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Abstract

We show that running gradient descent with vari-
able learning rate guarantees loss f(x ) ≤ 1.1 ·
f(x ∗) + ε for the logistic regression objective,
where the error ε decays exponentially with the
number of iterations and polynomially with the
magnitude of the entries of an arbitrary fixed so-
lution x ∗. This is in contrast to the common in-
tuition that the absence of strong convexity pre-
cludes linear convergence of first-order methods,
and highlights the importance of variable learning
rates for gradient descent. We also apply our ideas
to sparse logistic regression, where they lead to
an exponential improvement of the sparsity-error
tradeoff.

1. Introduction
Logistic regression is one of the most widely used classifica-
tion methods because of its simplicity, interpretability, and
good practical performance. Yet, the convergence behavior
of first-order methods on this task is not well understood: In
practice gradient descent performs much better than what
the theory predicts. In particular, a general analysis of gradi-
ent descent for smooth functions implies convergence with
the error in function value decaying as O(1/T ). Analyses
with stronger, linear convergence guarantees generally re-
quire the function to satisfy the strong convexity property,
which, in contrast to other losses such as the ℓ2 loss, the lo-
gistic loss only satisfies in a bounded set of solutions around
zero. As a result, this introduces an exponential runtime
dependency on the magnitude of the target solution (Rätsch
et al., 2001; Freund et al., 2018), which is undesirable in
practice. This poses a serious obstacle to obtaining high-
precision solutions for logistic regression.
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In fact, it was shown in (Telgarsky & Singer, 2012) that the
poly(1/T ) bound on function value convergence is tight for
gradient descent on general (non-linearly separable) data.
The significance of the separability of the data for conver-
gence has also been observed in (Telgarsky, 2013; Ji & Tel-
garsky, 2018; Freund et al., 2018), who present convergence
results based on quantitative measures of separability.

A deeper study into the structure of both the exponential
and logistic losses for separable data was initiated by (Tel-
garsky & Singer, 2012), who showed that greedy coordinate
descent achieves linear convergence with a rate that depends
on the maximum linear classification margin (i.e. hard SVM
margin). Unfortunately, for logistic regression, it also has
a 2m dependence on the number of examples, making it
inefficient for real-world tasks. (Telgarsky, 2013) refines
the results of (Telgarsky & Singer, 2012) for the exponential
loss, but for logistic regression still suffers from an exponen-
tial overhead originating from the multiplicative discrepancy
between the exponential and logistic losses. Interestingly,
however, the authors note ((Telgarsky, 2013), Section 5) that
logistic regression experiments paint a much more favorable
picture than the theory predicts.

A related line of work deals with convergence to the
maximum-margin classifier on linearly separable classifica-
tion instances using gradient descent. (Soudry et al., 2018;
Ji & Telgarsky, 2018) showed that the estimator obtained by
optimizing the logistic or the exponential loss with gradient
descent converges to the maximum-margin linear classi-
fier at a rate of O(log log T/ log T ) (in ℓ2 norm). For the
exponential loss, (Nacson et al., 2019) showed that the con-
vergence bound to the maximum margin estimator can be
exponentially improved to O(log T/

√
T ), by using gradi-

ent descent with variable (increasing) learning rate. The
authors’ experiments indicate that variable step sizes could
lead to a similar exponential improvements for the case of
logistic regression and shallow neural networks. Recently,
(Ji & Telgarsky, 2021) presented a novel primal-dual ap-
proach that proves that the latter claim indeed holds for the
logistic regression and exponential objectives, obtaining a
maximum-margin error decaying as O(1/T ), using a vari-
able learning rate. This exponentially improved upon the
results of (Soudry et al., 2018; Ji & Telgarsky, 2018).
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Another approach to obtain high-precision solutions is by
using second order methods, which in addition to first order
(gradient) information, use second order (Hessian) informa-
tion about the function. These make use of second order
stability properties, such as quasi-self-concordance (Bach,
2010) combined with Newton’s method (Karimireddy et al.,
2018), or ball oracles (Carmon et al., 2020; Adil et al., 2021).
Such approaches are generally not suitable for large-scale
applications because of their reliance on repeated calls to
large linear system solvers.

Our work. In this paper, we show that (under appro-
priate assumptions) we can get the best of both worlds
of first and second order methods, thus giving a par-
tial explanation for the excellent performance that first-
order methods have for logistic regression in practice. In
particular, given a binary classification instance (A ∈
{−1, 1}m×n, b ∈ {−1, 1}m) with associated logistic loss
f(x ) =

∑
i

log(1 + exp(−bi(Ax )i)), we show that sim-

ple variants of gradient descent return a solution with
f(x ) ≤ (1 + δ) · f(x ∗) + ε after O

(
K
(

1
δ + log f(0)

ε

))
iterations, where K = poly(n, ∥x ∗∥) and x∗ is an arbitrary
fixed solution. Even though the error still decays as 1/T in
the worst case because of the 1

δ dependence, the additive
error is now δf(x ∗) instead of δf(0), allowing for much
faster convergence when the optimal loss f(x ∗) is smaller
(which is our measure of linear separability of the data).
For linearly separable data, i.e. as f(x ∗) approaches 0, the
convergence becomes linear.

Instead of properties like Lipschitzness, smoothness, strong
convexity that are commonly used in the study of first or-
der methods, we find that there are two properties that are
more relevant to the structure of the logistic regression
problem. The first one is second order robustness, which
means that the Hessian is stable (in a spectral sense) in
any small enough norm ball (Cohen et al., 2017). This is
closely related to quasi-self-concordance, a property that
has been previously used in the analysis of second order
algorithms (Bach, 2010). The second property is what we
call multiplicative smoothness, which means that the func-
tion is locally smooth, with the smoothness constant being
proportional to the function value (loss). A similar property
was used by (Ji & Telgarsky, 2018) to prove convergence
of logistic regression to the maximum margin classifier. To-
gether, these properties show that, as the loss decreases,
the objective becomes (locally) smoother and therefore the
learning rate can increase. This motivates a variable step size
schedule that is inversely proportional to the loss, thus mak-
ing larger steps as the solution approaches optimality. This
in fact agrees with the observations of (Soudry et al., 2018;
Nacson et al., 2019) on the importance of a variable learning
rate. As can be seen in the toy example from (Soudry et al.,

2018) in Figure 1, simply replacing the fixed learning rate η
used in (Soudry et al., 2018) by an increasing learning rate
η · f(x 0)/f(xT ) yields an exponential improvement, both
in loss and distance to the maximum margin estimator.

Figure 1. Comparison between fixed and increasing step sizes
in the toy example from Figure 1 of (Soudry et al., 2018).
The fixed step size is set to β−1 := ∥A∥−2

2 , and the increas-
ing to β−1f(x 0)/f(xT ). The estimator error is defined as∥∥x t/

∥∥x t
∥∥
2
− x∗/ ∥x∗∥2

∥∥
2
.

1.1. Sparse logistic regression

In practice, it is often important to force the solution of a
logistic regression problem to be sparse, i.e. have only a few
non-zero entries, which is a form of feature selection. This
is because most of the features might only be marginally
useful, and thus one can drastically reduce the size of the
model while not significantly sacrificing the predictive per-
formance. Apart from computational efficiency, feature
selection is also important to improve interpretability and
avoid overfitting.

Most progress in sparse optimization has focused on ob-
jective functions with condition number bounded by some
κ > 0. Results in this line of work guarantee a solution
with relaxed sparsity s′ ≥ s, where s is the target sparsity,
and algorithms include lasso, orthogonal matching pursuit
(OMP), and iterative hard thresholding (IHT) (Natarajan,
1995; Blumensath & Davies, 2009; Shalev-Shwartz et al.,
2010; Jain et al., 2011; 2014; Axiotis & Sviridenko, 2021;
2022). The state of the art result by (Axiotis & Sviridenko,
2022) gives a sparsity of s′ = O(κ) · s using a variant of
the IHT algorithm.

However, the condition number of the logistic loss is un-
bounded, because it is not strongly convex. Therefore, these
results do not directly apply, although they do apply to
ℓ2-regularized logistic regression. Some works (Van de
Geer, 2008; Bunea, 2008) have analyzed lasso methods
for logistic regression without condition number assump-
tions, and (Shalev-Shwartz et al., 2010) provides three differ-
ent analyses for smooth but not strongly convex functions.
These apply to logistic regression and give a sparsity of
O
(
∥x ∗∥21

m
ε

)
to achieve a loss of f(x ) ≤ f(x ∗) + ε. The

most practical of these is a forward greedy selection algo-

2



Gradient Descent Converges Linearly for Logistic Regression on Separable Data

Table 1. Algorithms for logistic regression and dependence on m/ε (omitting extra polylog(m,n) factors). Algorithms with exponential
dependences on any problem parameter are omitted. For example, the standard gradient descent analysis shows linear convergence, but
with an exponential dependence on ∥x∗∥∞ (see e.g. Freund et al. (2018)).

ALGORITHM ORDER GUARANTEE RUNTIME ERROR DEPENDENCE

GRADIENT DESCENT FIRST f(x ) ≤ f(x∗) + ε m/ε

ACCELERATED GRADIENT DESCENT FIRST f(x ) ≤ f(x∗) + ε
√

m/ε

NEWTON/TRUST REGION SECOND f(x ) ≤ f(x∗) + ε log(m/ε)

THIS PAPER FIRST f(x ) ≤ (1 + δ) · f(x∗) + ε δ−1 + log(m/ε)

Table 2. Algorithms for sparse logistic regression and asymptotic sparsity dependences.

ALGORITHM GUARANTEE SPARSITY ORDER

(SHALEV-SHWARTZ ET AL., 2010) f(x ) ≤ f(x∗) + ε ∥x∗∥21 m/ε FIRST

THIS PAPER f(x ) ≤ (1 + δ) · f(x∗) + ε ∥x∗∥21 (δ
−1 + log(m/ε)) FIRST

rithm, which is also known as greedy coordinate descent.

Our work. Using the second order stability and multiplica-
tive smoothness properties, we show that a slight variation
of greedy coordinate descent gives a sparsity of

O
(
∥x ∗∥21 (δ

−1 + log(m/ε))
)

and a loss of f(x ) ≤ (1 + δ) · f(x ∗) + ε. As long as the
1 + δ approximation in front of f(x ∗) is tolerated, as is
the case when f(x ∗) ≪ m, this implies an exponential
improvement in the ε dependence from m

ε to log m
ε . In

addition, our analysis is compatible with incorporating fully
corrective steps to the algorithm. These are steps that are
occasionally performed to optimize over the support of the
current solution (i.e. fully optimize the weights of the cur-
rently selected features) and is often used in applications
like feature selection.

2. Preliminaries
Notation. We denote [n] = {1, 2, . . . , n}. We will use
bold to refer to vectors or matrices. We denote by 0 the
all-zero vector, 1 the all-one vector, O the all-zero matrix,
and by I the identity matrix (with dimensions understood
from the context). Additionally, we will denote by 1i the
i-th basis vector, i.e. the vector that is 0 everywhere except
at position i.

In order to ease notation and where not ambiguous for two
vectors x ,y ∈ Rn, we denote by xy ∈ Rn a vector with
elements (xy)i = xiyi, i.e. the element-wise multiplication
of two vectors x and y . In contrast, we denote their inner
product by ⟨x ,y⟩ or x⊤y . Similarly, x 2 ∈ Rn will be the
element-wise square of vector x . For any function g(t) of
a single variable, let g(x ) ∈ Rn be a vector with elements
(g(x ))i = g(xi), e.g. will use this notation when g is the

sigmoid function.

For any vector x ∈ Rn and set S ⊆ [n], we denote by xS

the vector that results from x after zeroing out all the entries
except those in positions given by indices in S. We will
also use the notation ∇Sf(x ) := (∇f(x ))S to denote the
restriction of a gradient to S. We also denote by supp(x ) :=
{i ∈ [n] | xi ̸= 0} the support of x .

We use the notation Õ (·) to hide poly log(n,m) factors in
O-notation, where n is the dimension of the problem and m
is the number of examples.

Norms. For any p ∈ (0,∞) and weight vector w ≥ 0,
we define the weighted ℓp norm of a vector x ∈ Rn as:

∥x∥p,w =

(∑
i

wix
p
i

)1/p

.

For p = 0, we denote ∥x∥0 = |{i | xi ̸= 0}| to be the
sparsity of x . For p =∞, we denote ∥x∥∞ = maxi |xi| to
be the maximum absolute value of x .

For a matrix A ∈ Rm×n, we let ∥A∥p→q be its p to q
operator norm, defined as

∥A∥p→q = max
x ̸=0

∥Ax∥q
∥x∥p

.

In particular, ∥A∥1→∞ is equal to the largest entry of A in
absolute value.

Smoothness and convexity. A differentiable function
f : Rn → R is called convex if for any x ,y ∈ Rn we
have f(y) ≥ f(x ) + ⟨∇f(x ),y − x ⟩. Furthermore, f
is called L-Lipschitz (with respect to some norm ∥·∥) for
some real number L > 0 if for any x ,y ∈ Rn we have
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|f(y)− f(x )| ≤ L ∥y − x∥, and β-smooth if for any
x ,y ∈ Rn we have ∥∇f(y)− f(x )∥∗ ≤ β ∥y − x∥2,
where ∥·∥∗ is the dual norm of ∥·∥. If f is only β-smooth
along s-sparse directions (i.e. only for x ,y ∈ Rn such
that ∥y − x∥0 ≤ s), then we call f β-smooth at sparsity
level s and denote the smallest such β by βs and call it the
restricted smoothness constant (at sparsity level s).

3. Logistic Regression Analysis via
Multiplicative Smoothness

In the logistic regression problem, our goal is to minimize

the function f(x ) =
m∑
i=1

log(1 + e−(Ax)i), where A ∈

Rm×n is a data matrix1.

Our starting point, as is usually the case with first-order
methods, will be the second order Taylor expansion of f :

f(x + x̃ ) = f(x ) + ⟨∇f(x ), x̃ ⟩+ 1

2
⟨x̃ ,∇2f(x̄ )x̃ ⟩ ,

(1)

where, by the mean value theorem for twice continuously
differentiable functions, x̄ is entry-wise between x and
x ′ = x + x̃ , and ∇2f(x̄ ) is the Hessian of f at x̄ .

Second-order robustness. In fact, as long as the step
x̃ is not too large, the Hessian at x̄ will not differ much
(spectrally) from the Hessian at x . This is because of the
following property of the logistic function called second
order robustness (Cohen et al., 2017), which is also very
closely related to quasi-self-concordance (Bach, 2010).

Definition 3.1 (Second-order robustness). A twice differ-
entiable function f : Rn → R is called q-second order
robust with respect to a norm ∥·∥ if its Hessian is stable
in any (1/q)-sized ∥·∥-ball, i.e. for any x ,x ′ ∈ Rn such
that ∥x ′ − x∥ ≤ 1/q, we have 1

2∇
2f(x ) ⪯ ∇2f(x ′) ⪯

2∇2f(x ).

It is not hard to see that f is 2M -second order robust with
respect to the ℓ1 norm, where M is an upper bound on the
entries of A in absolute value.

Lemma 3.2 (Second-order robustness of the logistic loss).

The function f(x ) =
m∑
i=1

log(1 + e−(Ax)i) is 2M -second

order robust with respect to the ℓ1 norm, where M is the
largest entry of A in absolute value.

Proof. For any x ∈ Rn, we have ∇2f(x ) =
A⊤diag(w(Ax ))A, where w(Ax ) = σ(Ax )(1−σ(Ax ))

1This formulation is without loss of generality, because we can
incorporate the binary ±1 labels into the matrix A and assume
that all the labels are positive.

and σ(t) = 1/(1 + e−t) is the sigmoid function, that we
extend to vectors by applying it elementwise. We define
r(t) := logw(t), which is a 1-Lipschitz function, because

r′(t) =
w′(t)

w(t)
=

w(t) · (1− 2σ(t))

w(t)
= 1− 2σ(t) ,

whose absolute value is always bounded by 1. Therefore,
for any |t′ − t| ≤ 1/2, we have

|r(t′)− r(t)| ≤ 1/2

⇔
∣∣∣∣log w(t′)

w(t)

∣∣∣∣ ≤ 1/2

⇒1

2
w(t) ≤ w(t′) ≤ 2w(t) ,

and consequently for any x ,x ′ such that

∥x ′ − x∥1 ≤
1

2M
⇒ ∥Ax ′ −Ax∥∞ ≤ 1/2 ,

we have that 1
2w(Ax ) ≤ w(Ax ′) ≤ 2w(Ax ). This im-

mediately implies that 1
2∇

2f(x ) ⪯ ∇2f(x ′) ⪯ 2∇2f(x ),
concluding the proof.

Because of Lemma 3.2, (1) implies the much simpler

f(x + x̃ ) ≤ f(x ) + ⟨∇f(x ), x̃ ⟩+ ⟨x̃ ,∇2f(x )x̃ ⟩ , (2)

as long as ∥x̃∥1 ≤ 1/(2M).

Multiplicative smoothness. We can easily calculate
that ∇f(x ) = −A⊤ (1− σ(Ax )), where σ(t) =
1/(1 + e−t) is the sigmoid function, and ∇2f(x ) =
A⊤diag(w(Ax ))A, where w(Ax ) = σ(Ax )(1−σ(Ax ))
are diagonal weights. Now, we should note that the second
order term of (2) can be re-written as ⟨w(Ax ), (Ax̃ )2⟩.
This term, whose magnitude is what will determine the step
size of the algorithm and in turn the bound on the total num-
ber of iterations, becomes smaller as the weights w(Ax ) be-
come smaller. The crucial observation is that these weights
are bounded in a way that depends on the logistic loss of the
solution x , as shown in the lemma below:

Lemma 3.3 (Sum of second derivatives of the logistic

function). Let f(x ) =
m∑
i=1

log(1 + e−(Ax)i) and w(t) =

σ(t)(1− σ(t)), where σ is the sigmoid function. Then,

m∑
i=1

w((Ax )i) ≤ f(x ) . (3)

Proof. We have w(t) = σ(t)(1 − σ(t)) ≤ 1 − σ(t) ≤
− log σ(t) = log(1 + e−t), where we used the inequality
log p ≤ p− 1 for all p > 0.
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In other words, as the loss decreases, f becomes smoother
(in an appropriate sense). This is what allows the algorithm
to employ a step size that is inversely proportional to the
loss. A similar observation has been made in (Ji & Telgar-
sky, 2018). The above discussion motivates the following
definition of multiplicative smoothness. This is related to
the usual definition of smoothness but also incorporates the
property that the function becomes smoother as the loss
decreases.

Definition 3.4 (Multiplicative smoothness). We call a differ-
entiable function f : Rn → R>0 µ-multiplicatively smooth
with respect to a norm ∥·∥, if for any x ,x ′ ∈ Rn we have

x̃⊤∇2f(x )x̃

f(x )
≤ µ ∥x̃∥2 .

Our use of a general norm is not an over-generalization,
since as we will see the ℓ1 norm is more suitable for sparse
logistic regression, and the ℓ2 norm is more suitable for the
unrestricted case. In fact, it can be proved that the logistic
loss is M2-multiplicatively smooth with respect to the ℓ1
norm, where we remind that M is a bound on the entries of
A in absolute value:

Lemma 3.5 (Multiplicative smoothness of the logistic

loss). The function f(x ) =
m∑
i=1

log(1 + e−(Ax)i) is M2-

multiplicatively smooth with respect to the ℓ1 norm, where
M is the largest entry of A in absolute value.

Proof. For any x , x̃ ∈ Rn, using the fact that ∇2f(x ) =
A⊤diag (w(Ax ))A, where w is as defined in Lemma 3.3,
we have

x̃⊤∇2f(x )x̃ =

m∑
i=1

w(Ax )i(Ax̃ )2i

≤
m∑
i=1

w(Ax )i ∥Ax̃∥2∞

≤M2
m∑
i=1

w(Ax )i ∥x̃∥21

≤M2f(x ) ∥x̃∥21 ,

where the second to last inequality follows from the fact that
the entries of A are bounded by M , and the last inequality
from Lemma 3.3.

In the following sections, we will see how the second order
robustness and multiplicative smoothness properties play
into the design and analysis of algorithms for sparse and
general logistic regression.

4. Sparse logistic regression
As we saw, the logistic loss is 2M -second order robust and
M2-multiplicatively smooth with respect to the ℓ1 norm.
This is an ideal norm for sparse logistic regression, where
in addition to minimizing the loss we want to restrict the
solution to have few non-zero entries. In particular, it yields
a variant of the ℓ1 gradient descent algorithm (aka greedy
coordinate descent), which is presented in Algorithm 1.

Algorithm 1 Greedy Coordinate Descent
1: function GreedyCoordinateDescent(x 0, T,M,B)

2: Let f(x ) :=
m∑
i=1

log(1 + e−bi(Ax)i)

3: for t = 0, . . . , T − 1 do
4: For all i ∈ [n] define ζi =

λt if xt
i = 0

0 if |xt
i| ≥ B and ∇if(x

t) · xt
i < 0

1 otherwise
5: i′ ← argmaxi {ζi |∇if(x

t)|}
6: η ←

(
2M2f(x t)

)−1

7: xt+1
i′ ← xt

i′ − η∇i′f(x
t)

8: end for
9: return xT

10: end function

The first thing that should be noted about this algorithm is
the crucial parameters λt. These parameters offer a quanti-
tative threshold between sparsity and speed of convergence.
In particular, when λt is 1, then all entries (regardless of
whether they are zero or not) are treated the same. When
λt ≪ 1, on the other hand, the gradient entries correspond-
ing to zero entries are discounted by a factor ≪ 1, thus
making the algorithm less eager to update these as opposed
to non-zero entries, whose update doesn’t increase sparsity.

We are ready for the main theorem of this section. In the
proof, which can be found in Appendix A.2.1, we present
an analysis of Algorithm 1 for sparse logistic regression. In
addition to an upper bound B ≥ ∥x ∗∥∞, it also requires an
approximation B1 of ∥x ∗∥1. One possible approach is to
approximate it by B, but in practice this would be a learning
rate hyperparameter to be tuned. We note x ∗ is an arbitrary
fixed solution (not necessarily optimal), whose entries are
bounded by B in absolute value.

Theorem 4.1 (Sparse logistic regression). Given a bi-
nary classification instance (A ∈ [−M,M ]m×n, b ∈
{1,−1}m) and for any solution x ∗ ∈ [−B,B]n with
M ≥ max{∥x ∗∥−1

1 , B−1} 2 and a known parameter
B1 ∈

[
1
C ∥x

∗∥1 , ∥x ∗∥1
]

for some C ≥ 1, Algorithm 1
with λt = min{B1/ ∥x t∥1 , 1}, initial solution x 0 ∈ Rn,

2The theorem can be stated without this additional constraint,
but we include it because it makes the bounds considerably simpler.
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and error tolerance 0 < ε < m/2 returns a solution x with

f(x ) ≤ (1 + δ) · f(x ∗) + ε

and sparsity

s′ := ∥x∥0

= O

(
∥x ∗∥21 M

2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
in

T = O
((
∥x∥20 + ∥x

∗∥20
)

M2B2C2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
iterations, for any choice of δ ∈ (0, 1). Each iteration
consists of evaluating the logistic regression gradient ∇f
plus O(m+ n) additional time.

If the parameters M,B,C are bounded by Õ (1), we get a
cleaner statement.

Corollary 4.2. If M,B,C ≤ Õ (1) and x ∗ is s-sparse,
then Algorithm 1 with λt = min {B1/ ∥x t∥1 , 1} returns a
solution x with

f(x ) ≤ 1.1 · f(x ∗) + ε

and sparsity

s′ := ∥x∥0

= Õ

(
s2 log

1

ε

)
in

T = Õ

(
s4 log3

1

ε

)
iterations.

Corollary 4.2 follows from Theorem 4.1 by applying the
following series of inequalities:

∥x∥20 ≤ Õ

(
∥x ∗∥41 log

2 1

ε

)
≤ Õ

(
B4 ∥x ∗∥40 log

2 1

ε

)
≤ Õ

(
∥x ∗∥40 log

2 1

ε

)
.

It is useful to compare these results to the results of (Shalev-
Shwartz et al., 2010) for sparse optimization of general
smooth convex functions. Even though those results achieve
the stronger error bound of f(x ) ≤ f(x ∗) + ε, the sparsity
of the final solution is in the order of s2m

ε , which has an

exponentially worse error dependence than s2 log m
ε . There-

fore, if the approximation rate (1 + δ) is tolerable in front
of f(x ∗), then one can obtain exponentially faster sparsity
and convergence.

If we are willing to perform fully corrective steps as de-
scribed in Algorithm 2, then we can get a cleaner and
slightly simpler analysis without dependence on parameters
B,B1, C. This is presented in Theorem 4.3 and proved in
Appendix A.2.2. Fully corrective steps can be useful when
there is an efficient (dense) optimization algorithm and one
wishes to use it as a black box for sparse optimization. In
practice, one does not need to perform a full correction, but
only a small number of corrective gradient steps over the
current support of the solution.

Algorithm 2 Greedy coordinate descent with fully correc-
tive steps

1: function FullyCorrectiveGreedyCD(x 0, T )

2: Let f(x ) :=
m∑
i=1

log(1 + e−bi(Ax)i)

3: S0 ← supp(x 0)
4: for t = 0, . . . , T − 1 do
5: i′ ← argmaxi {|∇if(x

t)|}
6: St+1 ← St ∪ {i′}
7: x t+1 ← argmin

x :supp(x)⊆St+1

f(x )

8: end for
9: return xT

10: end function

Theorem 4.3 (Sparse logistic regression with fully correc-
tive steps). Given a binary classification instance (A ∈
[−M,M ]m×n, b ∈ {1,−1}m) and for any solution x ∗ ∈
Rn, Algorithm 2 with error tolerance 0 < ε < m/2 and
initial solution x 0 returns a solution x with

f(x ) ≤ (1 + δ) · f(x ∗) + ε

and sparsity

s′ := ∥x∥0

=
∥∥x 0

∥∥
0
+O

(
∥x ∗∥21 M

2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
in T = O

(
∥x ∗∥21 M2

(
1
δ + log f(x0)−f(x∗)

ε

))
iterations,

for any choice of δ ∈ (0, 1). Each iteration consists of
evaluating the logistic regression gradient ∇f , solving a
logistic regression problem on at most s′ variables, plus
O(m+ n) additional time.

5. Dense logistic regression
In this section, our goal is to minimize the logistic function
f without any constraint on the sparsity of the solution. The

6
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results of Section 4 applied to a full sparsity of n already
imply Corollary 5.1.

Corollary 5.1 (Dense logistic regression). Given a bi-
nary classification instance (A ∈ [−M,M ]m×n, b ∈
{−1, 1}m) and for any solution x ∗ ∈ [−B,B]n with

M ≥ max
{
∥x ∗∥−1

1 , B−1
}

, Algorithm 1 with λt = 1

for all t, initial solution x 0 ∈ Rn, and error tolerance
0 < ε < m/2 returns a solution x with

f(x ) ≤ (1 + δ) · f(x ∗) + ε

in

T = O

(
n2M2B2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
.

iterations, for any choice of δ ∈ (0, 1). Additionally,
∥x∥∞ ≤ B+ 1

2M . Each iteration consists of evaluating the
logistic regression gradient∇f plus O(m+ n) additional
time.

Interestingly, even if we don’t impose a sparsity constraint,
the worst case analysis in Corollary 5.1 still obtains its
bounds by using a greedy coordinate descent step, as in
Section 4. This is because it is a manifestation of ℓ1 gradient
descent (aka steepest descent), which is rooted in the fact
that the multiplicative smoothness of f is with respect to the
ℓ1 norm. Greedy coordinate descent is favorable for sparse
optimization, because it only updates one coordinate at a
time. On the other hand, based on practical intuitions, we
would expect (ℓ2-based) gradient descent to perform better
than greedy coordinate descent if no sparsity constraint is
imposed. This is because greedy coordinate descent only
updates one coordinate at a time, while gradient descent
uses the full gradient.

In the rest of this section, we attempt to bridge this mis-
match between worst case analysis and practice. We show
that, under appropriate assumptions, gradient descent can
be proved to converge significantly faster than greedy coor-
dinate descent. We leave providing a theoretical grounding
for these assumptions as an interesting open question for
future research. We now outline the core ideas.

ℓ2 multiplicative smoothness. First, we can verify that
the logistic loss does have the multiplicative smoothness
condition with respect to the ℓ2 norm, albeit in an almost
trivial sense:

⟨w(x ), (Ax̃ )2⟩ ≤ ∥w(x )∥1 ∥Ax̃∥2∞
≤ f(x ) ∥A∥22→∞ ∥x̃∥

2
2

≤ f(x )β ∥x̃∥22 .

Here, using the inequality ∥A∥22→∞ ≤ ∥A∥
2
2 := β implies

β-multiplicative smoothness with respect to the ℓ2 norm.

Table 3. Upper bounds on the quantity〈
w(x ), (A∇f(x ))2

〉
/
(
f(x )m−1 ∥A∇f(x )∥22

)
. Shown

here is the maximum of this over x being one of the first 1000
iterates starting from x 0 = 0.

Dataset Max ratio

letter 0.40
rcv1.test 0.36
ijcnn1 0.47
vehv2binary 0.37
magic04 0.37
skin 0.44
w8all 0.40
shuttle.binary 0.37
kddcup04.phy 0.36
kddcup04.bio 0.48
census 0.50
adult 0.40
poker 0.36
nomao 0.50
covtype 0.36

Unfortunately, this is not significantly better than the ℓ1 case:
The number of iterations will be proportional to β ∥x ∗∥22,
which can be ≫ m. As it turns out, however, many real
logistic regression instances exhibit the ℓ2 multiplicative
smoothness property with significantly better constants. In
our experiments we found that along the path of gradients
encountered by gradient descent in a variety of instances,
the following property was true:〈

w(x ), (A∇f(x ))2
〉
≤ f(x )βm−1 ∥∇f(x )∥22

This is an effective βm−1-multiplicative smoothness prop-
erty, because it is only assumed to be true for x ’s encoun-
tered by the gradient descent algorithm. As such, it is an
empirical property. In order to check our hypothesis, we
have run the gradient descent algorithm with the step sizes
that are implied by Theorem 5.2, which we will see later.
For each of the 15 experiments, we have run gradient de-
scent for 1000 iterations, and calculated the maximum of
the following quantity, over all iterations:〈

w(x ), (A∇f(x ))2
〉

f(x )m−1 ∥A∇f(x )∥22
.

If this is bounded by 1, and using the fact that
∥A∇f(x )∥22 ≤ β ∥∇f(x )∥22, this implies that f is effec-
tively βm−1-multiplicatively smooth with respect to the ℓ2
norm. Indeed, as we can see in Table 3, these values are
indeed less than 1 for all datasets and all iterations.

In the following, our plan is to prove convergence, assuming
that f has the multiplicative smoothness property with the

7



Gradient Descent Converges Linearly for Logistic Regression on Separable Data

constants in our hypothesis above. Under this assumption,
we can now prove a much stronger convergence theorem
(here we are also using the fact that M2 ≤ β to replace 2M -
by 2
√
β-second order robustness):

Theorem 5.2. Let f : Rn → R>0 be a convex function
that is γ-second order robust and µ-multiplicatively smooth
with respect to the ℓ2 norm. Let x 0 ∈ Rn be an initial
solution and x ∗ ∈ Rn be an arbitrary solution, where
R :=

∥∥x 0 − x ∗
∥∥
2
. Then, gradient descent with step size

ηt = min
{

1
2µf(x t) ,

1
γ∥∇f(x t)∥2

}
returns a solution with

f(x ) ≤ (1 + δ)f(x ∗) + ε

after

T = O
(
µR2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

)
+ γR log

f(x 0)− f(x ∗)

ε

)
iterations. If γ ≤ 2

√
β and µ ≤ βm−1 for some β > 0,

then the number of iterations becomes

T = O
(βR2

m

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

)
+
√
βR log

f(x 0)− f(x ∗)

ε

)

Theorem 5.2 is proved in Appendix B.2.

6. Numerical Example
In order to numerically validate our algorithm, we run logis-
tic regression on the UCI adult binary classification dataset.
In order to simulate a separable dataset, we first run gradient
descent on the whole data, and then discard the misclassified
data points. This gives us a separable dataset. Then, we run
two variants of gradient descent: One with constant step
size given by β−1, and one with increasing step size given
by ηt = β−1f(x 0)/f(x t), with no other change. This is
motivated by our findings, which suggest that the step size
should increase proportionally to the decrease of the loss.
As we can see in Figure 2, the error in the case of fixed step
size decays as poly(1/t), while in the case of increasing
step size we have linear convergence (albeit with a low rate
because the margins are in the order of 10−6).

7. Acknowledgments
We would like to thank the anonymous reviewers for valu-
able feedback, and pointing out a simplification to the choice
of step size in Algorithm 1.

Figure 2. Comparison of fixed vs increasing step size on logistic
regression on adult dataset
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A. Missing Proofs from Section 4
A.1. Main lemma on coordinate updates

Lemma A.1 (Gradient lower bound). Let f : Rn → R be a differentiable convex function and let x ∈ [−B′, B′]n,
x ∗ ∈ [−B,B]n be two solutions for some parameters B′ ≥ B > 0. For all i ∈ [n] we define

ζi =


λ if xi = 0

0 if |xi| ≥ B and∇if(x ) · xi < 0

1 otherwise

where 0 < λ ≤ 1, and let i∗ = argmaxi {ζi |∇if(x )|}. Then, at least one of the following is true:

• |∇i∗f(x )| ≥
f(x )− f(x ∗)

∥x ∗∥1 + λ ∥x∥1

• |∇i∗f(x )| ≥
f(x )− f(x ∗)

λ−1 ∥x ∗∥1 + ∥x∥1
and xi∗ ̸= 0 .

Proof. Let S = {i | xi ̸= 0} and F = {i | |xi| < B or∇if(x ) · xi ≥ 0}. By convexity of f , we have

f(x ∗) ≥ f(x ) + ⟨∇f(x ),x ∗ − x ⟩
≥ f(x ) + ⟨∇F f(x ),x

∗ − x ⟩
= f(x ) + ⟨∇F f(x ),x

∗⟩ − ⟨∇S∩F f(x ),x ⟩
≥ f(x )− ∥∇F f(x )∥∞ ∥x

∗∥1 − ∥∇S∩F f(x )∥∞ ∥x∥1 ,

where the first inequality holds because for any i ∈ [n]\F , by the fact that |x∗
i | ≤ B and the definition of F ,

∇if(x ) (x
∗ − x )i ≥ |∇if(x )| (−B +B) = 0 .

Therefore

∥∇F f(x )∥∞ ∥x
∗∥1 + ∥∇S∩F f(x )∥∞ ∥x∥1 ≥ f(x )− f(x ∗) . (4)

Now, if i∗ /∈ S, which also implies xi∗ = 0, by definition of the ζi’s and i∗ we have

λ ∥∇F f(x )∥∞ = λ |∇i∗f(x )| ≥ ∥∇S∩F f(x )∥∞ .

and so (4) implies

|∇i∗f(x )| ∥x ∗∥1 + λ |∇i∗f(x )| ∥x∥1 ≥ f(x )− f(x ∗)

⇒|∇i∗f(x )| ≥
f(x )− f(x ∗)

∥x ∗∥1 + λ ∥x∥1
.

Otherwise if i∗ ∈ S, we have

∥∇S∩F f(x )∥∞ = |∇i∗f(x )| ≥ λ ∥∇F f(x )∥∞ ,

and so (4) implies

λ−1 |∇i∗f(x )| ∥x ∗∥1 + |∇i∗f(x )| ∥x∥1 ≥ f(x )− f(x ∗)

⇒|∇i∗f(x )| ≥
f(x )− f(x ∗)

λ−1 ∥x ∗∥1 + ∥x∥1
.

10
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Lemma A.2 (Coordinate update). Let f : Rn → R>0 be a twice continuously differentiable convex function that is
2γ-second order robust and γ2-multiplicatively smooth with respect to the ℓ1 norm, for some γ > 0. Let x ∈ [−B′, B′]n be
a suboptimal solution such that f(x ) ≥ f(x ∗), where x ∗ ∈ [−B,B]n is some unknown solution with γ ∥x ∗∥1 ≥ 1, and
B′ ≥ B > 0 are some parameters. We make the update

x ′ = x − η∇if(x )1i ,

where i is picked as in Lemma A.1 for some parameter λ ∈ (0, 1) and η = 0.5min
{

1
γ2f(x) ,

1
γ|∇if(x)|

}
is a step size. Then,

at least one of the following is true about the progress in decreasing f :

• f(x )− f(x ′) ≥ (f(x )− f(x ∗))
2

4γ2f(x ) (∥x ∗∥1 + λ ∥x∥1)
2

• f(x )− f(x ′) ≥ (f(x )− f(x ∗))
2

4γ2f(x ) (λ−1 ∥x ∗∥1 + ∥x∥1)
2 and xi ̸= 0 ,

and the norm of the new solution is bounded as ∥x ′∥∞ ≤ max {B′, B + 1
2γ }. In the case that f(x ) < f(x ∗) we have

f(x ′) ≤ f(x ).

Proof. We first consider a generic update x ′ = x + x̃ . By Taylor’s theorem and the fact that f is twice continuously
differentiable, we have

f(x ′) = f(x ) + ⟨∇f(x ), x̃ ⟩+ 1

2
⟨x̃ ,∇2f(x̄ )x̃ ⟩ ,

for some x̄ that is entrywise between x and x ′.

Since f is 2γ-second-order-robust and γ2-multiplicatively-smooth with respect to the ℓ1 norm, as long as the update is
bounded in ℓ1 norm as

∥x̃∥1 ≤ 1/(2γ) (5)

we have

f(x ′) ≤ f(x ) + ⟨∇f(x ), x̃ ⟩+ ⟨x̃ ,∇2f(x )x̃ ⟩

≤ f(x ) + ⟨∇f(x ), x̃ ⟩+ γ2f(x ) ∥x̃∥21 .

Note that the right hand side is minimized for

x̃ = −H1 (∇f(x ))
2γ2f(x )

,

where H1 is the hard thresholding operator that zeroes out all but the top entry in absolute value. This is a coordinate descent
step. Our step will be slightly more careful so that it doesn’t unnecessarily increase the sparsity of x . We consider the
following coordinate step

x̃ = −η∇if(x )1i ,

where η > 0 and i are as defined in the lemma statement. We now have a function value decrease of

f(x )− f(x ′) ≥
(
η − η2γ2f(x )

)
(∇if(x ))

2 .

The term η − η2γ2f(x ) is maximized at η = 1
2γ2f(x) . In addition, to stay in the ℓ1 neighborhood where the Hessian is

stable, we need to satisfy (5) by making sure that η ≤ 1
2γ|∇if(x)| . Based on these requirements, we pick

η = min

{
1

2γ2f(x )
,

1

2γ|∇if(x )|

}

11



Gradient Descent Converges Linearly for Logistic Regression on Separable Data

and conclude that

f(x )− f(x ′) ≥ min

{
1

4γ2f(x )
,

1

4γ|∇if(x )|

}
(∇if(x ))

2

= min

{
(∇if(x ))

2

4γ2f(x )
,
|∇if(x )|

4γ

}
.

Note that this is always ≥ 0 and so we have f(x ′) ≤ f(x ) even if f(x ) < f(x ∗). We now take two cases and use the two
bullets of Lemma A.1 accordingly.

Case 1: xi = 0. The first bullet of Lemma A.1 has to be true, i.e.

|∇if(x )| ≥
f(x )− f(x ∗)

∥x ∗∥1 + λ ∥x∥1
.

Therefore,

f(x )− f(x ′) ≥ min

{
(f(x )− f(x ∗))2

4γ2f(x ) (∥x ∗∥1 + λ ∥x∥1)
2 ,

f(x )− f(x ∗)

4γ (∥x ∗∥1 + λ ∥x∥1)

}

=
(f(x )− f(x ∗))2

4γ2f(x ) (∥x ∗∥1 + λ ∥x∥1)
2 ,

where we used the facts that f(x )− f(x ∗) ≤ f(x ) and γ ∥x ∗∥1 ≥ 1.

Case 2: xi ̸= 0. If the first bullet of Lemma A.1 is true, we can proceed as in the previous case. Otherwise, we use the
second bullet of Lemma A.1 and similarly get

f(x )− f(x ′) ≥ (f(x )− f(x ∗))2

4γ2f(x ) (λ−1 ∥x ∗∥1 + ∥x∥1)
2 .

Finally, in order to bound ∥x ′∥∞, we first note that ∥x∥∞ ≤ B′. Now, by our choice of i we have that either |xi| < B, or
∇if(x ) · xi > 0. In the first case, we have

|x′
i| ≤ |xi|+ |x̃i| < B +

1

2γ
,

where we used (5). Otherwise, we have that |xi| ≥ B and∇if(x ) · xi > 0. This implies that xi and x̃i have different signs,
so

|x′
i| = |xi + x̃i| ≤ max {|xi|, |x̃i|} ≤ max

{
B′,

1

2γ

}
.

Therefore, in any case we have |x′
i| ≤ max

{
B′, B + 1

2γ

}
.

A.2. Theorems

A.2.1. PROOF OF THEOREM 4.1

Proof. We will apply Lemma A.2 for T iterations to obtain solutions x 0, . . . ,xT , for some T that will be defined later. The
step size parameter λt < 1 disincentivizes updating zero entries of the solution vector. The logistic function f is 2M -second
order robust and M2-multiplicatively smooth with respect to the ℓ1 norm (Lemmas 3.2 and 3.5), so Lemma A.2 can be
applied with γ = M and B′ = B + 1

2M .

Also, we can simplify the step size used in Lemma A.2 to 1
2M2f(x) . This is because

∥∇f(x )∥∞ =
∥∥∥A⊤(1− σ(Ax ))

∥∥∥
∞

≤M ∥1− σ(Ax )∥1
≤Mf(x ) ,

12



Gradient Descent Converges Linearly for Logistic Regression on Separable Data

where we used the fact that 1 − σ(t) = 1/(1 + et) ≤ log(1 + e−t). The inequality holds because the function g(t) =
(1 + et) log(1 + e−t) is decreasing (g′(t) = et log(1 + e−t)− 1 ≤ 0) and goes to 1 as t→∞.

The progress bound of Lemma A.2 depends on ∥x t∥1. Based on the guarantee of Lemma A.2 about ∥x t∥∞, we can derive
the following bound: ∥∥x t

∥∥
1
≤
∥∥x t

∥∥
0

∥∥x t
∥∥
∞

≤
∥∥x t

∥∥
0

(
B +

1

2M

)
≤
∥∥x t

∥∥
0
(3/2)B .

We can now bound the sparsity. Note that the sparsity increases by at most 1 every time the first bullet of Lemma A.2 is true,
and does not increase when the second bullet is true. Therefore, the progress in each sparsity-increasing iteration, based on
our choice of λt, is

f(x t)− f(x t+1) ≥ (f(x t)− f(x ∗))
2

4f(x t)M2 (∥x ∗∥1 + λt ∥x t∥1)
2

≥ (f(x t)− f(x ∗))
2

4f(x t)M2 (∥x ∗∥1 +B1)
2

≥ (f(x t)− f(x ∗))
2

16f(x t)M2 ∥x ∗∥21
.

The following auxiliary lemma will help us turn this into a convergence result:

Lemma A.3. Consider a function f : Rn → R>0 and a sequence x 0,x 1, . . . of iterates such that for all t

f(x t)− f(x t+1) ≥ α
(f(x t)− f(x ∗))2

f(x t)
(6)

for some x ∗ with f(x ∗) ≤ mint f(x
t). Then,

f(xT ) ≤ (1 + δ)f(x ∗) + ε

after

T ≤ 2α−1

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

)
iterations.

Proof. Let t̄ be the smallest t ≥ 0 for which f(x t̄) ≤ 2f(x ∗) or f(x t̄) ≤ f(x ∗) + ε, and let t̄ =∞ if this never happens.
Therefore, for all t < t̄ we have f(x t) ≥ 2f(x ∗)⇒ f(x t)−f(x∗)

f(x t) ≥ 1
2 , Then, (6) implies

f(x t)− f(x t+1) ≥ α

2

(
f(x t)− f(x ∗)

)
⇒f(x t+1)− f(x ∗) ≤

(
1− α

2

) (
f(x t)− f(x ∗)

)
.

Applying these for all t, we get

f(x t̄)− f(x ∗) ≤
(
1− α

2

)t̄ (
f(x 0)− f(x ∗)

)
,

which directly implies that

t̄ ≤ 2α−1 log
f(x 0)− f(x ∗)

ε
.
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Now, let t ≥ t̄. If f(x t̄) ≤ f(x ∗) + ε we are done and there is nothing to prove. Otherwise, f(x t) ≤ f(x t̄) ≤ 2f(x ∗) and
therefore (6) implies

f(x t)− f(x t+1) ≥ α

2f(x ∗)
(f(x t)− f(x ∗))2 .

This is a well known recurrence that leads to the bound

f(xT ) ≤ f(x ∗) +
2f(x ∗)

α(T − t̄)
=

(
1 +

2

α(T − t̄)

)
f(x ∗) ,

therefore

T ≤ 2

αδ
+ t̄ ≤ 2α−1

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

)
.

Lemma A.3 implies that the total number of sparsity-increasing iterations is

s′ :=
∥∥xT

∥∥
0
≤ 32 ∥x ∗∥21 M

2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

)
.

Now it remains to bound the total number of iterations in which the second bullet of Lemma A.2 is true. These iterations do
not increase the sparsity. We have

f(x t)− f(x t+1) ≥ (f(x t)− f(x ∗))2

4f(x t)M2
(
λ−1
t ∥x ∗∥1 + ∥x t∥1

)2 .

Note that

λ−1
t ∥x ∗∥1 = max

{∥∥x t
∥∥
1
∥x ∗∥1 /B1, ∥x ∗∥1

}
≤ max

{
C
∥∥x t

∥∥
1
, ∥x ∗∥1

}
,

If C ∥x t∥1 ≥ ∥x ∗∥1, then

f(x t)− f(x t+1) ≥ (f(x t)− f(x ∗))2

4f(x t)M2(C + 1)2 ∥x t∥21

≥ (f(x t)− f(x ∗))2

9f(x t)M2B2(C + 1)2 ∥x t∥20

≥ (f(x t)− f(x ∗))2

9f(x t)M2B2(C + 1)2(s′)2
.

By Lemma A.3, there can only be

T = 9M2B2(C + 1)2(s′)2
(
1

δ
+ log

f(x 0)− f(x ∗)

ε

)
= O

(
(s′)2M2B2C2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
iterations. Similarly if C ∥x t∥1 < ∥x ∗∥1 we have at most

O

((
(s′)2 + ∥x ∗∥20

)
M2B2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
such iterations, so the result follows.

14
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A.2.2. PROOF OF THEOREM 4.3

Proof. We move similarly to the proof of Theorem 4.1, but now we can strengthen Lemma A.2 because x t is fully corrected
for all t, i.e. ∇if(x

t) = 0 for all i ∈ supp(x t). As in the proof of Lemma A.2, we can lower bound the amount of progress
as a function of ∥∇f(x t)∥∞ as follows:

f(x t)− f(x t+1) ≥ (∇if(x
t))2

4M2f(x t)
.

Now, by convexity of f we have

⟨∇f(x t),x t − x ∗⟩ ≥ f(x t)− f(x ∗) . (7)

Because of fully corrective steps we have ⟨∇f(x t),x t⟩ = 0, and so the left hand side of (7) is upper bounded by
∥∇f(x t)∥∞ ∥x ∗∥1. As a result, we have

∥∥∇f(x t)
∥∥2
∞ ≥

(f(x )− f(x ∗))
2

∥x ∗∥21
,

and so we get the progress bound of

f(x t)− f(x t+1) ≥ (f(x t)− f(x ∗))2

4M2f(x t) ∥x ∗∥21
.

By Lemma A.3 (similarly to the proof of Theorem 4.1), this progress bound leads to a sparsity of

s′ :=
∥∥xT

∥∥
0
≤ O

(
∥x ∗∥21 M

2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
and the same number of iterations.

B. Missing Proofs from Section 5
B.0.1. PROOF OF COROLLARY 5.1

Proof. We will apply Lemma A.2 for T iterations to obtain solutions x 0, . . . ,xT , where for some T that will be defined
later. The logistic function f is 2M -second order robust and M2-multiplicatively smooth with respect to the ℓ1 norm, so
Lemma A.2 can be applied with γ = M and B′ = B + 1

2M .

We get the following bound on the ℓ1 norm of x t at all times:∥∥x t
∥∥
1
≤ n

∥∥x t
∥∥
∞ ≤ n

(
B +

1

2M

)
≤ (3/2)nB .

Let t̄ be the smallest t ≥ 0 for which f(x t̄) ≤ 2f(x ∗) or f(x t̄) ≤ f(x ∗) + ε, and let t̄ = ∞ if this never happens.
Therefore, for all t < t̄ we have f(x t) ≥ 2f(x ∗)⇒ f(x t)−f(x∗)

f(x t) ≥ 1
2 , and so the statement of Lemma A.2 gives:

f(x t)− f(x t+1) ≥ f(x t)− f(x ∗)

8M2(∥x ∗∥1 + ∥x t∥1)2

≥ f(x t)− f(x ∗)

8n2M2(B + (3/2)B)2

≥ f(x t)− f(x ∗)

50n2M2B2
,

where we used the fact that ∥x ∗∥1 ≤ n ∥x ∗∥∞ ≤ nB. Equivalently,

f(x t+1)− f(x ∗) ≤
(
1− 1

50n2M2B2

)
(f(x t)− f(x ∗)) ,

15
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and summing up these for t ∈ {0, 1, . . . , t̄− 1}, we get

f(x t̄)− f(x ∗) ≤
(
1− 1

50n2M2B2

)t̄

(f(x 0)− f(x ∗))

≤ ε ,

as long as

t̄ ≥ 50n2M2B2 log
f(x 0)− f(x ∗)

ε
,

therefore we conclude that t̄ is at most this quantity.

Now we consider the iterations t ≥ t̄. If f(x t̄) ≤ f(x ∗) + ε there are no such iterations and we are done. Therefore we
have that f(x t̄) ≤ 2f(x ∗). We again use Lemma A.2 for all such t, which gives

f(x t)− f(x t+1) ≥ (f(x t)− f(x ∗))2

4M2f(x t)(∥x ∗∥1 + ∥x t∥1)2

≥ (f(x t)− f(x ∗))2

25f(x t)n2M2B2

≥ (f(x t)− f(x ∗))2

50f(x ∗)n2M2B2
.

By known convergence results, this recurrence leads to the bound

f(xT ) ≤ f(x ∗) +
100f(x ∗)n2M2B2

T − t̄

= f(x ∗)

(
1 +

100n2M2B2

T − t̄

)
,

implying that f(xT ) ≤ (1 + δ)f(x ∗) after

T − t̄ = O

(
n2M2B2 1

δ

)
additional iterations after t̄. Therefore, the total number of iterations to achieve f(xT ) ≤ (1 + δ) · f(x ∗) + ε is

O

(
n2M2B2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

))
.

B.1. Gradient update lemma

Lemma B.1. Let f : Rn → R>0 be a twice continuously differentiable convex function that is γ-second order robust and
µ-multiplicatively smooth with respect to a norm ∥·∥ for some γ, µ > 0. Given a solution x ∈ Rn, we make the update

x ′ = x − ηg ,

where

g = argming∈Rn ⟨∇f(x ),−g⟩+
1

2
∥g∥2 (8)

and η ≤ min
{

1
2µf(x) ,

1
γ∥∇f(x)∥

}
is a step size. Then, the progress in decreasing f is:

f(x )− f(x ′) ≥ η

2
∥g∥2 .

16
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Proof. We first consider a generic update x ′ = x + x̃ . By Taylor’s theorem and the fact that f is twice continuously
differentiable, we have

f(x ′) = f(x ) + ⟨∇f(x ), x̃ ⟩+ 1

2
⟨x̃ ,∇2f(x̄ )x̃ ⟩ ,

for some x̄ that is entrywise between x and x ′.

Since f is γ-second order robust and µ-multiplicatively-smooth with respect to the norm ∥·∥, as long as the update is
bounded as

∥x̃∥ ≤ 1/γ , (9)

we have

f(x ′) ≤ f(x ) + ⟨∇f(x ), x̃ ⟩+ ⟨x̃ ,∇2f(x )x̃ ⟩

≤ f(x ) + ⟨∇f(x ), x̃ ⟩+ µf(x ) ∥x̃∥2 .

Note that the right hand side is minimized for

x̃ = − 1

2µf(x )
g .

In addition, to stay in the neighborhood where the Hessian is stable, we need to satisfy (9). Based on these requirements, we
make the update x̃ = −ηg , where

η = min

{
1

2µf(x )
,

1

γ ∥g∥

}
.

Also, by the first-order optimality condition of (8) it directly follows that ⟨∇f(x ), g⟩ = ∥g∥2. Therefore,

f(x )− f(x ′) ≥ η⟨∇f(x ), g⟩ − η2µf(x ) ∥g∥2

= η (1− ηµf(x )) ∥g∥2

≥ η

2
∥g∥2 ,

where the last inequality follows by our choice of step size.

Lemma B.2 (Gradient update). Let f : Rn → R>0 be a twice continuously differentiable convex function that is γ-second
order robust and µ-multiplicatively smooth with respect to the ℓ2 norm for some γ, µ > 0. Let x ∈ Rn be a solution such
that f(x ) > f(x ∗), where x ∗ ∈ Rn is an unknown solution with ∥x − x ∗∥2 ≤ R for some R > 0. We make the update

x ′ = x − η∇f(x ) ,

where η = min
{

1
2µf(x) ,

1
γ∥∇f(x)∥2

}
is a step size. Then, the progress in decreasing f is:

f(x )− f(x ′) ≥ min

{
(f(x )− f(x ∗))2

4µf(x )R2
,
f(x )− f(x ∗)

2γR

}
.

Additionally, as long as x ′ is still suboptimal with respect to x ∗, i.e. f(x ′) > f(x ∗), the distance to x ∗ decreases:
∥x ′ − x ∗∥2 ≤ ∥x − x ∗∥2. Finally, if f(x ) ≤ f(x ∗), then f(x ′) ≤ f(x ).

Proof. We apply Lemma B.1 with the ℓ2 norm, which gives g = ∇f(x ) and so

f(x )− f(x ′) ≥ η

2
∥∇f(x )∥22

= min

{
1

4µf(x )
,

1

2γ ∥∇f(x )∥2

}
∥∇f(x )∥22

= min

{
∥∇f(x )∥22
4µf(x )

,
∥∇f(x )∥2

2γ

}
.

17
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This takes care of the case f(x ) ≤ f(x ∗), since it shows that f(x ′) ≤ f(x ). Now we deal with the case f(x ) > f(x ∗).
By convexity we have

f(x ∗) ≥ f(x ) + ⟨∇f(x ),x ∗ − x ⟩
≥ f(x )− ∥∇f(x )∥2 ∥x

∗ − x∥2
≥ f(x )− ∥∇f(x )∥2 R ,

which gives

∥∇f(x )∥22 ≥
(f(x )− f(x ∗))2

R2
,

and so

f(x )− f(x ′) ≥ min

{
(f(x )− f(x ∗))2

4µf(x )R2
,
f(x )− f(x ∗)

2γR

}
.

For the norm bound, we suppose that f(x ′) > f(x ∗) (otherwise we are done). We have

∥x ′ − x ∗∥22 − ∥x − x ∗∥22
= ∥x ′ − x∥22 + 2⟨x − x ∗,x ′ − x ⟩

= η2 ∥∇f(x )∥22 − 2η⟨x − x ∗,∇f(x )⟩ .

Now, note that
η

2
∥∇f(x )∥22 ≤ f(x )− f(x ′) ≤ f(x )− f(x ∗)

and by convexity ⟨x − x ∗,∇f(x )⟩ ≥ f(x )− f(x ∗), so

∥x ′ − x ∗∥22 − ∥x − x ∗∥22
= η2 ∥∇f(x )∥22 − 2η⟨x − x ∗,∇f(x )⟩
≤ 0 .

B.2. Proof of Theorem 5.2

Proof. We repeatedly use Lemma B.2 to obtain iterates x 0,x 1, . . . ,xT . Note that as long as f(x t) > f(x ∗), we have
∥x t − x ∗∥2 ≤

∥∥x 0 − x ∗
∥∥
2
:= R. We have

f(x t)− f(x t+1) ≥ min

{
(f(x t)− f(x ∗))2

4µf(x t) ∥x t − x ∗∥22
,
f(x t)− f(x ∗)

2γ ∥x t − x ∗∥2

}

≥ min

{
(f(x t)− f(x ∗))2

4µf(x t)R2
,
f(x t)− f(x ∗)

2γR

}
.

Let there be T1 iterations where the first branch of the minimum is smaller, and T2 where the second one is smaller, and
suppose that f(xT ) > (1 + δ)f(x ∗) + ε, where T = T1 + T2. By Lemma A.3 we immediately obtain that

T1 ≤ 8µR2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

)
.

For T2, a standard recurrence shows that

T2 ≤ 4γR log
f(x 0)− f(x ∗)

ε
.

Therefore the total number of iterations is bounded by

T ≤ O

(
µR2

(
1

δ
+ log

f(x 0)− f(x ∗)

ε

)
+ γR log

f(x 0)− f(x ∗)

ε

)
.

Replacing µ ≤ βm−1 and γ ≤ 2
√
β we obtain the desired result.
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