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Abstract

We study robustness to test-time adversarial at-
tacks in the regression setting with ℓp losses and
arbitrary perturbation sets. We address the ques-
tion of which function classes are PAC learnable
in this setting. We show that classes of finite fat-
shattering dimension are learnable in both realiz-
able and agnostic settings. Moreover, for convex
function classes, they are even properly learnable.
In contrast, some non-convex function classes
provably require improper learning algorithms.
Our main technique is based on a construction
of an adversarially robust sample compression
scheme of a size determined by the fat-shattering
dimension. Along the way, we introduce a novel
agnostic sample compression scheme for real-
valued functions, which may be of independent
interest.

1. Introduction
Learning a predictor that is resilient to test-time adversarial
attacks is a fundamental problem in contemporary machine
learning. A long line of research has studied the vulnerabil-
ity of deep learning-based models to small perturbations of
their inputs (e.g., Szegedy et al. (2013); Biggio et al. (2013);
Goodfellow et al. (2014); Madry et al. (2017)). From the
theoretical standpoint, there has been a lot of effort to pro-
vide provable guarantees of such methods (e.g., Feige et al.
(2015); Schmidt et al. (2018); Khim & Loh (2018); Yin et al.
(2019); Cullina et al. (2018); Attias et al. (2019; 2022); Mon-
tasser et al. (2021b; 2020a;b; 2021a); Ashtiani et al. (2020);
Dan et al. (2020); Awasthi et al. (2020; 2021b;a; 2022a;b;
2023); Bhattacharjee et al. (2021); Xing et al. (2021); Mao
et al. (2023)), which is the focus of this work.

In the robust PAC learning framework, the problem of learn-
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ing binary function classes was studied by Montasser et al.
(2019). They showed that uniform convergence does not
hold in this setting, and as a result, robust empirical risk
minimization is not sufficient to ensure learnability. Yet,
they showed that VC classes are learnable, by considering
an improper learning rule; the learning algorithm outputs
a function that is not in the function class that we aim to
learn.

In this work, we provide a theoretical understanding of the
robustness of real-valued predictors in the PAC learning
model, with arbitrary perturbation sets. The work of Attias
et al. (2019) considered this question for finite perturbation
sets, they obtained sample complexity guarantees based on
uniform convergence, which is no longer true for arbitrary
perturbation sets. We address the fundamental question,
which real-valued function classes are robustly learnable?

Furthermore, we study the robust learnability of convex
classes, a natural and commonly studied subcategory for
regression. We address the question, are real-valued con-
vex classes properly robustly learnable? On the one hand,
some non-convex function classes provably require im-
proper learning due to Montasser et al. (2019). On the other
hand, Mendelson (2019) showed that non-robust regression
with the mean squared error is properly learnable.

We study the following learning models for real-valued func-
tions. An adversarial attack is formalized by a perturbation
function U : X → 2X , where U(x) is the set of possible
perturbations (attacks) on x. In practice, we usually con-
sider U(x) to be the ℓ1 ball centered at x. In this work, we
have no restriction on U , besides x ∈ U(x). Let D be an
unknown distribution over X × [0, 1] and let H ⊆ [0, 1]X

be a concept class. In our first model, the robust error of
concept h is defined as

Errℓp(h;D) = E(x,y)∼D

[
sup

z∈U(x)

|h(z)− y|p
]
, 1 ≤ p <∞.

The learner gets an i.i.d. sample from D, and would like to
output function ĥ, such that with high probability,

Errℓp(ĥ;D) ≤ inf
h∈H

Errℓp(h;D) + ϵ. (1)

The sample complexity for learningH is the minimal i.i.d.
sample from D such that there exists a learning algorithm
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with output as in Equation (1). We refer to this model as
Robust Regression with ℓp robust losses. This is a robust
formulation of the classic nonparametric regression setting.

In the second model, the robust error of concept h is defined
as

Errη(h;D) = E(x,y)∼D

[
I

{
sup

z∈U(x)

|h(z)− y| ≥ η

}]
.

We refer to the loss function in this model as cutoff loss,
where η ≥ 0 is a predefined cutoff parameter. The learner
gets an i.i.d. sample from D, and would like to output
function ĥ, such that with high probability,

Errη+β(ĥ;D) ≤ inf
h∈H

Errη(h;D) + ϵ,

where β > 0 is a predefined parameter. The sample com-
plexity is defined similarly to the previous model. We refer
to this model as Robust (η, β)-Regression. The non-robust
formulation of this setting was studied by, e.g., Anthony
& Bartlett (2000); Simon (1997). See also Anthony et al.
(1999, section 21.4) and references therein.

Main results and roadmap. Denote the γ-fat-shattering
dimension ofH by fat(H, γ), and the dual γ-fat-shattering
dimension by fat∗(H, γ), which is the dimension of the
dual class. The dimension of the dual class is finite as long
as the γ-fat-shattering of the primal class is finite (see Kleer
& Simon (2021), and Equation (7)).

• In Section 3 we provide a learning algorithm for robust
regression with ℓp losses, with sample complexity

Õ
(
fat3(H, ϵ/p) fat∗(H, ϵ/p)

ϵ5

)
.

Moreover, this algorithm is proper for convex function
classes. We circumvent a negative result regarding
non-convex function classes, for which proper learning
is impossible, even for binary-valued functions (Mon-
tasser et al., 2019).

• In Section 4 we provide a learning algorithm with a
substantial sample complexity improvement for the ℓ1
loss,

Õ
(
fat(H, ϵ) fat∗(H, ϵ)

ϵ2

)
.

• In Section 5, we provide learning algorithms for the
(η, β)-robust regression setting in the realizable and
agnostic settings. Our sample complexity for the real-
izable case is

Õ
(
fat(H, β) fat∗(H, β)

ϵ

)
,

and

Õ
(
fat(H, β) fat∗(H, β)

ϵ2

)
for the agnostic case.

Technical contributions and related work. The setting
of agnostic adversarially robust regression with finite per-
turbation sets was studied by Attias et al. (2019). Sub-
sequently, improved bounds appeared in Kontorovich &
Attias (2021). Adversarially robust PAC learnability of
binary-valued function classes with arbitrary perturbation
sets was studied by Montasser et al. (2019). They showed
that uniform convergence does not hold in this setting, which
means that some classes provably require improper learning.
Their main technique is constructing a sample compression
scheme from a boosting-style algorithm, where the general-
ization follows from sample compression bounds.

First, we explain our new technical ideas behind the algo-
rithms for robust (η, β)-regression, and compare it to the
ones of Montasser et al. (2019) in the classification setting.
We then explain why the approach for learning these models
fails in the general robust regression setting and introduce
the new ingredients behind the proofs for this setting.

Robust (η, β)-regression. We construct an adversarially
robust sample compression scheme of a size determined
by the fat-shattering dimension of the function class. The
following steps are different from the binary-valued case.
First, we use a modified boosting algorithm for real-valued
functions. In the non-robust setting, Hanneke et al. (2019)
showed how to convert a boosting algorithm (originally
introduced by Kégl (2003)), into a sample compression
scheme. In order to find weak learners (and prove their
existence), we rely on generalization from approximate in-
terpolation (see Anthony & Bartlett (2000) and Anthony &
Bartlett (2000, section 21.4)). The idea is that any function
f ∈ F that approximately interpolates a sample S ∼ Dm,
that is, |f(x)− y| ≤ η for (x, y) ∈ S, also satisfies that
P{(x, y) : |f(x)− y| ≤ η + β} > 1 − ϵ with high prob-
ability, as long as Õ(fat(F , β)/ϵ) ≤ |S|. Crucially, this
result relies on uniform convergence and does not apply
to the robust loss function. Another difference is in the
discretization step. In the classification setting, we inflate
the data set to include all possible perturbations (potentially
infinite set). We then define a function class Ĥ by running a
robust empirical minimizer on every subset of size VC(H)
from the training set, whereH is the class we want to learn.
Ĥ induces a finite partition on the inflated set into regions,
such that any h ∈ Ĥ has a constant error in each region.
This is no longer true in the real-valued case. Instead, we
discretize the inflated set by taking a uniform cover using
the supremum metric, and controlling the errors that arise
from the cover.
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Robust regression. We first explain which natural techniques
fail. We cannot run boosting for the ℓp loss as explained by
Hanneke et al. (2019): ”Duffy & Helmbold (2002, Remark
2.1) spell out a central technical challenge: no boosting
algorithm can always force the base regressor to output a
useful function by simply modifying the distribution over
the sample. This is because unlike a binary classifier, which
localizes errors on specific examples, a real-valued hypothe-
sis can spread its error evenly over the entire sample and it
will not be affected by reweighting”.

As a first attempt, we could try to learn with respect to the
cutoff loss (with a fixed cutoff parameter), and conclude
learnability in the general regression setting. However, the
ℓp loss can spread over different values for different points,
which means that this approach fails. In another possible
attempt, we could try to solve the realizable case first and
try to reduce agnostic to realizable learning as in Montasser
et al. (2019) for binary-valued functions, as we prove the
agnostic setting for robust (η, β)-regression. However, this
attempt fails for the same reasons we mentioned above.

Therefore, we introduce a novel technique for working with
changing cutoffs. We establish generalization from approx-
imate interpolation with different cutoff parameters, and
thereby, we find a learner that approximates the loss of the
target function on different points. Utilizing this idea, we
provide a learning algorithm for ℓp robust losses that con-
structs an ensemble and predict with the average. Further,
we show that this algorithm is proper for convex function
classes. In contrast, some non-convex function classes prov-
ably require improper learning (Montasser et al., 2019).
Moreover, we show how to reduce the sample complexity
substantially for the ℓ1 robust loss with a different algorithm,
by constructing an ensemble of weak learners and predict-
ing with the median. Both algorithms can be represented as
an agnostic sample compression scheme for the robust loss.
This is a new result since constructing a sample compres-
sion scheme for real-valued functions is known only for the
realizable setting (Hanneke et al., 2019). We believe that
this technique may be of independent interest.

2. Problem Setup and Preliminaries
Let H ⊆ [0, 1]X be a concept class. We implicitly as-
sume that all concept classes are satisfying mild measure-
theoretic conditions (see e.g., Dudley (1984, section 10.3.1)
and Pollard (2012, appendix C)). Let D be a distribution
over X × Y , where Y = [0, 1]. Define a perturbation func-
tion U : X → 2X that maps an input to an arbitrary set
U(x) ⊆ X , such that x ∈ U(x).

We consider the following loss functions. For 1 ≤ p <∞,
define the ℓp robust loss function of h on (x, y) with respect

to a perturbation function U ,

ℓp,U (h; (x, y)) = sup
z∈U(x)

|h(z)− y|p . (2)

We define also the η-ball robust loss function of h on (x, y)
with respect to a perturbation function U ,

ℓηU (h; (x, y)) = I

{
sup

z∈U(x)

|h(z)− y| ≥ η

}
. (3)

The non-robust version of this loss function is also known as
η-ball or η-tube loss (see for example Anthony et al. (1999,
Section 21.4)).

Define the error of a function h on distribution D, with
respect to the ℓp robust loss,

Errℓp(h;D) = E(x,y)∼D

[
sup

z∈U(x)

|h(z)− y|p
]
,

and the error with respect to the η-ball robust loss

Errη(h;D) = E(x,y)∼D

[
I

{
sup

z∈U(x)

|h(z)− y| ≥ η

}]
.

Note that in our model the learner is tested on the orig-
inal label y while observing only the perturbed example
z. There are formulations of robustness where the learner
is compared to the value of the optimal function in the
class on the perturbed example, i.e., if the optimal func-
tion in the class is h⋆, then the ℓ1 robust loss would
be supz∈U(x)|h(z)− h⋆(z)|. For more details and com-
parisons of the two models, see Gourdeau et al. (2021);
Diochnos et al. (2018); Bubeck et al. (2019).

Learning models. We precisely define the models for
robustly learning real-valued functions. Our first model is
learning with the ℓp robust losses (see Equation (2)), we
refer to this model as Robust Regression.

Definition 2.1 (Robust regression). For any ϵ, δ ∈ (0, 1),
the sample complexity robust (ϵ, δ)-PAC learning a con-
cept class H ⊆ [0, 1]X with ℓp robust losses, denoted
by M(ϵ, δ,H,U , ℓp), is the smallest integer m such that
the following holds: there exists a learning algorithm
A : (X × Y)m → [0, 1]X , such that for any distribution
D over X × [0, 1], for an i.i.d. random sample S ∼ Dm,
with probability at least 1− δ over S, it holds that

Errℓp(A(S);D) ≤ inf
h∈H

Errℓp(h;D) + ϵ.

If no such m exists, defineM(ϵ, δ,H,U , ℓp) =∞, andH
is not robustly (ϵ, δ)-PAC learnable. We use the shorthand
M =M(ϵ, δ,H,U , ℓp) for notational simplicity.
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Our second model is learning with the η-ball robust loss
(see Equation (3)) in the realizable and agnostic settings, we
refer to this model by Robust (η, β)-regression. We say that
a distribution D is η-uniformly realizable with respect toH
and U , if there exists h⋆ ∈ H such that

Errη(h
⋆;D) = 0. (4)

Definition 2.2 (Robust (η, β)-regression). For any β, ϵ, δ ∈
(0, 1) and η ∈ [0, 1], the sample complexity of realizable ro-
bust (η, β, ϵ, δ)-PAC learning a concept classH ⊆ [0, 1]X ,
denoted by MRE(η, β, ϵ, δ,H,U), is the smallest integer
m such that the following holds: there exists a learning
algorithm A : (X × Y)m → [0, 1]X , such that for any dis-
tribution D over X × [0, 1] that is η-uniformly realizable
w.r.t. H and U (see Equation (4)), for an i.i.d. random sam-
ple S ∼ Dm, with probability at least 1− δ over S, it holds
that

Errη+β(A(S);D) ≤ ϵ.

If no such m exists, defineMRE(η, ϵ, δ,H,U) = ∞, and
H is not robustly (η, β, ϵ, δ)-PAC learnable.

The agnostic sample complexity, denoted by
MAG(η, β, ϵ, δ,H,U), is defined similarly with the
following difference. We require the learning algorithm to
output a function, such that with probability at least 1− δ,

Errη+β(A(S);D) ≤ inf
h∈H

Errη(h;D) + ϵ.

We use the shorthandMη,β
RE =MRE(η, β, ϵ, δ,H,U) and

Mη,β
AG =MAG(η, β, ϵ, δ,H,U) for notational simplicity.

We do not define the setting of robust regression in the real-
izable setting since it coincides with the realizable setting of
robust (η, β)-regression, by taking η = 0, β = ϵ/2, and re-
scaling ϵ to ϵ/2. Moreover, we could define the ℓp variant of
the η-ball loss in robust (η, β)-regression, however, results
for our definition translate immediately by taking η1/p.

Note that there is a fundamental difference between the
models. In the robust (η, β)-regression, we demand from
the learning algorithm to find a function that is almost every-
where within η + β from the target function in class. That
is, on 1− ϵ mass of elements in the support ofD, we find an
approximation up to η + β. On the other hand, in the robust
regression model, we aim to be close to the target function
on average, and the error can possibly spread across all
elements in the support.

Proper and improper learning algorithms. The learning
algorithm is not limited to returning a function that is inside
the concept class that we aim to learn. When learning a
classH, whenever the learning algorithm returns a function
inside the class, that is, A : (X × Y)m → H, we say that

the algorithm is proper and the class in properly learnable.
Otherwise, we say that the algorithm is improper. Improper
algorithms are extremely powerful and using them often
circumvents computational issues and sample complexity
barriers (Srebro et al., 2004; Candes & Recht, 2012; Anava
et al., 2013; Hazan et al., 2015; Hanneke, 2016; Hazan &
Ma, 2016; Hazan et al., 2012; Agarwal et al., 2019; Daniely
et al., 2011; Daniely & Shalev-Shwartz, 2014; Angluin,
1988; Montasser et al., 2019).

Oracles. We make use of the following robust empirical
risk minimizers. Let a set S = {(xi, yi)}mi=1. Define an η-
robust empirical risk minimizer η-RERMH : (X × Y)m ×
[0, 1]m × N→ H,

η-RERMH(S,ηS , p) :=

argmin
h∈H

1

m

∑
(x,y)∈S

I

[
sup

z∈U(x)

|h(z)− y|p ≥ η(x, y)

]
,

(5)

where ηS = (η(x1, y1), . . . , η(xm, ym)). We refer to
η(x, y) as a cutoff parameter. Note that η is a function
of (x, y) and not necessarily a constant.

Define a robust empirical risk minimizer for the ℓp robust
loss, ℓp-RERMH : (X × Y)m → H,

ℓp-RERMH(S) := argmin
h∈H

1

m

∑
(x,y)∈S

sup
z∈U(x)

|h(z)− y|p .

(6)

Complexity measures. Fat-shattering dimension. Let
F ⊆ [0, 1]X and γ > 0. We say that S =
{x1, . . . , xm} ⊆ X is γ-shattered by F if there exists a
witness r = (r1, . . . , rm) ∈ [0, 1]m such that for each
σ = (σ1, . . . , σm) ∈ {−1, 1}m there is a function fσ ∈ F
such that

∀i ∈ [m]

{
fσ(xi) ≥ ri + γ, if σi = 1

fσ(xi) ≤ ri − γ, if σi = −1.

The fat-shattering dimension of F at scale γ, denoted by
fat(F , γ), is the cardinality of the largest set of points in X
that can be γ-shattered by F . This parametrized variant of
the Pseudo-dimension (Alon et al., 1997) was first proposed
by Kearns & Schapire (1994). Its key role in learning theory
lies in characterizing the PAC learnability of real-valued
function classes (Alon et al., 1997; Bartlett & Long, 1998).

Dual fat-shattering dimension. Define the dual class F∗ ⊆
[0, 1]H of F as the set of all functions gw : F → [0, 1]
defined by gw(f) = f(w). If we think of a function class as
a matrix whose rows and columns are indexed by functions
and points, respectively, then the dual class is given by the
transpose of the matrix. The dual fat-shattering at scale γ, is
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defined as the fat-shattering at scale γ of the dual-class and
denoted by fat∗(F , γ). We have the following bound due
to Kleer & Simon (2021, Corollary 3.8 and inequality 3.1),

fat∗(F , γ) ≲ 1

γ
2fat(F,γ/2)+1. (7)

Covering numbers. We say that G ⊆ [0, 1]Ω is ϵ-cover for
F ⊆ [0, 1]Ω in d∞ norm, if for any f ∈ F the exists g ∈ G
such that for any x ∈ Ω, |f(x)− g(x)| ≤ ϵ. The ϵ-covering
number of F is the minimal cardinality of any ϵ-cover, and
denoted by N (ϵ,F , d∞).

Sample compression scheme. We say that a pair of func-
tions (κ, ρ) is uniform α-approximate sample compression
scheme of size k for a classH ⊆ [0, 1]X and the ℓp loss, if
for any m ∈ N, h⋆ ∈ H, and sample S = {(xi, yi)}mi=1,
it holds for the compression function that κ (S) ⊆ S,
|κ (S) | ≤ k, and the reconstruction function ρ (κ (S)) = ĥ
satisfies ∀i ∈ [m]∣∣ĥ(xi)− yi

∣∣p ≤ ∣∣h⋆(xi)− yi
∣∣p + α. (8)

Similarly, we define an adversarially robust uniform α-
approximate sample compression scheme if ∀i ∈ [m]

sup
zi∈U(xi)

∣∣ĥ(zi)− yi
∣∣p ≤ sup

zi∈U(xi)

∣∣h⋆(zi)− yi
∣∣p + α. (9)

Notation. We use the notation Õ(·)
for omitting poly-logarithmic factors of
(fat(H, γ), fat∗(H, γ), 1/ϵ, 1/δ, 1/η, 1/β). We de-
note [n] = {1, . . . , n}, and exp(·) = e(·). ≲ and ≳ denote
inequalities up to a constant factor, and ≈ denotes equality
up to a constant factor. Vectors are written using bold
symbols.

3. Robust Regression for ℓp Losses
In this section, we provide an algorithm and prove its sample
complexity for robust regression with ℓp losses. Moreover,
our learning algorithm is proper for convex function classes,
arguably the most commonly studied subcategory of real-
valued function classes for regression. This result circum-
vents a negative result from Montasser et al. (2019); there
exist, non-convex function classes, where proper learning is
impossible.

Theorem 3.1. The sample complexity of Algorithm 1 for
robust (ϵ, δ)-PAC learning a concept class H with the ℓp
robust loss is

Õ
(
fat3(H, cϵ/p) fat∗(H, cϵ/p)

ϵ5
+

1

ϵ2
log

1

δ

)
,

for some numerical constant c ∈ (0,∞).

Recall that fat∗(F , ϵ) ≲ 1
ϵ 2

fat(F,ϵ/2)+1 by Equation (7).

Remark 3.2. The output of Algorithm 1 is a convex combi-
nation of the functions from the concept class, which is a
proper predictor, assuming convexity of the function class.
Remark 3.3. Similar to non-robust regression, our results
generalize to loss functions with bounded codomain [0,M ].
The generalization bound should be multiplied by pMp

and the scaling of the fat-shattering dimension should be
ϵ/pMp.

In the following result, we establish generalization from
approximate interpolation for changing cutoff parameters
for different points. This generalizes a result by (Anthony
& Bartlett, 2000), where the cutoff parameter is fixed for all
points. The proof is in Appendix A.

Theorem 3.4 (Generalization from approximate interpo-
lation with changing cutoffs). Let H ⊆ [0, 1]X with a
finite fat-shattering dimension (at any scale). For any
β, ϵ, δ ∈ (0, 1), any function η : X × Y → [0, 1], any
distribution D over X × Y , for a random sample S ∼ Dm,
if

m = O
(
1

ϵ

(
fat(H, β/8) log2

(
fat(H, β/8)

βϵ

)
+ log

1

δ

))
,

then with probability at least 1− δ over S, for any h ∈ H
satisfying |h(x)− y| ≤ η(x, y), ∀(x, y) ∈ S, it holds that
P(x,y)∼D{(x, y) : |h(x)− y| ≤ η(x, y) + β} ≥ 1− ϵ.

Algorithm 1 Improper Robust Regressor with High-Vote
Input: H ⊆ [0, 1]X , S = {(xi, yi)}mi=1.
Parameters: ϵ.
Algorithms used: ℓp-RERMH (Equation (6)), η-RERMH
(Equation (5)), a variant of Multiplicative Weights (Algo-
rithm 4).

1. Compute h⋆ ← ℓp-RERMH(S).
Denote η(x, y) = supz∈U(x) |h⋆(z)− y|, ∀(x, y) ∈ S.

2. Inflate S to SU to include all perturbed points.

3. Discretize S̄U ⊆ SU : (i) Construct a function class Ĥ,
where each ĥ ∈ Ĥ defined by η-RERM optimizer on
Õ
(
1
ϵ fat(H,O(ϵ/p))

)
points from S. The input cutoff

parameters to the optimizer are η(x, y), as computed
in step 1.
(ii) Each (z, y) ∈ SU defines a function in the dual
space, f(z,y) : Ĥ → [0, 1] such that f(z,y)(h) =∣∣h(z) − y

∣∣p. Define S̄U to be the minimal cover of
SU under d∞ norm at scale O(ϵ).

4. Compute a modified Multiplicative Weights on S̄U .
Let

{
ĥ1, . . . , ĥT

}
be the returned set of classifiers.

Output: ĥ = 1
T

∑T
i=1 ĥi.
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We construct an adversarially robust sample compression
scheme of a size determined by the fat-shattering dimension
of the function class. Recall that uniform convergence does
not necessarily hold. Instead, we derive generalization from
sample compression bounds. Our proof crucially relies on
Theorem 3.4.

Proof overview and algorithm outline. The complete
proof is in Appendix B. We follow the steps in Algorithm 1.

(1) We start with computing a robust empirical risk mini-
mizer (ERM) h⋆ on S for the ℓp robust loss. This defines
the target loss we are aiming for at any point in S. In
other words, the robust loss of h⋆ on (x, y) defines a cutoff
η(x, y) and our goal is to construct a predictor with a loss
of η(x, y) + ϵ for any (x, y) ∈ S, which means that this
predictor is an approximate robust ERM. In order to de-
rive generalization, we cannot rely on uniform convergence.
Instead, our predictor is based on a sample compression
scheme from which we can generalize.

(2) Inflate the training set by including all possible perturba-
tions. Whenever the same perturbation is mapped to more
than one input, we assign the label of the input with the
smallest index to prevent ambiguity. We denote this set by
SU .

(3) Discretize the set SU as follows: (i) Construct a set
of functions Ĥ, such that each function is the output of
η-RERM for H (defined in Equation (5)), performing on
a subset S′ ⊆ S of size d = Õ

(
1
ϵ fat(H,O(ϵ/p))

)
. This

means that for any S′ ⊆ S there exists ĥ ∈ Ĥ that is an
approximate robust ERM on S′, that is, ĥ is within η(x, y)+
ϵ for any (x, y) ∈ S′. The size of Ĥ is bounded (m/d)d,
where |S| = m.

(ii) Define a discretization S̄U ⊆ SU by taking a uniform
cover of the dual space. In the dual space, each (z, y) ∈ SU
defines a function f(z,y) : Ĥ → [0, 1] such that f(z,y)(h) =∣∣h(z)− y

∣∣p. We take a minimalO(ϵ)-cover for SU with the
supremum norm, which is of size N (O(ϵ) , SU , d∞). We
use covering numbers arguments (Rudelson & Vershynin,
2006) to upper bound the size of S̄U

(4) Compute a variant of Multiplicative Weights (MW)
update (Algorithm 4) on S̄U for T ≈ log

∣∣S̄U
∣∣ rounds as

follows. From a corollary of Theorem 3.4 (see Corol-
lary A.1), we know that for any distribution P on S̄U , upon
receiving an i.i.d. sample S′′ from P of size d, with prob-
ability 2/3 over sampling S′′ from P , for any h ∈ H
with ∀(z, y) ∈ S′′ : |h(z)− y|p ≤ η(z, y), it holds
that P(z,y)∼P{(z, y) : |h(z)− y|p ≤ η(z, y) + ϵ} ≥ 1− ϵ,
where η(z, y) is the η(x, y) for which z ∈ U(x) as defined
in step 2. We can conclude that for any distribution P on
S̄U , there exists such a set of points S′′ ⊆ S̄U . Then, we
can find a set S′ of d points in S that S′′ originated from.

Formally, S′′ ⊆
⋃

(x,y)∈S′
⋃
{(z, y) : z ∈ U(x)}. We exe-

cute the optimizer ĥ ← η-RERM on S′ with the relevant
cutoff parameters. ĥ has error of η(z, y) + ϵ on a fraction
of (1− ϵ) points with respect to the distribution P . We start
with P1 as the uniform distribution over S̄U and find ĥ1

respectively. We perform a multiplicative weights update on
the distribution and find the next hypothesis w.r.t. the new
distribution and so forth.

Following the analysis of MW (or α-Boost) from Schapire
& Freund (2013, Section 6)), we know that for any point
in S̄U , roughly (1− ϵ) base learners are within ϵ from the
target cutoff. The rest ϵ fraction can contribute an error
of at most ϵ since the loss is bounded by 1. We get that
for any point in S̄U , the average loss of hypotheses in the
ensemble is within 2ϵ from the target cutoff. Crucially, we
use strong base learners in the ensemble. By the covering
argument, we get that for any point in SU , the average loss
of the ensemble is within 4ϵ,

∀(z, y) ∈ SU :
1

T

T∑
i=1

∣∣∣ĥi(z)− y
∣∣∣p ≤ η(z, y) + 4ϵ.

We are interested that the average prediction 1
T

∑T
i=1 ĥi

will be within the target cutoffs. For that reason, we use the
convexity of the ℓp loss to show that∣∣∣∣∣ 1T

T∑
i=1

ĥi(z)− y

∣∣∣∣∣
p

≤ 1

T

T∑
i=1

∣∣∣ĥi(z)− y
∣∣∣p .

Therefore, we conclude that

∀(z, y) ∈ SU :

∣∣∣∣∣ 1T
T∑

i=1

ĥi(z)− y

∣∣∣∣∣
p

≤ η(z, y) + 4ϵ,

which implies that we have an approximate robust ERM for
S,

∀(x, y) ∈ S : sup
z∈U(x)

∣∣∣∣∣ 1T
T∑

i=1

ĥi(z)− y

∣∣∣∣∣
p

≤ η(x, y) + 4ϵ.

The proof follows by applying a sample compression gener-
alization bound in the agnostic case, bounding the compres-
sion size, and rescaling ϵ.

For convex classes, we have a proper learner. The output of
the algorithm is a convex combination of functions fromH
which is also in the class.

4. Better Sample Complexity for the ℓ1 Loss
In this section, we provide an algorithm with a substantial
sample complexity improvement for the ℓ1 robust loss. The
key technical idea in this result is to note that, if we replace
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base learners with weak learners in the improper ensemble
predictor, we can still get an accurate prediction by taking
the median aggregation of the ensemble. Thus, we incorpo-
rate a variant of median boosting for real-valued functions
(Kégl, 2003; Hanneke et al., 2019) in our algorithm. Each
base learner requires fewer samples and as a result, we
improve the sample complexity. On the contrary, in Algo-
rithm 1 we obtained accurate predictions for a 1 − O(ϵ)
quantile of the predictors, and we output their average.

Theorem 4.1. The sample complexity of Algorithm 2 for
robust (ϵ, δ)-PAC learning a concept class H with the ℓ1
robust loss is

Õ
(
fat(H, cϵ) fat∗(H, cϵ)

ϵ2
+

1

ϵ2
log

1

δ

)
,

for some numerical constant c ∈ (0,∞).

Recall that fat∗(F , ϵ) ≲ 1
ϵ 2

fat(F,ϵ/2)+1 by Equation (7).

We shall define the notion of weak learners in the context of
real-valued learners.

Definition 4.2 (Weak real-valued learner). Let ξ ∈ (0, 1
2 ],

ζ ∈ [0, 1]. We say that f : X → [0, 1] is a (ζ, ξ)-weak
learner for the ℓp loss, with respect toD and a target function
h⋆ ∈ H if

P(x,y)∼D{(x, y) : |f(x)− y|p > |h⋆(x)− y|p + ζ} ≤ 1

2
−ξ.

This notion of a weak learner must be formulated carefully.
For example, taking a learner guaranteeing absolute loss at
most 1

2 − ξ is known to not be strong enough for boosting
to work. On the other hand, by making the requirement too
strong (for example, AdaBoost.R in Freund & Schapire
(1997)), then the sample complexity of weak learning will
be high that weak learners cannot be expected to exist for
certain function classes. We can now present an overview
of the proof and the algorithm.

Algorithm 2 Improper Robust Regressor
Input: H ⊆ [0, 1]X , S = {(xi, yi)}mi=1.
Parameters: ϵ.
Algorithms used: ℓ1-RERMH (Equation (6)), η-RERMH
(Equation (5)), a variant of median boosting: MedBoost
(Algorithm 5), sparsification method (Algorithm 6).

1. Compute h⋆ ← ℓ1-RERMH(S).
Denote η(x, y) = supz∈U(x) |h⋆(z)− y|, ∀(x, y) ∈ S.

2. Inflate S to SU to include all perturbed points.

3. Discretize S̄U ⊆ SU : (i) Construct a function class
Ĥ, where each ĥ ∈ Ĥ defined by η-RERM optimizer
on Õ(fat(H,O(ϵ))) points from S. The input cutoff
parameters to the optimizer are η(x, y), as computed
in step 1.
(ii) Each (z, y) ∈ SU defines a function in the dual
space, f(z,y) : Ĥ → [0, 1] such that f(z,y)(h) =∣∣h(z) − y

∣∣. Define S̄U to be the minimal cover of
SU under d∞ norm at scale O(ϵ).

4. Compute modified MedBoost on S̄U , where Ĥ con-
sists of weak learners for any distribution over S̄U . Let
F =

{
ĥ1, . . . , ĥT

}
be the returned set of classifiers.

5. Sparsify the set F to a smaller set
{
ĥ1, . . . , ĥk

}
.

Output: ĥ = Median
(
ĥ1, . . . , ĥk

)
.

Proof overview and algorithm outline. The complete
proof is in Appendix C.

We explain the main differences from Algorithm 1 and
where the sample complexity improvement comes from.
In the discretization step, we replace the base learners
in Ĥ with weak learners. We construct an improper en-
semble predictor via a median boosting algorithm, where
the weak learners are chosen from Ĥ. Specifically, each
function in Ĥ is the output of η-RERM for H (defined
in Equation (5)), performing on a subset S′ ⊆ S of size
d = Õ(fat(H,O(ϵ))) This is in contrast to Algorithm 1,
where we use Multiplicative Weights update that operates
with strong base learners. We can make accurate predictions
by taking the median aggregation due to the ℓ1 loss.

Another improvement arises from sparsifying the ensemble
(Hanneke et al., 2019) to be independent of the sample
size while keeping the median accurate almost with the
same resolution. The sparsification step uses sampling and
uniform convergence in the dual space (with respect to the
non-robust loss).

We elaborate on the steps in Algorithm 2. Steps (1),(2), and
(3) are similar to Algorithm 1, besides the construction of Ĥ
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as we explained above. In step (4), we compute a modified
version of the real-valued boosting algorithm MedBoost
(Kégl, 2003) on the discretized set S̄U , see Algorithm 5.
Hanneke et al. (2019) showed how to construct a sample
compression scheme from MedBoost. From this step, we
have that for any point in S̄U , the median of the losses of
each hypothesis in the ensemble is within ϵ of the target
cutoff that was computed in step 1. By the covering argu-
ment, the median of the losses is within 3ϵ for any point in
(z, y) ∈ SU ,∣∣∣Med

(
ĥ1(z)− y, . . . , ĥT (z)− y

)∣∣∣ ≤ η(z, y) + 3ϵ.

The median is translation invariant, so we have∣∣∣Med
(
ĥ1(z), . . . , ĥT (z)

)
− y
∣∣∣ ≤ η(z, y) + 3ϵ.

Finally, for any (x, y) ∈ S,

sup
z∈U(x)

∣∣∣Med
(
ĥ1(z)− y, . . . , ĥT (z)− y

)∣∣∣ ≤ η(x, y) + 3ϵ.

To further reduce the sample compression size, in step (5)
we sparsify the ensemble to k = Õ(fat∗(H, cϵ)) functions,

sup
z∈U(x)

∣∣∣Med
(
ĥ1(z)− y, . . . , ĥk(z)− y

)∣∣∣ ≤ η(x, y) + 4ϵ.

The proof follows by applying a sample compression gener-
alization bound in the agnostic case, bounding the compres-
sion size, and rescaling ϵ.

5. Robust (η, β)-Regression
In this section, we study robust (η, β)-regression in realiz-
able and agnostic settings. We provide an algorithm for the
realizable setting and show how to reduce agnostic to realiz-
able learning. We conclude by deriving sample complexity
guarantees for both settings.

This model is different than regression which guarantees a
small expected error (with high probability). In the robust
(η, β)-regression, we aim for a small pointwise absolute
error almost everywhere on the support of the distribution.
Results for this model do not follow from the standard re-
gression model. We first present our result for the realizable
case. The proof is in Appendix D.
Theorem 5.1. Assuming the distribution D is η-uniformly
realizable (see Equation (4)) by a class H ⊆ [0, 1]X , the
sample complexity of Algorithm 3 for robust (η, β, ϵ, δ)-PAC
learning a concept classH is

Õ
(
fat(H, cβ) fat∗(H, cβ)

ϵ
+

1

ϵ
log

1

δ

)
,

for some numerical constant c ∈ (0,∞).

Recall that fat∗(F , ϵ) ≲ 1
ϵ 2

fat(F,ϵ/2)+1 by Equation (7).

Algorithm 3 Improper Robust (η, β)-Regressor

Input: H ⊆ [0, 1]X , S = {(xi, yi)}mi=1.
Parameters: η, β.
Algorithms used: η-RERMH (Equation (5)), a variant of
median boosting: MedBoost (Algorithm 5), sparsification
method (Algorithm 6).

1. Inflate S to SU to include all perturbed points.

2. Discretize S̄U ⊆ SU : (i) Construct a function class
Ĥ, where each ĥ ∈ Ĥ defined by η-RERM optimizer
on Õ(fat(H,O(β))) points from S. The input cutoff
parameters to the optimizer are fixed η for all points.
(ii) Each (z, y) ∈ SU defines a function in the dual
space, f(z,y) : Ĥ → [0, 1] such that f(z,y)(h) =∣∣h(z) − y

∣∣. Define S̄U to be the minimal cover of
SU under d∞ norm at scale O(β).

3. Compute modified MedBoost on S̄U , where Ĥ con-
sists of weak learners for any distribution over S̄U . Let
F =

{
ĥ1, . . . , ĥT

}
be the returned set of classifiers.

4. Sparsify the set F to a smaller set
{
ĥ1, . . . , ĥk

}
.

Output: ĥ = Median
(
ĥ1, . . . , ĥk

)
.

We explain the main differences from Algorithm 2. This
model is different from robust regression with the ℓ1 loss.
Our goal is to find a predictor with a prediction within η+β
of the true label almost everywhere the domain, assuming
that the distribution is η-uniformly realizable by the function
class (Equation (4)).

In this model, the cutoff parameter is given to us as a pa-
rameter and is fixed for all points. This is different from
Algorithms 1 and 2, where we computed the changing cut-
offs with a robust ERM oracle. Moreover, the weak learners
in Ĥ are defined as the output of η-RERM performing on a
subset S′ ⊆ S of size d = Õ(fat(H,O(β))). Note that the
scale of shattering depends on β and not ϵ. The resolution
of discretization in the cover depends on β as well.

Agnostic setting We establish an upper bound on the sam-
ple complexity of the agnostic setting, by using a reduc-
tion to the realizable case. The main argument was origi-
nally suggested in (David et al., 2016) for the 0-1 loss and
holds for the η-ball robust loss as well. The proof is in
Appendix D.

Theorem 5.2. The sample complexity for agnostic robust
(η, β, ϵ, δ)-PAC learning a concept classH is

Õ
(
fat(H, cβ) fat∗(H, cβ)

ϵ2
+

1

ϵ2
log

1

δ

)
,
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for some numerical constant c ∈ (0,∞).

Recall that fat∗(F , ϵ) ≲ 1
ϵ 2

fat(F,ϵ/2)+1 by Equation (7).

Remark. An agnostic learner for robust (η, β)-regression
does not apply to the robust regression setting. The reason
is that the optimal function inH may have different scales
of robustness on different points, which motivates our ap-
proach of using changing cutoffs for different points. In
Appendix D.3 we show that by using a fixed cutoff for all
points we can obtain an error of only

√
OPTH + ϵ.

6. Discussion
In this paper, we studied the robustness of real-valued
functions to test time attacks. We showed that finite fat-
shattering is sufficient for learnability. we proved sample
complexity for learning with the general ℓp losses and im-
proved it for the ℓ1 loss. We also studied a model of regres-
sion with a cutoff loss. We proved sample complexity in
realizable and agnostic settings. We leave several interesting
open questions for future research. (i) Improve the upper
bound for learning with ℓp robust losses (if possible) and
show a lower bound. There might be a gap between sam-
ple complexities of different values of p. More specifically,
what is the sample complexity for learning with ℓ2 robust
loss? (ii) We showed that the fat-shattering dimension is
a sufficient condition. What is a necessary condition? In
the binary-valued case, we know that having a finite VC
is not necessary. (iii) To what extent can we benefit from
unlabeled samples for learning real-valued functions? This
question was considered by Attias et al. (2022) for binary
function classes, where they showed that the labeled sam-
ple complexity can be arbitrarily smaller compared to the
fully-supervised setting. (iv) In this work we focused on the
statistical aspect of robustly learning real-valued functions.
It would be interesting to explore the computational aspect
as well.
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d’été de Probabilités de Saint-Flour XII-1982, pp. 1–142.
Springer, 1984.

Duffy, N. and Helmbold, D. Boosting methods for regres-
sion. Machine Learning, 47(2):153–200, 2002.

Feige, U., Mansour, Y., and Schapire, R. Learning and infer-
ence in the presence of corrupted inputs. In Conference
on Learning Theory, pp. 637–657, 2015.

Floyd, S. and Warmuth, M. Sample compression, learnabil-
ity, and the vapnik-chervonenkis dimension. Machine
learning, 21(3):269–304, 1995.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139,
1997.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Gourdeau, P., Kanade, V., Kwiatkowska, M., and Worrell, J.
On the hardness of robust classification. The Journal of
Machine Learning Research, 22(1):12521–12549, 2021.

Graepel, T., Herbrich, R., and Shawe-Taylor, J. Pac-
bayesian compression bounds on the prediction error of
learning algorithms for classification. Machine Learning,
59(1-2):55–76, 2005.

Hanneke, S. The optimal sample complexity of pac learning.
The Journal of Machine Learning Research, 17(1):1319–
1333, 2016.

Hanneke, S., Kontorovich, A., and Sadigurschi, M. Sample
compression for real-valued learners. In Algorithmic
Learning Theory, pp. 466–488. PMLR, 2019.

Hazan, E. and Ma, T. A non-generative framework and
convex relaxations for unsupervised learning. Advances
in Neural Information Processing Systems, 29, 2016.

Hazan, E., Kale, S., and Shalev-Shwartz, S. Near-optimal
algorithms for online matrix prediction. In Conference
on Learning Theory, pp. 38–1. JMLR Workshop and
Conference Proceedings, 2012.

Hazan, E., Livni, R., and Mansour, Y. Classification with
low rank and missing data. In International conference
on machine learning, pp. 257–266. PMLR, 2015.

10



Adversarially Robust PAC Learnability of Real-Valued Functions

Kearns, M. J. and Schapire, R. E. Efficient distribution-free
learning of probabilistic concepts. Journal of Computer
and System Sciences, 48(3):464–497, 1994.
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A. Auxiliary Results
Proof of Theorem 3.4. Let F ⊆ [0, 1]X and let

H = {(x, y) 7→ |f(x)− y| : f ∈ F} .

Define the function classes
F1 = {(x, y) 7→ |h(x)− y| − η(x, y) : h ∈ H} ,

and
F2 = {(x, y) 7→ max{f(x, y), 0} : f ∈ F1} .

We claim that fat(H, γ) = fat(F1, γ). Take a set S = {(x1, y1), . . . , (xm, ym)} that is γ-shattered by H. There exists a
witness r = (r1, . . . , rm) ∈ [0, 1]m such that for each σ = (σ1, . . . , σm) ∈ {−1, 1}m there is a function hσ ∈ H such that

∀i ∈ [m]

{
hσ((xi, yi)) ≥ ri + γ, if σi = 1

hσ((xi, yi)) ≤ ri − γ, if σi = −1.

The set S is shattered by F1 by taking r̃ = (r1 + η(x1, y1), . . . , rm + η(xm, ym)). Similarly, any set that is shattered by
F1 is also shattered byH.

The class F2 consists of choosing a function from F1 and computing its pointwise maximum with the constant function 0.
In general, for two function classes G1,G2, we can define the maximum aggregation class

max(G1,G2) = {x 7→ max{g1(x), g2(x)} : gi ∈ Gi},

and Kontorovich & Attias (2021) showed that for any G1,G2

fat(max(G1,G2), γ) ≲ (fat(G1, γ) + fat(G2, γ)) log2(fat(G1, γ) + fat(G2, γ)) .

Taking G1 = F1 and G2 ≡ 0, we get

fat(F2, γ) ≲ fat(F1, γ) log
2(fat(F1, γ)) .

For the particular case G2 ≡ 0, we can show a better bound of

fat(F2, γ) ≲ fat(F1, γ) .

In words, it means that truncation cannot increase the shattering dimension. Indeed, take a set S = {(x1, y1), . . . , (xk, yk)}
that is γ-shattered byF2 = max(F1, 0), we show that this set is γ-shattered byF1. There exists a witness r = (r1, . . . , rk) ∈
[0, 1]m such that for each σ = (σ1, . . . , σk) ∈ {−1, 1}k there is a function fσ ∈ F1 such that

∀i ∈ [k]

{
max{fσ((xi, yi)), 0} ≥ ri + γ, if σi = 1

max{fσ((xi, yi)), 0} ≤ ri − γ, if σi = −1.

For max{fσ((xi, yi)), 0} ≤ ri − γ, we simply have that fσ((xi, yi)) ≤ ri − γ. Moreover, this implies that ri ≥ γ. As a
result,

max{fσ((xi, yi)), 0} ≥ ri + γ

≥ 2γ

> 0,

which means that fσ((xi, yi)) ≥ ri + γ. This shows that F1 γ-shatters S as well.

We can conclude the proof by applying Theorem A.2 to the class F2 and taking η(x, y) = 0.

12
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Corollary A.1. LetH ⊆ [0, 1]X with a finite fat-shattering dimension (at any scale). For any β, ϵ, δ ∈ (0, 1), 1 ≤ p <∞,
any function η : X × Y → [0, 1], any distribution D over X × Y , for a random sample S ∼ Dm, if

m(η, β, ϵ, δ) = O
(
1

ϵ

(
fat(H, β/8) log2

(
fat(H, β/8)

βϵ

)
+ log

1

δ

))
,

then with probability at least 1 − δ over S, for any h ∈ H satisfying |h(x)− y|p ≤ η(x, y), ∀(x, y) ∈ S, it holds that
P(x,y)∼D{(x, y) : |h(x)− y|p ≤ η(x, y) + pβ} ≥ 1− ϵ.

Proof. Following Theorem 3.4, we know that if m = O
(

1
ϵ

(
fat(H, β/8) log2

(
fat(H,β/8)

βϵ

)
+ log 1

δ

))
, with high prob-

ability over S ∼ Dm, for any h ∈ H satisfying |h(x)− y| ≤ (η(x, y))
1/p for all (x, y) ∈ S, it holds that

P(x,y)∼D

{
(x, y) : |h(x)− y| ≤ (η(x, y))

1/p
+ β

}
≥ 1− ϵ.

We show that for any (x, y) with |h(x)− y| ≤ (η(x, y))
1/p

+ β, it holds that

|h(x)− y|p
(i)

≤
(
(η(x, y))

1/p
+ β

)p
(ii)

≤ η(x, y) + pβ,

and that will finish the proof. (i) Follows by just raising both sides to the power of p. (ii) Follows since the function
x 7→ |x− y|p is p-Lipschitz for (x− y) ∈ [0, 1], and so∣∣∣((η(x, y))1/p + β

)p
− η(x, y)

∣∣∣ = ∣∣∣((η(x, y))1/p + β
)p
−
(
(η(x, y))

1/p
)p∣∣∣

≤ p
∣∣∣(η(x, y))1/p + β − (η(x, y))

1/p
∣∣∣

≤ pβ.

Theorem A.2 (Generalization from approximate interpolation). (Anthony et al., 1999, Theorems 21.13 and 21.14) Let
H ⊆ [0, 1]X with a finite fat-shattering dimension (at any scale). For any β, ϵ, δ ∈ (0, 1), η ∈ [0, 1], any distribution D over
X × Y , for a random sample S ∼ Dm, if

m(η, β, ϵ, δ) = O
(
1

ϵ

(
fat(H, β/8) log2

(
fat(H, β/8)

βϵ

)
+ log

1

δ

))
,

then with probability at least 1 − δ over S, for any h ∈ H satisfying |h(x)− y| ≤ η, ∀(x, y) ∈ S, it holds that
P(x,y)∼D{(x, y) : |h(x)− y| ≤ η + β} ≥ 1− ϵ.

The following is a bound on the covering numbers in d∞.

Lemma A.3 (Covering numbers for infinity metric). (Rudelson & Vershynin, 2006, Theorem 4.4) Let F ⊆ [0, 1]Ω be a
class of functions and |Ω| = n. Then for any 0 < a ≤ 1 and 0 < t < 1/2,

logN (t,F , d∞) ≤ Cv log(n/vt) · loga(2n/v) ,

where v = fatcat(F), and C, c are universal constants.

Lemma A.4 (Fat-shattering of the loss class). LetH ⊂ Rm be a real valued function class on m points. Denote the ℓp
loss class ofH by Lp

H, for 1 ≤ p <∞. Assume Lp
H is bounded by M . For anyH,

fat(Lp
H, γ) ≤ O(log2(m)fat(H, γ/pMp−1).

Proof. For any X and any function classH ⊂ RX , define the difference classH∆ ⊂ RX×R as

H∆ = {X × R ∋ (x, y) 7→ ∆h(x, y) := h(x)− y;h ∈ H} .
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In words,H∆ consists of all functions ∆h(x, y) = h(x)− y indexed by h ∈ H.

It is easy to see that for all γ > 0, we have fatγ(H∆) ≤ fatγ(H). Indeed, if H∆ γ-shatters some set
{(x1, y1), . . . , (xk, yk)} ⊂ X ×R with shift r ∈ Rk, thenH γ-shatters the set {x1, . . . , xk} ⊂ X with shift r+(y1, . . . , yk).

Next, we observe that taking the absolute value does not significantly increase the fat-shattering dimension. Indeed, for any
real-valued function class F , define abs(F) := {|f |; f ∈ F}. Observe that abs(F) ⊆ max((Fj)j∈[2]), where F1 = F
and F2 = −F =: {−f ; f ∈ F}. It follows from Attias et al. (2019, Theorem 13) that

fatγ(abs(F)) < O(log2(m)(fatγ(F) + fatγ(−F))) < O(log2(m)fatγ(F)). (10)

Next, define F as the L1 loss class ofH:

F = {X × R ∋ (x, y) 7→ |h(x)− y)|;h ∈ H} .

Then

fatγ(F) = fatγ(abs(H∆))

≤ O(log2(m)fatγ(H∆))

≤ O(log2(m)fatγ(H));

this proves the claim for L1.

To analyze the L2 case, consider F ⊂ [0,M ]X and define F◦p := {fp; f ∈ F}. We would like to bound fatγ(F◦p) in
terms of fatγ(F). Suppose that F◦p γ-shatters some set {x1, . . . , xk} with shift rp = (rp1 , . . . , r

p
k) ∈ [0,M ]k (there is

no loss of generality in assuming that the shift has the same range as the function class). Since for any y′ the function
y 7→ |y − y′|p is pMp−1 Lipschitz for (y − y′) ∈ [0,M ], we have

|ap − bp| ≤ pMp−1|a− b|, a, b ∈ [0,M ],

we conclude that F is able to γ/(pMp−1)-shatter the same k points and thus fatγ(F◦p) ≤ fatγ/(pMp−1)(F).

To extend this result to the case where F ⊂ [−M,M ]X , we use Equation (10).

In particular, define F as the Lp loss class ofH:

F = {X × R ∋ (x, y) 7→ (h(x)− y)p;h ∈ H} .

Then

fatγ(F) = fatγ((H∆)◦p)

= fatγ((abs(H∆))◦p)

≤ fatγ/(pMp−1)(abs(H∆))

≤ O(log2(m)fatγ/(pMp−1)(H∆))

≤ O(log2(m)fatγ/(pMp−1)(H)).

The following generalization for sample compression in the realizable case was proven by Littlestone & Warmuth (1986);
Floyd & Warmuth (1995). Their proof is for the 0-1 loss, but it applies similarly to bounded loss functions.

Lemma A.5 (Sample compression generalization bound). Let a sample compression scheme (κ, ρ), and a loss function
ℓ : R× R→ [0, 1]. In the realizable case, for any κ(S) ≲ m, any δ ∈ (0, 1), and any distribution D over X × {0, 1}, for
S ∼ Dm, with probability 1− δ,

Err(ρ(κ(S));D) ≤ Êrr(ρ(κ(S));S) +O
( |κ(S)| log(m) + log 1

δ

m

)
.
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The following generalization for sample compression in the agnostic case was proven by Graepel et al. (2005). Their proof
is for the 0-1 loss, but it applies similarly to bounded loss functions. We use it with the η-ball robust loss.

Lemma A.6 (Agnostic sample compression generalization bound). Let a sample compression scheme (κ, ρ), and a
loss function ℓ : R × R → [0, 1]. In the agnostic case, for any κ(S) ≲ m, any δ ∈ (0, 1), and any distribution D over
X × {0, 1}, for S ∼ Dm, with probability 1− δ,

Err(ρ(κ(S));D) ≤ Êrr(ρ(κ(S));S) +O

√(|κ(S)| log(m) + log 1
δ

)
m

 .

B. Proofs for Section 3: Robust Regression for ℓp Losses
Proof of Theorem 3.1. Fix ϵ, δ ∈ (0, 1). Let H ⊆ [0, 1]X . Fix a distribution D over X × Y , and let S = {(xi, yi)}mi=1 be
an i.i.d. sample from D. We elaborate on each one of the steps as described in Algorithm 1.

1. Compute h⋆ ← ℓp-RERMH(S) in order to get the set of cutoffs η(x, y) = supz∈U(x) |h⋆(z)− y|p for (x, y) ∈ S. Let
ηS = ((η(x1, y1)) , . . . , (η(xm, ym))). Our goal is to construct a predictor with an empirical robust loss of η(x, y) + ϵ
for any (x, y) ∈ S, for the ℓp loss, which means that our predictor is an approximate Robust ERM.

2. Define the inflated training data set

SU =
⋃
i∈[n]

{
(z, yI(z)) : z ∈ U(xi)

}
,

where I(z) = min{i ∈ [m] : z ∈ U(xi)}. For (z, y) ∈ SU , let η(z, y) be the η(x, y) for which z ∈ U(x) and
yI(z) = y.

3. Discretize SU to a finite set S̄U as following.

(a) Define a set of functions, such that each function is defined by η-RERMH optimizer on d =

O
(

1
ϵ fat(H, ϵ/8p) log

2
(

p·fat(H,ϵ/8p)
ϵ2

))
points from S.

Ĥ = {η-RERMH(S′,ηS′ , p) : S′ ⊆ S, |S′| = d} .

Recall the definition of η-RERMH, see Equation (5). The cardinality of this class is bounded as follows

|Ĥ| ≈
(
m

d

)
≲
(m
d

)d
. (11)

(b) A discretization S̄U ⊆ SU will be defined by covering of the dual class in d∞ norm. Let Lp

Ĥ
be the Lp loss

class of Ĥ, namely, Lp

Ĥ
=
{
Z × Y ∋ (z, y) 7→ |h(z)− y|p : h ∈ Ĥ

}
. The dual class of Lp

Ĥ
, Lp

Ĥ
∗ ⊆ [0, 1]

Ĥ,

is defined as the set of all functions f(z,y) : Ĥ → [0, 1] such that f(z,y)(h) =
∣∣h(z)− y

∣∣p, for any (z, y) ∈ SU .

Formally, Lp

Ĥ
∗
=
{
f(z,y) : (z, y) ∈ SU

}
, where f(z,y) =

(
f(z,y)(h1), . . . , f(z,y)(h|Ĥ|)

)
. We take S̄U ⊆ SU to

be a minimal ϵ-cover for SU in d∞,

sup
(z,y)∈SU

inf
(z̄,ȳ)∈S̄U

∥∥f(z,y) − f(z̄,ȳ)
∥∥
∞ ≤ ϵ. (12)

Let fat∗(H, ϵ) be the dual ϵ-fat-shattering ofH. Using Lemma A.4, we can bound the dual fat-shattering of the
Lp
H loss class by the fat-shattering ofH,

fat∗(Lp
H, ϵ) ≤ log2(m) fat∗(H, ϵ/p) . (13)
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Applying a covering number argument from Lemma A.3 (taking a = 1) on the dual space, and upper bounding
the dual fat-shattering of the Lp loss class as in Equation (13), we have the following bound∣∣S̄U

∣∣ = N (ϵ, SU , d∞)

≲ exp

(
fat∗(Lp

H, cϵ) log

(
|Ĥ|

ϵ · fat∗(Lp
H, cϵ)

)
log

(
|Ĥ|

fat∗(Lp
H, cϵ)

))

≲ exp

(
fat∗(H, cϵ/p) log

(
|Ĥ|

ϵ · fat∗(H, cϵ/p)

)
log

(
|Ĥ|

fat∗(H, cϵ/p)

)
log2(m)

)

≲ exp

(
fat∗(H, cϵ/p) log2

(
|Ĥ|

ϵ · fat∗(H, cϵ/p)

)
log2(m)

)
,

(14)

where c ∈ (0,∞) is a numerical constant, derived from the covering argument in Lemma A.3.

4. Compute the following variant of Multiplicative Wights (MW) algorithm on the discretized set S̄U for T ≈ log
∣∣S̄U
∣∣.

Let d = O
(

1
ϵ fat(H, ϵ/8p) log

2
(

p·fat(H,ϵ/8p)
ϵ2

))
, and let η(z, y) be the η(x, y) for which z ∈ U(x) as defined in step

2.

From Corollary A.1, taking δ = 1/3, β = ϵ/p, we know that for any distribution P on S̄U , upon receiving an i.i.d.
sample S′′ from P of size d, with probability 2/3 over sampling S′′ from P , for any h ∈ H with ∀(z, y) ∈ S′′ :
|h(z)− y|p ≤ η(z, y), it holds that P(z,y)∼P{(z, y) : |h(z)− y|p ≤ η(z, y) + ϵ} ≥ 1− ϵ. We can conclude that for
any distribution P on S̄U , there exists such a set of points S′′ ⊆ S̄U .

Given that set, we can find the function with the aforementioned property in Ĥ. Let S′ be the d points
in S that the perturbed points S′′ originated from. That is, S′′ ⊆

⋃
(x,y)∈S′

⋃
{(z, y) : z ∈ U(x)}. Take

Ĥ ∋ ĥ = η-RERMH(S′,ηS′ , p), it holds that ∀(z, y) ∈ S′′ :
∣∣∣ĥ(z)− y

∣∣∣p ≤ η(z, y), as a result we get

P(z,y)∼P

{
(z, y) :

∣∣∣ĥ(z)− y
∣∣∣p ≤ η(z, y) + ϵ

}
≥ 1− ϵ.

Algorithm 4 Modified Multiplicative Weights

Input: H, S, S̄U .
Parameters: ϵ, T,ηS = (η(x1, y1), . . . , η(xm, ym)) for (xi, yi) ∈ S.
Algorithms used: Robust ERM for the η-ball robust loss: η-RERMH (Equation (5)).
Initialize P1 = Uniform(S̄U ), d = O

(
1
ϵ fat(H, ϵ/8p) log

2
(

p·fat(H,ϵ/8p)
ϵ2

))
, η(z, y) is the η(x, y) for which z ∈ U(x).

For t = 1, . . . , T :
▷ Compute a strong base learner w.r.t. distribution Pt by finding n points in S and executing η-RERMH on them.

(a) Find d points S′′
t ⊆ S̄U such that any h ∈ H satisfying: ∀(z, y) ∈ S′′

t : |h(z)− y|p ≤ η(z, y), it holds that
E(z,y)∼Pt

[
I
{
|h(z)− y|p ≤ η(z, y) + ϵ

}]
≥ 1− ϵ. (See the analysis for why this set exists).

(b) Let S′
t be the d points in S that S′′

t originated from. Formally, S′′
t ⊆

⋃
(x,y)∈S′

t

⋃
{(z, y) : z ∈ U(x)}.

(c) Compute ĥt = η-RERMH(S′
t,ηS′

t
, p).

▷ Make a multiplicative weights update on Pt.
(d) For each (z, y) ∈ S̄U :

Pt+1(z, y) ∝ Pt(z, y)e
−ξI{|ĥt(z)−y|p≤η(z,y)}

Output: classifiers ĥ1, . . . , ĥT and sets S′
1, . . . , S

′
T .

A uniformly 4ϵ-approximate adversarially robust sample compression scheme for S. The output of the algorithm is
a sequence of functions ĥ1, . . . , ĥT , and the corresponding sets that encode them S′

1, . . . , S
′
T , where we predict with the
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average of the returned hypotheses, 1
T

∑T
i=1 ĥi(·). For T ≈ log

∣∣S̄U
∣∣, we show that we have

∀(z̄, ȳ) ∈ S̄U :
1

T

T∑
i=1

∣∣∣ĥi(z̄)− ȳ
∣∣∣p ≤ η(z̄, ȳ) + 2ϵ. (15)

For any distribution Pt over S̄U , we have a base learner ĥ, satisfying E(z̄,ȳ)∼Pt

[
I
{∣∣∣ĥ(z̄)− ȳ

∣∣∣p ≤ η(z̄, ȳ) + ϵ
}]
≥ 1− ϵ,

due to Theorem 3.4. Following standard analysis of MW / α-Boost (see Schapire & Freund (2013, Section 6)), for any
(z̄, ȳ) ∈ S̄U , 1 − ϵ fraction of the base learners has an error within η(z̄, ȳ) + ϵ. The loss is bounded by 1, so the other ϵ
fraction can add an error of at most ϵ. The overall average loss of the base learners is upper bounded by η(z̄, ȳ) + 2ϵ. Note
that we can find these base learners in Ĥ, as defined in step 2(a) of the main algorithm. Crucially, we use strong base
learners in order to ensure a low empirical loss of the average base learners.

From the covering argument (Equation (12)), we have

∀(z, y) ∈ SU :
1

T

T∑
i=1

∣∣∣ĥi(z)− y
∣∣∣p ≤ η(z, y) + 4ϵ. (16)

Indeed, for any (z, y) ∈ SU there exists (z̄, ȳ) ∈ S̄U , such that for any h ∈ H,∣∣∣∣∣h(z)− y
∣∣p − ∣∣h(z̄)− ȳ

∣∣p∣∣∣ ≤ ϵ.

Specifically, it holds for
{
ĥ1, . . . , ĥT

}
⊆ H and h⋆ ∈ H. Using the triangle inequality we have

1

T

T∑
i=1

∣∣∣ĥi(z)− y
∣∣∣p ≤ 1

T

T∑
i=1

∣∣∣ĥi(z̄)− ȳ
∣∣∣p + ϵ, (17)

and

η(z̄, ȳ) =
∣∣h⋆(z̄)− ȳ

∣∣p ≤ ∣∣h⋆(z)− y
∣∣p + ϵ = η(z, y). (18)

Combining Equations (17) and (18) we get Equation (16). Finally, using the convexity of the ℓp loss, we have∣∣∣∣∣ 1T
T∑

i=1

ĥi(z)− y

∣∣∣∣∣
p

≤ 1

T

T∑
i=1

∣∣∣ĥi(z)− y
∣∣∣p . (19)

Finally, from Equations (16) and (19) we conclude a uniformly 4ϵ-approximate adversarially robust sample compression
scheme for S,

∀(z, y) ∈ SU :

∣∣∣∣∣ 1T
T∑

i=1

ĥi(z)− y

∣∣∣∣∣
p

≤ η(z, y) + 4ϵ, (20)

which implies that

∀(x, y) ∈ S : sup
z∈U(x)

∣∣∣∣∣ 1T
T∑

i=1

ĥi(x)− y

∣∣∣∣∣
p

≤ η(x, y) + 4ϵ.

We summarize the compression size. We have have T = O
(
log
∣∣S̄U
∣∣) predictors, where each one is representable by

d = O
(

1
ϵ fat(H, ϵ/8p) log

2
(

p·fat(H,ϵ/8p)
ϵ2

))
points. By counting the number of predictors using Equation (14), we get

17



Adversarially Robust PAC Learnability of Real-Valued Functions

log
(∣∣S̄U

∣∣) ≲ exp

(
fat∗(H, cϵ/p/p) log2

(
|Ĥ|

ϵ · fat∗(H, cϵ/p/p)

)
log2(m)

)

≲ fat∗(H, cϵ/p) log2
(

|Ĥ|
ϵ · fat∗(H, cϵ/p)

)
log2(m)

≲ fat∗(H, cϵ/p) log2
(

1

ϵ · fat∗(H, cϵ/p)

(m
d

)d)
log2(m)

≲ fat∗(H, cϵ/p)
(
log

(
1

ϵ · fat∗(H, cϵ/p)

)
+ d log

(m
d

))2

log2(m)

≲ fat∗(H, cϵ/p)

(
log2

(
1

ϵ · fat∗(H, cϵ/p)

)
+ d log

(
1

ϵ · fat∗(H, cϵ/p)

)
log
(m
d

)
+ d2 log2

(m
d

))
log2(m)

≲ fat∗(H, cϵ/p) d2 log2
(m
d

)
log2

(
1

ϵ · fat∗(H, cϵ/p)

)
log2(m) .

(21)

We get a uniformly 4ϵ-approximate adversarially robust sample compression scheme for S of size

O
(
fat∗(H, cϵ/p) d3 log2

(m
d

)
log2

(
1

ϵ · fat∗(H, cϵ/p)

)
log2(m)

)
.

By plugging in d = O
(

1
ϵ fat(H, ϵ/8p) log

2
(

p·fat(H,ϵ/8p)
ϵ2

))
, we have

O
(

1
ϵ3 fat

3(H, ϵ/8p) fat∗(H, cϵ/p) log6
(

p·fat(H,ϵ/8p)
ϵ2

)
log2

(
m

1
ϵ fat(H,ϵ/8p) log2( p·fat(H,ϵ/8p)

ϵ2
)

)
log2

(
1

ϵ·fat∗(H,cϵ/p)

)
log2(m)

)
.

Let (κ, ρ) be the compression scheme and |κ(S)| the compression size. Let Êrrℓp(h;S) be the empirical loss of h on S
with the ℓp robust loss. We can derive the error as follows,

Errℓp(ρ(κ(S));D)
(i)

≲ Êrrℓp(ρ(κ(S));S) +

√(
|κ(S)| log(m) + log 1

δ

)
m

(ii)

≲ Êrrℓp(h
⋆;S) + 4ϵ+

√(
|κ(S)| log(m) + log 1

δ

)
m

(iii)

≲ Errℓp(h
⋆;D) + 4ϵ+

√(
|κ(S)| log(m) + log 1

δ

)
m

+

√
log 1

δ

m

≲ Errℓp(h
⋆;D) + 4ϵ+

√(
|κ(S)| log(m) + log 1

δ

)
m

,

(i) follows from a generalization of sample compression scheme in the agnostic case, see Lemma A.6, (ii) follows
Equation (20), (iii) follows from Hoeffding’s inequality.

Take m sufficiently large such that √
|κ(S)| log(m) + log 1

δ

m
≲ ϵ.
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Re-scale ϵ = ϵ/5 and plug in the compression size, we get sample complexity of size

M = O
(

1

ϵ2

(
|κ(S)| log 1

ϵ
+ log

1

δ

))
,

where |κ(S)| is upper bounded as follows

O
(

1
ϵ3 fat

3(H, ϵ/8p) fat∗(H, cϵ/p) log6
(

p·fat(H,ϵ/8p)
ϵ2

)
log2

(
m

1
ϵ fat(H,ϵ/8p) log2( p·fat(H,ϵ/8p)

ϵ2
)

)
log2

(
1

ϵ·fat∗(H,cϵ/p)

)
log2(m)

)
.

We conclude the sample complexity

M = Õ
(

1

ϵ5
fat3(H, cϵ/p) fat∗(H, cϵ/p) + 1

ϵ2
log

1

δ

)
,

for some numerical constant c ∈ (0,∞).

C. Proofs for Section 4: Better Sample Complexity for the ℓ1 Loss
Proof of Theorem 4.1. Fix ϵ, δ ∈ (0, 1). Let H ⊆ [0, 1]X . Fix a distribution D over X × Y , and let S = {(xi, yi)}mi=1 be
an i.i.d. sample from D. We elaborate on each one of the steps as described in Algorithm 2.

1. Compute h⋆ ← ℓ1-RERMH(S) in order to get the set of cutoffs η(x, y) = supz∈U(x) |h⋆(z)− y| for (x, y) ∈ S. Let
ηS = (η(x1, y1), . . . , η(xm, ym)). Our goal is to construct a predictor with an empirical robust loss of η(x, y) + ϵ for
any (x, y) ∈ S, which means that our predictor is an approximate Robust ERM.

2. Define the inflated training data set
SU =

⋃
i∈[n]

{
(z, yI(z)) : z ∈ U(xi)

}
,

where I(z) = min{i ∈ [m] : z ∈ U(xi)}. For (z, y) ∈ SU , let η(z, y) be the η(x, y) for which z ∈ U(x) and
yI(z) = y.

3. Discretize SU to a finite set S̄U as following.

(a) Define a set of functions, such that each function is defined by η-RERMH optimizer on d =

O
(
fat(H, ϵ/8) log2

(
fat(H,ϵ/8)

ϵ2

))
points from S.

Ĥ = {η-RERMH(S′,ηS′ , 1) : S′ ⊆ S, |S′| = d} .

Recall the definition of η-RERMH, see Equation (5).
In order to understand what this definition of Ĥ serves for, see step 4 below. The cardinality of this class is
bounded as follows

|Ĥ| ≈
(
m

d

)
≲
(m
d

)d
. (22)

(b) A discretization S̄U ⊆ SU will be defined by covering of the dual class in d∞ norm. Let L1
Ĥ be the L1 loss

class of Ĥ, namely, L1
Ĥ =

{
Z × Y ∋ (z, y) 7→ |h(z)− y| : h ∈ Ĥ

}
. The dual class of L1

Ĥ , L1
Ĥ

∗ ⊆ [0, 1]
Ĥ,

is defined as the set of all functions f(z,y) : Ĥ → [0, 1] such that f(z,y)(h) =
∣∣h(z) − y

∣∣, for any (z, y) ∈ SU .

Formally, L1
Ĥ

∗
=
{
f(z,y) : (z, y) ∈ SU

}
, where f(z,y) =

(
f(z,y)(h1), . . . , f(z,y)(h|Ĥ|)

)
. We take S̄U ⊆ SU to

be a minimal ϵ-cover for SU in d∞,

sup
(z,y)∈SU

inf
(z̄,ȳ)∈S̄U

,
∥∥f(z,y) − f(z̄,ȳ)

∥∥
∞ ≤ ϵ. (23)
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Let fat∗(H, ϵ) be the dual ϵ-fat-shattering ofH. Using Lemma A.4, we can bound the dual fat-shattering of the
L1
H loss class by the fat-shattering ofH,

fat∗
(
L1
H, ϵ

)
≤ log2(m) fat∗(H, ϵ) . (24)

By applying a covering number argument from Lemma A.3 (taking a = 1) on the dual space, and upper bounding
the dual fat-shattering of the L1 loss class as in Equation (24), we have the following bound

∣∣S̄U
∣∣ = N (ϵ, SU , d∞)

≲ exp

(
fat∗

(
L1
H, cϵ

)
log

(
|Ĥ|

ϵ · fat∗(L1
H, cϵ)

)
log

(
|Ĥ|

fat∗(L1
H, cϵ)

))

≲ exp

(
fat∗(H, cϵ) log

(
|Ĥ|

ϵ · fat∗(H, cϵ)

)
log

(
|Ĥ|

fat∗(H, cϵ)

)
log2(m)

)

≲ exp

(
fat∗(H, cϵ) log2

(
|Ĥ|

ϵ · fat∗(H, cϵ)

)
log2(m)

)
,

(25)

where c ∈ (0,∞) is a numerical constant, derived from the covering argument in Lemma A.3.

4. Compute a modified version of the real-valued boosting algorithm MedBoost (Kégl, 2003; Hanneke et al., 2019) on
the discretized set S̄U . The output of the algorithm is a uniformly ϵ-approximate sample compression scheme for the
set S̄U , for ≈ log

(∣∣S̄U
∣∣) boosting rounds. Moreover, the weak learners are chosen from the set Ĥ. Once we have these

weak learners, the guarantee of the algorithm follows from Hanneke et al. (2019, Corollary 6). We should explain why
we have a weak learner for any distribution over S̄U .

The existence of weak learners in Ĥ. Let d = O
(
fat(H, ϵ/8) log2

(
fat(H,ϵ/8)

ϵ2

))
and let η(z, y) be the η(x, y) for

which z ∈ U(x) as defined in step 2. Taking δ = 1/3, we know that for any distribution P on S̄U , upon receiving
an i.i.d. sample S′′ from P of size d, with probability 2/3 over sampling S′′ from P , for any h ∈ H satisfying
∀(z, y) ∈ S′′ : |h(z)− y| ≤ η(z, y), it holds that P(z,y)∼P((z, y) : |h(z)− y| > η(z, y) + ϵ) ≤ 1/3. That is, such a
function is a (ϵ, 1/6)-weak learner for P and h⋆ (computed in step 1). We can conclude that for any distribution P on
S̄U , there exists a set of points S′′ ⊆ S̄U of size d that defines a weak learner for P and h⋆.

Furthermore, we can find these weak learners in Ĥ as follows. Let S′ be the d points in S that the perturbed
points S′′ originated from. That is, S′′ ⊆

⋃
(x,y)∈S′

⋃
{(z, y) : z ∈ U(x)}. Therefore, we can conclude that ĥ =

η-RERMH(S′,ηS′) is a weak learner, and can be found in Ĥ. So, we can think of Ĥ as a pool of weak learners for
any possible distribution over the discretized set S̄U .
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Algorithm 5 Modified MedBoost

Input: H, S, S̄U .
Parameters: ϵ, T,ηS = (η(x1, y1), . . . , η(xm, ym)) for (xi, yi) ∈ S.
Algorithms used: Robust ERM for the η-ball robust loss: η-RERMH (Equation (5)).
Initialize P1 = Uniform(S̄U ), d = O

(
fat(H, ϵ/8) log2

(
fat(H,ϵ/8)

ϵ2

))
, η(z, y) is the η(x, y) for which z ∈ U(x) as defined

in step 2 of the main algorithm.
For t = 1, . . . , T :

▷ Compute a weak base learner w.r.t. distribution Pt by finding d points in S and executing η-RERMH on them.
(a) Find d points S′′

t ⊆ S̄U such that any h ∈ H satisfying: ∀(z, y) ∈ S′′
t : |h(z)− y| ≤ η(z, y), it holds that

E(z,y)∼Pt

[
I
{
|h(z)− y| ≥ η(z, y) + ϵ

}]
≤ 1/3. (See the analysis for why this set exists).

(b) Let S′
t be the d points in S that S′′

t originated from. Formally, S′′
t ⊆

⋃
(x,y)∈S′

t

⋃
{(z, y) : z ∈ U(x)}.

(c) Compute ĥt = η-RERMH(S′
t,ηS′

t
, 1). From steps (a) and (b), it follows that ĥt is a (ϵ, 1/6)-weak learner with respect

to the distribution Pt over S̄U .
▷ Update the weight of the weak learner in the ensemble and make a multiplicative weights update on Pt.

(d) For i = 1, . . . , n =
∣∣S̄U
∣∣:

i. Set
w

(t)
i = 1− 2I

[∣∣∣ĥt(zi)− yi

∣∣∣ > η(zi, yi) + ϵ
]
.

ii. Set

αt =
1

2
log

 (1− 1/6)
∑n

i=1 Pt(zi, yi) I
[
w

(t)
i = 1

]
(1 + 1/6)

∑n
i=1 Pt(zi, yi) I

[
w

(t)
i = −1

]
 .

iii. • If αt =∞: return T copies of ht, (α1 = 1, . . . , αT = 1), and S′
t.

• Else:

Pt+1(zi, yi) = Pt(zi, yi)
exp(−αtw

t
i)∑n

j=1 Pt(zj , yj) exp
(
−αtwt

j

) .
Output: Hypotheses ĥ1, . . . , ĥT , coefficients α1, . . . , αT and sets S′

1, . . . , S
′
T .

A uniformly 3ϵ-approximate adversarially robust sample compression scheme for S. The output of MedBoost is a
uniformly ϵ-approximate sample compression scheme for the set S̄U . We show that this is a uniformly 2ϵ-approximate
adversarially robust sample compression scheme for S, that is, a sample compression for S scheme with respect to the
robust loss.

For T ≈ log
∣∣S̄U
∣∣ boosting rounds, it follows from Hanneke et al. (2019, Corollary 6) that the output of the algorithm

satisfy

∀(z̄, ȳ) ∈ S̄U :
∣∣∣Med

(
ĥ1(z̄), . . . , ĥT (z̄);α1, . . . , αT

)
− ȳ
∣∣∣ ≤ η(z̄, ȳ) + ϵ, (26)

Med
(
ĥ1(z̄), . . . , ĥT (z̄);α1, . . . , αT

)
is the weighted median of ĥ1, . . . , ĥT with weights α1, . . . , αT . From the

covering argument (Equation (23)), this implies that

∀(z, y) ∈ SU :
∣∣∣Med

(
ĥ1(z), . . . , ĥT (z);α1, . . . , αT

)
− y
∣∣∣ ≤ η(z, y) + 3ϵ. (27)

Indeed, for any (z, y) ∈ SU there exists (z̄, ȳ) ∈ S̄U , such that for any h ∈ H,∣∣∣∣∣h(z)− y
∣∣− ∣∣h(z̄)− ȳ

∣∣∣∣∣ ≤ ϵ.

Specifically, it holds for
{
ĥ1, . . . , ĥT

}
⊆ H and h⋆ ∈ H.
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So, ∣∣∣Med
(
ĥ1(z), . . . , ĥT (z);α1, . . . , αT

)
− y
∣∣∣ (a)= ∣∣∣Med

(
ĥ1(z)− y, . . . , ĥT (z)− y;α1, . . . , αT

)∣∣∣
(b)

≤
∣∣∣Med

(
ĥ1(z̄)− ȳ, . . . , ĥT (z̄)− ȳ;α1, . . . , αT

)∣∣∣+ ϵ

(c)
=
∣∣∣Med

(
ĥ1(z̄), . . . , ĥT (z̄);α1, . . . , αT

)
− ȳ
∣∣∣+ ϵ

(d)

≤ |h⋆(z̄)− ȳ|+ 2ϵ

(e)

≤ |h⋆(z)− y|+ 3ϵ

(f)
= η(z, y) + 3ϵ,

(28)

(a)+(c) follow since the median is translation invariant, (b)+(e) follow from the covering argument, (d) holds since
the returned function by MedBoost is a uniformly ϵ-approximate sample compression for S̄U , (f) follows from the
definition in step 2 of the algorithm.

Finally, from Equation (28) we conclude a uniformly 3ϵ-approximate adversarially robust sample compression scheme
for S,

∀(x, y) ∈ S : sup
z∈U(x)

∣∣∣Med
(
ĥ1(z), . . . , ĥT (z);α1, . . . , αT

)
− y
∣∣∣ ≤ η(x, y) + 3ϵ. (29)

We summarize the compression size. We have have T = O
(
log
∣∣S̄U
∣∣) predictors, where each one is representable by

d = O
(
fat(H, ϵ/8) log2

(
fat(H,ϵ/8)

ϵ

))
points. By counting the number of predictors using Equation (25), we get

log
(∣∣S̄U

∣∣) ≲ log

(
exp

(
fat∗(H, cϵ) log2

(
|Ĥ|

ϵ · fat∗(H, cϵ)

)
log2(m)

))

≲ fat∗(H, cϵ) log2
(

|Ĥ|
ϵ · fat∗(H, cϵ)

)
log2(m)

≲ fat∗(H, cϵ) log2
(

1

ϵ · fat∗(H, cϵ)

(m
d

)d)
log2(m)

≲ fat∗(H, cϵ)
(
log

(
1

ϵ · fat∗(H, cϵ)

)
+ d log

(m
d

))2

log2(m)

≲ fat∗(H, cϵ)

(
log2

(
1

ϵ · fat∗(H, cϵ)

)
+ d log

(
1

ϵ · fat∗(H, cϵ)

)
log
(m
d

)
+ d2 log2

(m
d

))
log2(m) .

All together we have a compression of size O
(
d log

(∣∣S̄U
∣∣)), which is already sufficient for deriving generalization.

We can reduce further the number of predictors to be independent of the sample size, thereby reducing the sample
compression size and improving the sample complexity.

5. We follow the sparsification method suggested by Hanneke et al. (2019). The idea is that by sampling functions from
the ensemble, we can guarantee via a uniform convergence for the dual space, that with high probability it is sufficient
to have roughly ≈ fat∗(H, β) predictors.

For α1, . . . , αT ∈ [0, 1] with
∑T

t=1 αt = 1, we denote the categorical distribution by Cat(α1, . . . , αT ), which is
a discrete distribution on the set [T ] with probability of αt on t ∈ [T ]. The inputs to the algorithm are τ(x, y) =
η(x, y) + 4ϵ and k = O

(
fat∗(H, cϵ) log2

(
fat∗(H, cϵ) /ϵ2

))
, where c ∈ (0,∞) is a numerical constant.
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Algorithm 6 Sparsify

Input: Hypotheses ĥ1, . . . , ĥT , coefficients α1, . . . , αT , S = {(xi, yi}mi=1.
Parameter: ϵ, k, τ = (τ(x1, y1), . . . , τ(xm, ym)).

(a) Let α′
t = αt

/∑T
s=1 αs.

(b) Repeat:
i. Sample (J1, . . . , Jk) ∼ Cat(α′

1, . . . , α
′
T)

k.
ii. Let F = {hJ1

, . . . , hJk
}.

iii. Until ∀(x, y) ∈ S :
∣∣∣{f ∈ F : supz∈U(x)|f(z)− y| > τ(x, y)

}∣∣∣ < k/2.

Output: Hypotheses hJ1 , . . . , hJk
.

The sparsification method returns with high probability function {f1, . . . , fk}, such that

∀(x, y) ∈ S : sup
z∈U(x)

∣∣Med
(
f1(x), . . . , fk(x)

)
− y
∣∣ ≤ η(x, y) + 4ϵ. (30)

We get a uniformly 4ϵ-approximate adversarially robust sample compression scheme for S, where
we have O

(
fat∗(H, cϵ) log2

(
fat∗(H, cϵ) /ϵ2

))
functions, and each function is representable by

O
(
fat(H, ϵ/8) log2

(
fat(H, ϵ/8) /ϵ2

))
points, therefore, the compression set size is

fat(H, ϵ/8) fat∗(H, cϵ) log2
(
fat(H, ϵ/8)

ϵ2

)
log2

(
fat∗(H, cϵ)

ϵ2

)
.

Let (κ, ρ) be the compression scheme and |κ(S)| the compression size. Let Êrrℓ1(h;S) be the empirical loss of h on S
with the ℓ1 robust loss. We can derive the error as follows,

Errℓ1(ρ(κ(S));D)
(i)

≲ Êrrℓ1(ρ(κ(S));S) +

√(
|κ(S)| log(m) + log 1

δ

)
m

(ii)

≲ Êrrℓ1(h
⋆;S) + 4ϵ+

√(
|κ(S)| log(m) + log 1

δ

)
m

(iii)

≲ Errℓ1(h
⋆;D) + 4ϵ+

√(
|κ(S)| log(m) + log 1

δ

)
m

+

√
log 1

δ

m

≲ Errℓ1(h
⋆;D) + 4ϵ+

√(
|κ(S)| log(m) + log 1

δ

)
m

,

(i) follows from a generalization of sample compression scheme in the agnostic case, see Lemma A.6, (ii) follows
Equation (30), (iii) follows from Hoeffding’s inequality.

Take m sufficiently large such that √
|κ(S)| log(m) + log 1

δ

m
≲ ϵ.

Re-scale ϵ = ϵ/5 and plug in the compression size, we get sample complexity of size

M = O
(

1

ϵ2

(
fat(H, cϵ) fat∗(H, cϵ) log2

(
fat(H, cϵ)

ϵ2

)
log2

(
fat∗(H, cϵ)

ϵ2

)
log

1

ϵ
+ log

1

δ

))
,

for some numerical constant c ∈ (0,∞).
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D. Proofs for Section 5: Robust (η, β)-Regression
D.1. Realizable

Proof of Theorem 5.1. Fix ϵ, δ, β ∈ (0, 1) and η ∈ [0, 1]. Let H ⊆ [0, 1]X . Fix a distribution D over X × Y , and let
S = {(xi, yi)}mi=1 be an i.i.d. sample from D.

We elaborate on each one of the steps as described in Algorithm 3.

1. Define the inflated training data set
SU =

⋃
i∈[n]

{
(z, yI(z)) : z ∈ U(xi)

}
,

where I(z) = min{i ∈ [m] : z ∈ U(xi)}.

2. Discretize SU to a finite set S̄U as following.

(a) Define a set of functions, such that each function is robustly accurate on d = O
(
fat(H, β/8) log2

(
fat(H,β/8)

β

))
points in S, with respect to the η-ball robust loss,

Ĥ = {η-RERMH(S′) : S′ ⊆ S, |S′| = d} .

Recall the definition of η-RERMH, see Equation (5). In order to understand what this definition of Ĥ serves for,
see step 3 below. The cardinality of this class is bounded as follows

|Ĥ| ≈
(
m

d

)
≲
(m
d

)d
. (31)

(b) A discretization S̄U ⊆ SU will be defined by covering of the dual class in d∞ norm. Let L1
Ĥ be the L1 loss

class of Ĥ, namely, L1
Ĥ =

{
Z × Y ∋ (z, y) 7→ |h(z)− y| : h ∈ Ĥ

}
. The dual class of L1

Ĥ , L1
Ĥ

∗ ⊆ [0, 1]
Ĥ,

is defined as the set of all functions f(z,y) : Ĥ → [0, 1] such that f(z,y)(h) =
∣∣h(z) − y

∣∣, for any (z, y) ∈ SU .

Formally, L1
Ĥ

∗
=
{
f(z,y) : (z, y) ∈ SU

}
, where f(z,y) =

(
f(z,y)(h1), . . . , f(z,y)(h|Ĥ|)

)
. We take S̄U ⊆ SU to

be a minimal β-cover for SU in d∞,

sup
(z,y)∈SU

inf
(z̄,ȳ)∈S̄U

,
∥∥f(z,y) − f(z̄,ȳ)

∥∥
∞ ≤ β. (32)

Let fat∗(H, β) be the dual β-fat-shattering ofH. Using Lemma A.4, we can bound the dual fat-shattering of the
L1
H loss class by the fat-shattering ofH,

fat∗
(
L1
H, β

)
≤ log2(m) fat∗(H, β) . (33)

By applying a covering number argument from Lemma A.3 (taking a = 1) on the dual space, and upper bounding
the dual fat-shattering of the L1 loss class as in Equation (33), we have the following bound∣∣S̄U

∣∣ = N (β, SU , d∞)

≲ exp

(
fat∗

(
L1
H, cβ

)
log

(
|Ĥ|

β · fat∗(L1
H, cβ)

)
log

(
|Ĥ|

fat∗(L1
H, cβ)

))

≲ exp

(
fat∗(H, cβ) log

(
|Ĥ|

β · fat∗(H, cβ)

)
log

(
|Ĥ|

fat∗(H, cβ)

)
log2(m)

)

≲ exp

(
fat∗(H, cβ) log2

(
|Ĥ|

β · fat∗(H, cβ)

)
log2(m)

)
,

(34)

where c ∈ (0,∞) is a numerical constant, derived from the covering argument in Lemma A.3.
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3. Compute a modified version of the real-valued boosting algorithm MedBoost (Algorithm 5) on the discretized set S̄U .
The inputs to the algorithm are as follows. Set ϵ = β, ηS = (η, . . . , η), and T ≈ log

(∣∣S̄U
∣∣) rounds of boosting.

The output of the algorithm is a uniform ϵ-approximate sample compression scheme for the set S̄U . Moreover, the
weak learners are chosen from the set Ĥ. Once we have these weak learners, the guarantee of the algorithm follows
from Hanneke et al. (2019, Corollary 6). We should explain why we have a weak learner for any distribution over S̄U .

The existence of weak learners in Ĥ. From Theorem A.2, taking ϵ = δ = 1/3, we know that for any dis-
tribution P on S̄U , upon receiving an i.i.d. sample S′′ from P of size O

(
fat(H, β/8) log2

(
fat(H,β/8)

β

))
, with

probability 2/3 over sampling S′′ from P , for any h ∈ H with ∀(z, y) ∈ S′′ : |h(z)− y| ≤ η, it holds that
P(z,y)∼P{(z, y) : |h(z)− y| > η + β} ≤ 1/3. That is, such a function is a (η + β, 1/6)-weak learner for P (see
Definition 4.2). We can conclude that for any distribution P on S̄U , there exists a set of points S′′ ⊆ S̄U of size
O
(
fat(H, β/8) log2

(
fat(H,β/8)

β

))
that defines a weak learner for P .

Moreover, we can find these weak learners in Ĥ as follows. Let S′ be the O
(
fat(H, β/8) log2

(
fat(H,β/8)

β

))
points

in S that the perturbed points S′′ originated from. That is, S′′ ⊆
⋃

(x,y)∈S′
⋃
{(z, y) : z ∈ U(x)}. Therefore, we can

conclude that ĥ = η-RERMH(S′) is a weak learner, and can be found in Ĥ. So, we can think of Ĥ as a pool of weak
learners for any possible distribution over the discretized set S̄U .

A uniformly 3β-approximate adversarially robust sample compression scheme for S. The output of MedBoost is a
uniformly β-approximate sample compression scheme for the set S̄U . We show that this is a uniformly 2β-approximate
adversarially robust sample compression scheme for S, that is, a sample compression for S scheme with respect to the
robust loss.

For T ≈ log
∣∣S̄U
∣∣ boosting rounds, it follows from Hanneke et al. (2019, Corollary 6) that the output of the algorithm

satisfy

∀(z̄, ȳ) ∈ S̄U :
∣∣∣Med

(
ĥ1(z̄), . . . , ĥT (z̄);α1, . . . , αT

)
− ȳ
∣∣∣ ≤ η(z̄, ȳ) + β, (35)

Med
(
ĥ1(z̄), . . . , ĥT (z̄);α1, . . . , αT

)
is the weighted median of ĥ1, . . . , ĥT with weights α1, . . . , αT . From the

covering argument (Equation (23)), this implies that

∀(z, y) ∈ SU :
∣∣∣Med

(
ĥ1(z), . . . , ĥT (z);α1, . . . , αT

)
− y
∣∣∣ ≤ η(z, y) + 3β. (36)

Indeed, for any (z, y) ∈ SU there exists (z̄, ȳ) ∈ S̄U , such that for any h ∈ H,∣∣∣∣∣h(z)− y
∣∣− ∣∣h(z̄)− ȳ

∣∣∣∣∣ ≤ β.

Specifically, it holds for
{
ĥ1, . . . , ĥT

}
⊆ H and h⋆ ∈ H.

So, ∣∣∣Med
(
ĥ1(z), . . . , ĥT (z);α1, . . . , αT

)
− y
∣∣∣ (a)= ∣∣∣Med

(
ĥ1(z)− y, . . . , ĥT (z)− y;α1, . . . , αT

)∣∣∣
(b)

≤
∣∣∣Med

(
ĥ1(z̄)− ȳ, . . . , ĥT (z̄)− ȳ;α1, . . . , αT

)∣∣∣+ β

(c)
=
∣∣∣Med

(
ĥ1(z̄), . . . , ĥT (z̄);α1, . . . , αT

)
− ȳ
∣∣∣+ β

(d)

≤ |h⋆(z̄)− ȳ|+ 2β

(e)

≤ |h⋆(z)− y|+ 3β

(f)
= η(z, y) + 3β,

(a)+(c) follow since the median is translation invariant, (b)+(e) follow from the covering argument, (d) holds since
the returned function by MedBoost is a uniformly β-approximate sample compression for S̄U , (f) follows from the
definition in step 2 of the algorithm.
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Finally, from Equation (36) we conclude a uniformly 3β-approximate adversarially robust sample compression scheme
for S,

∀(x, y) ∈ S : sup
z∈U(x)

∣∣∣Med
(
ĥ1(z), . . . , ĥT (z);α1, . . . , αT

)
− y
∣∣∣ ≤ η(x, y) + 3β. (37)

We summarize the compression size. We have have T = O
(
log
∣∣S̄U
∣∣) predictors, where each one is representable by

d = O
(
fat(H, β/8) log2

(
fat(H,β/8)

β

))
points. By counting the number of predictors using Equation (25), we get

log
(∣∣S̄U

∣∣) ≲ log

(
exp

(
fat∗(H, cβ) log2

(
|Ĥ|

β · fat∗(H, cβ)

)
log2(m)

))

≲ fat∗(H, cβ) log2
(

|Ĥ|
β · fat∗(H, cβ)

)
log2(m)

≲ fat∗(H, cβ) log2
(

1

β · fat∗(H, cβ)

(m
d

)d)
log2(m)

≲ fat∗(H, cβ)
(
log

(
1

β · fat∗(H, cβ)

)
+ d log

(m
d

))2

log2(m)

≲ fat∗(H, cβ)

(
log2

(
1

β · fat∗(H, cβ)

)
+ d log

(
1

β · fat∗(H, cβ)

)
log
(m
d

)
+ d2 log2

(m
d

))
log2(m) .

All together we have a compression of size O
(
d log

(∣∣S̄U
∣∣)), which is already sufficient for deriving generalization.

We can reduce further the number of predictors to be independent of the sample size, thereby reducing the sample
compression size and improving the sample complexity.

4. Compute the sparsification method (Algorithm 6). The idea is that by sampling functions from the ensemble, we
can guarantee via a uniform convergence for the dual space, that with high probability it is sufficient to have roughly
≈ fat∗(H, β) predictors. Applying Hanneke et al. (2019, Theorem 10) with the parameters τ = η + 4β and
k = O

(
fat∗(H, cβ) log2(fat∗(H, cβ) /β)

)
, where c ∈ (0,∞) is a numerical constant, the sparsification method

returns with high probability function {f1, . . . , fk}, such that

∀(x, y) ∈ S : sup
z∈U(x)

∣∣Med
(
f1(z), . . . , fk(z)

)
− y
∣∣ ≤ η + 4β.

We get a uniformly 4β-approximate adversarially robust sample compression scheme for S, where
we have O

(
fat∗(H, cβ) log2

(
fat∗(H, cβ) /β2

))
functions, and each function is representable by

O
(
fat(H, β/8) log2

(
fat(H, β/8) /β2

))
points, therefore, the compression set size is

fat(H, β/8) fat∗(H, cβ) log2
(
fat(H, β/8)

β2

)
log2

(
fat∗(H, cβ)

β2

)
.

Let (κ, ρ) be the compression scheme and |κ(S)| the compression size. Let Êrrℓ1(h;S) be the empirical loss of h on S
with the ℓ1 robust loss. We can derive the error as follows,

Errℓ1(ρ(κ(S));D)
(i)

≲ Êrrℓ1(ρ(κ(S));S) +

√(
|κ(S)| log(m) + log 1

δ

)
m

(ii)

≲ Êrrℓ1(h
⋆;S) + 4β +

√(
|κ(S)| log(m) + log 1

δ

)
m

(iii)

≲ Errℓ1(h
⋆;D) + 4β +

√(
|κ(S)| log(m) + log 1

δ

)
m

+

√
log 1

δ

m

≲ Errℓ1(h
⋆;D) + 4β +

√(
|κ(S)| log(m) + log 1

δ

)
m

,
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(i) follows from a generalization of sample compression scheme in the agnostic case, see Lemma A.6, (ii) follows
Equation (30), (iii) follows from Hoeffding’s inequality.

Take m sufficiently large such that

√
|κ(S)| log(m) + log 1

δ

m
≲ β.

Re-scale β = β/5 and plug in the compression size, we get sample complexity of size

M = O
(

1

β2

(
fat(H, cβ) fat∗(H, cβ) log2

(
fat(H, cβ)

β2

)
log2

(
fat∗(H, cβ)

β2

)
log

1

β
+ log

1

δ

))
,

for some numerical constant c ∈ (0,∞).

D.2. Agnostic

Proof of Theorem 5.2. The construction follows a reduction to the realizable case similar to (David et al., 2016), which
is for the non-robust zero-one loss. Moreover, we use a margin-based analysis of MedBoost algorithm (see Kégl (2003,
Theorem 1)), and overcome some technical challenges.

Denote ΛRE = ΛRE(η, 1/3, 1/3,H,U , ℓηU ), the sample complexity of Robust (η, β)-regression for a classH with respect
to a perturbation function U , taking ϵ = δ = 1/3

Using a robust ERM, find the maximal subset S′ ⊆ S with zero empirical robust loss (for the η-ball loss), such that
infh∈H Êrrη(h, f ;S

′) = 0. Now, ΛRE samples suffice for weak robust learning for any distribution D on S′.

Compute the MedBoost on S′, with T ≈ log(|S′|) boosting rounds, where each weak robust learner is trained on ≈ ΛRE

samples. The returned weighted median ĥ = Med
(
ĥ1(z), . . . , ĥT (z);α1, . . . , αT

)
satisfies Êrrη

(
ĥ, f ;S′

)
= 0, and each

hypothesis ĥt ∈
{
ĥ1, . . . , ĥT

}
is representable as set of size O(ΛRE). This defines a compression scheme of size ΛRET ,

and ĥi can be reconstructed from a compression set of points from S of size ΛRET .

Recall that S′ ⊆ S is a maximal subset such that infh∈H Êrrη(h, f ;S
′) = 0 which implies that inf ĥ∈H Êrrη(h, f ;S

′) ≤
infh∈H Êrrη(h, f ;S

′). Plugging it into an agnostic sample compression bound Lemma A.6, we have a sample complexity

of Õ
(
ΛRE

ϵ2

)
, which translates into Õ

(
fat(H,cη)fat∗(H,cη)

ϵ2

)
, for some numerical constant c ∈ (0,∞).

D.3. Naive approach with a fixed cutoff

An agnostic learner for robust (η, β)-regression does not apply to the robust regression setting. The reason is that the optimal
function inH has different scales of robustness on different points. we show that by using a fixed cutoff for all points we
can obtain an error of

√
OPTH + ϵ.

Theorem D.1. For any H ⊆ [0, 1]X with finite γ-fat-shattering for all γ > 0, any U : X → 2X , and any ϵ, δ ∈ (0, 1),
η ∈ [0, 1], for some numerical constant c ∈ (0,∞), with probability 1 − δ, Algorithm 7 outputs a function with error at
most

√
OPTH + ϵ, for the ℓ1,U (·) robust loss, and using a sample of size

Õ
(
fat(H, cϵ) fat∗(H, cϵ)

ϵ2
+

1

ϵ2
log

1

δ

)
.

Recall that fat∗(F , ϵ) ≲ 1
ϵ 2

fat(F,ϵ/2)+1 by Equation (7).
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Algorithm 7
Input: H ⊆ [0, 1]X , S = {(xi, yi)}mi=1, S̃ = {(xi, yi)}ni=1.
Algorithms used: Agnostic learner for Robust (η, β)-regression (see Theorem 5.2): Agnostic-η-Regressor.

1. Define a grid Θ =
{

1
m , 2

m , 4
m , 8

m , . . . , 1
}

.

2. DefineHΘ = {hθ = Agnostic-θ-Regressor(S) : θ ∈ Θ}.

3. Find an optimal function on the holdout set

ĥθ = argmin
hθ∈HΘ

1∣∣S̃∣∣ ∑
(x,y)∈S̃

I

[
sup

z∈U(x)

|hθ(z)− y| ≥ θ

]

Output: ĥθ.

Proof of Theorem D.1. Let

OPTH = inf
h∈H

E(x,y)∼D

[
sup

z∈U(x)

|h(z)− y|
]
,

which is obtained by h⋆ ∈ H. By Markov Inequality we have

P(x,y)∼D

(
sup

z∈U(x)

∣∣h⋆(z)− y
∣∣ > η

)
≤

E(x,y)∼D

[
supz∈U(x)

∣∣h⋆(z)− y
∣∣]

η
.

Taking η =
√
OPTH,

P(x,y)∼D

(
sup

z∈U(x)

∣∣h⋆(z)− y
∣∣ >√OPTH

)
≤ OPTH√

OPTH

=
√

OPTH.

This means that we can apply the algorithm for agnostic robust uniform η regression with η =
√
OPTH, and obtain an error

of
√
OPTH + ϵ. The problem is that OPTH is not known in advance. To overcome this issue, we can have a grid search on

the scale of η, and then verify our choice using a holdout training set.

We define a grid,Θ =
{

1
m , 2

m , 4
m , 8

m , . . . , 1
}

, such that one of its elements satisfies
√
OPTH < θ̂ < 2

√
OPTH.

For each element in the grid, we compute the agnostic regressor for the η-robust loss. That is, we define HΘ =
{hθ = Agnostic-θ-Regressor(S) : θ ∈ Θ}.

We choose the optimal function on a holdout labeled set S̃ of size ≈ 1
ϵ2 log

1
δ ,

ĥθ = argmin
hθ∈HΘ

1∣∣S̃∣∣ ∑
(x,y)∈S̃

I

[
sup

z∈U(x)

|hθ(z)− y| ≥ θ

]
.

With high probability, the algorithm outputs a function with error at most
√
OPTH + ϵ for the ℓ1 robust loss, using a sample

of size

Õ
(
fat(H, cϵ) fat∗(H, cϵ)

ϵ2

)
.
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