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Abstract
Iterative methods are ubiquitous in large-scale
scientific computing applications, and a number
of approaches based on meta-learning have been
recently proposed to accelerate them. However,
a systematic study of these approaches and how
they differ from meta-learning is lacking. In this
paper, we propose a framework to analyze such
learning-based acceleration approaches, where
one can immediately identify a departure from
classical meta-learning. We theoretically show
that this departure may lead to arbitrary deteri-
oration of model performance, and at the same
time, we identify a methodology to ameliorate it
by modifying the loss objective, leading to a novel
training method for learning-based acceleration
of iterative algorithms. We demonstrate the sig-
nificant advantage and versatility of the proposed
approach through various numerical applications.

1. Introduction
It is common and important in science and engineering to
solve similar computational problems repeatedly. For ex-
ample, in an actual project of structural engineering, the
structure design is considered iteratively to satisfy various
constraints, such as safety, cost, and building codes. This
iterative design process often involves a large number of
structural simulations (Gallet et al., 2022). Another example
is systems biology, where an important but challenging prob-
lem is to estimate parameters of mathematical models for
biological systems from observation data, and solving this
inverse problem often requires many numerical simulations
(Moles et al., 2003; Chou & Voit, 2009). In these situations,
we can utilize the data of the previously solved problems to
solve the next similar but unseen problems more efficiently,
and machine learning is a natural and effective approach for
this.
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Thus, in recent years, many learning-based methods have
been proposed for repeated solutions of computational prob-
lems. These range from the direct prediction of solutions
as a supervised learning problem (Guo et al., 2016; Tang
et al., 2017; Shan et al., 2020; Özbay et al., 2021; Cheng
et al., 2021; Pfaff et al., 2021; Li et al., 2021) to tightly
coupling machine learning and traditional scientific com-
puting to take advantage of both (Ajuria Illarramendi et al.,
2020; Um et al., 2020; Huang et al., 2020; Vaupel et al.,
2020; Luna et al., 2021; Nikolopoulos et al., 2022). This
paper focuses on the acceleration of iterative algorithms by
(meta-)learning (Feliu-Fabà et al., 2020; Venkataraman &
Amos, 2021; Liu et al., 2022; Huang et al., 2022; Guo et al.,
2022; Chen et al., 2022; Psaros et al., 2022), which belongs
to the second class. For instance, (Chen et al., 2022) uses
meta-learning to generate smoothers of the Multi-grid Net-
work for parametrized partial differential equations (PDEs),
and (Guo et al., 2022) proposes a meta-learning approach to
learn effective solvers based on the Runge-Kutta method for
ordinary differential equations. In (Liu et al., 2022; Huang
et al., 2022; Psaros et al., 2022), meta-learning is used to
accelerate the training of physics-informed neural networks
for solving PDEs.

However, to date, there lacks a systematic scrutiny of the
overall approach. For example, does directly translating
a meta-learning algorithm, such as gradient-based meta-
learning (Hospedales et al., 2021), necessarily lead to ac-
celeration in iterative methods? In this work, we perform a
systematic framework to study this problem, where we find
that there is indeed a mismatch between currently proposed
training methods and desirable outcomes for scientific com-
puting. Using numerical examples and theoretical analysis,
we show that minimizing the solution error does not nec-
essarily speed up the computation. Based on our analysis,
we propose a novel and principled training approach for
learning-based acceleration of iterative methods along with
a practical loss function that enables gradient-based learning
algorithms.

Our main contributions can be summarized as follows:

1. In Section 2, we propose a general framework, called
gradient-based meta-solving, to analyze and develop
learning-based numerical methods. Using the frame-
work, we reveal the mismatch between the training
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and testing of learning-based iterative methods in the
literature. We show numerically and theoretically that
the mismatch actually causes a problem.

2. In Section 3, we propose a novel training approach to
directly minimize the number of iterations along with
a differentiable loss function for this. Furthermore,
we theoretically show that our approach can perform
arbitrarily better than the current one and numerically
confirm the advantage.

3. In Section 4, we demonstrate the significant perfor-
mance improvement and versatility of the proposed
method through numerical examples, including nonlin-
ear differential equations and nonstationary iterative
methods.

2. Problem Formulation and Analysis of
Current Approaches

Iterative solvers are powerful tools to solve computational
problems. For example, the Jacobi method and SOR (Suc-
cessive Over Relaxation) method are used to solve PDEs
(Saad, 2003). In iterative methods, an iterative function is
iteratively applied to the current approximate solution to up-
date it closer to the true solution until it reaches a criterion,
such as a certain number of iterations or error tolerance.
These solvers have parameters, such as initial guesses and
relaxation factors, and solver performance is highly affected
by the parameters. However, the appropriate parameters de-
pend on problems and solver configurations, and in practice,
it is difficult to know them before solving problems.

In order to overcome this difficulty, many learning-based
iterative solvers have been proposed in the literature (Hsieh
et al., 2018; Um et al., 2020; Stanziola et al., 2021; Chen
et al., 2022; Kaneda et al., 2022; Azulay & Treister, 2022;
Nikolopoulos et al., 2022). However, there lacks a uni-
fied perspective to organize and understand them. Thus,
in Section 2.1, we first introduce a general and systematic
framework for analyzing and developing learning-based
numerical methods. Using this framework, we identify a
problem in the current approach and study how it degrades
performance in Section 2.2.

2.1. General Formulation of Meta-solving

Let us first introduce a general framework, called meta-
solving, to analyze learning-based numerical methods in a
unified way. We fix the required notations. A task τ is any
computational problem of interest. Meta-solving considers
the solution of not one but a distribution of tasks, so we
consider a task space (T , P ) as a probability space that
consists of a set of tasks T and a task distribution P . A loss
function L : T × U → R ∪ {∞} is a function to measure
how well the task τ is solved, where U is the solution space
in which we find a solution. To solve a task τ means to find

an approximate solution û ∈ U which minimizes L(τ, û).
A solver Φ is a function from T × Θ to U . θ ∈ Θ is the
parameter of Φ, and Θ is its parameter space. Here, θ may
or may not be trainable, depending on the problem. Then,
solving a task τ ∈ T by a solver Φ with a parameter θ is
denoted by Φ(τ ; θ) = û. A meta-solver Ψ is a function from
T × Ω to Θ, where ω ∈ Ω is a parameter of Ψ and Ω is its
parameter space. A meta-solver Ψ parametrized by ω ∈ Ω
is expected to generate an appropriate parameter θτ ∈ Θ for
solving a task τ ∈ T with a solver Φ, which is denoted by
Ψ(τ ;ω) = θτ . When Φ and Ψ are clear from the context,
we write Φ(τ ; Ψ(τ ;ω)) as û(ω) and L(τ,Φ(τ ; Ψ(τ ;ω))) as
L(τ ;ω) for simplicity. Then, by using the notations above,
our meta-solving problem is defined as follows:

Definition 2.1 (Meta-solving problem). For a given task
space (T , P ), loss function L, solver Φ, and meta-solver Ψ,
find ω ∈ Ω which minimizes Eτ∼P [L(τ ;ω)].

If L, Φ, and Ψ are differentiable, then gradient-based opti-
mization algorithms, such as SGD and Adam (Kingma &
Ba, 2015), can be used to solve the meta-solving problem.
We call this approach gradient-based meta-solving (GBMS)
as a generalization of gradient-based meta-learning as repre-
sented by MAML (Finn et al., 2017). As a typical example
of the meta-solving problem, we consider learning how to
choose good initial guesses of iterative solvers (Ajuria Illar-
ramendi et al., 2020; Vaupel et al., 2020; Um et al., 2020;
Özbay et al., 2021; Luna et al., 2021). Other examples are
presented in Appendix A.
Example 1 (Generating initial guesses). Suppose that we
need to repeatedly solve similar instances of a class of differ-
ential equations with a given iterative solver. The iterative
solver requires an initial guess for each problem instance,
which sensitively affects the accuracy and efficiency of the
solution. Here, finding a strategy to optimally select an
initial guess depending on each problem instance can be
viewed as a meta-solving problem. For example, let us
consider repeatedly solving 1D Poisson equations under
different source terms. The task τ is to solve the 1D Poisson
equation − d2

dx2u(x) = f(x) with Dirichlet boundary con-
dition u(0) = u(1) = 0. By discretizing it with the finite
difference scheme, we obtain the linear system Au = f ,
where A ∈ RN×N and u, f ∈ RN . Thus, our task τ is
represented by τ = {fτ}, and the task distribution P is the
distribution of fτ . The loss function L : T ×U → R≥0 mea-
sures the accuracy of approximate solution û ∈ U = RN .
For example, L(τ, û) = ∥Aû− fτ∥2 is a possible choice. If
we have a reference solution uτ , then L(τ, û) = ∥û− uτ∥2
can be another choice. The solver Φ : T × Θ → U is an
iterative solver with an initial guess θ ∈ Θ for the Poisson
equation. For example, suppose that Φ is the Jacobi method.
The meta-solver Ψ : T ×Ω→ Θ is a strategy characterized
by ω ∈ Ω to select the initial guess θτ ∈ Θ for each task
τ ∈ T . For example, Ψ is a neural network with weight
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ω. Then, finding the strategy to select initial guesses of the
iterative solver becomes a meta-solving problem.

Besides scientific computing applications, the meta-solving
framework also includes classical meta-learning problems,
such as few-shot learning with MAML, where τ is a learning
problem, Φ is one or few steps gradient descent for a neural
network starting at initialization θ, Ψ is a constant function
returning its weights ω, and ω = θ is optimized to be easily
fine-tuned for new tasks. We remark two key differences
between Example 1 and the example of MAML. First, in
Example 1, the initial guess θτ is selected for each task τ ,
while in MAML, the initialization θ is common to all tasks.
Second, in the MAML example, we cannot take too many
gradient descent steps in the inner loop at test time, because
it can harm generalization. Thus, to be consistent with the
test time setting, it is reasonable that we take a fixed small
number of steps of gradient descent in the inner loop during
training. By contrast, in Example 1, the inner loop is not a
supervised learning but an iterative algorithm, and we can
and often must take many iterations to obtain a solution of
the required accuracy at test time.

Here, the second difference gives rise to the question about
the choice of L, which should be an indicator of how well
the iterative solver Φ solves the task τ . However, if we
iterate Φ until the solution error reaches a given tolerance
ϵ, the error finally becomes ϵ and cannot be an indicator of
solver performance. Instead, how fast the solver Φ finds a
solution û satisfying the tolerance ϵ should be used as the
performance indicator in this case. In fact, in most scientific
applications, a required tolerance is set in advance, and
iterative methods are assessed by the computational cost, in
particular, the number of iterations, to achieve the tolerance
(Saad, 2003). Thus, to be consistent with this test setting,
the principled choice of loss function should be the number
of iterations to reach a given tolerance ϵ, which we refer Lϵ

through this paper.

2.2. Analysis of the Approach of Solution Error
Minimization

Although Lϵ is the true loss function to be minimized, mini-
mizing solution errors is the current main approach in the
literature for learning parameters of iterative solvers. For
example, in (Um et al., 2020), a neural network is used to
generate an initial guess for the Conjugate Gradient (CG)
solver. It is trained to minimize the solution error after a
fixed number of CG iterations but evaluated by the number
of CG iterations to reach a given tolerance. Similarly, (Chen
et al., 2022) uses a neural network to generate the smoother
of PDE-MgNet, a neural network representing the multigrid
method. It is trained to minimize the solution error after one
step of PDE-MgNet but evaluated by the number of steps of
PDE-MgNet to reach a given tolerance.

These works can be interpreted that the solution error after
m iterations, which we refer Lm, is used as a surrogate of
Lϵ. Using the meta-solving framework, it can be understood
that the current approach is trying to train meta-solver Ψ by
applying gradient-based learning algorithms to the empirical
version of

min
ω

E
τ∼P

[Lm(τ,Φm(τ ; Ψ(τ ;ω)))] (1)

as a surrogate of

min
ω

E
τ∼P

[Lϵ(τ,Φϵ(τ ; Ψ(τ ;ω)))], (2)

where Φm is an iterative solver whose stopping criterion is
the maximum number of iterations m, and Φϵ is the same
kind of iterative solver but has a different stopping criterion,
error tolerance ϵ.

The key question is now, is minimizing solution error Lm

sufficient to minimize, at least approximately, the number
of iterations Lϵ? In other words, is (1) a valid surrogate
for (2)? We hereafter show that the answer is negative. In
fact, Lϵ can be arbitrarily large even if Lm is minimized,
especially when the task difficulty (i.e. number of itera-
tions required to achieve a fixed accuracy) varies widely
between instances. This highlights a significant departure
from classical meta-learning, and must be taken into ac-
count in algorithm design for scientific computing. Let us
first illustrate this phenomenon using a numerical example
and its concrete theoretical analysis. A resolution of this
problem leading to our proposed method will be introduced
in Section 3.

2.2.1. A COUNTER-EXAMPLE: POISSON EQUATION

Let us recall Example 1 and apply the current approach to
it. The task τ = {fτ} is to solve the discretized 1D Pois-
son equation Au = fτ . During training, we use the Jacobi
method Φm, which starts with the initial guess θ = û(0)

and iterates m times to obtain the approximate solution
û(m) ∈ U . However, during testing, we use the Jacobi
method Φϵ whose stopping criterion is tolerance ϵ, which we
set ϵ = 10−6 in this example. We consider two task distri-
butions, P1 and P2, and their mixture P = pP1+(1−p)P2

with weight p ∈ [0, 1]. P1 and P2 are designed to gen-
erate difficult (i.e. requiring a large number of iterations
to solve) tasks and easy ones respectively (Appendix C.1).
To generate the initial guess û(0), two meta-solvers Ψnn
and Ψbase are considered. Ψnn is a fully-connected neu-
ral network with weights ω, which takes fτ as inputs
and generates û

(0)
τ depending on each task τ . Ψbase is a

constant baseline, which gives the constant initial guess
û(0) = 0 for all tasks. Note that Ψbase is already a good
choice, because uτ (0) = uτ (1) = 0 and Eτ∼P [uτ ] = 0.
The loss function is the relative error after m iterations,
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Lm =
∥∥û(m) −A−1fτ

∥∥2 / ∥∥A−1fτ
∥∥2. Then, we solve

(1) by GBMS as a surrogate of (2). We note that the case
m = 0, where Φ0 is the identity function that returns the
initial guess, corresponds to using the solution predicted by
ordinary supervised learning as the initial guess (Ajuria Il-
larramendi et al., 2020; Özbay et al., 2021). The case m > 0
is also studied in (Um et al., 2020). Other details, including
the neural network architecture and hyper-parameters for
training, are presented in Appendix C.1.

The trained meta-solvers are assessed by Lϵ, the number of
iterations to achieve the target tolerance ϵ = 10−6, which is
written by Lϵ(τ ;ω) = min{m ∈ Z≥0 :

√
Lm(τ ;ω) ≤ ϵ}

as a function of τ and ω.

Figure 1 compares the performance of the meta-solvers
trained with different m, and it indicates the failure of the
current approach (1). For the distribution of p = 0, where
all tasks are sampled from the easy distribution P2 and
have similar difficulties, Ψnn successfully reduces the num-
ber of iterations by 76% compared to the baseline Ψbase
by choosing a good hyper-parameter m = 25. As for the
hyper-parameter m, we note that larger m does not nec-
essarily lead to better performance, which will be shown
in Proposition 2.2, and the best training iteration number
m is difficult to guess in advance. For the distribution of
p = 0.01, where tasks are sampled from the difficult distri-
bution P1 with probability 0.01 and the easy distribution P2

with probability 0.99, the performance of Ψnn degrades sig-
nificantly. In this case, the reduction is only 26% compared
to the baseline Ψbase even for the tuned hyper-parameter.

Figure 2 illustrates the cause of this degradation. In the
case of p = 0, Lm takes similar values for all tasks, and
minimizing Eτ∼P [Lm] can reduce the number of iterations
for all tasks uniformly. However, in the case of p = 0.01,
Lm takes large values for the difficult tasks and small values
for the easy tasks, and Eτ∼P [Lm] is dominated by a small
number of difficult tasks. Consequently, the trained meta-
solver with the loss Lm reduces the number of iterations for
the difficult tasks but increases it for easy tasks consisting of
the majority (Figure 2(e)). In other words, Lm is sensitive
to difficult outliers, which degrades the performance of the
meta-solver.

2.2.2. ANALYSIS ON THE COUNTER-EXAMPLE

To understand the property of the current approach (1) and
the cause of its performance degradation, we analyze the
counter-example in a simpler setting. All of the proofs are
presented in Appendix B.

Let our task space contain two tasks T = {τ1, τ2}, where
τi = {fi} is a task to solve Au = fi. To solve τi, we
continue to use the Jacobi method Φm that starts with an
initial guess û(0) and gives an approximate solution û =

Figure 1. The average number of iterations of the Jacobi method to
reach tolerance ϵ = 10−6 on the test data. The rightmost result is
obtained by training with the proposed loss function L̃(m)

ϵ , and the
others are obtained by the conventional loss function Lm. The two
dotted lines indicate the baseline performance of Ψbase for each
task distribution of the corresponding color. The error bar indicates
the standard deviation. Specific numbers are presented in Table 3.

û(m). We assume that fi = ciµivi, where ci ∈ R≥0 is
a constant, and vi is the eigenvector of A corresponding
to the eigenvalue µi. We also assume µ1 < µ2, which
means τ1 is more difficult than τ2 for the Jacobi method.
Let the task distribution P generates τ1 with probability p
and τ2 with probability 1− p respectively. Let Lm(τi, û) =∥∥u(m) −A−1fi

∥∥2. We note that the analysis in this paper
is also valid for a loss function measuring the residual, e.g.
Lm(τi, û) =

∥∥Au(m) − fi
∥∥2. Suppose that the meta-solver

Ψ gives a constant multiple of f as initial guess û(0), i.e.
û
(0)
i = Ψ(τi;ω) = ωfi, where ω ∈ R is the trainable

parameter of Ψ.

For the above problem setting, we can show that the solution
error minimization (1) has the unique minimizer ωm =
argminω Eτ∼P [Lm(τ,Φm(τ ; Ψ(τ ;ω)))] (Proposition B.2).
As for the minimizer ωm, we have the following result,
which implies a problem in the current approach of solution
error minimization.

Proposition 2.2. For any p ∈ (0, 1), we have

lim
m→∞

ωm =
1

µ1
. (3)

For any ϵ > 0 and p ∈ (0, 1), there exists m0 such that for
any m1 and m2 satisfying m0 < m1 < m2,

E
τ∼P

[Lϵ(τ ;ωm1)] ≤ E
τ∼P

[Lϵ(τ ;ωm2)]. (4)

Furthermore, for any ϵ > 0 and M > 0, there exists task
space (T , P ) such that for any m ≥ 0,

E
τ∼P

[Lϵ(τ ;ωm)] > M. (5)

Note that if ω = 1/µi, the meta-solver Ψ gives the best ini-
tial guess, the solution, for τi, i.e. Ψ(τi; 1/µi) = fi/µi =
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(a) p = 0 and Ψbase (b) p = 0 and Ψnn trained with m = 25 (c) p = 0 and Ψnn trained with ϵ = 10−6

(d) p = 0.01 and Ψbase (e) p = 0.01 and Ψnn trained with m = 25 (f) p = 0.01 and Ψnn trained with ϵ = 10−6

Figure 2. Comparison of distributions of the number of iterations to reach tolerance ϵ = 10−6 on the test data.

A−1fi. Proposition 2.2 shows the solution error is not a
good surrogate loss for learning to accelerate iterative meth-
ods in the following sense. First, Equation (3) shows that
Eτi∼P [Lm] is dominated by the loss for τ1 as m becomes
large. Hence, τ2 is ignored regardless of its probability 1−p,
which can cause a problem when 1 − p is large. Second,
Inequality (4) implies that training with more iterative steps
may lead to worse performance. This is because with larger
m, Lm is more dominated by the difficult task τ1, and ωm

goes closer to 1/µ1. However, the optimal ω minimizing Lϵ,
which will be explained in Proposition 3.1, lies in the inter-
val (1/µ2, 1/µ1). Hence, if we increase m, ωm moves away
from the optimal ω and leads to worse performance. This
performance degradation can happen regardless of p, but
when p is small, it is more critical because the optimal ω is
near 1/µ2. Finally, Inequality (5) shows that the end result
can be arbitrarily bad. These are consistent with numeri-
cal results in Section 2.2.1. This motivates our subsequent
proposal of a principled approach to achieve acceleration of
iterative methods using meta-learning techniques.

3. A Novel Approach to Accelerate Iterative
Methods

As we observe from the example presented in Section 2, the
main issue is that in general, the solution error Lm is not a
valid surrogate for the number of iterations Lϵ. Hence, the
resolution of this problem amounts to finding a valid surro-
gate for Lϵ that is also amenable to training. An advantage
of our formalism for GBMS introduced in Section 2.1 is that
it tells us exactly the right loss to minimize, which is pre-

cisely (2). It remains then to find an approximation of this
loss function, and this is the basis of the proposed method,
which will be explained in Section 3.2. First, we return to
the example in Section 2.2.2 and show now that minimizing
Lϵ instead of Lm guarantees performance improvement.

3.1. Minimizing the Number of Iterations

3.1.1. ANALYSIS ON THE COUNTER-EXAMPLE

To see the property and advantage of directly minimizing
Lϵ, we analyze the same example in Section 2.2.2. The
problem setting is the same as in Section 2.2.2, except that
we minimize Lϵ instead of Lm with Φϵ instead of Φm. Note
that we relax the number of iterations m ∈ Z≥0 to m ∈ R≥0

for the convenience of the analysis. All of the proofs are
presented in Appendix B.

As in Section 2.2.2, we can find the minimizer ωϵ =
argminω Eτ∼P [Lϵ(τ,Φϵ(τ ; Ψ(τ ;ω)))] by simple calcula-
tion (Proposition B.3). As for the minimizer ωϵ, we have
the counterpart of Proposition 2.2:

Proposition 3.1. We have

lim
ϵ→0

ωϵ =

{
1
µ1

if p > p0
1
µ2

if p < p0,
(6)

where p0 is a constant depending on µ1 and µ2. If
c1c2(µ2−µ1)
2(c1µ1+c2µ2)

> δ1 > δ2 and p /∈ (p0, pδ1), then for any
ϵ ≤ δ2,

E
τ∼P

[Lϵ(τ ;ωδ1)] > E
τ∼P

[Lϵ(τ ;ωδ2)], (7)
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where pδ is a constant depending on tolerance δ expained
in Proposition B.3, and p0 is its limit as δ tends to 0. Fur-
thermore, for any c > 0, ϵ > 0, and δ ≥ ϵ, there exists a
task space (T , P ) such that for any m ≥ 0,

E
τ∼P

[Lϵ(τ ;ωm)] > c E
τ∼P

[Lϵ(τ ;ωδ)]. (8)

Note that the assumption δ1 < c1c2(µ2−µ1)
2(c1µ1+c2µ2)

is to avoid
the trivial case, minω Eτi∼P [Lϵ(τi;ω)] = 0, and the inter-
val (p0, pδ1) is reasonably narrow for such small δ1. From
Proposition 3.1, the following insights can be gleaned. First,
the minimizer ωϵ has different limits depending on task
probability and difficulty, while the limit of ωm is always
determined by the difficult task. In other words, Lϵ and Lm

weight tasks differently. Second, Inequality (7) guarantees
the improvement, that is, training with the smaller toler-
ance δ2 leads to better performance for a target tolerance
ϵ ≤ δ2. We remark that, as shown in Proposition 2.2, this
kind of guarantee is not available in the current approach,
where a larger number of training iterations m2, i.e. larger
training cost, does not necessarily improve the performance.
Furthermore, (8) implies the existence of a problem where
the current method, even with hyper-parameter tuning, per-
forms arbitrarily worse than the right problem formulation
(2). These clearly show the advantage and necessity of a
valid surrogate loss function for Lϵ, which we will introduce
in Section 3.2.

3.1.2. RESOLVING THE COUNTER-EXAMPLE

Before introducing our surrogate loss function, we present
numerical evidence that the counter-example, solving Pois-
son equations in Section 2.2.1, is resolved by directly mini-
mizing the number of iterations Lϵ. The problem setting is
the same as in Section 2.2.1 except for the solver and the
loss function. Instead of solver Φm, we use solver Φϵ that
stops when the error Lm becomes smaller than ϵ. Also, we
directly minimizeLϵ instead of Lm. Although Lϵ is discrete
and (2) cannot be solved by gradient-based algorithms, we
can use a differentiable surrogate loss function L̃ϵ for Lϵ,
which will be explained in Section 3.2. The following nu-
merical result is obtained by solving the surrogate problem
(11) by Algorithm 1.

Figure 1 and Figure 2 show the advantage of the proposed
approach (2) over the current one (1). For the case of p = 0,
although the current method can perform comparably with
ours by choosing a good hyper-parameter m = 25, ours
performs better without the hyper-parameter tuning. For the
case of p = 0.01, the current method degrades and performs
poorly even with the hyper-parameter tuning, while ours
keeps its performance and reduces the number of iterations
by 78% compared to the constant baseline Ψbase and 70%
compared to the best-tuned current method (m = 25). We
note that this is the case implied in Proposition 3.1. Fig-

ure 2 illustrates the cause of this performance difference.
While the current method is distracted by a few difficult
tasks and increases the number of iterations for the majority
of easy tasks, our method reduces the number of iterations
for all tasks in particular for the easy ones. This difference
originates from the property of Lm and Lϵ explained in
Section 3.1.1. That is, Lm can be dominated by the small
number of difficult tasks whereas Lϵ can balance tasks of
different difficulties depending on their difficulty and proba-
bility.

3.2. Surrogate Problem

We have theoretically and numerically shown the advan-
tage of directly minimizing the number of iterations Lϵ over
the current approach of minimizing Lm. Now, the last re-
maining issue is how to minimize Eτ∼P [Lϵ]. As with any
machine learning problem, we only have access to finite
samples from the task space (T , P ). Thus, we want to mini-
mize the empirical loss: minω

1
N

∑N
i=1 Lϵ(τi;ω). However,

the problem is that Lϵ is not differentiable with respect to
ω. To overcome this issue, we introduce a differentiable
surrogate loss function L̃ϵ for Lϵ.

To design the surrogate loss function, we first express Lϵ

by explicitly counting the number of iterations. We define
L(m)
ϵ by

L(k+1)
ϵ (τ ;ω) = L(k)

ϵ (τ ;ω) + 1Lk(τ ;ω)>ϵ, (9)

where L(0)
ϵ (τ ;ω) = 0, Lk is any differentiable loss func-

tion that measures the quality of the k-th step solution û(k),
and 1Lk(τ ;ω)>ϵ is the indicator function that returns 1 if
Lk(τ ;ω) > ϵ and 0 otherwise. Then, we have Lϵ(τ ;ω) =

limm→∞ L(m)
ϵ (τ ;ω) for each τ and ω. Here, L(m)

ϵ is still
not differentiable because of the indicator function. Thus,
we define L̃(m)

ϵ as a surrogate for L(m)
ϵ by replacing the

indicator function with the sigmoid function with gain pa-
rameter a (Yin et al., 2019). In summary, L̃(m)

ϵ is defined
by

L̃(k+1)
ϵ (τ ;ω) = L̃(k)

ϵ (τ ;ω) + σa(Lk(τ ;ω)− ϵ). (10)

Then, we have Lϵ(τ ;ω) = limm→∞ lima→∞ L̃(m)
ϵ (τ ;ω)

for each τ and ω.

However, in practice, the meta-solver Ψ may generate a bad
solver parameter, particularly in the early stage of training.
The bad parameter can make Lϵ very large or infinity at the
worst case, and it can slow down or even stop the training.
To avoid this, we fix the maximum number of iterations
m sufficiently large and use L̃(m)

ϵ as a surrogate for Lϵ

along with solver Φϵ,m, which stops when the error reaches
tolerance ϵ or the number of iterations reaches m. Note that
Φϵ = Φϵ,∞, Φm = Φ0,m, but Φm ̸= Φϵ,m in this notation.
Φm always do m iterations, but Φϵ,m can stop before m
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iterations when the error reaches tolerance ϵ. In summary, a
surrogate problem for (2) is defined by

min
ω

E
τ∼P

[L̃(m)
ϵ (τ,Φϵ,m(τ ; Ψ(τ ;ω)))], (11)

which can be solved by GBMS (Algorithm 1).

Algorithm 1 GBMS for minimizing the number of iterations
Input: (P, T ): task space, Ψ: meta-solver, Φ: iterative
solver, ϕ: iterative function of Φ, m: maximum number
of iterations of Φ, ϵ: tolerance of Φ, L: loss function
for solution quality, S: stopping criterion for outer loop,
Opt: gradient-based algorithm
while S is not satisfied do
τ ∼ P ▷sample task τ from P

θτ ← Ψ(τ ;ω) ▷generate θτ by Ψ with ω

k ← 0, û← Φ0(τ ; θτ ), L̃ϵ(τ, û)← 0 ▷initialize
while k < m or L(τ, û) > ϵ do
k ← k+1, L̃ϵ(τ, û)← L̃ϵ(τ, û) + σa(L(τ, û)− ϵ)
▷count iterations and compute surrogate loss
û← ϕ(û; θτ ) ▷iterate ϕ with θτ to update û

end while
ω ← Opt(ω,∇ωL̃ϵ(τ, û)) ▷update ω to minimize L̃ϵ

end while

4. Numerical Examples
In this section, we show high-performance and versatility
of the proposed method (Algorithm 1) using numerical ex-
amples in more complex scenarios, involving different task
spaces, different iterative solvers and their parameters. Only
the main results are presented in this section; details are
provided in Appendix C.

4.1. Generating Relaxation Factors

This section presents the application of the proposed method
for generating relaxation factors of the SOR method. The
SOR method is an improved version of the Gauss-Seidel
method with relaxation factors enabling faster convergence
(Saad, 2003). Its performance is sensitive to the choice of the
relaxation factor, but the optimal choice is only accessible in
simple cases (e.g. (Yang & Gobbert, 2009)) and is difficult
to obtain beforehand in general. Thus, we aim to choose a
good relaxation factor to accelerate the convergence of the
SOR method using Algorithm 1. Moreover, leveraging the
generality of Algorithm 1, we generate the relaxation factor
and initial guess simultaneously and observe its synergy.

We consider solving Robertson equation (Robertson, 1966),
which is a nonlinear ordinary differential equation that mod-

els a certain reaction of three chemicals in the form:

d

dt

 y1
y2
y3

 =

 −c1y1 + c3y2y3
c1y1 − c2y

2
2 − c3y2y3

c2y
2
2

 , (12)

 y1(0)
y2(0)
y3(0)

 =

 1
0
0

 , t ∈ [0, T ], (13)

We write (y1, y2, y3)
T as y and the right hand side of Equa-

tion (12) as f(y). Since the Robertson equation is stiff, it
is solved by implicit numerical methods (Hairer & Wanner,
2010). For simplicity, we use the backward Euler method:
yn+1 = yn+hnf(yn+1), where hn is the step size. To find
yn+1, we need to solve the nonlinear algebraic equation

gn(yn+1) := yn+1 − hnf(yn+1)− yn = 0 (14)

at every time step. For solving (14), we use the one-step
Newton-SOR method (Saad, 2003). Our task τ is to solve
(14) using the Newton-SOR method, which is represented
by τ = {c1, c2, c3, hn, yn}. Note that τ does not contain
the solution of (14), so the training is done in an unsu-
pervised manner. The loss function Lm is the residual∥∥∥gn(y(m)

n+1)
∥∥∥, and Lϵ is the number of iterations to have

Lm < ϵ. As for the task distribution, we sample c1, c2, c3
log-uniformly from [10−4, 1], [105, 109], [102, 106] respec-
tively. The solver Φϵ,m is the Newton-SOR method and its
parameter θ is a pair of relaxation factor and initial guess
(r, y

(0)
n+1). At test time, we set m = 104 and ϵ = 10−9.

We compare four meta-solvers Ψbase, Ψini, Ψrelax, and Ψboth.
The meta-solver Ψbase has no parameters, while Ψini, Ψrelax,
and Ψboth are implemented by fully-connected neural net-
works with weight ω. The meta-solver Ψbase is a classical
baseline, which uses the previous time step solution yn as
an initial guess y(0)n+1 and a constant relaxation factor rbase.
The constant relaxation factor is rbase = 1.37, which does
not depend on task τ and is chosen by the brute force search
to minimize the average number of iterations to reach tar-
get tolerance ϵ = 10−9 in the whole training data. The
meta-solver Ψini generates an initial guess yτ adaptively, but
uses the constant relaxation factor rbase. The meta-solver
Ψrelax generates a relaxation factor rτ ∈ [1, 2] adaptively
but uses the previous time step solution as an initial guess.
The meta-solver Ψboth generates both adaptively. Then, the
meta-solvers are trained by GBMS with formulations (1)
and (11) depending on the solver Φϵ,m.

The results are presented in Table 1. The significant advan-
tage of the proposed approach (11) over the baselines and
the current approach (1) is observed in Table 1(a). The best
meta-solver Ψboth with Φ10−9,2000 reduces the number of
iterations by 87% compared to the baseline, while all the
meta-solvers trained in the current approach (1) fail to out-
perform the baseline. This is because the relaxation factor
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that minimizes the number of iterations for a given toler-
ance can be very different from the relaxation factor that
minimizes the residual at a given number of iterations. Fur-
thermore, Table 1(b) implies that simultaneously generating
the initial guess and relaxation factor can create synergy.
This follows from the observation that the degree of im-
provement by Ψboth from Ψini and Ψrelax (83% and 29%)
are greater than that by Ψrelax and Ψini from Ψbase (80% and
20%).

Table 1. The average number of iterations Lϵ of the Newton-SOR
method to reach tolerance ϵ = 10−9 on the test data.

(a) Different training settings.
Ψ L ϵ m Lϵ

Ψbase - - - 70.51
Ψboth Lm - 1 199.20

- 5 105.71
- 25 114.43
- 125 109.24
- 625 190.56

L̃(m)
ϵ 10−9 2000 9.51

(b) Different meta-solvers.
Ψ L ϵ m Lϵ

Ψbase - - - 70.51
Ψini L̃(m)

ϵ 10−9 2000 55.82
Ψrelax 14.38
Ψboth 9.51

4.2. Generating Preconditioning Matrices

In this section, Algorithm 1 is applied to preconditioning
of the Conjugate Gradient (CG) method. The CG method
is an iterative method that is widely used in solving large
sparse linear systems, especially those with symmetric pos-
itive definite matrices. Its performance is dependent on
the condition number of the coefficient matrix, and a va-
riety of preconditioning methods have been proposed to
improve it. In this section, we consider ICCG(α), which
is the CG method with incomplete Cholesky factorization
(ICF) preconditioning with diagonal shift α. In ICCG(α),
the preconditioning matrix M = L̃L̃T is obtained by apply-
ing ICF to A + αI instead of A. If α is small, A + αI is
close to A but the decomposition L̃L̃T ≈ A+αI may have
poor quality or even fail. If α is large, the decomposition
L̃L̃T ≈ A + αI may have good quality but A + αI is far
from the original matrix A. Although α can affect the per-
formance of ICCG(α), there is no well-founded solution to
how to choose α for a given A (Saad, 2003). Thus, we train
a meta-solver to generate α depending on each problem
instance.

We consider linear elasticity equations:

−∇ · σ(u) = f in B (15)
σ(u) = λ tr(ϵ(u))I + 2µϵ(u) (16)

ϵ(u) =
1

2

(
∇u+ (∇u)T

)
(17)

where u is the displacement field, σ is the stress tensor, ϵ
is strain-rate tensor, λ and µ are the Lamé elasticity param-
eters, and f is the body force. Specifically, we consider
clamped beam deformation under its own weight. The
beam is clamped at the left end, i.e. u = (0, 0, 0)T at
x = 0, and has length 1 and a square cross-section of
width W . The force f is gravity acting on the beam, i.e.
f = (0, 0,−ρg)T , where ρ is the density and g is the accel-
eration due to gravity. The model is discretized using the
finite element method with 8× 8× 2 cuboids mesh, and the
resulting linear system Au = f has N = 243 unknowns.
Our task τ is to solve the linear system Au = f , and it
is represented by τ = {Wτ , λτ , µτ , ρτ}. Each pysical pa-
rameter is sampled from Wτ ∼ LogUniform(0.003, 0.3),
λτ , µτ , ρτ ∼ LogUniform(0.1, 10), which determine the
task space (T , P ). Our solver Φϵ,m is the ICCG method
and its parameter is diagonal shift α. At test time, we
set m = N = 243, the coefficient matrix size, and
ϵ = 10−6. We compare three meta-solvers Ψbase,Ψbest
and Ψnn. The meta-solver Ψbase is a baseline that pro-
vides a constant α = 0.036, which is the minimum α
that succeeds ICF for all training tasks. The meta-solver
Ψbest is another baseline that generates the optimal ατ for
each task τ by the brute force search. The meta-solver
Ψnn is a fully-connected neural network that takes τ as in-
puts and outputs ατ for each τ . The loss function Lm is
the relative residual Lm =

∥∥Aû(m) − f
∥∥ / ∥f∥, and the

Lϵ is the number of iterations to achieve target tolerance
ϵ = 10−6. In addition, we consider a regularization term
LICF(τ ;ω) = − logατ to penalize the failure of ICF. By
combining them, we use 1successLm + γ1failLICF for train-
ing with Φm and 1successL̃ϵ + γ1failLICF for training with
Φϵ, where γ is a hyperparameter that controls the penalty for
the failure of ICF, and 1success and 1fail indicates the success
and failure of ICF respectively. Then, the meta-solvers are
trained by GBMS with formulations (1) and (11) depending
on the solver Φϵ,m.

Table 2 shows the number of iterations of ICCG with diago-
nal shift α generated by the trained meta-solvers. For this
problem setting, only one meta-solver trained by the current
approach with the best hyper-parameter (m = 125) outper-
forms the baseline. All the other meta-solvers trained by
the current approach increase the number of iterations and
even fail to converge for the majority of problem instances.
This may be because the error of m-th step solution Lm is
less useful for the CG method. Residuals of the CG method
do not decrease monotonically, but often remain high and
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oscillate for a while, then decrease sharply. Thus, Lm is
not a good indicator of the performance of the CG method.
This property of the CG method makes it more difficult to
learn good α for the current approach. On the other hand,
the meta-solver trained by our approach converges for most
instances and reduces the number of iterations by 55% com-
pared to Ψbase and 33% compared to the best-tuned current
approach (m = 125) without the hyper-parameter tuning.
Furthermore, the performance of the proposed approach is
close to the optimal choice Ψbest.

Table 2. The average number of iterations Lϵ of ICCG to reach
tolerance ϵ = 10−6 on the test data. If ICF fails, it is counted as
the maximum number of iterations N = 243.

Ψ L ϵ m Lϵ convergence ratio
Ψbase - - - 115.26 0.864
Ψbest - - - 44.53 1.00
Ψnn Lm - 1 204.93 0.394

- 5 183.90 0.626
- 25 193.80 0.410
- 125 77.08 1.00
- 243 201.65 0.420

L̃(m)
ϵ 10−6 243 52.02 0.999

5. Discussion
Other objectives In this paper, we compared two objec-
tives Lm and Lϵ, but there are other possible objectives,
such as the condition number of the preconditioned matrix
(Calı̀ et al., 2023), the spectral radius of the iteration ma-
trix (Luz et al., 2020), and the coarse grid complexity of
the multigrid method (Taghibakhshi et al., 2021). They are
similar to ours in the sense that they try to minimize the
computation cost rather than the solution error. However,
these objectives are often problem-specific and require some
knowledge about the target problem and algorithm. On the
other hand, our method can be generally applied to iterative
algorithms. Moreover, there are avenues to combine these
methods to further improve performance.

Limitations A limitation of the proposed method is that
Algorithm 1 requires the differentiability of solver Φ. To
avoid this limitation, there are two possible approaches.
The first one is modifying the target solver to be differen-
tiable. In fact, differentiable variants of traditional solvers
are actively studied recently to combine them with neural
networks (Hsieh et al., 2018; Chen et al., 2022). These dif-
ferentiable solvers are usually implemented in deep learning
frameworks and can be used as a component of our method
out-of-the-box. However, currently, many real application
problems are solved using well-tested existing solvers that
do not support automatic differentiation. For such legacy
solvers, we can resort to the second approach, where we use

the finite difference method instead of backpropagation to
compute ∂Φ/∂θ and then connect it to ∂Ψ/∂ω computed
by backpropagation. A similar idea is found in implemen-
tations of traditional numerical methods (e.g. optimiza-
tion methods in SciPy (Virtanen et al., 2020)), where finite
difference methods are implemented to handle black-box
functions whose derivatives are not provided.

6. Conclusion
In this paper, we proposed a formulation of meta-solving
as a general framework to analyze and develop learning-
based iterative numerical methods. Under the framework,
we identify limitations of current approaches directly based
on meta-learning, and make concrete the mechanisms spe-
cific to scientific computing resulting in its failure. This is
supported by both numerical and theoretical arguments. The
understanding then leads to a simple but novel training ap-
proach that alleviates this issue. In particular, we proposed
a practical surrogate loss function for directly minimizing
the expected computational overhead, and demonstrated the
high-performance and versatility of the proposed method
through a range of numerical examples. Our analysis high-
lights the importance of precise formulations and the neces-
sity of modifications when adapting data-driven workflows
to scientific computing.

In future work, more theoretical analysis of the proposed
method is needed. For example, the essence of the counter-
example may hold for more general settings, and the prop-
erty of the proposed surrogate loss (11) is worth studying
in more detail. Besides the theoretical analysis, application
research is another direction. For instance, our method can
be extended for black-box legacy solvers to solve real engi-
neering problems as discussed in Section 5. Moreover, in
addition to traditional numerical algorithms, our approach
can be used for learning to optimize neural networks for
faster training.
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A. Organizing related works under meta-solving framework
Example 2 ((Cheng et al., 2021)). The target equation in (Cheng et al., 2021) is a linear system of equations Aηu = f
obtained by discretizing parameterized steady-state PDEs, where u, f ∈ RN and Aη ∈ RN×N is determined by η, a
parameter of the original equation. This work can be described in our framework as follows:

• Task τ : The task τ is to solve a linear system Aηu = f for η=ητ :

– Dataset Dτ : The dataset Dτ is {ητ , fτ}.
– Solution space U : The solution space U is RN .

• Task space (T , P ): The task distribution (T , P ) is determined by the distribution of ητ and fτ .

• Loss function L: The loss function L : T × U → R≥0 is an unsupervised loss based on the residual of the equation,
L(τ, û) = ∥fτ −Aητ

û∥2/∥fτ∥2.

• Solver Φ: The solver Φ : T ×Θ → U is iterations of a function ϕτ (·; θ) : U → U that represents an update step of
the multigrid method. ϕτ is implemented using a convolutional neural network and its parameter θ is the weights
corresponding to the smoother of the multigrid method. Note that weights of ϕτ other than θ are naturally determined
by ητ and the discretization scheme. In addition, ϕτ takes fτ as part of its input at every step, but we write these
dependencies as ϕτ for simplicity. To summarize, Φ(τ ; θ) = ϕk

τ (u
(0); θ) = û, where k is the number of iterations of

the multigrid method and u(0) is initial guess, which is 0 in the paper.

• Meta-solver Ψ: The meta-solver Ψ : T × Ω→ Θ is implemented by a neural network with weights ω, which takes
Aητ

as its input and returns weights θτ that is used for the smoother inspired by the subspace correction method.

Example 3 ((Um et al., 2020)). In (Um et al., 2020), initial guesses for the Conjugate Gradient (CG) solver are generated by
using a neural network. This work can be described in our framework as follows:

• Task τ : The task τ is to solve a pressure Poisson equation∇ · ∇p = ∇ · v on 2D, where p ∈ Rdx×dy is a pressure field
and v ∈ R2×dx×dy is a velocity filed:

– Dataset Dτ : The dataset Dτ is Dτ = {vτ}, where vτ is a given velocity sample.
– Solution space U : The solution space U is Rdx×dy .

• Task space (T , P ): The task distribution (T , P ) is determined by the distribution of vτ .

• Loss function L: The loss function L is L(τ, p̂) =
∥∥p̂− p(0)

∥∥2, where p̂ is the approximate solution of the Poisson
equation by the CG solver, and p(0) is the initial guess.

• Solver Φ: The solver Φk : T ×Θ→ U is the differentiable CG solver with k iterations. Its parameter θ ∈ Θ is the
initial guess p(0), so Φk(τ ; θ) = p̂.

• Meta-solver Ψ: The meta-solver Ψ : T × Ω→ Θ is 2D U-Net with weights ω ∈ Ω, which takes vτ as its input and
returns the initigal guess p(0)τ for the CG solver.

Although the focus of this paper is on iterative algorithms, the meta-solving framework can describe other types of algorithms
as well.
Example 4 ((Feliu-Fabà et al., 2020)). The authors in (Feliu-Fabà et al., 2020) propose the neural network architecture with
meta-learning approach that solves the equations in the form Lηu(x) = f(x) with appropriate boundary conditions, where
Lη is a partial differential or integral operator parametrized by a parameter function η(x). This work can be described in our
framework as follows:

• Task τ : The task τ is to solve a Lηu(x) = f(x) for η = ητ :

– Dataset Dτ : The dataset Dτ is Dτ = {ητ , fτ , uτ}, where ητ , fτ , uτ ∈ RN are the parameter function, right hand
side, and solution respectively.
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– Solution space U : The solution space U is a subset of RN for N ∈ N.

• Task space (T , P ): The task distribution (T , P ) is determined by the distribution of ητ and fτ .

• Loss function L: The loss function L : T × U → R≥0 is the mean squared error with the reference solution, i.e.
L(τ, û) = ∥uτ − û∥2.

• Solver Φ: The solver Φ : T × Θ → U is implemented by a neural network imitating the wavelet transform, which
is composed by three modules with weights θ = (θ1, θ2, θ3). In detail, the three modules, ϕ1(·; θ1), ϕ2(·; θ2),
and ϕ3(·; θ3), represent forward wavelet transform, mapping η to the coefficients matrix of the wavelet transform,
and inverse wavelet transform respectively. Then, using the modules, the solver Φ is represented by Φ(τ ; θ) =
ϕ3((ϕ2(ητ ; θ2)ϕ1(fτ ; θ1)); θ3) = û.

• Meta-solver Ψ: The meta-solver Ψ : T × Ω→ Θ is the constant function that returns its parameter ω, so Ψ(τ ;ω) =
ω = θ and Ω = Θ. Note that θ does not depend on τ in this example.

Example 5 ((Psaros et al., 2022)). In (Psaros et al., 2022), meta-learning is used for learning a loss function of the
physics-informed neural network, shortly PINN (Raissi et al., 2019). The target equations are the following:

Fλ[u](t, x) = 0, (t, x) ∈ [0, T ]×D (a)
Bλ[u](t, x) = 0, (t, x) ∈ [0, T ]× ∂D (b)

u(0, x) = u0,λ(x), x ∈ D, (c)

whereD ⊂ RM is a bounded domain, u : [0, T ]×D → RN is the solution, Fλ is a nonlinear operator containing differential
operators, Bλ is a operator representing the boundary condition, u0,λ : D → RN represents the initial condition, and λ is a
parameter of the equations.

• Task τ : The task τ is to solve a differential equation by PINN:

– Dataset Dτ : The dataset Dτ is the set of points (t, x) ∈ [0, T ]×D and the values of u at the points if applicable.
In detail, Dτ = Df,τ ∪Db,τ ∪Du0,τ ∪Du,τ , where Df,τ , Db,τ , and Du0,τ are sets of points corresponding to the
equation Equation (a), Equation (b), and Equation (c) respectively. Du,τ is the set of points (t, x) and observed
values u(t, x) at the points. In addition, each dataset D·,τ is divided into training set Dtrain

·,τ and validation set Dval
·,τ .

– Solution space U : The solution space U is the weights space of PINN.

• Task space (T , P ): The task distribution (T , P ) is determined by the distribution of λ.

• Loss function L: The loss function L : T × U → R≥0 is based on the evaluations at the points in Dval
τ . In detail,

L(τ, û) = Lval
τ (û) = Lval

f,τ (û) + Lval
b,τ (û) + Lval

u0,τ (û),

where
Lval
f,τ =

wf

|Df,τ |
∑

(t,x)∈Df,τ

ℓ (Fλ[û](t, x),0)

Lval
b,τ =

wb

|Db,τ |
∑

(t,x)∈Db,τ

ℓ (Bλ[û](t, x),0)

Lval
u0,τ =

wu0

|Du0,τ |
∑

(t,x)∈Du0,τ

ℓ (û(0, x), u0,λ(x)) ,

and ℓ : RN × RN → R≥0 is a function. In the paper, the mean squared error is used as ℓ.

• Solver Φ: The solver Φ : T ×Θ→ U is the gradient descent for training the PINN. The parameter θ ∈ Θ controls
the objective of the gradient descent, Ltrain

τ (û; θ) = Ltrain
f,τ (û; θ) + Ltrain

b,τ (û; θ) + Ltrain
u0,τ (û; θ) + Ltrain

u,τ (û; θ), where the
difference from Lval

τ is that parametrized loss ℓθ is used in Ltrain
τ instead of the MSE in Lval

τ . Note that the loss weights
wf , wb, wu0

, wu in Ltrain
τ are also considered as part of the parameter θ. In the paper, two designs of ℓθ are studied.

One is using a neural network, and the other is using a learned adaptive loss function. In the former design, θ is the
weights of the neural network, and in the latter design, θ is the parameter in the adaptive loss function.
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• Meta-solver Ψ: The meta-solver Ψ : T × Ω→ Θ is the constant function that returns its parameter ω, so Ψ(τ ;ω) =
ω = θ and Ω = Θ. Note that θ does not depend on τ in this example.

Example 6 ((Yonetani et al., 2021)). In (Yonetani et al., 2021), the authors propose a learning-based search method, called
Neural A*, for path plannning. This work can be described in our framework as follows:

• Task τ : The task τ is to solve a point-to-point shortest path problem on a graph G = (V,E).

– Dataset Dτ : The dataset Dτ is {Gτ , vτ,s, vτ,g, pτ}, where Gτ = (Vτ , Eτ ) is a graph (i.e. the environmental map
of the task), vτ,s ∈ Vτ is a starting point, vτ,g ∈ Vτ is a goal, and pτ is the ground truth path from vτ,s to vτ,g .

– Solution space U : The solution space U is {0, 1}Vτ .

• Task space (T , P ): The task distribution (T , P ) is determined according to each problem. The paper studies both
synthetic and real-world datasets.

• Loss function L: The loss function L is L(τ, p̂) = ∥p̂− pτ∥1 /|Vτ |, where p̂ is the search history by the A* algorithm.
Note that the loss function considers not only the final solution but also the search history to improve the efficiency of
the node explorations.

• Solver Φ: The solver Φ : T ×Θ→ U is the differentiable A* algorithm proposed by the authors, which takes Dτ \{pτ}
and the guidance map θτ ∈ Θ = [0, 1]Vτ that imposes a cost to each node v ∈ Vτ , and returns the search history p̂
containing the solution path.

• Meta-solver Ψ: The meta-solver Ψ : T ×Ω→ Θ is 2D U-Net with weights ω ∈ Ω, which takes Dτ \ {pτ} as its input
and returns the guidance map θτ for the A* algorithm Φ.

B. Proofs in Section 2
We first present a lemma about the eigenvalues and eigenvectors of A and the corresponding Jacobi iteration matrix
M = I − 1

2A.

Lemma B.1. The eigenvalues of A and M are µi = 2− 2 cos i
N+1π and λi = cos i

N+1π for i = 1, 2, . . . , N respectively.
Their common corresponding eigenvectors are vi = (sin 1

N+1 iπ, sin
2

N+1 iπ, . . . , sin
N

N+1 iπ)
T .

Proof of Lemma B.1. The proof is presented in Section 9.1.1 of (Greenbaum, 1997).

We can write down the loss functions, Lm and Lϵ, and find their minimizers.

Proposition B.2 (Minimizer of (1)). (1) is written as

min
ω

pc21 (ωµ1 − 1)
2
λ2m
1 + (1− p)c22 (ωµ2 − 1)

2
λ2m
2 , (18)

and it has the unique minimizer

ωm =
pc21µ1λ

2m
1 + (1− p)c22µ2λ

2m
2

pc21µ
2
1λ

2m
1 + (1− p)c22µ

2
2λ

2m
2

. (19)

Furthermore, for any p ∈ (0, 1), we have

lim
m→∞

ωm =
1

µ1
. (20)
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Proof of Proposition B.2. We have

E
τi∼P

[Lm(τi, ;ω)] = pL(τ1;ω) + (1− p)L(τ2;ω) (21)

= p
∥∥∥û(m)

1 (ω)− u∗
1

∥∥∥2 + (1− p)
∥∥∥û(m)

2 (ω)− u∗
2

∥∥∥2 (22)

= p
∥∥∥Mm(û

(0)
1 (ω)− u∗

1)
∥∥∥2 + (1− p)

∥∥∥Mm(û
(0)
2 (ω)− u∗

2)
∥∥∥2 (23)

= p ∥Mm(ωc1µ1v1 − c1v1)∥2 + (1− p) ∥Mm(ωc2µ2v2 − c2v2)∥2 (24)

= pλ2m
1 c21(ωµ1 − 1)2 + (1− p)λ2m

2 c22(ωµ2 − 1)2. (25)
(26)

Since Eτi∼P [Lm(τi, ;ω)] is a quadratic function of ω, its minimum is achieved at

ωm =
pc21µ1λ

2m
1 + (1− p)c22µ2λ

2m
2

pc21µ
2
1λ

2m
1 + (1− p)c22µ

2
2λ

2m
2

. (27)

Since λ1 > λ2, its limit is

lim
m→∞

ωm =
pc21µ1

pc21µ
2
1

=
1

µ1
. (28)

Proposition B.3 (Minimizer of (2)). (2) is written as

min
ω

p

(
log ϵ

c1|ωµ1−1|

log λ1

)
+

+ (1− p)

(
log ϵ

c2|ωµ2−1|

log λ2

)
+

, (29)

where (x)+ = max{0, x}. Assume ϵ < c1c2(µ2−µ1)
c1µ1+c2µ2

. If p ̸= pϵ, (29) has the unique minimizer

ωϵ =

{
ωϵ,1 if p > pϵ

ωϵ,2 if p < pϵ
(30)

where

ωϵ,1 =
1

µ1
− ϵ

c1µ1
, ωϵ,2 =

1

µ2
+

ϵ

c2µ2
(31)

and

pϵ =
log λ1 log

ϵ
c1(ωϵ,1µ2−1)

log λ1 log
ϵ

c1(ωϵ,1µ2−1) + log λ2 log
ϵ

c2(1−ωϵ,2µ1)

. (32)

If p = pϵ, (29) has two different minimizers ωϵ,1 and ωϵ,2. Furthermore, we have

lim
ϵ→0

ωϵ =

{
1
µ1

if p > p0
1
µ2

if p < p0
, (33)

where

p0 = lim
ϵ→0

pϵ =
log λ1

log λ1 + log λ2
. (34)

Proof of Proposition B.3. We consider the relaxed version Lϵ(τ ;ω) = min{m ∈ R≥0 : Lm(τ ;ω) ≤ ϵ2}. By solving
Ln(τi;ω) = ϵ2 for n, we have

Lϵ(τi;ω) = max

{
0,

log ϵ
ci|ωµi−1|

log λi

}
, (35)
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which deduces

E
τi∼P

[Lϵ(τi;ω)] = pmax

{
0,

log ϵ
c1|ωµ1−1|

log λ1

}
+ (1− p)max

{
0,

log ϵ
c2|ωµ2−1|

log λ2

}
. (36)

Assuming ϵ < c1c2(µ2−µ1)
c1µ1+c2µ2

, this can be written as

E
τi∼P

[Lϵ(τi;ω)] =


p
log ϵ

c1(1−ωµ1)

log λ1
if ω ∈

[
1
µ2
− ϵ

c2µ2
, 1
µ2

+ ϵ
c2µ2

]
(1− p)

log ϵ
c2(ωµ2−1)

log λ2
if ω ∈

[
1
µ1
− ϵ

c1µ1
, 1
µ1

+ ϵ
c1µ1

]
p
log ϵ

c1|ωµ1−1|
log λ1

+ (1− p)
log ϵ

c2|ωµ2−1|
log λ2

otherwise.

(37)

Note that Eτi∼P [Lϵ(τi;ω)] is strictly decreasing for ω ∈ (−∞, 1
µ2

+ ϵ
c2µ2

] and strictly increasing for ω ∈ [ 1
µ1
− ϵ

c1µ1
,∞).

Since Eτi∼P [Lϵ(τi;ω)] is concave for ω ∈ [ 1
µ2

+ ϵ
c2µ2

, 1
µ1
− ϵ

c1µ1
], its minimum is attained at ωϵ,1 = 1

µ1
− ϵ

cµ1
or

ωϵ,2 = 1
µ2

+ ϵ
c2µ2

. Then, by comparing Eτi∼P [Lϵ(τi;ωϵ,2)] = pLϵ(τ1;ωϵ,2) and Eτi∼P [Lϵ(τi;ωϵ,1)] = (1−p)Lϵ(τ2;ωϵ,1),
we can deduce the result.

Let us prove Proposition 3.1 first before Proposition 2.2.

Proof of Proposition 3.1. The limits are shown in Proposition B.3.

We now show the second part. Note that if δ1 > δ2 ≥ ϵ > 0, then p0 < pϵ ≤ pδ2 < pδ1 . Let ωmax =
argmaxω∈[1/ωϵ,2,1/ωϵ,1] Eτi∼P [Lϵ(τi;ω)].

If p < p0, then we have ωϵ = ωϵ,2 ≤ ωδ2 = ωδ2,2 < ωδ1 = ωδ1,2. Note that p < p0 and δ1 < c1c2(µ2−µ1)
2(c1µ1+c2µ2)

guarantee ωδ1 < ωmax. Since Eτi∼P [Lϵ(τi;ω)] is increasing for ω ∈ [ωϵ, ωmax] and ωϵ ≤ ωδ2 < ωδ1 < ωmax, we have
Eτ∼P [Lϵ(τ ;ωδ1)] > Eτ∼P [Lϵ(τ ;ωδ2)].

If p > pδ1 , then we have ωϵ = ωϵ,1 ≥ ωδ2 = ωδ2,1 > ωδ1 = ωδ1,1. Note that p > p0 and δ1 < c1c2(µ2−µ1)
2(c1µ1+c2µ2)

guarantee ωδ1 > ωmax. Since Eτi∼P [Lϵ(τi;ω)] is decreasing for ω ∈ [ωmax, ωϵ] and ωϵ ≥ ωδ2 > ωδ1 > ωmax, we have
Eτ∼P [Lϵ(τ ;ωδ1)] > Eτ∼P [Lϵ(τ ;ωδ2)].

We now show the last part. Recall that ωm =
pc21µ1λ

2m
1 +(1−p)c22µ2λ

2m
2

pc21µ
2
1λ

2m
1 +(1−p)c22µ

2
2λ

2m
2

. Setting m = 0, we have ω0 =
pc21µ1+(1−p)c22µ2

pc21µ
2
1+(1−p)c22µ

2
2

.
For δ > 0, we take c1, c2, and p so that ωϵ ≤ ωδ < ωmax < ω0 < ωm and Eτi∼P [Lϵ(τi;ωδ)] > 0. For example,
c1 = µ2(log λ1+log λ2)

p2(µ2−µ1) log λ2
δ, c2 = µ1(log λ1+log λ2)

p(µ2−µ1) log λ1
δ, and p < p0 satisfy the relationship. Then, we have

Eτi∼P [Lϵ(τi;ωm)]

Eτi∼P [Lϵ(τi;ωδ)]
=

pLϵ(τ1;ωm) + (1− p)Lϵ(τ2;ωm)

pLϵ(τ1;ωδ) + (1− p)Lϵ(τ2;ωδ)
(38)

≥ (1− p)Lϵ(τ2;ωm)

pLϵ(τ1;ωδ) + (1− p)Lϵ(τ2;ωδ)
(39)

≥ (1− p)Lϵ(τ2;ω0)

pLϵ(τ1;ωδ) + (1− p)Lϵ(τ2;ωδ)
(40)

=
(1− p) log λ1 log

ϵ
c2(ω0µ2−1)

p log λ2 log
ϵ

c1(1−ωδµ1)
+ (1− p) log λ1 log

ϵ
c2(ωδµ2−1)

(41)

(42)

Substituting ω0, ωδ , c1, and c2 and taking the limit as p→ 0, we have Eτi∼P [Lϵ(τi;ωm)]

Eτi∼P [Lϵ(τi;ωδ)]
→∞.

Proof of Proposition 2.2. The limits are shown in Proposition B.2.
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We now show the second part. Since ωm is increasing in m and limm→∞ ωm = 1/µ1, there exists m0 such that ωϵ,1 < ωm0
.

For any m1 and m2, if m0 < m1 < m2, then ωm0 < ωm1 < ωm2 . Hence, Eτi∼P [Lϵ(τi;ωm1)] < Eτi∼P [Lϵ(τi;ωm2)]
because Eτi∼P [Lϵ(τi;ω)] is increasing for ω ∈ [ωϵ,1, 1/µ1].

For the last part, the proof is similar to Proposition 3.1. Take c1 = µ2(log λ1+log λ2)
p2(µ2−µ1) log λ2

ϵ, c2 = µ1(log λ1+log λ2)
p(µ2−µ1) log λ1

ϵ, and p < p0
and substitute them into Eτi∼P [Lϵ(τi;ωm)]. Then, we have Eτi∼P [Lϵ(τi;ωm)]→∞ as p→ 0.

C. Details of numerical examples
C.1. Details in Section 2.2.1 and Section 3.1.2

Task In distribution P1, fτ is represented by

fτ =

N∑
i=1

ciµivi, where ci ∼ N (0,

∣∣∣∣N + 1− 2i

N − 1

∣∣∣∣). (43)

In distribution P2, fτ is represented by

fτ =

N∑
i=1

ciµivi, where ci ∼ N (0, 1−
∣∣∣∣N + 1− 2i

N − 1

∣∣∣∣). (44)

The discretization size is N = 16 in the experiments. The number of tasks for training, validation, and test are all 103.

Network architecture and hyper-parameters In Section 2.2.1 and Section 3.1.2, Ψnn is a fully connected neural network
with two hidden layers of 15 neurons. Its input is discretized fτ ∈ RN and the output is ci’s of û(0) =

∑N
i=1 civi. The

activation function is SiLU (Elfwing et al., 2018) for hidden layers. The optimizer is Adam (Kingma & Ba, 2015) with
learning rate 0.01 and (β1, β2) = (0.999, 0.999). The batch size is 256. The model is trained for 2500 epochs. During
training, if the validation loss does not decrease for 100 epochs, the learning rate is reduced by a factor of 1/5. The presented
results are obtained by the best models selected based on the validation loss.

Results The detailed results of Figure 1 are presented in Table 3.

Table 3. The average number of iterations for solving Poisson equations. Boldface indicates the best performance for each column.

p = 0 p = 0.01
ϵ (test)

Ψ m (train) ϵ (train) 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

Ψbase - - 28.17 92.54 158.41 224.28 30.15 96.52 164.41 232.30
Ψnn 0 - 0.00 17.52 168.80 436.95 2.11 183.28 451.24 719.40

1 - 0.00 20.07 148.26 403.22 1.90 178.61 446.51 714.67
5 - 1.00 13.82 135.43 397.97 1.18 34.47 286.43 554.55
25 - 6.26 16.31 37.71 172.02 7.11 20.22 121.24 379.51
125 - 23.42 83.28 148.73 214.59 20.96 80.44 151.39 353.35
- 10−2 0.01 40.31 223.15 491.30 0.25 185.93 453.84 721.99
- 10−4 3.93 9.76 48.61 178.15 5.34 13.69 176.77 444.71
- 10−6 6.20 15.79 32.00 83.43 7.94 19.79 36.11 166.30
- 10−8 11.12 32.05 57.62 86.70 13.39 37.44 66.16 97.97

C.2. Details in Section 4.1

Task We prepare 10, 000 sets of c1, c2, c3 and use 2, 500 for training, 2, 500 for validation, and 5, 000 for test. Since the
solution of the Robertson equation has a quick initial transient followed by a smooth variation (Hairer & Wanner, 2010), we
set the step size hn (n = 1, 2, . . . , 100) so that the evaluation points are located log-uniformly in [10−6, 103]. Thus, each
set of c1, c2, c3 is associated with 100 data points.
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Solver The iteration rule of the Newton-SOR method is

Jn(y
(k)
n+1) = Dk − Lk − Uk (45)

y
(k+1)
n+1 = y

(k)
n+1 − r(Dk − rLk)

−1gn(y
(k)
n+1), (46)

where Jn is the Jacobian of gn, its decomposition Dk, Lk, Uk are diagonal, strictly lower triangular, and strictly upper
triangular matrices respectively, and r ∈ [1, 2] is the relaxation factor of the SOR method. It iterates until the residual of the
approximate solution

∥∥∥gn(y(k)n+1)
∥∥∥ reaches a given error tolerance ϵ. Note that we choose to investigate the Newton-SOR

method, because it is a fast and scalable method and applicable to larger problems.

Network architecture and hyper-parameters In Section 4.1, Ψini, Ψrelax, and Ψboth are fully-connected neural networks
that take c1, c2, c3, hn, yn as an input. They have two hidden layers with 1024 neurons, and ReLU is used as the activation
function except for the last layer. The difference among them is only the last layer. The last layer of Ψini modifies the
previous timestep solution yn for a better initial guess yτ ∈ R3. Since the scale of each element of yn is quite different, the
modification is conducted in log scale, i.e.

yτ = exp(log(yn + tanh(Winix))), (47)

where x is the input of the last layer and Wini are its weights. The last layer of Ψrelax is designed to output the relaxation
factor rτ ∈ [1, 2]:

rτ = sigmoid(Wrelaxx) + 1, (48)

where x is the input of the last layer and Wrelax are its weights. The last layer of Ψboth is their combination.

The meta-solvers are trained for 200 epochs by Adam with batchsize 16384. The initial learning rate is 2.0 · 10−5, and it is
reduced at the 100th epoch and 150th epoch by 1/5. For Ψrelax and Ψboth, the bias in the last layer corresponding to the
relaxation factor is set to −1 at the initialization for preventing unstable behavior in the beginning of the training.

C.3. Details in Section 4.2

Task To set up problem instances, open-source computing library FEniCS (Alnæs et al., 2015) is used. We sampled tasks
1, 000 for training, 1, 000 for validation, and 1, 000 for test.

Solver Our implementation of the ICCG method is based on (Huang et al., 2009).

Network architecture and hyper-parameters In Section 4.2, Ψnn is a fully-connected neural network with two hidden
layers of 128 neurons. Its input is {Wτ , λτ , µτ , ρτ , ∥Aτ∥1 , ∥Aτ∥∞ , ∥Aτ∥F } and output is diagonal shift ατ . The activation
function is ReLU except for the last layer. At the last layer, the sigmoid function is used as the activation function. The
hyper-parameter γ in the loss functions is γ = 500.

The meta-solver is trained for 200 epochs by Adam with batchsize 128. The initial learning rate is 0.001 and it is reduced
at the 100th epoch and 150th epoch by 1/5. The presented results are obtained by the best models selected based on the
validation loss.
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