
Half-Hop: A graph upsampling approach for slowing down message passing

Mehdi Azabou 1 Venkataramana Ganesh 1 Shantanu Thakoor 2 Chi-Heng Lin 1 Lakshmi Sathidevi 1

Ran Liu 1 Michal Valko 2 Petar Veličković 2 Eva L. Dyer 1

Abstract

Message passing neural networks have shown a
lot of success on graph-structured data. However,
there are many instances where message passing
can lead to over-smoothing or fail when neigh-
boring nodes belong to different classes. In this
work, we introduce a simple yet general frame-
work for improving learning in message passing
neural networks. Our approach essentially up-
samples edges in the original graph by adding
“slow nodes” at each edge that can mediate com-
munication between a source and a target node.
Our method only modifies the input graph, mak-
ing it plug-and-play and easy to use with existing
models. To understand the benefits of slowing
down message passing, we provide theoretical and
empirical analyses. We report results on several
supervised and self-supervised benchmarks, and
show improvements across the board, notably in
heterophilic conditions where adjacent nodes are
more likely to have different labels. Finally, we
show how our approach can be used to generate
augmentations for self-supervised learning, where
slow nodes are randomly introduced into different
edges in the graph to generate multi-scale views
with variable path lengths.

1. Introduction
Graph neural networks (GNN) are now a widely used class
of artificial neural networks, with applications in recom-
mender systems (Ying et al., 2018), drug discovery (Stokes
et al., 2020; Gaudelet et al., 2021), and much more (Monti
et al., 2017; Cui et al., 2019; Ktena et al., 2017). How-
ever, because graphs are highly variable, building general
approaches for learning on graphs that work robustly on
many different problems has been a major challenge.

1Georgia Tech 2DeepMind. Correspondence to: Mehdi Azabou
and Eva Dyer <{mazabou, evadyer}@gatech.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Most GNNs rely on message passing (MP) that leverages the
graph structure to perform inference (Gilmer et al., 2017).
Message passing, while intuitive and simple, can also be
limiting in some cases (Alon & Yahav, 2021; Topping et al.,
2021; Oono & Suzuki, 2020). This is especially true when
working with complex and heterophilic graphs where nodes
from different classes are connected (Luan et al., 2022), and
in cases where the degree distributions and connectivity is
varied throughout the network (Yan et al., 2021). Finding
ways to mitigate these problems is of great importance for
advancing GNNs, and to do so, we need flexible and gen-
eralizable strategies that can easily be applied to different
encoders and in both supervised and unsupervised settings.

In this work, we introduce Half-Hop, a simple yet general
augmentation for improving learning in message passing
neural networks. The main idea behind our approach is to
upsample the input graph: we do this through the introduc-
tion of new nodes, that we refer to as “slow nodes”, along
edges. Introducing a slow node has the effect of slowing-
down the messages sent by the source node to the target
node. Rather than making explicit modifications of our loss
or encoder, we simply modify the input graph, making it
plug-and-play and easy to use with existing models and
architectures.

We apply our approach to a wide range of benchmark
datasets used in supervised and self-supervised node clas-
sification tasks. Across the board, we find that our ap-
proach provides improvements to the baseline models that
we tested. In self-supervised learning, we demonstrate im-
pressive boosts in performance when applying our approach
to state-of-the-art models for self-supervised learning (SSL)
(i.e., GRACE (Zhu et al., 2020b), BGRL (Thakoor et al.,
2022)). Overall, these results suggest that Half-Hop can
significantly improve the performance of GNNs in a wide
range of graphs, across models, losses, and tasks.

The contributions of this work include:

• A graph upsampling approach that improves node clas-
sification for a range of GNNs: In extensive experi-
ments, we show the utility of graph upsampling in both
supervised and unsupervised settings.

• Novel graphs augmentations for SSL: An important
challenge in using SSL on graphs is the design of aug-

1

Half-Hop: A graph upsampling approach for slowing down message passing

Figure 1. Overview of the Half-Hop augmentation. (a) On the left, we show an original graph and on the right, the graph after applying
Half-Hop to all edges. We introduce slow nodes (gray) along each directed edge. (b) Half-Hop is used to generated diverse views for
self-supervised learning methods. In the illustrated example, only the incoming edges of randomly selected nodes are half-hopped.

mentations to create different views of a graph for con-
trastive learning (Zhu et al., 2021). We demonstrate
that Half-Hop can be used as a standalone augmen-
tation or in conjunction with other augmentations to
improve upon state-of-the-art SSL models.

• Plug-and-play component to improve message passing
on heterophilic graphs: Our results on heterophilic
datasets show that by adding Half-Hop to a simple
GCN backbone, we can achieve over 10% boost in per-
formance, and when combining Half-hop with Graph-
SAGE (Hamilton et al., 2017), we achieve results that
are comparable with state-of-the-art methods that use
more complex architectures.

• Study of Half-Hop and how the introduction of slow
nodes helps to mitigate oversmoothing: In both a the-
oretical investigation and in empirical studies, we un-
pack the different ways that Half-Hop impacts learning.
In particular, we analyze the impact of Half-Hop on
the dynamics of message passing and show how our
approach can slow down the effects of oversmoothing.

2. Method
In computer vision, increasing the resolution of an image
(zoom and crop) is one of the most widely used augmenta-
tions for both supervised and unsupervised learning (Chen
et al., 2020; Grill et al., 2020). Our idea is to rescale graphs
in a similar fashion. Just as increasing the resolution of
an image requires the introduction of new pixels, we up-
sample graphs by introducing new nodes along edges, and
interpolating their node features based on the corresponding
source and target nodes (see Figure 1). The modified graph
can then be passed into any message passing-based neural
network without further modification.

2.1. Background and Notation

Let G = (V,E) denote our graph with nodes V and directed
edges E. Each node vi ∈ V is associated with a set of d-
dimensional features xi ∈ Rd. Let eij denote the edge

going from node vi to node vj . In the message passing
scheme, nodes exchange information with their neighboring
nodes, through multiple rounds of message passing. Each
node vi updates its embedding by combining their ego-
embedding (the node’s embedding at the previous step) and
the aggregated embeddings received from their neighbors.
There are multiple implementations of the message passing
layer. We highlight the GCN (Kipf & Welling, 2016) model,
for which the output at layer ℓ is expressed as,

h
(ℓ)
i = σ

 ∑
j∈N (i)∪{i}

1√
d̂j d̂i

Wℓh
(ℓ−1)
j

 ,

where N (i) denotes the neighbors of vi, Wℓ is a set of
learnable shared weights used to compute messages, σ an
activation function, and d̂i = 1 + |N (i)|. Other GNN
models include GraphSAGE which uses a seperate learnable
matrix for the ego-embedding, and GAT (Veličković et al.,
2017) which leverages attention during the aggregation step.

2.2. Half-Hop: Graph upsampling by inserting slow
nodes between adjacent nodes

Half-hopping an edge in the graph. We consider a di-
rected edge eij that is not a self-loop (i.e. i ̸= j). To
“half-hop” eij , we introduce a new node νk that splits the
edge into two. The path vi → vj previously of length 1, is
expanded: vi → νk ⇌ vj . Due to the added hop to go from
vi to vj , we refer to this new node as a ”slow node”. This
modification to the graph can be expressed as follows:{

V ′ = V ∪ {νk}
E′ = (E \ {eij}) ∪ {ei→k, ej→k, ek→j},

(1)

Note that both the source and target nodes communicate
their messages to the slow node, but the slow node only
passes information in the original direction. We find that
this configuration is indeed optimal compared to other con-
nectivity motifs (see ablations in Appendix B).

Interpolating slow node features. When constructing a
slow node, we need to decide what features to assign to it.

2

Half-Hop: A graph upsampling approach for slowing down message passing

A simple yet effective approach is to use linear interpolation
of the source and target features. For edge ei,j , we initialize
the features of their slow node as follows:

x̃k = (1− α)xj + αxi,

where xi and xj are the source and target node features
respectively, and α is some fixed scalar between 0 to 1. By
adjusting α between 0 and 1, we can adjust the proximity
of the slow node’s initial features to the source or target
node. We study other forms of node feature initialization in
the Appendix B and show that mixing is a superior strategy
when compared with random initialization or setting the
features to zero. In practice, we tune the α parameter using a
validation set; however, we find a good degree of robustness
to this hyperparameter in many of our experiments.

Half-hopping the graph. Now that we have established
how slow nodes are added to the graph, we can apply this
operation to multiple edges in the graph at once. We can do
this for all edges or for a subset of them.

In our work here, we consider a node-level sampling to
apply Half-Hop randomly on a subset of edges. For each
node vi ∈ V , with probability p, we “half-hop” all of vi’s
incoming edges. Let S be the subset of nodes selected for
half-hopping, ES be the set of all directed edges that have
target nodes in S, where Ns = |ES |. The set of nodes in
the new locally half-hopped graph is: V ′ = V ∪ {νk}Ns

k=1.
To streamline notation, we can write a sample from this
graph generative process as (V ′, E′) ∼ hhα(G; p). When
all edges in the graph are Half-Hopped (i.e. p=1), we will
use an uppercase HHα(G). Note that in contrast to the
node sampling generator, the fully half-hopped graph is a
deterministic transformation.

2.3. Combining Half-Hop with any MPNN

After applying Half-Hop, we obtain a modified graph that
can be passed into a message passing neural network. We
treat original and slow nodes the same when it comes to
MP, both nodes receive and send updates according to the
same rules. We treat the slow nodes as intermediary nodes
that are discarded of at the end of MP, and any downstream
operations such as loss computation or inclusion in further
neural network encoders work only over the embeddings of
the original nodes.

After training our model with Half-Hop, at inference time,
we have the choice of whether to use the original graph G
or the Half-Hopped graph HHα(G) as input. If we choose
to not augment the graph at inference time, we will simply
benefit from an improved model generalization, enabled by
the use of Half-Hop as an augmentation during training (as
we show in Section 4.4). If we do augment the graph, we
would also take advantage of the improved MP enabled by
Half-Hop (as we demonstrate in Section 3.2).

2.4. Using Half-Hop to generate views for
Self-supervised learning

We also consider the use of Half-Hop for self-supervised
representation learning. Self-supervised learning methods
use augmentations to generate different views of a graph and
then learn a representation space in which these views are
close to each other (Zhu et al., 2020a; Thakoor et al., 2022).
With Half-Hop, we can create views where node i might be
directly connected to its one-hop neighbors in one view, but
half-hopped in the other. This generates a heterogeneous
zooming and cropping into the neighborhood of different
nodes. We expand on this in Section 3.2, where we show
how Half-Hop alters the receptive field of the GNN.

Thus, we can generate two views (G̃1, G̃2) of the graph to
use as inputs to contrastive learning:

G̃1 ∼ hhα(G; p1), G̃2 ∼ hhα(G; p2)

where we parameterize the sampling procedure for each
view with node-sampling probabilities p1 and p2. As
explained in the previous section, when evaluating the
contrastive loss, we only use the original nodes as posi-
tive/negative examples.

3. Understanding Half-Hop
In this section, we investigate Half-Hop from two angles.
In Section 3.1, we study how Half-Hop alters the receptive
field of the GNN model. In Section 3.2.2, we study the effect
of Half-Hop on message passing from a spectral perspective.
In both theory and experiments, we show that our approach
slows down the smoothing process.

3.1. Reshaping the node’s receptive field with Half-Hop

The receptive field (RF) of a model represents the parts
of the input graph that have the most significant impact
on the final embedding of a particular node. In MPNNs,
the representation of a node is typically influenced by its
neighboring nodes. When Half-Hop is applied, 1-hop neigh-
bors become 2-hop neighbors and the receptive field is thus
reduced since messages take longer to propagate as they
are routed through slow nodes. Thus, we wanted to under-
stand how the RF is being shaped over rounds of message
passing. To do this, we consider a simple 2D planar graph
(Figure 2a), and a simplified GNN that is equivalent to ap-
plying multiple rounds of mean aggregation without any
learned weights. If we note H(0) the initial feature matrix
of the nodes, and H(k) the output after k message passing
steps, then we have H(k) = LkH(0) with L = D−1A, A
denotes the adjacency matrix and D the diagonal degree
matrix. In other words, the output embedding of a node can
be expressed as a weighted combination of all nodes in the
graph.

3

Half-Hop: A graph upsampling approach for slowing down message passing

Figure 2. Analyzing how Half-Hop changes the receptive field (RF) of the GNN. (a)We consider a 2D planar graph. (b) We estimate the
contribution of a node to the final embedding of the central node based on distance between the nodes (number of hops), without (b, left)
and with Half-Hop (b, right). (c) The dynamics of attenuation of the ego-embedding for different values of α. (d) Example RFs obtained
for probabilistic Half-Hop (α = 0.5, p = 0.75) that highlight how the RF changes when different subsets of edges are half-hopped.
Darker means higher contribution to the RF.

Figure 3. The results of isotropic diffusion with and without Half-Hop. Mean Squared Error (MSE) of linear ridge regression on the
smoothed features after a number of rounds of message passing, described as order of smoothing (reported in log scale). From left to right,
we illustarate it for CiteSeer, Cora, Chameleon and Texas.

In Figure 2b, we visualize, for a given central node in this
simple 2D graph, the contribution (weight) of any k-hop
neighbor to the central node’s final embedding. In the origi-
nal graph (Fig. 2b, left), the weights of messages from near-
est neighbors are quickly attenuated. Even after one step, the
uniform weights between 1-hop neighbors and self-loops
flattens the RF immediately from the central node. This
smoothing process can often take place extremely quickly,
as demonstrated in this example. When we apply Half-Hop
(Fig. 2b, right), we show that the receptive field is altered:
a more graceful decrease in the weight of neighbors is ob-
served, with a higher amount of weight placed on the node
itself. In Figure 2c, we plot the self-weight (y-axis) as a
function of the message passing step (x-axis), and show
that Half-Hop allows us to preserve the ego-embedding for
nodes for longer. Even as we converge to large values of α,
Half-Hop preserves a stable value for the self-weight due
to the symmetry in mixing across source and target nodes.
At the same time, most values of α have similar RFs when
considering later stages of MP.

In self-supervised learning, we use Half-Hop to generate
multiple views in which the same node can have different
receptive fields. In Figure 2d, we highlight a few examples
of receptive fields of the same central node when Half-Hop
is applied with α = 0.5 and p = 0.75 on the grid graph.

Because we sample a subset of the nodes for half-hopping,
we can generate diverse configurations. We find that the
receptive field can be narrow, broad or a hybrid of both based
on which nodes were half-hopped. This augmentation is
reminiscent to zooming and cropping in the vision domain,
in that we aggregate information at different scales.

3.2. Half-Hop shapes the dynamics of message passing

In simple settings, (Keriven, 2022) show that the dynamics
of message passing can be characterized, and that the under-
lying feature covariance and topology play an important role.
Thus, we sought to utilize this framework to provide insight
into how Half-Hop may alter message passing dynamics
and induce helpful forms of regularization into learning.

3.2.1. DIFFUSION ON REAL-WORLD DATASETS

To first simulate the effect of diffusion on the Half-Hop
graph vs. the original graph for four different real-world
datasets (CiteSeer, Cora, Chameleon, Texas), we use a sim-
plified linear GNN with multiple rounds of message pass-
ing (no learned weights), followed by a final linear layer
that is trained on a subset of nodes and tested on held-out
nodes. In Figure 3, we report, for different datasets, the
test mean squared error (MSE) for the node regression task
as a function of the number of message passing steps. We

4

Half-Hop: A graph upsampling approach for slowing down message passing

note that CiteSeer/Cora are considered homophilic, while
Chameleon/Texas are heterophilic.

When we compare the generalization dynamics for Half-
Hop vs. the baseline, we find very different behavior for
homophilic (left) vs. heterophilic graphs (right). In the
homophilic graphs, we achieve overall similar rates of test
error with the baseline and Half-Hop but we see the basin of
low error solutions is widened (suggesting more stability)
and the point where oversmoothing kicks in (MSE starts to
go up again) is increased. Naturally, we would expect the
factor to be at least twice as large, since Half-Hop doubles
the diameter of the graph, but we find that the transition
point is even greater than what would be predicted by this
factor.

When we examine heterophilic graphs (Chameleon, Texas),
we observe that Half-Hop achieves a significantly lower
risk than the baseline. In the case of Chameleon, Half-
Hop improves the descent and overall test risk significantly,
this can be explained by the fact that heterophilic graphs
suffer more from the oversmoothing, since we would be
aggregating features of nodes that do not belong to the same
class. This demonstrates the useful inductive bias in the
Half-Hop model even without learning weights for message
passing. In Texas, any rounds of mean aggregation (with
learning of weights) hurt the test risk; However, Half-Hop
achieves a much lower risk at the first few steps of message
passing and also stabilizes the risk far longer. In Appendix F,
we visualize how the embeddings changes over multiple
rounds of MP, and show how Half-Hop also slows down the
collapse of the latent space.

3.2.2. ANALYZING THE EFFECT OF HALF-HOP ON
GENERALIZATION

Our simulations suggest that Half-Hop does indeed alter
the dynamics of message passing. Thus, we wanted to
dig deeper and develop a result that allows us to compare
the dynamics of message passing with and without Half-
Hop. Throughout, we follow the assumptions and model
described in (Keriven, 2022). We point the reader to their
work for the full analysis and Appendix A for further details
and proofs.

A) Preliminaries and assumptions:

Graph Model. We adopt the latent space random graph
model, where we assume that the observed node features
xi = M⊤zi are projections of some underlying latent fea-
tures zi, where M denotes an unknown projection matrix;
We assume the latent features zi ∼ N (0,Σ), with covari-
ance Σ. The edge weights are determined as a function
of the latent variables by Wi,j = ε+ exp(− 1

2∥zi − zj∥22),
where ε is an unknown offset. The node labels, yi = z⊤i β∗,
are linear functions of the latent variable zi with unknown

coefficients β∗.

Objective. We consider a semi-supervised ridge regression
task where the goal is to estimate β∗ and use it to predict
the labels for nodes in the test set. We use MSE to write the
test risk as R(k) = ∥Yte − Ŷte∥2, where Yte are the stacked
labels for nte unlabeled nodes in the test set, Ŷte = X

(k)
te β̂

are the estimated labels after k steps of message passing
(diffusion), X(k)

te are the corresponding node features, and
β̂ is estimated on the training set.

B) How the spectrum impacts the dynamics of message
passing: To present our main result, we first need to define
the following function which we will use to bound the risk.

Definition 1. (Keriven, 2022) For a symmetric positive
semi-definite matrix S ∈ Rd×d, we define the function,

Rreg. (S)
def.
=

(
Σ

1
2 β⋆

)⊤
K

(
Σ

1
2 β∗

)
∈ R+

where K =
(
Id− S

1
2M

(
γId +M⊤SM

)−1
M⊤S

1
2

)2

,
Σ is the latent model covariance, M is the projection matrix,
β∗ are the true model parameters, and γ is the ridge penalty
in our least-squares estimator.

Following (Keriven, 2022), one can show that the risk
without message passing (MP) can be approximated by
R(0) ≃ Rreg. (Σ), and the risk after k rounds of MP can
similarly be approximated as R(k) ≃ Rreg.

(
A2kΣ

)
, where

A = (Id + Σ−1)−1. In this case, we can interpret A as a
smoothing operator that is applied to the original spectrum,
and interpret Σ(k) = A2kΣ as the modified covariance after
k rounds of MP.

C) Main Result: Our goal is to derive a similar result to un-
derstand how Half-Hop: (i) impacts the feature covariance
of the embeddings, (ii) changes the rate of smoothing as we
go deeper and run more rounds of message passing. To do
this, we want to derive an approximation of the risk in the
form Rreg. (Σ

(HH,k)) where Σ(HH,k) is the approximated
covariance of the node features after message passing with
Half-Hop. We state our main result below and defer the
proof to Appendix A.

Theorem 1. Message Passing Dynamics of Half-Hop.
After k ∈ {1, 3, 5, . . . } rounds of message passing, the risk
obtained with Half-Hop can be approximated as:

R(HH,k) ≃ Rreg.

(
1

2
Ak−1

(
Id + ((1− α)Id + αA)

2
)
Σ

)
.

The first term Ak−1Σ smooths the covariance at a rate of
k − 1, which is roughly half the rate of smoothing with-
out Half-Hop (2k). (Keriven, 2022) links the rapid decay
of small eigenvalues in particular to the over-smoothing
phenomena. Half-Hop thus ensures that small eigenvalues
decay at a slower rate, and thus delays the point at which
the diffusion stops being beneficial.

5

Half-Hop: A graph upsampling approach for slowing down message passing

Table 1. Increase in supervised performance when using Half-Hop. The average and standard deviation of accuracy is computed over 20
random splits and model initializations. The absolute improvement (∆) is also reported.

Am. Comp. Am. Photos Co.CS WikiCS
GCN 90.22 ± 0.60 93.59 ± 0.42 94.06 ± 0.16 81.93 ± 0.42
HH-GCN 90.92 ± 0.35 94.52 ± 0.22 94.71 ± 0.16 82.57 ± 0.36
∆ +0.70 (↑) +0.93 (↑) +0.65 (↑) +0.64 (↑)
GraphSAGE 84.79 ± 1.08 95.03 ± 0.33 95.11 ± 0.10 83.67 ± 0.45
HH-GraphSAGE 86.60 ± 0.49 94.55 ± 0.41 95.13 ± 0.21 82.81 ± 0.32
∆ +1.81 (↑) -0.48 (↓) +0.02 (↑) -0.86 (↓)

Table 2. Results on heterophilic graphs. We report the test accuracy across many heterophilic graph benchmark datasets, and highlight the
absolute improvement (∆) in classification accuracy when the model is augmented with Half-Hop. The “†” results are obtained from (Yan
et al., 2021).

Texas Wisconsin Actor Squirrel Chameleon Cornell
Hom level 0.11 0.21 0.22 0.22 0.23 0.30
#Nodes 183 251 7,600 5,201 2,277 183
#Edges 295 466 26,752 198,493 31,421 280
#Classes 5 5 5 5 5 5
GCN† 55.14 ± 5.16 51.76 ± 3.06 27.32 ± 1.10 31.52 ± 0.71 38.44 ± 1.92 60.54 ± 5.30
HH-GCN 71.89 ± 3.46 79.80 ± 4.30 35.12 ± 1.06 47.19 ± 1.21 60.24 ± 1.93 63.24 ± 5.43
∆ +16.75 (↑) +19.04 (↑) +7.80 (↑) +15.67 (↑) +21.80 (↑) +2.70 (↑)
GAT† 52.16 ± 6.63 49.41 ± 4.09 27.44 ± 0.89 36.77 ± 1.68 48.36 ± 1.58 61.89 ± 5.05
HH-GAT 80.54 ± 4.80 83.53 ± 3.84 36.70 ± 0.92 46.35 ± 1.86 61.12 ± 1.83 72.70 ± 4.26
∆ +28.38 (↑) +34.12 (↑) +9.26 (↑) +9.58 (↑) +12.75 (↑) +10.81 (↑)
GraphSAGE† 82.43 ± 6.14 81.18 ± 5.56 34.23 ± 0.99 41.61 ± 0.74 58.73 ± 1.68 75.95 ± 5.01
HH-GraphSAGE 85.95 ± 6.42 85.88 ± 3.99 36.82 ± 0.77 45.25 ± 1.52 62.98 ± 3.35 74.60 ± 6.06
∆ +3.51 (↑) +4.70 (↑) +2.59 (↑) +3.64 (↑) +4.25 (↑) -1.35 (↓)
MixHop† 77.84 ± 7.73 75.88 ± 4.90 32.22 ± 2.34 43.80 ± 1.48 60.50 ± 2.53 73.51 ± 6.34
GGCN† 84.86 ± 4.55 86.86 ± 3.29 37.54 ± 1.56 55.17 ± 1.58 71.14 ± 1.84 85.68 ± 6.63
H2GCN† 84.86 ± 7.23 87.65 ± 4.98 35.70 ± 1.00 36.48 ± 1.86 60.11 ± 2.15 82.70 ± 5.28
MLP† 80.81 ± 4.75 85.29 ± 3.31 36.63 ± 0.70 28.77 ± 1.56 46.21 ± 2.99 81.89 ± 6.40

The second term in our augmented covariance, ((1−α)Id+
αA)2, reveals the dependence on our mixing parameter α.
In particular, we observe a uniform boost of the covariance
spectrum coming from the (1− α)Id; for small values of α,
this term amplifies self-loops and the small eigenvalues.

4. Experimental Results
In this section, we conduct a comprehensive empirical
study of the effectiveness of Half-Hop on a wide range of
datasets, models and learning paradigms. Code is provided
at: https://github.com/nerdslab/halfhop.

4.1. Experimental Setup

Throughout, we test our approach using three of the most
widely used graph models: the Graph Convolutional Net-
work (GCN), GraphSAGE, and Graph Attention Network
(GAT). In all of our experiments, we follow the same ex-
perimental setup as previous work. In the supervised ex-
periments, we follow (Luo et al., 2022) in splitting the data

into a development set and a test set. The hyperparameter
tuning is performed using the development set only, and
the accuracy of the best model on the development set is
reported on the test set. For heterophilic datasets, we use
the splits provided by (Pei et al., 2020), and also follow the
same hyperparameter search protocol. For self-supervised
benchmarks, we use the standard hyperparameters provided
for each model and dataset (Zhu et al., 2020b; Thakoor et al.,
2022). We provide more details in Appendix C.

4.2. Supervised node classification benchmarks

In our first set of experiments, we use a set of real-world
benchmark datasets – Wiki-CS (Mernyei & Cangea, 2020),
Amazon-Computers, Amazon-Photo (McAuley et al., 2015),
and Coauthor datasets (Sinha et al., 2015). We train both
GCN and GraphSAGE models with and without Half-Hop,
and report the results in Table 1, where we note the Half-
Hop variants HH-GCN and HH-GraphSAGE respectively.
Our results show that Half-Hop provides a good boost in
performance across the datasets for the GCN backbone,

6

https://github.com/nerdslab/halfhop

Half-Hop: A graph upsampling approach for slowing down message passing

Table 3. BGRL with different augmentations. Performance reported in terms of classification accuracy along with standard deviation. All
experiments are performed over 20 random dataset splits and model initializations. At test time, the original graph is used. OOM indicates
out-of-memory on a 48GB Nvidia A40 GPU. The “†” results are obtained from (Thakoor et al., 2022).

Augmentation Am. Comp. Am. Photos Co.CS Co.Phy Wiki-CS

BGRL

None 87.12 ± 0.30 91.18 ± 0.38 91.85 ± 0.25 94.65 ± 0.11 78.69 ± 0.18
FeatDrop + EdgeDrop 90.34 ± 0.19 93.17 ± 0.30 93.31 ± 0.13 95.73 ± 0.05 79.98 ± 0.10
GCA† 90.39 ± 0.22 93.15 ± 0.37 93.34 ± 0.13 95.62 ± 0.09 –
Half-Hop 90.47 ± 0.25 93.18 ± 0.26 92.92 ± 0.11 95.69 ± 0.21 79.83 ± 0.53
FeatDrop + EdgeDrop + Half-Hop 91.02 ± 0.27 93.88 ± 0.19 93.61 ± 0.13 95.75 ± 0.13 80.76 ± 0.71

GRACE

None 77.85 ± 0.96 88.47 ± 0.67 90.04 ± 0.36 OOM 70.61 ± 0.95
FeatDrop + EdgeDrop 89.53 ± 0.35 92.78 ± 0.45 91.12 ± 0.20 OOM 80.14 ± 0.48
GCA† 87.85 ± 0.31 92.49 ± 0.09 93.10 ± 0.01 OOM –
Half-Hop 90.43 ± 0.28 93.58 ± 0.18 92.29 ± 0.12 OOM 79.86 ± 0.41
FeatDrop + EdgeDrop + Half-Hop 91.11 ± 0.18 94.21 ± 0.26 93.59 ± 0.16 OOM 80.77 ± 0.40

Table 4. Increase in performance when using Half-Hop with different SSL frameworks. Encoders 2-GCN and 3-GCN represent a 2 layer
and a 3 layer GCN respectively. Input (test) denotes the graph supplied at test time, where we can choose to use the original graph G or
the augmented graph HH(G). Performance is reported in terms of classification accuracy along with standard deviations. All experiments
are performed over 20 random dataset splits and model initializations.

input (test) encoder Am. Comp. Am. Photos Co.CS Co.Phy WikiCS
GRACE G 2-GCN 89.53 ± 0.35 92.78 ± 0.45 91.12 ± 0.20 OOM 80.14 ± 0.48
HH-GRACE G 2-GCN 91.11 ± 0.18 94.21 ± 0.26 93.59 ± 0.16 OOM 79.77 ± 0.40
HH-GRACE HH(G) 2-GCN 90.65 ± 0.19 94.89 ± 0.23 94.76 ± 0.14 OOM 80.15 ± 0.16
BGRL G 2-GCN 90.34 ± 0.19 93.17 ± 0.30 93.31 ± 0.13 95.73 ± 0.05 79.98 ± 0.10
HH-BGRL G 2-GCN 91.02 ± 0.27 93.88 ± 0.19 93.61 ± 0.13 95.75 ± 0.13 80.76 ± 0.71
HH-BGRL HH(G) 2-GCN 90.94 ± 0.19 94.50 ± 0.35 94.74 ± 0.15 96.13 ± 0.10 80.37 ± 0.62
BGRL G 3-GCN 90.04 ± 0.23 92.59 ± 0.34 92.42 ± 0.17 95.32 ± 0.51 78.22 ± 0.77
HH-BGRL G 3-GCN 90.53 ± 0.27 93.09 ± 0.16 92.58 ± 0.20 95.45 ± 0.09 79.76 ± 0.61
HH-BGRL HH(G) 3-GCN 91.10 ± 0.21 94.34 ± 0.25 94.76 ± 0.12 96.10 ± 0.09 81.11 ± 0.48

while GraphSAGE has more variability. HH-GraphSAGE
on Amazon Computers is the most significant, where we ob-
serve a 1.81% improvement with Half-Hop over the baseline.
These results provide evidence that Half-Hop can improve
learning using only a simple augmentation of the graph.

4.3. Heterophilic benchmarks

In Table 2, we study the performance of Half-Hop on a
number of common real-world heterophilic benchmarks,
including: Texas, Wisconsin, Actor, Squirrel, Chameleon
and Cornell (Luan et al., 2022). On these datasets, we show
improvements across the board when we add Half-Hop to
GCN, GraphSAGE and GAT. With both HH-GCN and HH-
GAT, we see improvement of more than 10-20% on many
of the datasets. To place these improvements in the context
of more sophisticated methods for heterophilic graphs, we
also compare with: (i) MixHop (Abu-El-Haija et al., 2019),
(ii) GGCN (Yan et al., 2021), and (iii) H2GCN (Zhu et al.,
2020a). See Table 7 in the Appendix for a discussion of
the assumptions and components underlying these different
approaches.

We find that Half-Hop boosts performance most signifi-
cantly for the GCN and GAT models, with modest (2.7%)
improvements with GCN on Cornell and a huge (21.8%)
improvement on Chameleon. For GAT, we see even larger
improvements on Texas where we get a 28.38% boost with
Half-Hop. The GraphSAGE encoder achieves the best per-
formance out of the three models, and HH-GraphSAGE
model reaches a performance that is comparable to the other
competitor approaches that use more complex model com-
ponents. We find that our approach provides an impressive
gain for simple architectures that rivals with these other
models without the need to define complex heuristics or
specialized architectures.

4.4. Self-supervised learning benchmarks

Graph representation learning methods rely on augmenta-
tions that are based on random transformations of the input.
Thus, we can test the utility of Half-Hop for creating views
for self-supervised learning and also as an add-on with ex-
isting augmentations, notably FeatDrop and EdgeDrop (Zhu
et al., 2020b). To do this, we combined Half-Hop with two

7

Half-Hop: A graph upsampling approach for slowing down message passing

Figure 4. An analysis of the accuracy on SSL baselines across different levels of heterophily, when using HH-BGRL vs. the BGRL
baseline. The orange represents the relative improvement obtained by using the Half-Hop augmentation at inference time compared to the
baseline (blue). Nodes are ordered by their homophily with the most heterophilic nodes to the left. On all datasets tested, the boosts
appear to be most significant on heterophilic nodes.

state-of-the-art methods for self-supervised learning, BGRL
(Thakoor et al., 2022) and GRACE (Zhu et al., 2020b). In
this case, we report two sets of results: (i) using Half-Hop
as an augmentation during training and then applying the
model to the original graph G at inference, (ii) applying
Half-Hop during both training and inference.

Using Half-Hop to generate views. First, we examined
how Half-Hop could be combined with the existing aug-
mentations used in BGRL and GRACE, and how well it
performs as an augmentation on its own. We report the re-
sults in Table 3, where we show that by combining standard
augmentations used in BGRL and GRACE with Half-Hop,
we get a nice boost over the BGRL baseline and even more
impressive improvement for the GRACE model (2% on
Am. Photos and on Co. CS). Interestingly, when we use
Half-Hop as the standalone augmentation, we perform com-
parably to models trained with FeatDrop and EdgeDrop or
their adaptive variant GCA (Zhu et al., 2021).

Using Half-Hop at test time. As we observed in the super-
vised case, using Half-Hop at test time leads to improved
message passing. We test HH-GRACE and HH-BGRL with
both the original graph G and the half-hopped graph HH(G).
Our results in Table 4 provide compelling evidence that Half-
Hop improves self-supervised learning, in some cases by a
significant margin. With HH-GRACE, we see an improve-
ment of more than 2% on Amazon-Photos and Coauthor-CS.
We also see similar improvements in HH-BGRL over the
baseline which uses a 2-layer GCN.

When we make the GCN in BGRL deeper (3 layers), we
find that the performance degrades by an average of 0.8%.
When we do the same with HH-BGRL, we find that increase
the depth leads to even higher performance. In particular,
we find a significant enhancement for HH-BGRL on the
dataset with the lowest homophily (0.66), WikiCS, with
added depth. To better understand the sources of these
improvements, we breakdown the node-level accuracies
by homophily and show that more heterophilic nodes are
classified correctly (Figure 4).

5. Related Work
5.1. Graph data augmentations for regularization
Data augmentation is widely used in graph learning to im-
prove the robustness and generalization capabilities of mod-
els. Thus, this has spurred a lot of interest in designing
augmentations for graph-structured data (Zhu et al., 2021).

Feature perturbations. The most common feature-based
augmentation is feature masking or feature dropout (You
et al., 2020; Veličković et al., 2019), which involves ran-
domly setting a subset of a node’s features to zero. Other
approaches like FLAG (Kong et al., 2022) and LA (Liu et al.,
2022) use generative modeling to introduce gradient-based
adversarial perturbations to the node’s features. Mixup for
graphs has also been proposed but usually requires a par-
ticular architecture (Verma et al., 2019), or a sub-graph
sampling strategy (Wang et al., 2021).

Edge Perturbation. Adding and removing edges can also
be used to perturb the connectivity of a node. In DropEdge
(Rong et al., 2020; Feng et al., 2020; Veličković et al., 2019),
each edge has a given probability of being removed. In
GCA (Zhu et al., 2021), an edge is more or less likely to
be removed based on the connectivity of its target node.
GCC (Qiu et al., 2020) uses random walks to sample ego-
networks around a central node. Approaches that add edges,
on the other hand, typically require more guidance, like
GAug (Zhao et al., 2020) which uses neural edge predictors
to infer the probability of an edge.

k-Hop augmentations. Adding edges can also be used
to connect more distant neighbors (k-hops away). This is
typically achieved using a diffusion process (Li et al., 2019;
Hassani & Khasahmadi, 2020). With this type of augmenta-
tion, we are effectively expanding the receptive field of the
GNN, and are able to replicate the zoom-out operation that
we know in images. On the other hand, our proposed aug-
mentation, reduces the receptive field and allows a zoom-in
operation in that sense.

5.2. Graph manipulation at inference time
When graphs are sparsely connected, highly heterophilic
or have bottlenecks, graph rewiring techniques are used to

8

Half-Hop: A graph upsampling approach for slowing down message passing

correct the connectivity of nodes. SDRF (Topping et al.,
2021) adds edges based on Ricci curvature, EGP (Deac
et al., 2022) generates edges from Cayley graphs, while
DIGL (Gasteiger et al., 2019) uses a diffusion process to
add edges. NeuralSparse (Zheng et al., 2020) and GGCN
(Yan et al., 2021) are supervised methods that use labels to
learn to remove task-irrelevant edges that typically cause
oversmoothing in heterophilic neighborhoods. (Ding et al.,
2018) uses a generative modeling framework to create a
small number of nodes that connect different subgraphs.

5.3. Self-supervised and contrastive learning methods
Many state-of-the-art approaches for self-supervised learn-
ing (SSL) on graphs use augmentations to create different
views (i.e., positive examples) and then encourage the repre-
sentations of both views to be close in the latent space. For
instance, GRACE (Zhu et al., 2020b) uses a contrastive loss
to encourage positive examples (a new graph with dropped
edges and node features) to become closer to one another,
while considering all other nodes to be far away. BGRL
instead uses a score-based approach that doesn’t explicitly
incorporate negative examples into the loss (Thakoor et al.,
2022). Most of these approaches use relatively simple aug-
mentations, like node and edge dropout, to create views for
learning. However, adaptive graph augmentations like those
proposed in GCA (Zhu et al., 2021) that use topology-level
and node-attribute-level augmentations like ‘node centrality’
measures can also be used to determine edges to mask.

6. Discussion
In this work, we introduced Half-Hop, a novel graph aug-
mentation for message passing neural networks. Half-Hop
provides a simple and yet effective approach for improving
message passing: it operates by slowing down messages
through the introduction of “slow nodes” that delay com-
munication. We show the promise of this approach in a
wide range of applications and across diverse sets of graph
benchmarks.

Our experiments on 11 real-world datasets, spanning both
supervised and self-supervised settings, highlight the robust-
ness and wide applicability of Half-Hop. In heterophilic
settings, we observe impressive boosts in performance when
Half-Hop is added to simple encoders like the GCN, making
them on par with specialized models that are adapted to het-
erophilic conditions. In self-supervised learning, our model
also improves over SOTA graph representation learning
methods, where we show it can be used as a standalone aug-
mentation or can be coupled with existing augmentations.
Overall, we show that Half-Hop is a practical, plug-and-
play augmentation that integrates seamlessly into existing
workflows.

Our theoretical analysis helped identify connections be-

tween the Half-Hop augmentation and how it impacts the
dynamics of message passing. In particular, we provided an
approach for linking the spectral effects of augmentations to
the efficacy and robustness of graph learning. In the future,
we anticipate that leveraging the growing line of work (Lin
et al., 2022) for studying the effects of data augmentations
on model generalization, can provide an avenue for provid-
ing a more in depth analysis of how graph augmentations
like Half-Hop impact generalization, and help to devise new
augmentations.

The choice of augmentations in SSL remains critical for
learning good representations (Tian et al., 2020), and un-
like vision, the pool of augmentations that work well for
graphs is limited. Half-Hop serves as a simple and useful
addition to this existing toolkit of graph augmentations that
can work on a wide range of datasets. Although our empiri-
cal investigations have provided evidence of the robustness
of our approach, further studies are needed to understand
the types of invariances introduced into the representation
under Half-Hop and, to investigate how this augmentation
performs for downstream tasks, such as link prediction or
graph classification.

Acknowledgments
We would like to thank Mohammad Gheshlaghi Azar and
Bernardo Avila Pires for their feedback on the work. This
project was supported by NIH award 1R01EB029852-01,
NSF awards IIS-2212182 and IIS-2146072, as well as gen-
erous gifts from the Alfred Sloan Foundation (ELD), the
McKnight Foundation (MA, ELD), and the CIFAR Azrieli
Global Scholars Program (ELD).

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In in-
ternational conference on machine learning, pp. 21–29.
PMLR, 2019.

Alon, U. and Yahav, E. On the bottleneck of graph
neural networks and its practical implications. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=i80OPhOCVH2.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1597–1607. PMLR, 13–18 Jul

9

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2

Half-Hop: A graph upsampling approach for slowing down message passing

2020. URL https://proceedings.mlr.press/
v119/chen20j.html.

Cui, Z., Henrickson, K., Ke, R., and Wang, Y. Traffic graph
convolutional recurrent neural network: A deep learning
framework for network-scale traffic learning and fore-
casting. IEEE Transactions on Intelligent Transportation
Systems, 21(11):4883–4894, 2019.

Deac, A., Lackenby, M., and Veličković, P. Expander graph
propagation. In The First Learning on Graphs Con-
ference, 2022. URL https://openreview.net/
forum?id=IKevTLt3rT.

Ding, M., Tang, J., and Zhang, J. Semi-supervised learn-
ing on graphs with generative adversarial nets. In Pro-
ceedings of the 27th ACM International Conference on
Information and Knowledge Management, pp. 913–922,
2018.

Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q.,
Yang, Q., Kharlamov, E., and Tang, J. Graph random neu-
ral networks for semi-supervised learning on graphs. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems, volume 33, pp. 22092–22103. Curran As-
sociates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
fb4c835feb0a65cc39739320d7a51c02-Paper.
pdf.

Gasteiger, J., Weißenberger, S., and Günnemann, S. Diffu-
sion improves graph learning. In Conference on Neural
Information Processing Systems (NeurIPS), 2019.

Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep,
C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., Tang,
J., et al. Utilizing graph machine learning within drug
discovery and development. Briefings in bioinformatics,
22(6):bbab159, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M., et al. Bootstrap your own latent-a
new approach to self-supervised learning. Advances in
neural information processing systems, 33:21271–21284,
2020.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hassani, K. and Khasahmadi, A. H. Contrastive multi-view
representation learning on graphs. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 4116–4126. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/hassani20a.html.

Keriven, N. Not too little, not too much: a theoreti-
cal analysis of graph (over) smoothing. arXiv preprint
arXiv:2205.12156, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kong, K., Li, G., Ding, M., Wu, Z., Zhu, C., Ghanem, B.,
Taylor, G., and Goldstein, T. Robust optimization as
data augmentation for large-scale graphs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 60–69, 2022.

Ktena, S. I., Parisot, S., Ferrante, E., Rajchl, M., Lee, M.,
Glocker, B., and Rueckert, D. Distance metric learn-
ing using graph convolutional networks: Application to
functional brain networks. In Medical Image Comput-
ing and Computer Assisted Intervention- MICCAI 2017:
20th International Conference, Quebec City, QC, Canada,
September 11-13, 2017, Proceedings, Part I 20, pp. 469–
477. Springer, 2017.

Li, Z., Liu, Z., Huang, J., Tang, G., Duan, Y., Zhang, Z.,
and Yang, Y. Mv-gcn: Multi-view graph convolutional
networks for link prediction. IEEE Access, 7:176317–
176328, 2019. doi: 10.1109/ACCESS.2019.2957306.

Lin, C.-H., Kaushik, C., Dyer, E. L., and Muthukumar, V.
The good, the bad and the ugly sides of data augmentation:
An implicit spectral regularization perspective. arXiv
preprint arXiv:2210.05021, 2022.

Liu, S., Ying, R., Dong, H., Li, L., Xu, T., Rong, Y., Zhao,
P., Huang, J., and Wu, D. Local augmentation for graph
neural networks. In International Conference on Machine
Learning, 2022.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S.,
Chang, X.-W., and Precup, D. Revisiting heterophily for
graph neural networks, 2022. URL https://arxiv.
org/abs/2210.07606.

Luo, Y., Luo, G., Yan, K., and Chen, A. Inferring from
references with differences for semi-supervised node clas-
sification on graphs. Mathematics, 10(8), 2022. ISSN
2227-7390. doi: 10.3390/math10081262. URL https:
//www.mdpi.com/2227-7390/10/8/1262.

10

https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=IKevTLt3rT
https://openreview.net/forum?id=IKevTLt3rT
https://proceedings.neurips.cc/paper/2020/file/fb4c835feb0a65cc39739320d7a51c02-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb4c835feb0a65cc39739320d7a51c02-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb4c835feb0a65cc39739320d7a51c02-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb4c835feb0a65cc39739320d7a51c02-Paper.pdf
https://proceedings.mlr.press/v119/hassani20a.html
https://proceedings.mlr.press/v119/hassani20a.html
https://arxiv.org/abs/2210.07606
https://arxiv.org/abs/2210.07606
https://www.mdpi.com/2227-7390/10/8/1262
https://www.mdpi.com/2227-7390/10/8/1262

Half-Hop: A graph upsampling approach for slowing down message passing

McAuley, J., Targett, C., Shi, Q., and van den Hen-
gel, A. Image-based recommendations on styles and
substitutes. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’15, pp. 43–52,
New York, NY, USA, 2015. Association for Comput-
ing Machinery. ISBN 9781450336215. doi: 10.1145/
2766462.2767755. URL https://doi.org/10.
1145/2766462.2767755.

Mernyei, P. and Cangea, C. Wiki-cs: A wikipedia-based
benchmark for graph neural networks. In ICML Workshop
on Graph Representation Learning and Beyond, 2020.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 5115–5124, 2017.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=S1ldO2EFPr.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=S1e2agrFvS.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding,
M., Wang, K., and Tang, J. Gcc: Graph contrastive
coding for graph neural network pre-training. In Pro-
ceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery Data Mining, KDD
’20, pp. 1150–1160, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450379984.
doi: 10.1145/3394486.3403168. URL https://doi.
org/10.1145/3394486.3403168.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node
classification. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=Hkx1qkrKPr.

Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu,
B.-J. P., and Wang, K. An overview of microsoft

academic service (mas) and applications. In Proceed-
ings of the 24th International Conference on World
Wide Web, WWW ’15 Companion, pp. 243–246, New
York, NY, USA, 2015. Association for Computing
Machinery. ISBN 9781450334730. doi: 10.1145/
2740908.2742839. URL https://doi.org/10.
1145/2740908.2742839.

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-
Ruiz, A., Donghia, N. M., MacNair, C. R., French, S.,
Carfrae, L. A., Bloom-Ackermann, Z., et al. A deep
learning approach to antibiotic discovery. Cell, 180(4):
688–702, 2020.

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer,
E. L., Munos, R., Veličković, P., and Valko, M. Large-
scale representation learning on graphs via bootstrapping.
International Conference on Learning Representations
(ICLR), 2022.

Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., and
Isola, P. What makes for good views for contrastive
learning? Advances in neural information processing
systems, 33:6827–6839, 2020.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong,
X., and Bronstein, M. M. Understanding over-squashing
and bottlenecks on graphs via curvature, 2021. URL
https://arxiv.org/abs/2111.14522.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Ben-
gio, Y., and Hjelm, R. D. Deep graph infomax. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=rklz9iAcKQ.

Verma, V., Qu, M., Lamb, A., Bengio, Y., Kannala, J.,
and Tang, J. Graphmix: Regularized training of graph
neural networks for semi-supervised learning. CoRR,
abs/1909.11715, 2019. URL http://arxiv.org/
abs/1909.11715.

Wang, Y., Wang, W., Liang, Y., Cai, Y., and Hooi, B. Mixup
for node and graph classification. In Proceedings of the
Web Conference 2021, pp. 3663–3674, 2021.

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra,
D. Two sides of the same coin: Heterophily and over-
smoothing in graph convolutional neural networks. arXiv
preprint arXiv:2102.06462, 2021.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD international conference

11

https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2766462.2767755
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://doi.org/10.1145/3394486.3403168
https://doi.org/10.1145/3394486.3403168
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1145/2740908.2742839
https://arxiv.org/abs/2111.14522
https://openreview.net/forum?id=rklz9iAcKQ
https://openreview.net/forum?id=rklz9iAcKQ
http://arxiv.org/abs/1909.11715
http://arxiv.org/abs/1909.11715

Half-Hop: A graph upsampling approach for slowing down message passing

on knowledge discovery & data mining, pp. 974–983,
2018.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen,
Y. Graph contrastive learning with augmentations. Ad-
vances in Neural Information Processing Systems, 33:
5812–5823, 2020.

Zhao, T., Liu, Y., Neves, L., Woodford, O. J., Jiang, M., and
Shah, N. Data augmentation for graph neural networks.
CoRR, abs/2006.06830, 2020. URL https://arxiv.
org/abs/2006.06830.

Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W.,
Chen, H., and Wang, W. Robust graph representation
learning via neural sparsification. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 11458–11468. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/zheng20d.html.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33:7793–7804,
2020a.

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., and Wang, L. Deep
graph contrastive representation learning, 2020b. URL
https://arxiv.org/abs/2006.04131.

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., and Wang, L.
Graph contrastive learning with adaptive augmentation.
In Proceedings of the Web Conference 2021, pp. 2069–
2080, 2021.

12

https://arxiv.org/abs/2006.06830
https://arxiv.org/abs/2006.06830
https://proceedings.mlr.press/v119/zheng20d.html
https://proceedings.mlr.press/v119/zheng20d.html
https://arxiv.org/abs/2006.04131

Half-Hop: A graph upsampling approach for slowing down message passing

Appendix

A. Generalization Analysis
A.1. Problem Setup

We adopt the model developed in (Keriven, 2022) for our analysis. We invite the reader to refer to their work for more
details. In this section, we add the necessary context (assumptions and notations) to set up our own result presented in the
section A.2.

Semi-supervised node regression. We consider semi-supervised learning on an undirected graph of n nodes. We observe
the entire graph, encoded by the adjacency matrix W , and the node features x1, x2, . . . , xn. Among the nodes, ntr nodes’
labels are observed while nte = n− ntr nodes are without labels and used for test. We stack the labels and features as rows
of the matrices Y and X , and denote the training labels/features as Ytr and Xtr and the testing labels/labels as Yte and Xte.

Instead of predicting the labels using the node features alone, inference can be improved by leveraging the connectivity
of the graph. We consider a linear message passing neural network (MPNN). k rounds of message passing are applied
according to the adjacency matrix W , which results in the smoothing of the node embeddings. The node labels are then
predicted from the updated node embeddings.

After multiple rounds of message passing, we then estimate the underlying model parameters from the updated node
embeddings as:

β̂(k) = argminβ
1

2ntr

∥∥∥Ytr −X
(k)
tr β

∥∥∥2 + γ∥β∥2, (2)

where X
(k)
tr are the embeddings of the training nodes obtained after k rounds of message passing, and γ > 0 is a ridge

penalty.

The test risk for our semi-supervised setting can be written as

R(k) = n−1
te

∥∥∥Yte −X
(k)
te β̂(k)

∥∥∥2 , (3)

where X
(k)
te are the feature embeddings of the test nodes after k rounds of message passing, and β̂(k) is the estimator in (2)

learned from the training data.

Before we present our analysis, we introduce the following technical function to simplify our later expressions for the risk.

Definition 1. (Keriven, 2022) For any symmetric positive semi-definite input matrix S ∈ Rd×d, we define the function

Rreg. (S)
def.
=

(
Σ

1
2 β⋆

)⊤
K

(
Σ

1
2 β∗

)
∈ R+

where K =
(
Id− S

1
2M

(
γId +M⊤SM

)−1
M⊤S

1
2

)2

, and M, β∗, Σ are introduced in the model assumptions.

Previous risk results on ordinary MPNN. In (Keriven, 2022), they show that the risk associated with the ridge regression
operator without any message passing of raw features can be approximated by

R(0) ≃ Rreg. (Σ) ,

whereas the risk after k rounds of message passing is approximately,

R(k) ≃ Rreg.
(
A2kΣ

)
,

where A = (Id + Σ−1)−1.

One key implication of this result is that multiple rounds message passing induces a form of spectrum smoothing. This can
in some cases, for a small number of steps, induce a helpful form of regularization. As evidenced in above equations, the
MPNN, with k rounds of message passing, effectively modifies the key dynamic component of the risk that depends on the
covariance of raw data features, from Σ to A2kΣ.

In (Keriven, 2022), they show that analyzing the eigenvalues provides further insight into the smoothing phenomena. We
note λi an eigenvalue of the covariance matrix Σ, and λ

(k)
i the eigenvalues after k round of smoothing. (Keriven, 2022)

13

Half-Hop: A graph upsampling approach for slowing down message passing

shows that while large eigenvalues mostly maintain their magnitudes λ(k)
i ∼ λi, small eigenvalues decay exponentially

λ
(k)
i ∼ λ2k+1

i . In other words, small eigenvalues decay faster than large eigenvalues. In the case where β∗ is aligned
with eigenvectors with small eigenvalues, this can introduce harmful bias into the estimator. This framework enables us to
understand how and when smoothing becomes harmful (over-smoothing). The rapid decay of small eigenvalues can be
attributed to this phenomena. In the following, we show that Half-Hop slows down this decay and effectively enables the
more graceful smoothing that we observe empirically in Figure 3.

A.2. Main Result

To compare the test risk for the original graph vs. when we apply Half-Hop, we use the directed variant of Half-Hop: HH(1)

described in Appendix B.1. In this variant, there is no backward edge from the target node to the slow node.

Theorem 1. The test risk after k ∈ {1, 3, 5, . . . } rounds of message passing with Half-Hop are:

R(k)
HHα

≃ Rreg.

(
1

2
Ak−1

(
Id + ((1− α)Id + αA)

2
)
Σ

)
,

where A = (Id + Σ−1)−1.

Through Theorem 1, we can inspect how Half-Hop changes the rate of smoothing in the graph and can change the underlying
spectral properties of our features. Similar to the original graph, large eigenvalues preserve most of their magnitude through
message passing λ(k) ∼ (1 + ((1 − α) + αλ)2)λ; However, small eigenvalues decay as λ(k) ∼ (1 + (1 − α)2)λk+1.
From these observations, we see that the decay rate of small eigenvalues is halved compared with ordinary MPNN without
Half-Hop.

Proof. The basic idea behind our proof is similar to (Keriven, 2022), where we use matrix concentrations to approximate the
node features after multiple rounds of message passing. Following the proof of Theorem 4 in (Keriven, 2022), the regression
risk of R(k)

HHα
is approximated by Rreg. (Σ

′) where Σ′ approximates the covariance of the node features after k rounds of
message passing. Hence, the proof boils down to calculating Σ′.

With Half-Hop, we introduce new nodes that we call slow nodes. In the augmented graph, there are two types of nodes: 1.
the original nodes whose features we denote as xi ∈ Rd and 2. the slow nodes, whose features we denote as x̃k. When
Half-Hop is applied, the path from original node vj to original node vi is replace by a path from original node vj to slow
node νk to original node vi. We note Vi the set of (j, k) paths that lead to i. We will use the superscript to denote the number
of steps for message passing.

Let’s consider the first message passing round, the original node i will received messages from the slow nodes connected to
it:

∀i, x(1)
i =

∑
(j,k)∈Vi

aij x̃
(0)
k

=
∑

(j,k)∈Vi

aij

(
(1− α)x

(0)
i + αx

(0)
j

)

= (1− α)x
(0)
i

 ∑
(j,k)∈Vi

aij

+ α ·
∑

(j,k)∈Vi

aijx
(0)
j

= (1− α)x
(0)
i + α ·

∑
(j,k)∈Vi

aijx
(0)
j

xi denotes an i.i.d. sample from the underlying latent generative model. Now if we use Lemma 1 in (Keriven, 2022) and
leverage our assumption on the Gaussianity of our features and a large number of nodes, it holds with high probability, that
the features after one round of message passing can be approximated as:

∀i, x(1)
i ≃ (1− α)xi + αAxi (4)

Note that in the original analysis, they prove that x(1) ≃ Ax(0). Our model, however, scales the messages from the rest of
the network by α while the self-embedding is preserved and scaled by 1− α.

14

Half-Hop: A graph upsampling approach for slowing down message passing

The slow nodes are also updated, since they have a single incoming edge, they simply copy the feature of their corresponding
source node:

∀i, ∀(j, k) ∈ Vi, x̃
(1)
k = x

(0)
j (5)

Let’s perform a second round of message passing, we apply the same process again. The original nodes are updated as
follows:

∀i, x(2)
i =

∑
(j,k)∈Vi

aij x̃
(1)
k

=
∑

(j,k)∈Vi

aijx
(0)
j

≃ Ax
(0)
i

We note that after the second round of message passing, the feature embeddings of the original nodes, are identical to the
feature embeddings we would have obtained without HalfHop after a single step of message passing.

The slow nodes receive a copy of the embedding of their source node:

∀i,∀(j, k) ∈ Vi, x̃
(2)
k = x

(1)
j ≃ (1− α)xj + αAxj

We can write a general formula where at each step, the original nodes receive and aggregate messages from the slow nodes
(we note this operation AGG). The slow nodes are updated based on the source node they are connected to. We write this as:

x
(t+1)
i = AGG(x̃

(t)
k), x̃

(t+1)
k = x

(t)
j . (6)

We can now apply the recursive formulas (6) iteratively. This assumes that we can approximate the AGG operation with
a multiplication of A for Half-Hop. This is due to the underlying model assumptions which imply that the node feature
distribution remains the same after a linear combination of i.i.d. Gaussian variables and the node features are approximately
independent when n is large. Hence, if we continue applying the recursive formula and replace each AGG operation over x
by Ax, then for any k ≥ 0, mathematical induction yield

x
(2t+1)
i = αA(t+1)xi + (1− α)A(t)xi, x̃

(2t+1)
k = Atxj .

Now we complete the proof by recalling that the covariance of the original node feature x is Σ and hence, the updated
covariance after k steps of message passing is:

Σ′ =
1

2
Ak−1

(
Id + ((1− α)Id + αA)

2
)
Σ. (7)

□ End of proof.

Remark. The modified covariance term in Equation 7 consists of two main terms, the first being a component that smooths
the original covariance with A at a rate of k − 1, which is roughly half the original rate of smoothing for the graph without
Half-Hop. In addition to this first slower smoothing term, we also find a second contribution to the new covariance. The
second modified smoothing term is ((1 − α)Id + αA)2, where in this case we see a uniform boosting of the covariance
spectrum coming from the first term and weighted by (1-α), and a second term coming from a rescaling of A. Thus, for
small values of α we can interpret this as having a strong boosting of the self-loops in the graph. We also confirm that this is
indeed the case for our analysis of the receptive field for different values of α in Figure 3.

B. Ablations
B.1. Testing the directionality of edges added in Half-Hop

Recall that for an edge eij , Half-Hop introduces a new slow node νk along the edge from vi to vj as follows:

HH : vi → νk ↔ vj .

15

Half-Hop: A graph upsampling approach for slowing down message passing

In this experiment, we try alternative connectivity schemes. In the first variant, HH(1), we do not introduce a backward edge
that goes from the destination to the slow node:

HH(1) : vi → νk → vj .

The second variant, HH(2), we add an edge going from the slow node to the source node, which has the effect of creating a
path from vj to vi that might not exist in the original graph:

HH(2) : vi ↔ νk ↔ vj .

We assess the influence of the above connectivity schemes for the GCN model across three different datasets - Texas, Actor
and Cornell, and we tabulate our results in Table 1. We note significantly better performance for our proposed connectivity
scheme HH, that we adopt for Half-Hop. This happens to be the more intuitive solution since 1) it preserves the directionality
of the original edge it splits and 2) it allows the slow node to communicate with both source and target nodes, as it act as the
mediator in message passing.

Table 1. Ablations of different connectivity motifs for slow nodes on heterophilic datasets. We report the performance for the GCN model
and the Half-Hop augmentation applied with each of the different connectivity schemes.

Dataset HH: vi → ν ↔ vj HH(1): vi → ν → vj HH(2): vi ↔ ν ↔ vj
Texas 71.71 ± 8.76 68.8 ± 6.50 58.47 ± 5.56
Actor 33.35 ± 1.00 32.17 ± 0.84 31.93 ± 1.26

Cornell 63.42 ± 5.62 57.66 ± 6.89 42.16 ± 6.57

B.2. Testing different initializations for the slow node

When introducing slow nodes along edges, we use linear interpolation of the source and target nodes to initialize the features
of the slow nodes. In this experiment, we ablate the initialization used for the slow node (Section 2.2). We test two simpler
alternatives: 1) ‘zero’: All of the features are set to zero, 2) ‘random’: We use a uniform distribution in the range of [0,1) to
initialize the features of the slow node. The results are presented in Table 2, where we find that the ‘zero’ and ‘random’
initializations are too simple and hurt the performance of the model. Linear interpolation, on the other hand, comes as a
natural scheme that mixes features from the real node distribution.

Table 2. Ablations of different initialization schemes for slow nodes on heterophilic datasets We report the performance for the GCN
model and the Half-Hop augmentation applied with each of the different initialization schemes.

Dataset linear interpolation zero random
Texas 72.88 ± 7.17 61.80 ± 5.91 53.33 ± 5.27
Actor 33.39 ± 1.29 28.93 ± 2.83 24.70 ± 1.16

Cornell 63.33 ± 5.70 49.55 ± 7.06 37.48 ± 6.93

C. Details for Supervised Experiments
Homophily. In this work, we follow the definition of node homophily ratio as used in (Pei et al., 2020) given by the formula:

1

|V|
∑
v∈V

|{(v, w) : w ∈ N (v) ∧ yv = yw}|
|N (v)|

,

where V denotes the set of all nodes in the graph, N (v) denotes all the neighbors of an arbitrary node v, and yv denotes the
class membership of the node v ∈ V .

We classify datasets into homophilic datasets and heterophilic datasets based on the homophily score: datasets with
homophily ≥ 0.5 are classified as homophilic datasets and heterophilic datasets otherwise.

16

Half-Hop: A graph upsampling approach for slowing down message passing

C.1. Homophilic Datasets

We use five real-world datasets, Amazon Computers and Amazon Photos (McAuley et al., 2015), Coauthor CS and Coauthor
Physics (Sinha et al., 2015) and WikiCS (Mernyei & Cangea, 2020). Key statistics for the different datasets are listed in
Table 3.

Table 3. Statistics of homophilic datasets used in our experiments.

Nodes Edges Features Classes Node Homophily Ratio
Amazon Photos 7,650 119,081 745 8 0.8365
Amazon Computers 13,752 245,861 767 10 0.7853
Coauthor CS 18,333 81,894 6,805 15 0.8320
Coauthor Physics 34,493 247,962 8,415 5 0.9153
Wiki CS 11,701 216,123 300 10 0.6588

The experimental setup follows that of (Luo et al., 2022), where we split the dataset into development and test sets. All
the hyperparameter tuning is done on the development set and the best models are evaluated on the test set. The runs are
averaged over 20 random splits to minimize noise. We follow a 60:20:20% train/val/test split for the Amazon and Coauthor
datasets, and 20 pre-split masks provided in the WikiCS dataset.

C.2. Heterophilic Datasets

We use five real-world datasets with graphs that have a homophily level ≤ 0.30, Texas, Wisconsin, Actor, Chameleon and
Cornell (Luan et al., 2022). Key statistics for the different datasets are listed in Table 4.

Table 4. Statistics of heterophillic datasets used in our experiments.

Nodes Edges Classes Node Homophily Ratio
Texas 183 295 5 0.11
Wisconsin 251 488 5 0.21
Film 7,600 26,752 5 0.22
Squirrel 5,201 198,493 5 0.22
Chameleon 2,277 31,421 5 0.23
Cornell 183 280 5 0.30

We follow the experimental setup in (Pei et al., 2020), we use the same 10 train/val/test splits that are provided. We also
perform similar hyperparameter tuning using randomized grid search using only the train and validation sets. Once we find
the best model, we report the accuracy on the test set, which is only seen once. We include the final hyperparameters of the
best models for each architecture and dataset in Table 5.

D. Details for Self-supervised Experiments
We use the same real-world datasets (Amazon-Photos, Amazon-Computers, Coauthor-CS and Coauthor-Physics) used in the
supervised setting. The full graph is used during pre-training (transductive task), then during linear evaluation, the graph is
split into train/val/test with 10:10:80% of the nodes respectively. This setup follows (Thakoor et al., 2022). The method of
evaluation follows the linear evaluation protocol (Veličković et al., 2019), where the weights of the model are frozen and a
linear classifier is trained on top of the learned representations (without propagating gradients to the encoder). We use an
l2-regularized Logistic Regression with a liblinear solver from the Scikit-learn library (Pedregosa et al., 2011).

For all of the experiments, we use the same hyperparameters as GRACE (Zhu et al., 2020b) and BGRL (Thakoor et al.,
2022) notably, the edge-dropout and feature-dropout hyperparameters defined for each view: we have the edge-masking
probabilities (pe,1, pe,2), and the feature-masking probabilities (pf,1, pf,2). For Half-Hop the hyperparameters we introduce
are the Half-Hop probabilities (phh,1, phh,2) and the linear interpolation coefficients used to initialize the slow nodes (α1,
α2). We report all these numbers in Table 6.

17

Half-Hop: A graph upsampling approach for slowing down message passing

Table 5. Best hyperparameters found using the validation set in our experiments on heterophilic datasets.

Dataset Model lr weight decay depth hidden dropout α p

Texas
HH-GCN 0.0291 0.0096 2 64 0.8058 0.0043 0.9526

HH-GraphSAGE 0.0170 0.0053 2 64 0.1967 0.9397 0.7140
HH-GAT 0.0328 0.0066 2 32 0.1288 0.0902 0.9841

Wisconsin
HH-GCN 0.0105 0.0002 3 128 0.6612 0.9937 0.7140

HH-GraphSAGE 0.0202 0.0042 3 64 0.3462 0.0100 0.6177
HH-GAT 0.0539 0.0068 3 16 0.2141 0.0026 0.9797

Actor
HH-GCN 0.0313 0.0087 3 64 0.5511 0.0369 0.5466

HH-GraphSAGE 0.0133 0.0090 3 32 0.3737 0.0116 0.8368
HH-GAT 0.0009 0.0001 3 128 0.8708 0.0549 0.9594

Squirrel
HH-GCN 0.0053 0.0001 3 128 0.2455 0.0145 0.8257

HH-GraphSAGE 0.0296 0.0001 2 128 0.8668 0.9474 0.5198
HH-GAT 0.0027 0.0001 3 64 0.5131 0.9277 0.1549

Chameleon
HH-GCN 0.0318 0.0057 2 128 0.8040 0.0510 0.9986

HH-GraphSAGE 0.0225 0.0001 2 32 0.7175 0.9834 0.6226
HH-GAT 0.0012 0.0008 3 64 0.0439 0.9766 0.9386

Cornell
HH-GCN 0.0505 0.0055 2 32 0.4123 0.0145 0.9660

HH-GraphSAGE 0.0697 0.0018 2 64 0.0697 0.8807 0.5660
HH-GAT 0.0572 0.0070 2 64 0.0572 0.0710 0.9979

Table 6. Augmentation hyperparameters used to train HH-BGRL, HH-GRACE.

Aug. Hyperparameters Am. Comp. Am. Photos Co. CS Co. Phy WikiCS
phh,1 0.75 0.75 0.75 0.75 0.75
phh,2 0.75 0.75 0.75 0.75 0.75
α1 0.50 0.50 0.50 0.50 0.50
α2 0.50 0.50 0.50 0.50 0.50
pf,1 0.20 0.10 0.30 0.10 0.20
pf,2 0.10 0.20 0.40 0.40 0.10
pe,1 0.50 0.40 0.30 0.40 0.20
pe,2 0.40 0.10 0.20 0.10 0.30

E. Comparisons with other GNNs
There have been multiple modifications on top of traditional GNN architectures to optimize for the task of heterophilic
node classification. In Table 7 we detail the different architectural components, losses, and design choices that are used to
improve performance in heterophilic datasets. In the table, we breakdown the different components of popular methods that
we compare with in the main text, including: MixHop (Abu-El-Haija et al., 2019), (ii) GGCN (Yan et al., 2021), and (iii)
H2GCN (Zhu et al., 2020a).

Higher-order neighbors Weights for self-loops Concat across layers Dynamic gating

GCN ✗ ✗ ✗ ✗

SAGE ✗ ✓ ✗ ✗

MixHop ✓ ✗ ✓ ✗

GGCN ✗ ✗ ✗ ✓

H2GCN ✓ ✓ ✓ ✗

HH-GCN ✗ ✗ ✗ ✗

HH-SAGE ✗ ✓ ✗ ✗

Table 7. Different components used in graph neural networks optimized for heterophilic node classification. From left to right, we
show methods that incorporate additional information from higher-order neighbors, separate weights for self-loops, and other additional
components. Here, we observe the fact that Half-Hop is lightweight and doesn’t require extra components in the loss and also doesn’t
explicitly compute separate weights for self-loops.

18

Half-Hop: A graph upsampling approach for slowing down message passing

F. Visualization of the embedding space across layers
In this experiment, we visualize the latent space of node embeddings across various layers, with and without Half-Hop
(Figures 1, 2 and 3) using GCN and GraphSAGE encoders.

Observing the latent space visualizations, we can make a few interesting observations. Upon applying Half-Hop, the
embeddings of the same class appear to aggregate together better while the embeddings of different classes seem to
maximally distance themselves from each other and from the center of the latent space. Though this is slightly observed in
all cases, this can be clearly noted in the case of GraphSAGE + Half-Hop for the Citeseer dataset in Figure 3. Visualizations
of latents for vanilla GCN (without Half-Hop) indicate poor class separation (Figure 1 and Figure 2) and this can be seen
reflected directly in vanilla GCN’s performance as noted in Table 2 in the paper. On a more general note, class separation
appears best after the second and third layers as observed across Figures 1, 2 and 3. This is similar to what is observed in
terms of raw performance - the best-performing models are 2 or 3 layers deep.

GCN

HH-GCN

GraphSAGE

HH-GraphSAGE

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

Figure 1. Latent space visualizations with and without Half-Hop for Texas dataset. We can note how similar data points cluster closer
together in the cases where Half-Hop is applied. As class 1 is very rare, it is not clearly visible in the visualization. ’Layer 0’ denotes the
latent space before the GNN layers are applied.

19

Half-Hop: A graph upsampling approach for slowing down message passing

GCN

HH-GCN

GraphSAGE

HH-GraphSAGE

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

Figure 2. Latent space visualizations with and without Half-Hop for Wisconsin dataset. Though the color scheme is the same, it appears
different from that of Figure 1 due to the difference in the distribution of nodes across classes in Texas and Wisconsin datasets.

GCN

HH-GCN

GraphSAGE

HH-GraphSAGE

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

Figure 3. Latent space visualizations with and without Half-Hop for Citeseer dataset. We can again note how in the cases where Half-Hop
is applied, similar latents seem to cluster closer together. Citeseer has a larger number of nodes compared to Texas and Wisconsin datasets
and hence the latents in these visualizations appear to be packed more densely in comparison.

20

