (µ2,Σ2). Apply-
ing Fact A.1 gives

dTV ((X1, X2), (Y1, Y2)) ≤ dTV (X1, Y1) + dTV (X2, Y2)

= dTV (N (µ1,Σ1),N (µ2,Σ2)) + dTV (N (µ1,Σ1),N (µ2,Σ2))

= 2 · dTV (N (µ1,Σ1),N (µ2,Σ2)) .

Now, let X = (X1, X2) and Y = (Y1, Y2), and define the function f(X) = f(X1, X2) = (X1 − X2)/
√
2. Then by

applying Fact A.2 we have

dTV (f(X1, X2), f(Y1, Y2)) ≤ dTV ((X1, X2), (Y1, Y2)) ≤ 2 · dTV (N (µ1,Σ1),N (µ2,Σ2)) .

Note that if X1, X2 ∼ N (µ1,Σ1) then f(X) ∼ N (0,Σ1). Therefore we have

dTV (N (0,Σ1),N (0,Σ2)) ≤ 2 · dTV (N (µ1,Σ1),N (µ2,Σ2)) ,

as required.

Lemma B.4. Let µ ∈ Rd. If dTV (N (0, Id),N (µ, Id)) ≤ 3α < 1/200 then ∥µ∥2 ≤ 15α.

Proof. Let g1 ∼ N (0, Id), g2 ∼ N (µ, Id) and v = µ/∥µ∥2. Note that v⊤g1 ∼ N (0, 1) and v⊤g2 ∼ N (∥µ∥2, 1).
Applying Fact A.2 (with f(x) = v⊤x) we have

dTV (N (0, 1),N (∥µ∥2, 1)) ≤ dTV (N (0, Id),N (µ, Id)) ≤ 3α < 1/200.

Applying Theorem B.2 on the left side, we have

1

200
min {1, 40∥µ∥2} ≤ dTV (N (0, 1),N (∥µ∥2, 1)) ≤ dTV (N (0, Id),N (µ, Id)) ≤ 3α < 1/200.

Note that this implies min {1, 40∥µ∥2} = 40∥µ∥2 < 1. Therefore we conclude that ∥µ∥2 ≤ 15α.
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Lemma B.5. Let µ1, µ2 ∈ Rd and Σ1,Σ2 be full-rank d× d positive-definite matrices. Suppose that

dTV (N (µ1,Σ1),N (µ2,Σ2)) ≤ α <
1

600
.

Then (i) ∥Σ−1/2
1 Σ2Σ

−1/2
1 − Id∥F ≤ 200α and (ii) ∥Σ−1/2

1 (µ1 − µ2)∥2 ≤ 15α.

Proof. (i) Starting from the assumption

dTV (N (µ1,Σ1),N (µ2,Σ2)) ≤ α <
1

600
,

we apply Lemma B.3 to obtain

dTV (N (0,Σ1),N (0,Σ2)) ≤ 2α <
1

300
.

Applying Theorem B.1 gives

min
{
1, ∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id∥F

}
≤ 100 · dTV (N (0,Σ1),N (0,Σ2)) ≤ 200α <

1

3
.

Note that the inequality implies that min
{
1, ∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id∥F

}
= ∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id∥F . We conclude that

∥Σ−1/2
1 Σ2Σ

−1/2
1 − Id∥F ≤ 200α.

This proves the first assertion.

(ii) By the triangle inequality, we have

dTV (N (µ1,Σ1),N (µ2,Σ1)) ≤ dTV (N (µ1,Σ1),N (µ2,Σ2)) + dTV (N (µ2,Σ1),N (µ2,Σ2))

= dTV (N (µ1,Σ1),N (µ2,Σ2)) + dTV (N (0,Σ1),N (0,Σ2)) .

Our hypothesis is that

dTV (N (µ1,Σ1),N (µ2,Σ2)) ≤ α <
1

600
,

which, by Lemma B.3, implies that

dTV (N (0,Σ1),N (0,Σ2)) ≤ 2α <
1

300
.

Thus, we have

dTV (N (µ1,Σ1),N (µ2,Σ1)) ≤ 3α <
1

200
.

Furthermore, since bijective mappings preserve the total variation distance, we have

dTV (N (µ1,Σ1),N (µ2,Σ1)) = dTV

(
N (Σ

−1/2
1 µ1, Id),N (Σ

−1/2
1 µ2, Id)

)
= dTV

(
N (0, Id),N (Σ

−1/2
1 (µ1 − µ2), Id)

)
.

Finally, applying Lemma B.4 gives ∥Σ−1/2
1 (µ1 − µ2)∥2 ≤ 15α.

Proof of Theorem 1.8. The lower bound follows from Lemma B.5.

The upper bound is a standard application of Pinsker’s Inequality but we provide the proof for completeness. By Lemma B.5(i)
the eigenvalues of Σ−1/2

2 Σ1Σ
−1/2
2 are strictly larger than 1/2 (note we swapped the indices in the application of Lemma B.5).

Therefore, using Fact A.3 we know that

DKL (N (µ1,Σ1) ∥ N (µ2,Σ2)) ≤
1

2

[
∥Σ−1/2

2 Σ1Σ
−1/2
2 − I∥2F + (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

]
.
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Using Pinsker’s inequality (Lemma A.4) and the known fact ∥µ∥Σ = ∥Σ−1/2µ∥2 =
√
(µTΣ−1µ) we have

dTV (N (µ1,Σ1),N (µ2,Σ2)) ≤
1

2

√[
∥Σ−1/2

2 Σ1Σ
−1/2
2 − I∥2F + (µ2 − µ1)⊤Σ

−1
2 (µ2 − µ1)

]
≤ ∆√

2

which concludes the proof.

C. Standard Facts about Differential Privacy
Definition C.1. Let D1,D2 be two continuous distributions defined on Rd and let f1, f2 be the respective density functions.
We use LD1∥D2

: Rd → R to denote the logarithm of the likelihood ratio, i.e. for any x ∈ Rd,

LD1∥D2
(x) := ln

f1(x)

f2(x)
. (4)

Below definition has D,D′ which are different in single individual data and function f can capture the change in magnitude
at the worst case.

Definition C.2 (L1-Sensitivity ((Dwork et al., 2014), Definition 3.1)). The L1-sensitivity of a function f : Xn → Rk is
defined as:

∆(f) = max
D,D′∈Xn : dH(D,D′)≤1

||f(D)− f(D′)||1

where dH is Hamming distance identified in Definition 1.5

Definition C.3 (L2-Sensitivity ((Dwork et al., 2014), Definition 3.8)). The L2-sensitivity of a function f : Xn → Rk is
defined as:

∆2(f) = max
D,D′∈Xn : dH(D,D′)≤1

||f(D)− f(D′)||2

where dH is Hamming distance identified in Definition 1.5

The Gaussian Mechanism with parameter σ adds noise scaled to N (0, σ2) to each of the d components of the output.

Theorem C.4 (Gaussian Mechanism ((Dwork et al., 2014), Theorem 3.22)). Let ε ∈ (0, 1) be arbitrary. For c2 >
2ln(1.25/δ), the Gaussian Mechanism with parameter σ ≥ c∆2f/ε is (ε, δ)-differentially private.

The amount of noise necessary to ensure differential privacy for a given function depends on the sensitivity of the function.
In other words, we can guarantee privacy using additive noise if the sensitivity of the function is bounded. The sensitivity of
a function reflects the amount the function’s output will change when its input changes.

Definition C.5 (Truncated Laplace distribution). It is denoted by TLap(∆, ε, δ) whose probability density function is given
by

fTLap(∆,ε,δ)(x) :=

{
Be−|x|/λ x ∈ [−A,A]

0 x /∈ [−A,A]
,

where λ = ∆
ε , A = ∆

ε ln
(
1 + eε−1

2δ

)
, B = 1

2λ(1−e−A/λ)
.

Theorem C.6 ((Geng et al., 2018), Theorem 1). Suppose that q : Xn → R is a function with L1-sensitivity ∆. Then the
mechanism q(x) + Y where Y ∼ TLap(∆, ε, δ) is (ε, δ)-DP.

Theorem C.7 (Advanced Composition (Dwork et al., 2010)). Let D1, . . . ,Dk and D′
1, . . . ,D′

k be probability densities such
that Dj ,D′

j are (ε, δ)-indistinguishable for all j ∈ [k]. Let D = (D1, . . . ,Dk) and D′ = (D′
1, . . . ,D′

k). Then for every
δ′ > 0, D,D′ are (ε′, kδ + δ′)-indistinguishable for

ε′ =
√
2k ln(1/δ′)ε+ kε(eε − 1).

Lemma C.8. Let D1, . . . ,Dk and D′
1, . . . ,D′

k denote probability distributions on a space X . Suppose that for all j ∈ [k],
Dj and D′

j are (ε, δ)-indistinguishable. Let w = (w1, . . . , wk) be a probability vector, i.e. wj ≥ 0 for j ∈ [k] and∑
j∈[k] wj = 1. Then the probability distributions

∑
j∈[k] wjDj and

∑
j∈[k] wjD′

j are (ε, δ)-indistinguishable.
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Proof. Let D =
∑

j∈[k] wjDj and D′ =
∑

j∈[k] wjD′
j . Fix a set S ⊆ X . Then

Px∼D[x ∈ S] =

k∑
j=1

wjPx∼Dj [x ∈ S] ≤
k∑

j=1

wj

[
eε · Px∈D′

j
[x ∈ S] + δ

]
= eε · Px∼D′ [x ∈ S] + δ,

as required.

Lemma C.9 ((Ashtiani & Liaw, 2022), Lemma 2.10). Let D1,D2 be continuous distributions defined on Rd. If

PY∼D1

[
LD1∥D2

(Y ) ≥ ε
]
≤ δ and PY∼D2

[
LD2∥D1

(Y ) ≥ ε
]
≤ δ

then D1,D2 are (ε, δ)-indistinguishable.

D. Missing Proofs from Section 2
D.1. Proof of Theorem 2.3

Proof of Theorem 2.3. Proof of privacy. Let D and D′ be two neighbouring datasets and let A denote the non-private
algorithm specified in Algorithm 1. Note that the Q computed in Line 4 has sensitivity less than 2

t . Since we use the
Truncated Laplace mechanism in Line 7, we have (by Theorem C.6)

P [A(D) =⊥] ≤ eεP [A(D′) =⊥] + δ (5)

We now show that for any T ⊆ Y , we have

P [A(D) ∈ T ] ≤ e2εP [A(D′) ∈ T ] + 3eεδ and (6)

P [A(D) ∈ T ∪ {⊥}] ≤ e2εP [A(D′) ∈ T ∪ {⊥}] + 4eεδ (7)

which establishes that Algorithm 1 is (ε, δ)-DP. To this end, we consider two different cases.

Case 1: Q < 0.8. In this case, Q̃ < 0.8 + 2
tε ln

(
1 + eε−1

2δ

)
with probability 1 so P [A(D) =⊥] = 1. We now verify that

Eq. (6) and Eq. (7) hold. For any T ⊆ Y , we have P [A(D) ∈ T ] = 0 so Eq. (6) is trivially satisfied. To check Eq. (7) holds,
we apply Eq. (5) to see that

P [A(D) ∈ T ∪ {⊥}] = P [A(D) =⊥] ≤ eεP [A(D′) =⊥] + δ ≤ eεP [A(D′) ∈ T ∪ {⊥}] + δ.

Case 2: Q ≥ 0.8. Let Y1, . . . , Yt and Y ′
1 , . . . , Y

′
t be the outputs in Line 2 assuming the dataset is D,D′, respectively. Let

j, j′ be the output of Line 8 assuming the dataset is D,D′, respectively. Next, we show that dist(Yj , Y
′
j ) ≤ r.

Let S = {ℓ ∈ [t] : dist(Yj , Yℓ) ≤ r/2z} and S′ = {ℓ ∈ [t] : dist(Y ′
j , Y

′
ℓ ) ≤ r/2z}. We know that |S| > 0.6t and

|S′| > 0.6t (by definition of j in Line 8). By the inclusion-exclusion principle, we have |S ∩ S′| = |S|+ |S′| − |S ∪ S′| >
0.6t+ 0.6t− t = 0.2t. Thus, if t ≥ 5, we have |S ∩ S′| > 1 and since |S ∩ S′| is an integer, we must have |S ∩ S′| ≥ 2.
Since D,D′ differ only in a single datapoint, there is some ℓ ∈ S ∩ S′ such that Yℓ = Y ′

ℓ . Thus, we conclude that

dist(Yj , Y
′
j ) ≤ dist(Yj , Yℓ) + dist(Yℓ, Y

′
j ) ≤ z · (r/2z + r/2z) = r,

where in the final inequality, we used that dist is a z-approximate r-restricted triangle inequality and that
dist(Yj , Yℓ),dist(Yℓ, Y

′
j ) ≤ r.

We are now ready to verify that Eq. (6) and Eq. (7) hold. LetM denote the mechanism described in Algorithm 1. Fix any
T ⊆ Y . Then we have

P [M(D) ∈ T ] = P [M(D) ̸=⊥]P [B(Yj) ∈ T ]

≤ (eεP [M(D′) ̸=⊥] + δ)(eεP
[
B(Y ′

j′) ∈ T
]
+ δ)

= (e2εP [M(D′) ̸=⊥]P
[
B(Y ′

j′) ∈ T
]
+ 2eεδ + δ2

≤ e2εP [M(D) ∈ T ] + 3eεδ
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where in first inequality we used the fact that B is a (r, ε, δ)-masking mechanism, which satisfies Eq. (6). Next, we also have

P [M(D) ∈ {⊥} ∪ T ] = P [M(D) =⊥] + P [M(D) ∈ T ]

≤ eεP [M(D′) =⊥] + δ + e2εP [M(D′) ∈ T ] + 3eεδ

≤ e2εP [M(D′) ∈ {⊥} ∪ T ] + 4eεδ.

This completes the proof of privacy.

Proof of utility. We divide the proof into two parts.

1. First, we show that Ỹ (the noisy output) concentrates around Y ∗.

2. Second, we show that Algorithm 1 does not fail in Line 7.

For the first part, We know that B is ( α
2z , β) concentrated. Furthermore, ∀i ∈ [t], Yi satisfies dist(Y ∗, Yi) <

α
2z . we have

P[dist(Ỹ , Y ∗) >
α

2
+

α

2
] ≤ P[z · dist(Ỹ , Yj) + z · dist(Yj , Y

∗) >
α

2
+

α

2
]

≤ P[dist(Ỹ , Yj) + dist(Yj , F
∗) >

α

2z
+

α

2z
]

≤ P[dist(Ỹ , Yj) >
α

2z
] + P[dist(Yj , Y

∗) >
α

2z
]

≤ β + 0 ≤ β,

where the first inequality follows from the r-restricted z-approximate triangle inequality 3 (since α/2z < r/4z2 by
assumption), and the first part of the last inequality follows the concentration of the masking mechanism. We get
P[dist(Ỹ , Yj) >

α
2z ] = β, because Ỹ is just a masked version of Yj . Also P[dist(Yj , Y

∗) > α
2z ] = 0, because Yj is selected

from Yi’s, and none of them located in a distance larger than α
2z from Y ∗ based on our assumption.

For the second part, we start by guaranteeing that Q in Line 4 equals to 1. For that we need to ensure that for all i, j ∈ [t],
dist(Yi, Yj) ≤ r

2z . To see this by triangle inequality, we have

dist(Yi, Yj) ≤ z · (dist(Yi, Y
∗) + dist(Y ∗, Yj))

since dist(Yi, Y
∗),dist(Y ∗, Yj) ≤ r

4z2 . So we conclude that Q = 1.

Now we need to show that Q̃ ≤ 0.9. From Line 6, Q̃ = Q+ Z. Therefore it is enough to show |Z| ≤ 0.1. We know that
from Definition C.5 |Z| ≤ 2

tε ln
(
1 + eε−1

2δ

)
. By the assumption that t ≥ 20

ε ln
(
1 + eε−1

2δ

)
we conclude that Q̃ ≤ 0.9, so

the Algorithm 1 does not fail in Line 7.

E. Missing Proofs from Section 3
E.1. Proof of Lemma 3.2

Proof of Lemma 3.2. The plan is to reduce the problem of computing distk to binary search and checking if a bipartite
graph has a perfect matching.

First, we compute dist(Fi, Fj) for every i, j ∈ [k]. This takes time k2Tdist. Note that

distk((F1, . . . , Fk), (F
′
1, . . . , F

′
k))

must be one of these k2 values. In addition, observe that we can determine if

distk((F1, . . . , Fk), (F
′
1, . . . , F

′
k)) ≤ x

for any number x by consider the following bipartite graph. The disjoint node sets are {F1, . . . , Fk} and {F ′
1, . . . , F

′
k} and

there is an edge between Fi, F
′
j if and only if dist(Fi, F

′
j) ≤ x. We then determine if there is a complete bipartite matching

on this graph, which takes time at most O(k3) (e.g. by using the Hungarian algorithm). Thus, we can simply combine this
with a binary search on the sorted values given by {dist(Fi, F

′
j)}i,j′ to compute distk.
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E.2. Proof of Lemma 3.4

Proof of Lemma 3.4. Computing Bkσ only requires computing B a total of k times and finding permutation. The former
takes time O(k · TB) and the latter takes time O(k log k) (say by sampling k uniform random numbers in [0, 1] and then
sorting).

E.3. Proof of Lemma 3.5

Proof of Lemma 3.5. First, we prove privacy. Let F = (F1, . . . , Fk) ∈ Fk and F ′ = (F ′
1, . . . , F

′
k) ∈ Fk be such that

distk(F, F ′) ≤ γ. In other words, there exists a permutation π such that dist(Fi, F
′
π(i)) ≤ γ for all i ∈ [k]. Since B is a

(γ, ε, δ)-masking mechanism, we know that B(Fi),B(F ′
π(i)) are (ε, δ)-indistinguishable. Thus, by advanced composition

(see Theorem C.7), (B(F1), . . . ,B(Fk)) and (B(F ′
π(1)), . . . ,B(F

′
π(k))) are (ε′, kδ + δ′)-indistinguishable with ε′ as stated

in the lemma. Since Bkσ((F ′
1, . . . , F

′
k)) has the same distribution has Bkσ((F ′

π(1), . . . , F
′
π(k))), we conclude, using the fact

that permutation preserves privacy (see Lemma C.8), that Bkσ(F ) and Bkσ(F ′) are (ε′, kδ + δ′)-indistinguishable.

Finally, it remains to prove accuracy (i.e. that Bkσ is (α, kβ)-concentrated). Indeed, given F = (F1, . . . , Fk) ∈ Fk, we
know that dist(B(Fi), Fi) ≤ α with probability at least 1− β. Thus, by a union bound dist(B(Fi), Fi) ≤ α for all i ∈ [k]
with probability at least 1− kβ. We conclude that dist(B(F ), F ) ≤ α with probability at least 1− kβ.

E.4. Proof of Lemma 3.6

Proof of Lemma 3.6. Let F, F ′, F ′′ ∈ Fk. We need to show that if distk(F, F ′) ≤ r and distk(F ′, F ′′) ≤ r then
distk(F, F ′′) ≤ z · (distk(F, F ′) + distk(F ′, F ′′)). To that end, let π∗

1 ∈ argminπ maxi∈[k](Fi, F
′
π(i)) and let

π∗
2 ∈ argminπ max∈[k](F

′
π∗
1 (i)

, F ′′
π(i)). Since dist satisfies r-restricted z-approximate triangle inequality and for any

i, dist(Fi, F
′
π∗
1 (i)

),dist(F ′
π∗
1 (i)

, F ′′
π∗
2 (i)

) ≤ r, we have

dist(Fi, F
′′
π∗
2 (i)

) ≤ z ·
(
dist(Fi, F

′
π∗
1 (i)

) + dist(F ′
π∗
1 (i)

, F ′′
π∗
2 (i)

)
)

≤ z ·
(
distk(F, F ′) + distk(F ′, F ′′)

)
.

In particular

distk(F, F ′′) ≤ max
i∈[k]

dist(Fi, F
′′
π∗
2 (i)

) ≤ z ·
(
distk(F, F ′) + distk(F ′, F ′′)

)
, (8)

as required.

F. Proof of Lemma 4.2
This section is dedicated to proving Lemma 4.2. In particular, we will introduce the masking mechanism BCOMP(w, µ,Σ)
that satisfies the conditions of Lemma 4.2. In order to add noise to a Gaussian component (wi, µi,Σi) we perform a number
of steps:

1. In Subsection F.1, we discuss how to noise the mixing weight of a single component. This is the most straightforward
as we can simply use the Gaussian mechanism.

2. In Subsection F.2, we discuss how to noise the mean of a single component. To do this, we use an empirically re-scaled
Gaussian mechanism where the empirical covariance matrix is used to shape the noise that we add to the mean. This is
somewhat similar to the empirically re-scaled Gaussian mechanism used by Brown et al. (2021).

3. In Subsection F.3, we discuss how to noise the covariance matrix of a single component. To do this, we use the noising
mechanism described in Ashtiani & Liaw (2022).

F.1. Noising the Mixing Weights

For noising the weights, we simply use the Gaussian mechanism. LetRW(w, η) = max(0, w+ ηg) where g ∼ N (0, 1) and
w, η ∈ R.
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Lemma F.1. Let α, β, δ > 0, η = α√
2+2 ln(1/β)

, and γ ≤ αε

2
√
2 ln(2/δ)

√
1+ln(1/β)

.

1. Let w1, w2 ∈ R. If |w1 − w2| ≤ γ thenRW(w1, η) andRW(w2, η) are (ε, δ)-indistinguishable.

2. Let w ∈ R. Then |RW(w, η)− w| ≤ α with probability at least 1− β.

Proof. The first item is simply the guarantee of the Gaussian Mechanism Theorem C.4 when substituting ∆2f, σ with γ, η
respectively (followed by post-processing to deal with the max). The second item follows from standard tail bounds on a
Gaussian random variable (e.g., Lemma A.5).

F.2. Noising the Mean

In this section, we prove that the mechanismRMEAN(µ,Σ, η) = µ+ ηg where g ∼ N (0,Σ) effectively privatizes the mean.

Lemma F.2. Let α, β, δ > 0, η =
√

α2

3(d+ln(1/β)) and let γ ≤ min{ 12 ,
εα

24 ln(2/δ)
√

d+ln(1/β)
}. Let µ1, µ2 ∈ Rd and let

Σ1,Σ2 be d× d positive-definite matrices. Suppose that

1. max{∥Σ1/2
1 Σ−1

2 Σ
1/2
1 − Id∥F , ∥Σ1/2

2 Σ−1
1 Σ

1/2
2 − Id∥F } ≤ γ; and

2. max{∥µ1 − µ2∥Σ1
, ∥µ1 − µ2∥Σ2

} ≤ γ.

ThenRMEAN(µ1,Σ1, η) andRMEAN(µ2,Σ2, η) are (ε, δ)-indistinguishable. In addition, if we let µ̃ = RMEAN(µ,Σ, η) then
∥µ̃− µ∥Σ ≤ α with probability at least 1− β.

First, we prove a bound on the privacy loss.

Lemma F.3. Let η > 0 and γ ∈ (0, 1/2]. Let µ1, µ2 ∈ Rd and let Σ1,Σ2 be d× d positive-definite matrices. Suppose that

1. max{∥Σ1/2
1 Σ−1

2 Σ
1/2
1 − Id∥F , ∥Σ1/2

2 Σ−1
1 Σ

1/2
2 − Id∥F } ≤ γ; and

2. max{∥µ1 − µ2∥Σ1 , ∥µ1 − µ2∥Σ2} ≤ γ.

Let Y ∼ N (µ1, η
2Σ1) and define L := LN (µ1,η2Σ1)∥N (µ2,η2Σ2)(Y ). Then

L ≤ γ2

2
+

γ2

2η2
+ 2γ

√
ln(2/δ) + 2γ ln(2/δ) + 2γ

√
2 ln(2/δ)/η (9)

with probability at least 1− δ.

Proof. We directly utilize Lemma A.6 and bound each term in Eq. (3). For the first term, we have, using Fact A.3 and that
the eigenvalues of Σ−1/2

2 Σ1Σ
−1/2
2 are at least 1/2 by assumption (since γ < 1/2), we have6

DKL (N (µ1, ηΣ1) ∥ N (µ2, ηΣ2)) ≤
1

2

[
∥Σ−1/2

2 Σ1Σ
−1/2
2 − Id∥2F + (µ2 − µ1)

⊤(η2Σ2)
−1(µ2 − µ1)

]
≤ 1

2

[
γ2 +

γ2

η2

]

The second term in Eq. (3) is bounded by 2γ
√
ln(2/δ). The third term in Eq. (3) is bounded by 2γ ln(2/δ). Finally, the

fourth term in Eq. (3) is bounded by (1 + γ)γη
√

2 ln(2/δ).

The next lemma shows thatRMEAN(µ,Σ, η) concentrates tightly around µ w.r.t. Mahalanobis distance.

Lemma F.4. Let µ̃ = RMEAN(µ,Σ, η). Then P
[
∥µ̃− µ∥2Σ ≥ 3η2(d+ ln(1/β))

]
≤ β.

6Note that we use that Σ−1/2
2 Σ1Σ

−1/2
2 and Σ

1/2
1 Σ−1

2 Σ
1/2
1 have the same spectrum (see Fact A.9).
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Proof. Recall that µ̃ = µ+ ηΣ1/2g where g ∼ N (0, Id). Thus, ∥µ̃− µ∥2Σ = η2∥g∥22. Applying Lemma A.5 gives that

P
[
∥µ̃− µ∥2Σ ≥ 3η2(d+ ln(1/β))

]
= P

[
∥g∥22 ≥ 3(d+ ln(1/β))

]
≤ P

[
∥g∥22 ≥ d+ 2

√
d ln(1/β) + 2 ln(1/β)

]
≤ 1/β,

where in the first inequality, we used that 2
√
d ln(1/β) ≤ d+ ln(1/β).

Proof of Lemma F.2. Note that

γ ≤ εα

24 ln(2/δ)
√

d+ ln(1/β)
≤ min

{√
ε

2
,

√
εα2

6(d+ ln(1/β))
,

ε

8 ln(2/δ)
,

εα

24
√

ln(2/δ)(d+ ln(1/β))

}

so the first claim follows by Lemma C.9 and plugging γ and η into Lemma F.3 to make each term in Eq. (9) is at most ε/4.
Accuracy follows from Lemma F.4 using our choice of η.

F.3. Noising the Covariance Matrix

DefineRCOV(Σ, η) = Σ1/2(Id + ηG)(Id + ηG)⊤Σ1/2 where G ∈ Rd×d is a matrix with independent N (0, 1) entries. We
require the following lemma which is paraphrased from Lemma 5.1 and Lemma 5.2 in (Ashtiani & Liaw, 2022). A proof
can be found in Appendix F.5.

Lemma F.5 ( (Ashtiani & Liaw, 2022), Lemma 5.1 & Lemma 5.2). There are absolute constant C1, C2 > 0 such that the
following holds. Let ε, δ, β ∈ (0, 1] and set η = α

C1

√
d(

√
d+
√

ln(4/β))
.

• Suppose that γ ≤ εα

C2

√
d2(d+ln(4/β))·ln(2/δ)

. If Σ1,Σ2 are positive-definite d× d matrices such that

max{∥Σ1/2
1 Σ−1

2 Σ
1/2
1 − Id∥, ∥Σ1/2

2 Σ−1
1 Σ

1/2
2 − Id∥} ≤ γ

thenRCOV(Σ1, η) andRCOV(Σ2, η) are (ε, δ)-indistinguishable.

• Let Σ̃ = RCOV(Σ, η). Then

max
{
∥Σ−1/2Σ̃Σ−1/2 − Id∥F , ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥F

}
≤ α

with probability at least 1− β.

F.4. Masking a Single Gaussian Component

Now we use the previous three subsections to devise a masking mechanism for masking a single component. Let ηW =
α√

2+2 ln(1/β)
, ηMEAN = α√

3(d+ln(1/β))
and ηCOV = α

C1(
√
d+
√

ln(4/β)
for a sufficiently large constant C1. Consider the

mechanism

BCOMP(w, µ,Σ) = (RW(w, ηW),RMEAN(µ,Σ, ηMEAN),RCOV(Σ, ηCOV)) (10)

Proof of Lemma 4.2. The fact that BCOMP is a (γ, 3ε, 3δ)-masking follow from Lemma F.1, Lemma F.2, and Lemma F.5
along with basic composition. That BCOMP is (α, 3β)-concentrated also follow from Lemma F.1, Lemma F.2, and Lemma F.5
along with a union bound.
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F.5. Proof of Lemma F.5

To prove Lemma F.5, we require the following two lemmas from Ashtiani & Liaw (2022). Note that Lemma F.7 is slightly
different than what is stated in Ashtiani & Liaw (2022) but follows easily from the proof.

Lemma F.6 ((Ashtiani & Liaw, 2022), Lemma 5.1). Let d ∈ N, η > 0, ε ∈ (0, 1], δ ∈ (0, 1], γ > 0 and suppose that

γ ≤ min

{√
ε

2d(d+ 1/η2)
,

ε

8d
√

ln(2/δ)
,

ε

8 ln(2/δ)
,

εη

12
√
d
√

ln(2/δ)

}
. (11)

Let Σ1,Σ2 be two positive-definite d× d matrices. Suppose that

max{∥Σ1/2
1 Σ−1

2 Σ
1/2
1 − Id∥, ∥Σ1/2

2 Σ−1
1 Σ

1/2
2 − Id∥} ≤ γ.

DefineRCOV(Σ, η) = Σ1/2(I + ηG)(I + ηG)⊤Σ1/2 where G ∼ Rd×d is a matrix with independent N (0, 1) entries. Then
RCOV(Σ1, η) andRCOV(Σ2, η) are (ε, δ)-indistinguishable.

Lemma F.7 ((Ashtiani & Liaw, 2022), Lemma 5.2). There is a sufficiently large constant C > 0 such that the following
holds. Let β > 0 and Σ be a positive-definite d× d matrix and set η = α

C
√
d(

√
d+
√

ln(4/β))
. If Σ̃ = RCOV(Σ, η) then

max
{
∥Σ−1/2Σ̃Σ−1/2 − Id∥F , ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥F

}
≤ α

with probability at least 1− β.

Remark F.8. Lemma F.7 is stated in Ashtiani & Liaw (2022) with respect to spectral distance while we state it with respect
to Frobenius distance. Thus, we scaled η down by a factor of

√
d compared to Ashtiani & Liaw (2022).

Proof of Lemma F.5. For the first assertion, it suffices to show that the inequality in Eq. (11) holds. Since Plugging η into
the fourth term of Eq. (11), we note that

γ ≤ εα

C2

√
d2(d+ ln(4/β)) ln(2/δ)

. (12)

Thus, it is clear that γ is bounded above by the second and third terms of Eq. (11) provided C2 is sufficiently large. Next, we
prove that γ is bounded above by the first term in Eq. (11). Indeed, we have

η2 =
α2

C2
1d(
√
d+

√
ln(4/β))2

≥ α2

2C2
1d(d+ ln(4/β))

,

where in the last inequality we used the fact that (a+ b)2 ≤ 2a2 + 2b2 for any real numbers a, b. Plugging this bound of η2

into Eq. (11) and some calculations give that

√
ε

2d(d+ 1/η2)
≥

√
εα2

C3d2(d+ ln(4/β))
, (13)

for some constant C3 > 0. Thus, if C2 is large enough then the right side of Eq. (12) is upper bounded by the right side of
Eq. (13). In particular, the smallest term in Eq. (11) is the fourth term. Finally, it is straightforward to check that γ is at most
the last term in Eq. (12) by plugging in the value of η.

G. Missing Proofs from Section 5
G.1. Proof of Lemma 5.1

Proof. Applying Lemma 3.5 for masking mixtures (with ε, δ in Lemma 3.5 replaced by 3ε, 3δ, respectively), we have, for
every δ′ > 0, that BGMM is a (γ, ε′, 3kδ + δ′)-masking mechanism where

ε′ = 3
√

2k ln(1/δ′)ε+ 3kε(e3ε − 1).
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a (γ, 3
√
2k ln(1/δ′)ε+ 3kε(e3ε − 1), 3kδ + δ′)-masking mechanism. As this is true for any δ′, we can take δ′ = 3kδ and

applying the numeric inequality ex ≤ 1 + 2x, valid for x < ln(2) (see Fact A.7) to get that

ε′ ≤ 3
√
2k ln(1/3kδ)ε+ 18kε2,

Finally, to prove the accuracy part (BGMM is (α, 3kβ)-concentrated), we apply the accuracy part of Lemma 3.5 for masking
mixtures which was proved by union bound for all i ∈ [k]. Also defining the distance to be the maximum between all three
component parameters; weight w, mean µ, and covariance matrix Σ.

distPARAM({(wi, µi,Σi)}i∈[k], {(w′
i, µ

′
i,Σ

′
i)}i∈[k]) = min

π
max
i∈[k]

distCOMP((wπ(i), µπ(i),Σπ(i)), (w
′
i, µ

′
i,Σ

′
i)).

We can conclude that
distPARAM(BGMM({(wi, µi,Σi)}i∈[k]), {(wi, µi,Σi)}i∈[k]) ≤ α

with probability at least 1− 3kβ.

Now we have BGMM is a (γ, 3
√
2k ln(1/3kδ)ε + 18kε2, 6kδ)-masking mechanism with respect to (FGMM,distPARAM).

Moreover, BGMM is (α, 3kβ)-concentrated.

To simplify it, let ε′ < ln(2)/3, δ′ < 1, α′ < 1, β′ < 1 be parameters. We set δ = δ′/6k, β = β′/3k,

α = α′ and ε = min

{
ε′

6
√

2k ln(1/3kδ)
,
√

ε′

36k

}
≥ ε′√

72k ln(2/δ′)
. Then for sufficiently large constant C such that if

γ ≤ ε′α′

C2

√
k ln(2/δ′)

√
d(d+ln(12k/β′))·ln(12k/δ′)

, BGMM is a (γ, ε′, δ′)-masking mechanism that is (α′, β′)-concentrated. This

proves the claim.

G.2. Proof of Lemma 5.2

Proof of Lemma 5.2. Lemma 4.1 asserts that distCOMP satisfies 1-restricted (3/2)-approximate triangle inequality. Therefore,
applying Lemma 3.6 (and recalling Definition 3.1) distPARAM satisfies 1-restricted (3/2)-approximate triangle inequality.

H. Missing Proofs from Section 6
Proof of Lemma 6.3. Recall from Definition 1.4 that distGMM is defined as

distGMM (F, F ′) = min
π

max
i∈[k]

max
{
|wi − w

′

π(i)|, dTV

(
N (µi,Σi),N (µ

′

π(i),Σ
′

π(i))
)}

where π is chosen from the set of all permutations over [k]. Also recall that

distPARAM(F, F
′) = min

π
max
i∈[k]

distCOMP((wπ(i), µπ(i),Σπ(i)), (w
′
i, µ

′
i,Σ

′
i)),

where distCOMP is as defined in Section 4.

By Theorem 1.8, it is straightforward to check that 1
200 distPARAM(F, F

′) ≤ distGMM(F, F
′) ≤ 1√

2
distPARAM(F, F

′).
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