
Answering Complex Logical Queries on Knowledge Graphs
via Query Computation Tree Optimization

Yushi Bai 1 Xin Lv 1 Juanzi Li 1 Lei Hou 1

Abstract

Answering complex logical queries on incom-
plete knowledge graphs is a challenging task,
and has been widely studied. Embedding-based
methods require training on complex queries and
may not generalize well to out-of-distribution
query structures. Recent work frames this task
as an end-to-end optimization problem, and it
only requires a pretrained link predictor. How-
ever, due to the exponentially large combinato-
rial search space, the optimal solution can only
be approximated, limiting the final accuracy. In
this work, we propose QTO (Query Computa-
tion Tree Optimization) that can efficiently find
the exact optimal solution. QTO finds the opti-
mal solution by a forward-backward propagation
on the tree-like computation graph, i.e., query
computation tree. In particular, QTO utilizes the
independence encoded in the query computation
tree to reduce the search space, where only local
computations are involved during the optimiza-
tion procedure. Experiments on 3 datasets show
that QTO obtains state-of-the-art performance on
complex query answering, outperforming previ-
ous best results by an average of 22%. More-
over, QTO can interpret the intermediate solutions
for each of the one-hop atoms in the query with
over 90% accuracy. The code of our paper is at
https://github.com/bys0318/QTO.

1. Introduction
Knowledge graph (KG) stores structural knowledge in the
form of triplet, which connects a pair of entities (nodes) with
a relational edge. Knowledge graph also supports a variety

1Department of Computer Science and Technology, BN-
Rist; KIRC, Institute for Artificial Intelligence; Tsinghua Uni-
versity, Beijing 100084, China. Correspondence to: Lei Hou
<houlei@tsinghua.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

FOL

DAG

? 𝒗: ∃𝒖. 𝐨𝐜𝐜𝐮𝐩𝐚𝐭𝐢𝐨𝐧 𝒖, 𝐩𝐡𝐢𝐬𝐢𝐜𝐢𝐬𝐭 ∧ 𝐰𝐢𝐧 𝒖, 𝟏𝟗𝟐𝟏 𝐍𝐨𝐛𝐞𝐥 𝐩𝐫𝐢𝐳𝐞 ∧ 𝐛𝐨𝐫𝐧_𝐢𝐧(𝒖, 𝒗)

phisicist

1921 Nobel prize

𝒖

𝒖

𝒖 𝒗

occupation-1

win-1

Set of viable entity assignments

𝒖 := Albert Einstein

𝒗 := Germany

born_in∧

intermediate variables:

one-hop decomposition:
KGE

u=? value
Einstein 0.9
Newton 0.1
…

Figure 1. FOL and DAG expressions of a complex logical query.
The complex query can be decomposed to three one-hop queries,
as marked by the dashed boxes. KGE model can answer the one-
hop queries with likelihood scores.

of downstream tasks, in this paper, we focus on complex
logical query answering on knowledge graphs (Hamilton
et al., 2018; Ren & Leskovec, 2020), which is a fundamental
and practical task.

Complex logical queries can be represented with First-Order
Logic (FOL) that includes conjunction (∧), disjunction (∨),
negation (¬), and existential quantifier (∃). A more straight-
forward way is to represent their computation graphs as
Directed Acyclic Graphs (DAGs), and solve them by travers-
ing the KG and assigning viable entities to the intermediate
variables according to their structures (Dalvi & Suciu, 2007;
Zou et al., 2011). For example, we show the FOL and
DAG representations of a complex logical query “Where
was the physicist who won the Nobel prize in 1921 born?”
in Figure 1.

Real-world KGs often suffer from incompleteness, making
it impossible to answer a complex query with missing links
by traversing the KG. Inspired by the success of knowledge
graph embedding (KGE) (Bordes et al., 2013; Dettmers
et al., 2018; Bai et al., 2021) on answering one-hop KG
queries, a line of research proposes to answer complex log-
ical queries by learning embeddings for the intermediate
variables (Hamilton et al., 2018; Ren et al., 2019; Ren &
Leskovec, 2020; Zhang et al., 2021; Chen et al., 2022; Zhu
et al., 2022). Typically, these methods need to be trained on
millions of generated complex logical queries, with large
training time overhead, and they struggle to generalize to

1

https://github.com/bys0318/QTO

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

out-of-distribution (OOD) query structures. Moreover, they
lack necessary interpretability for what entities the interme-
diate variables stand for.

To these ends, CQD (Arakelyan et al., 2021) proposes an
end-to-end optimization framework, which aims to find a
set of entity assignments that maximizes the truth score
of a FOL query based on the truth value of each one-hop
atom provided by a KGE link predictor (as illustrated in
Figure 1). Hence, CQD can explicitly interpret intermedi-
ate variables, and it does not require training on complex
queries. However, the search space is exponential to the
number of intermediate variables, and CQD alternatively
uses restricted discrete search or continuous approximation
to approximate the optimal solution. CQD’s accuracy is
limited due to the approximation.

In this paper, we propose QTO (Query Computation Tree
Optimization), which can efficiently find the theoretically
optimal solution. We show that the search space can be
greatly reduced by utilizing the independence encoded in
the tree-like computation DAG of the query, i.e., query
computation tree. Specifically, QTO recursively maximizes
the likelihood of the assignments on the subqueries rooted
at variable nodes, and obtains the optimal solution via a
forward propagation on the query computation tree. This
divide-and-conquer strategy allows it to efficiently find the
exact optimal solution, since only local computations on the
tree are involved. Moreover, a backward pass with argmax
operation returns the most likely entity assignments for the
complex query, bringing interpretability to QTO. We also
provide a theoretical proof for the optimality of our method.

We demonstrate the effectiveness of QTO on complex logi-
cal query answering on 3 standard datasets. Results show
that our method outperforms CQD by 30.8% on average.
More amazingly, even without training on complex queries,
our method achieves an average gain of 13.5% on exis-
tential positive first-order queries and 37.5% on queries
with negation, compared to previous state-of-the-art method.
Nevertheless, QTO is the first neural method that can always
output the correct answer for easy queries (no missing links
along the path), as guaranteed by our theoretical optimal-
ity. For interpretability, QTO can find a set of viable entity
assignments with over 90% success rate.

2. Related Work
Knowledge Graph Completion. Knowledge graph comple-
tion aims to infer missing relational links (one-hop queries)
in an incomplete KG. A popular approach for such a chal-
lenge is knowledge graph embedding (KGE) (Bordes et al.,
2013; Trouillon et al., 2016; Dettmers et al., 2018; Sun et al.,
2018; Balažević et al., 2019; Chami et al., 2020; Bai et al.,
2021), which learns to embed entities and relations into

vectors, and measures the likelihood of a triplet by a de-
fined scoring function over the corresponding vectors. The
embeddings are learned by optimizing the scoring function
such that true triplets obtain higher likelihood scores than
false triplets. Other methods for KG completion includes
multi-hop reasoning (Das et al., 2018; Lin et al., 2018; Lv
et al., 2019; Bai et al., 2022), rule-learning (Yang et al.,
2017; Meilicke et al., 2019) and GNNs (Schlichtkrull et al.,
2018; Zhu et al., 2021). In this work, we adopt a pretrained
KGE model to calculate the truth values of one-hop queries.

Complex Logical Query Answering. Complex logical
queries are one-hop KG queries combined by logical op-
erators. Compared to KG completion, it also requires the
ability to model sets of entities and logical relationships
between sets (Guu et al., 2015; Hamilton et al., 2018). Ex-
istential Positive First-Order (EPFO) queries include exis-
tential qualifier (∃), conjunction (∧), and disjunction (∨),
while the more general First-Order Logic (FOL) queries
also include negation (¬). Previous embedding-based meth-
ods represent sets of entities as geometric shapes (Hamilton
et al., 2018; Ren et al., 2019; Zhang et al., 2021; Choudhary
et al., 2021), or probabilistic distribution (Ren & Leskovec,
2020), and predict the answer by locating nearest neigh-
bors to the answer set representation. However, embedding-
based methods usually lack interpretability as there is no
explicit mapping between the embedding and the set of
entities. Moreover, the set representation quality may be
compromised when the set is large. To this end, some works
combine more interpretable fuzzy logic to tackle complex
query answering (Chen et al., 2022; Zhu et al., 2022). GNN-
QE (Zhu et al., 2022) decomposes the query into relation
projections and logical operations over fuzzy sets, and learns
a GNN to perform relation projections.

However, training on complex queries is required for all
aforementioned methods, which limits their generalization
ability to more complicated query structures, and prevents
these methods from being improved by utilizing more pow-
erful KG completion models. CQD (Arakelyan et al., 2021)
proposes an optimization-based framework for answering
complex queries without training. It utilizes a pretrained
KGE model to score each query atom, and aggregate all
atom scores to evaluate the likelihood of a set of variable
assignments. Since there are exponentially many variable
assignments, CQD proposes two strategies to approximate
the optimal solution: CQD-beam which uses beam search
to generate a sequence of entity assignments, and CQD-CO
which optimizes directly on the continuous embeddings.
CQD losses its accuracy to the approximation: for example,
if the number of viable entity assignments on an intermedi-
ate variable surpasses the beam size, then many viable entity
assignments will be cut-off due to the beam restriction. By
contrast, our method can guarantee a theoretically optimal
solution under the same problem formulation, which is su-

2

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

perior to CQD, and our results also show superiority in both
accuracy and efficiency.

3. Methodology
3.1. Preliminaries

Knowledge Graphs and Knowledge Graph Embeddings.
Knowledge graph G = (V, E) contains a set of entities
(vertices) V and a set of relations R. Each directed edge
(h, r, t) ∈ E represents a triplet fact, where head and tail
entities h, t ∈ V and relation r ∈ R. KGE models learn
mappings V → RdV ,R → RdR from entities and relations
to vectors, and score the likelihood of a triplet (h, r, t) via a
functional fr(h, t) : RdV ×RdR ×RdV → R parameterized
by h, r, t. For example, in ComplEx (Trouillon et al., 2016),
fr(h, t) = Re(⟨r,h, t̄⟩) where ⟨·⟩ denotes the generalized
dot product, ·̄ denotes conjugate for a complex vector, and
Re(·) denotes taking the real part of a complex vector.

FOL Queries. Following the definition in (Ren & Leskovec,
2020), a FOL query q can be written in the following dis-
junctive normal form:

q[v?] = v?. ∃v1, . . . , vN ∈ V : (e11 ∧ · · · ∧ e1m1
) ∨ · · · ∨

(en1 ∧ · · · ∧ enmn
)

where v1, . . . , vN are variables and v? ∈ {v1, . . . , vN} is
the answer variable. Each literal eij denotes the truth value
of an atomic relational formula on relation r between two
entities, or its negation, respectively:

eij =

{
r(c, v) or r(v′, v)
¬r(c, v) or ¬r(v′, v)

where v, v′ are variables, and c is a constant (anchor) entity.

The goal of query answering is to find a viable variable
assignment that renders q true. KG incompleteness brings
uncertainty into the expression, thus eij is no longer a bi-
nary variable. Instead, it represents the likelihood that the
relationship holds true, and this generalized truth value is
in [0, 1]. To this end, following (Arakelyan et al., 2021), we
formalize this as an optimization problem:

q[v?] = v?. v1, . . . , vN = argmax
v1,...,vN∈V

(e11⊤ . . .⊤e1m1
)⊥

. . .⊥(en1⊤ . . .⊤enmn
)

where eij ∈ [0, 1] is scored by a pretrained KGE model
according to the likelihood of the atomic formula. ⊤ and
⊥ are generalizations of conjunction and disjunction over
fuzzy logic on [0, 1], namely t-norm and t-conorm (Klir &
Yuan, 1995; Klement et al., 2013; Hájek, 2013). In this
paper, we use product t-norm, where given a, b ∈ [0, 1]:
⊤(a, b) = a · b, ⊥(a, b) = 1− (1− a)(1− b).

Query Computation Tree. We can also derive the compu-
tation graph of a FOL query (as shown in Figure 2), where
variables are represented as nodes, connected by the follow-
ing four types of directional edges. Each atomic formula
can be represented with relational projection (r(v′, v)) and
anti-relational projection (¬r(v′, v)), while logical oper-
ators serves as intersection (∧) and union (∨) that merge
the branches. In this paper, we consider a subclass of FOL
queries whose computation graphs are trees, namely query
computation trees. The answer variable and the constant
entities in the query correspond to root and leaf nodes in the
query computation tree. Each edge in the query computation
tree points from the child node to the parent node. It can be
recursively deduced that the subtree rooted at any non-leaf
node in the tree corresponds to a subquery. In Appendix A,
we provide a systematical procedure for transforming a FOL
query to its query computation tree.

Optimization on Query Computation Tree. We apply
the optimization formalization on a FOL query to its query
computation tree. Let T (v) ∈ [0, 1] denote the truth value
of the subquery rooted at node v, thus T (v?) denotes the
truth value of the query. If root v? is merged from its child
nodes {v1? , . . . , vK? }1 by intersection (type I) or union (type
II), respectively,

T (v?) =

{
⊤1≤i≤K(T (vi?)), type I
⊥1≤i≤K(T (vi?)), type II

(1)

If the root v? is connected by a relational edge r with its
child node c or vk, then for relational projection (type III)
and anti-relational projection (type IV), respectively,

T (v?) =

{
r(c, v?) or T (vk) ⊤ r(vk, v?), type III
¬r(c, v?) or T (vk) ⊤ ¬r(vk, v?), type IV

(2)
The truth value of a query computation tree can be derived
recursively according to Eq. 1, 2. The optimization problem
is therefore

q[v?] = v?. v1, . . . , vN = argmax
v1,...,vN∈V

T (v?)

Proposition 3.1. The optimization problem defined on the
query computation tree is equivalent to that defined on its
FOL form.

We provide rigorous proof in Appendix B.

3.2. Query Computation Tree Optimization

We propose QTO (Query Computation Tree Optimization)
that executes on the query computation tree to find the op-

1Note that they are the same v? variable in the FOL query, but
are separated to different nodes in the computation graph.

3

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

I. intersection

…∧

𝑣?

𝑣?" 𝑣?#

II. union

…∨

𝑣?

𝑣?" 𝑣?#

𝑣?

𝑣$

III. relational
projection

𝑟

𝑣?

𝑣$

IV. anti-relational
projection

¬𝑟

: constant entity

: variable

: answer variable

Query Computation Tree Optimization

forward propagation

backward propagation

𝑐"

𝑐%

𝑣""

𝑣"%

𝑣"

𝑐&

𝑣?"

𝑣?%

𝑣?

∧

∨

𝑟"

𝑟%

𝑟&

¬𝑟'

III

III

I III

IV

II

FOL optimization
𝑞 𝑣? = 𝑣?. 𝑣", 𝑣? = 𝑎𝑟𝑔𝑚𝑎𝑥(!,(?∈+𝑄(𝑣", 𝑣?)

𝑄 𝑣", 𝑣? = (𝑟" 𝑐", 𝑣" 𝑟% 𝑐%, 𝑣" 𝑟&(𝑣", 𝑣?)) ⊥ ¬𝑟'(𝑐&, 𝑣?)

⊥ ⊥

Figure 2. Overview of QTO. For a FOL query optimization problem, we find the optimal solution by performing the forward/backward
propagation on its tree-like computation graph, i.e., the query computation tree. Four types of local computation are involved, corresponding
to the four types of local structure in the query computation tree.

timal set of entity assignments. We show an overview of
QTO in Figure 2.

We define a neural adjacency matrix Mr ∈ [0, 1]|V|×|V| for
each relation r: (Mr)i,j = r(ei, ej), where ei, ej ∈ V are
the i, j-th entities. Recall that a KGE model can score the
likelihood of the atomic formula via fr(ei, ej), and we need
to calibrate the score to a probability between [0, 1]. The cal-
ibration function should be monotonically increasing, and
if there is an edge r between ei and ej , the score should be
faithfully calibrated to 1. Recall that for each triplet (h, r, t),
the KGE model is trained by maximizing its normalized
probability exp(fr(h, t))/

∑
e∈V exp(fr(h, e)). Consider-

ing that there might be multiple valid tail entities for (h, r),
which should all obtain a probability close to 1, hence we
multiply the normalized probability by the number of tail
entities Nt = max{1, |{(ei, r, e) ∈ E|e ∈ V}|}. Note that
we set the lower bound to 1 to allow positive scores for long
tailed entity ei that does not have known edges of a certain
type r in the training set. Thus, we obtain

r̂(ei, ej) =
exp(fr(ei, ej)) ·Nt∑

e∈V exp(fr(ei, e))
(3)

We further round r̂(ei, ej) so that it is between [0, 1] and
faithful to real triplets in the KG:

r(ei, ej) =

{
1, if (ei, r, ej) ∈ E
min{r̂(ei, ej), 1− δ}, otherwise

(4)
where we set δ = 0.0001 > 0 to avoid over-confidence on
predicted edges. This is also essential for the later corol-
lary 3.3 to hold. Also note that Mr degenerates to an adja-
cency matrix if all entries less than 1 are set to 0. We discuss
more ways to derive M in Appendix E.

Forward Propagation Procedure. Let T ∗(v = e) denote
the maximum truth value for the subquery rooted at node v
when v is assigned an entity e ∈ V . Enumerate all possible
entity assignments, we obtain T∗(v) = [T ∗(v = e)]e∈V ∈
[0, 1]|V|. We maximize the truth value of the query compu-
tation tree by recursively deriving T∗(v) for each node v,
and finally derive T∗(v?) for root v?. Again, the recursive
functions are categorized based on the 4 edge types between
the root and its child node, according to Eq. 1, 2. Note that
in this section, all products between vectors or matrices are
performed element-wise, according to Hadamard product
⊙. If the root v? is merged from child nodes {v1? , . . . , vK? }
by intersection (type I), then

T ∗(v? = e) = ⊤1≤i≤K(T ∗(vi? = e))

⇒ T∗(v?) =
∏

1≤i≤K

T∗(vi?)
(5)

Similarly, if the root is merged by union (type II), we have

T ∗(v? = e) = ⊥1≤i≤K(T ∗(vi? = e))

⇒ T∗(v?) = 1−
∏

1≤i≤K

(1−T∗(vi?))
(6)

where 1 ∈ R|V| represents the vector of 1s. Now we con-
sider when the root is connected by a relational edge r with
its child vk (type III). Let maxi and maxj denote the max
over row and column on a matrix, then the maximal term
would be

T ∗(v? = e) = max
e′∈V

{T ∗(vk = e′) ⊤ r(e′, e)}

⇒ T∗(v?) = max
j

((
T∗(vk)

T · · ·×|V|
)
⊙Mr

) (7)

If the child node is a constant entity c = ei, then

T ∗(v? = e) = r(c, e) ⇒ T∗(v?) = rowi(Mr) (8)

4

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

Similarly, we can derive the recursion for anti-relational
projection (type IV), here 1 denotes an all-one matrix:

T ∗(v? = e) = max
e′∈V

{T ∗(vk = e′) ⊤ (1− r(e′, e))}

⇒ T∗(v?) = max
j

((
T∗(vk)

T · · ·×|V|
)
⊙ (1−Mr)

)
(9)

If the child node is a constant entity c = ei, we have

T ∗(v? = e) = 1− r(c, e) ⇒ T∗(v?) = rowi(1−Mr)
(10)

In the forward propagation, the algorithm computes T∗(v)
for each node v from leaf to root in the query computation
tree. Hence, by definition, the solution to the optimization
problem is:

max
v1,...,vN∈V

T (v?) = max{T∗(v?)}

q[v?] = et : t = argmax{T∗(v?)}
(11)

where argmax on a vector returns the index of the largest
element.

Backward Propagation Procedure. Once a forward pass
has calculated T∗(v) for every node v in the tree, we can
obtain the optimal set of entity assignments via a backward
pass. After obtaining the optimal assignment for root v? =
et by Eq. 11, we can obtain the optimal assignment for its
child according to the four edge types. For type I and II,
since the child nodes represent the same variable as their
parent, we have

vi? = et, i = 1, 2, . . . ,K (12)

While for type III, it can be deduced that

vk = argmax
e∈V

{T ∗(vk = e) ⊤ r(e, et)}

= ei : i = argmax
(
T∗(vk)

T ⊙ colt(Mr)
) (13)

Similarly, for negation type IV:

vk = argmax
e∈V

{T ∗(vk = e) ⊤ (1− r(e, et))}

= ei : i = argmax
(
T∗(vk)

T ⊙ (1− colt(Mr))
) (14)

Intuitively, the backward procedure finds the optimal entity
assignments for intermediate variables from root back to
leaf nodes. Note that the backward computation can be
executed for arbitrary assignments of the answer variable,
thus providing interpretations for all potential answers.

According to the procedure described above, we show the
algorithm of the forward-backward query computation tree
optimization in Appendix C. Formally, we show that the
procedure can find the optimal solution, and the full proof
is in Appendix D.

Theorem 3.2. The forward procedure in Eq. 5-11 can find
the maximum value of T (v?), and the backward procedure
in Eq. 12-14 returns a set of assignments that obtains the
optimal truth value.

Also, for easy answers V0 (all links along the path for de-
ducing the answer exist in the KG), the maximum value
T ∗(v? = e) = 1, e ∈ V0. By the theorem, our QTO method
can find such optimal value and return the set of assign-
ments to obtain it. As we set an δ > 0 in Eq. 4, it holds
that T ∗(v? = e) < 1, e /∈ V0. Hence we have the following
corollary:

Corollary 3.3. The procedure can always find the easy
answers V0 ⊆ V for a query, by finding entries of T∗(v?)
with value 1.

In summary, the forward procedure is sufficient for obtain-
ing the answer entity, and the backward procedure is for
assigning the intermediate variables to ensure interpretabil-
ity. Alternatively, our method can be viewed via a message
passing aspect (Pearl, 1982; 2009). Think of the entity as-
signment for each variable as state, and relational projection
as transition between states. The query computation tree
serves as an inference net where we aim to infer the most
likely state of the root variable under the observations on
leaf nodes. From this perspective, we conclude that QTO
reduces the combinatorial search space by utilizing the inde-
pendence encoded in the tree structure, and can efficiently
find the optimal solution with only local computations.

3.3. Discussion

Space Complexity. We first consider the memory usage of
QTO. The neural adjacency matrix M contains |R| · |V|2
entries. We notice that due to the sparsity of the KG, most
of the entries in M have small values, and can be filtered
by a threshold ϵ > 0 while maintaining precision. By
finding an appropriate ϵ, M can be efficiently stored on
a single GPU. In Appendix E, we demonstrate that the
filtering procedure significantly reduce the storage of the
neural adjacency matrix, while faithfully preserving the
majority of the salient information within the matrix.

Time Complexity. We further consider the time complex-
ity of our QTO method. During the forward pass, each
variable is computed one time with complexity O(|V|2),
where the bottleneck is on (anti-)relational projection ac-
cording to Eq. 7, 9; during the backward pass, each vari-
able is computed in O(|V|). Notice that the KG is usually
sparse, and T∗(vk) is also a sparse vector (since most en-
tries in M are filtered to 0), we can implement Eq. 7, 9
in a more efficient way. We take the nonzero entries of
T∗(vk) and multiply them with the corresponding rows
in Mr, obtaining a complexity of O(|V| · |T∗(vk) > 0|).
Hence, the total time complexity for a single query is

5

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

Method avgp avgood avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15k

GQE 28.0 20.1 - 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6 - - - - -
Query2Box 38.0 29.3 - 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7 - - - - -
BetaE 41.6 34.3 11.8 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 14.3 14.7 11.5 6.5 12.4
CQD-CO 46.9 35.3 - 89.2 25.3 13.4 74.4 78.3 44.1 33.2 41.8 21.9 - - - - -
CQD-Beam 58.2 49.8 - 89.2 54.3 28.6 74.4 78.3 58.2 67.7 42.4 30.9 - - - - -
ConE 49.8 43.4 14.8 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 17.9 18.7 12.5 9.8 15.1
GNN-QE 72.8 68.9 38.6 88.5 69.3 58.7 79.7 83.5 69.9 70.4 74.1 61.0 44.7 41.7 42.0 30.1 34.3

QTO 74.0 71.8 49.2 89.5 67.4 58.8 80.3 83.6 75.2 74.0 76.7 61.3 61.1 61.2 47.6 48.9 27.5

FB15k-237

GQE 16.3 10.3 - 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 - - - - -
Query2Box 20.1 15.7 - 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 - - - - -
BetaE 20.9 14.3 5.5 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.5 3.4
CQD-CO 21.8 15.6 - 46.7 9.5 6.3 31.2 40.6 23.6 16.0 14.5 8.2 - - - - -
CQD-Beam 22.3 15.7 - 46.7 11.6 8.0 31.2 40.6 21.2 18.7 14.6 8.4 - - - - -
FuzzQE 24.0 17.4 7.8 42.8 12.9 10.3 33.3 46.9 26.9 17.8 14.6 10.3 8.5 11.6 7.8 5.2 5.8
ConE 23.4 16.2 5.9 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 5.4 8.6 7.8 4.0 3.6
GNN-QE 26.8 19.9 10.2 42.8 14.7 11.8 38.3 54.1 31.1 18.9 16.2 13.4 10.0 16.8 9.3 7.2 7.8

QTO 33.5 27.6 15.5 49.0 21.4 21.2 43.1 56.8 38.1 28.0 22.7 21.4 16.8 26.7 15.1 13.6 5.4

NELL995

GQE 18.6 12.5 - 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 - - - - -
Query2Box 22.9 15.2 - 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 - - - - -
BetaE 24.6 14.8 5.9 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5
CQD-CO 28.8 20.7 - 60.4 17.8 12.7 39.3 46.6 30.1 22.0 17.3 13.2 - - - - -
CQD-Beam 28.6 19.8 - 60.4 20.6 11.6 39.3 46.6 25.4 23.9 17.5 12.2 - - - - -
FuzzQE 27.0 18.4 7.8 47.4 17.2 14.6 39.5 49.2 26.2 20.6 15.3 12.6 7.8 9.8 11.1 4.9 5.5
ConE 27.2 17.6 6.4 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9
GNN-QE 28.9 19.6 9.7 53.3 18.9 14.9 42.4 52.5 30.8 18.9 15.9 12.6 9.9 14.6 11.4 6.3 6.3

QTO 32.9 24.0 12.9 60.7 24.1 21.6 42.5 50.6 31.3 26.5 20.4 17.9 13.8 17.9 16.9 9.9 5.9

Table 1. Test MRR results (%) on complex query answering across all query types. avgp is the average on EPFO queries; avgood is the
average on out-of-distribution (OOD) queries; avgn is the average on queries with negation. Results on Hits@1 are in Appendix G.1.

O(N ′|V| · maxk |T∗(vk) > 0|), where N ′ is the number
of projections in the query. In comparison, GNN-QE (Zhu
et al., 2022) has O(N ′(|V|d2 + |E|d)) complexity (d is the
embedding dimension), and CQD-beam (Arakelyan et al.,
2021) has O(N ′|V|bd) complexity (b is the beam size).
Moreover, our computational steps only involve matrix op-
erations, which can be effectively accelerated on GPUs. As
we show in Sec. 4.5, QTO achieves faster speed when com-
pared with previous methods in real world KG. Meanwhile,
the pre-computing of the matrix M can be efficiently par-
allelized on GPUs. We combine more discussions on the
scalability of QTO in Appendix E.

4. Experiments
4.1. Experimental Setup

Datasets. We experiment on three knowledge graph
datasets, including FB15k (Bordes et al., 2013), FB15k-
237 (Toutanova & Chen, 2015), NELL995 (Xiong et al.,
2017). Detailed statistics of the datasets are listed in Ap-

pendix F.1. We use the standard FOL queries generated
in (Ren et al., 2019; Ren & Leskovec, 2020), consisting of
9 types of EPFO queries (1p/2p/3p/2i/3i/pi/ip/2u/up) and 5
types of queries with negation (2in/3in/inp/pin/pni). Specifi-
cally, ‘p’, ‘i’, and ‘u’ stand for ‘projection’, ‘intersection’,
and ‘union’ in the query structure (we show a detailed statis-
tic of the query types in Appendix F.2).

Baselines. We compare QTO against state-of-the-art meth-
ods on complex query answering, including GQE (Hamilton
et al., 2018), Query2Box (Ren et al., 2019), BetaE (Ren &
Leskovec, 2020), CQD-CO (Arakelyan et al., 2021), CQD-
beam (Arakelyan et al., 2021), ConE (Zhang et al., 2021),
FuzzQE (Chen et al., 2022), and GNN-QE (Zhu et al., 2022).

Evaluation Protocol. For each complex query, its answers
are divided into easy answers and hard answers, based on
whether the answer can be derived by existing edges in the
graph (Ren et al., 2019). Specifically, in valid/test set, the
easy answers are the entities that can be inferred by edges
in training/valid graph, while hard answers are those that
can be inferred by predicting missing edges in valid/test

6

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

20.0

22.5

25.0

27.5

30.0

32.5

M
RR

 o
n

av
g-

p

QTO
GNN-QE
ConE
BetaE
CQD

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

14

16

18

20

22

24

26

28

M
RR

 o
n

av
g-

oo
d

QTO
GNN-QE
ConE
BetaE
CQD

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

6

8

10

12

14

16

M
RR

 o
n

av
g-

n

QTO
GNN-QE
ConE
BetaE

Figure 3. Test MRR on avgp, avgood, and avgn w.r.t. MRR on 1p (one-hop) queries, evaluated on FB15k-237.

graph. We calculate standard evaluation metrics including
mean reciprocal rank (MRR) and Hits at K (Hits@K) on
hard answers, in the filtered setting where all easy and hard
answers are filtered out during ranking. QTO ranks the final
answer entity according to T∗(v?).

Implementation Details. To answer queries on each of
the KG, we first train a KGE model on its training graph.
We use ComplEx (Trouillon et al., 2016) trained with N3
regularizor (Lacroix et al., 2018) and auxiliary relation pre-
diction task (Chen et al., 2021). Then the neural adjacency
matrix M is calculated based on the scores given by the
KGE model, and calibrated according to Eq. 3, 4. To save
the memory usage of M, we find an appropriate ϵ such that
after filtering all entries < ϵ, the sparse matrix can be stored
on a single GPU. We further observe that the entries in the
neural adjacency matrix are small (due to the Softmax op-
eration over all entities), and QTO may fail to filter the tail
entities (reached by relational edges) for the anti-relational
atoms in queries with negation. Hence we scale the matrix
by α on queries with negation: M = min{1, α · M}, and
search the best α among integers in [1, 10] based on the per-
formance on valid queries. We report the implementation
details and hyperparameters in Appendix F.3.

4.2. Results on Complex Query Answering

Table 1 reports the complex query answering results on
the three datasets. Previous baselines, except CQD, are
trained on 1p/2p/3p/2i/3i queries, hence the other 4 types
of EPFO queries serve as OOD queries, and we report the
average result on these queries in avgood. We observe that
QTO significantly outperforms baseline methods across all
datasets. Notably, even without additional training on com-
plex queries, QTO yields a relative gain of 13.5%, 21.8%,
and 37.5% on avgp, avgood, and avgn, compared to previous
Sota method GNN-QE. This suggests that our method has
better reasoning skills and can generalize to more query
structures. We further observe that QTO outperforms CQD
by a large margin, suggesting the effectiveness of our exact
optimization method.

Moreover, we show that QTO generalizes better from one-
hop answering, and its performance can benefit from a more
powerful one-hop answering KGE model. Figure 3 plots
the performance comparison on complex queries w.r.t. the
performance on 1p (one-hop) queries, on FB15k-237 (we
also provide the plots for each type of complex queries
in Appendix G.2)2. We make three key observations: (a)
The curve of QTO lies on the top left to baseline methods,
suggesting it generalizes better from one-hop answering to
complex queries; (b) Such a gap between QTO and CQD
is significant, indicating our optimization method better
leverages the KGE model; (c) Previous trainable methods
suffer from the coupling of one-hop queries with multi-hop
queries during training, preventing them from getting higher
accuracies. In contrast, QTO disentangles them and can be
directly benefited from better one-hop models.

Additionally, we investigate the effect of the hyperparame-
ters ϵ, α in QTO. We discover that the threshold ϵ poses a
trade-off between memory usage and model accuracy. As
we decrease the value of ϵ, we observe a corresponding
increase in model accuracy. However, this improvement
in accuracy comes at the expense of a rise in memory con-
sumption, particularly within the neural adjacency matrix.
Further, the negation scaling coefficient ϵ has an effect on
queries with negation. We provide the detailed results in
Table 9, 10.

To provide more insights on QTO’s extensibility and fa-
cilitate a more equitable comparison with prior methods,
we conduct a series of experiments employing QTO along-
side various KGE models, including TransE (Bordes et al.,
2013), RotatE (Sun et al., 2018), ComplEx+N3 (Lacroix
et al., 2018) without the auxiliary relation prediction task,
and NBFNet (Zhu et al., 2021).3 The empirical results
(shown in Table 11) implies that the efficacy of QTO can be
amplified by utilizing a more powerful one-hop answering

2We vary the one-hop query answering model by taking the
ComplEx KGE model at different epochs (1, 2, 4, 10, 25, 70, 250).

3ComplEx+N3 and NBFNet are the KGE backbones of CQD
and GNN-QE, respectively.

7

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

2p 3p pi ip up inp pin pni

on Hits@1 88.6 85.1 93.9 91.3 90.8 81.9 90.3 93.5
on Hits@3 83.7 79.0 92.5 88.4 85.7 76.0 87.0 94.4
on Hits@10 77.8 72.3 90.8 85.7 79.1 71.0 82.5 95.4
on All 65.7 56.7 84.3 78.7 64.8 52.7 68.5 94.3

Table 2. Accuracy (%) on intermediate variable interpretation
given the Hits@K answers that QTO predicts and all true an-
swers, evaluated on FB15k-237. Results on other datasets are in
Appendix G.5.

Method avg 1p 2p 3p 2i 3i pi ip 2u up

GNN-QE 36.5 40.9 23.6 27.4 34.8 53.4 39.9 60.0 27.8 20.3
QTO 28.2 34.0 20.9 21.2 33.4 50.0 33.8 32.1 12.9 15.7

Table 3. MAPE (%, ↓) on answer set cardinality prediction, evalu-
ated on FB15k-237. Results on other datasets are in Appendix G.7.

KGE model. Intriguingly, even under the same KGE back-
bone, QTO outperforms CQD and GNN-QE, suggesting the
effectiveness of our optimization method.

4.3. Interpretability Study

As Thm 3.2 suggests, our backward propagation procedure
can find the most likely entity assignments on intermediate
variables for any answer variable assignment v? = e, which
serves as an explanation for how the answer is derived. In
comparison, CQD-beam can only explain its predicted an-
swer (number bounded by beam size), but cannot explain
for an arbitrary answer. We measure the interpretability of
the method by the accuracy of its explanations for the hard
answers. Specifically, for each set of entity assignments, we
can check whether the assignments are valid according to
the full graph, i.e., whether the FOL expression under such
valuation is true.4 Table 2 reports the accuracy rate of QTO
on Hits@K answers that the model predicts, as well as on
all true answers. Specifically, the accuracy corresponding
to Hits@K is calculated by determining the mean accuracy
of the interpretations, whilst assigning Hits@K predictions
(true answers predicted within top-K) to the answer variable.
The “All” category in the table represents the mean accuracy
on all true answers, equivalent to Hits@|V|. The results sug-
gest that accuracy improves for smaller values of K. This
observation stems from the fact that higher-ranking pre-
dictions receive higher scores, thereby reflecting a greater
degree of confidence in their intermediate variable inter-
pretations. Notably, we find that QTO can provide valid
explanations for over 90% of the Hits@1 answers it predicts.
Moreover, by observing the interpretation of QTO’s answer
prediction, we can analyze the failure behavior and open the
black box behind complex query answering. We show case
studies of QTO’s interpretation in Appendix G.6.

4The assignments for 1p/2i/3i/2u/2in/3in queries are trivially
true when the answer is true, hence we evaluate on other types.

2p 3p 4p 5p
5

10

15

20

M
RR

21.4

14.7

21.2

11.8

19.9

9.5

19.2

8.7

QTO
GNN-QE

Figure 4. MRR on queries of 2, 3, 4, and 5 hops on FB15k-237.

4.4. Predicting the Cardinality of Answer Sets

Predicting the cardinality of answer sets is also a practical
yet challenging task. For example, consider the question
“How many phisicists won the 1921 Nobel prize?”, which
directly asks for the number of entity assignments for the
answer variable. Our method can predict the cardinality of
the answer set by |1[T∗(v?) > T]| for some threshold T ∈
[0, 1]. We select the best threshold T ∈ {0.1, 0.2, . . . , 0.9}
according to the best validation accuracy. Table 3 reports the
mean absolute percentage error (MAPE) between QTO’s
cardinality prediction and the groundtruth on FB15k-237.
We only compare with GNN-QE since it is the only previ-
ous method that can predict the cardinality without explicit
supervision (Zhu et al., 2022). As shown, QTO outperforms
GNN-QE by a large margin on cardinality prediction.

4.5. Analyses on Reasoning Skills and Efficiency

We conduct a more comprehensive evaluation on QTO’s
reasoning skills on longer queries and easy queries. We
also involve an efficiency comparison between QTO and
baseline methods.

Reasoning on Longer Queries. Our main experiment
shows the performance of QTO on 1, 2, and 3 hop queries.
A natural question would be, can our method generalize
to queries with longer hops? We show the performance
comparison between QTO and the previous Sota method
GNN-QE on 2-5 hop queries, i.e., 2p/3p/4p/5p queries, in
Figure 4. We see that the performance of GNN-QE signifi-
cantly reduces with the number of hops, while QTO is more
resistant to the increasing length of the reasoning chain.

Reasoning on Easy Queries. We stated in Corollary 3.3
that our method can always find the easy answers, thus
they are all at Hits@1 in QTO’s prediction. Intuitively,
QTO automatically degenerates to perform as a traditional
searching algorithm if we set M as the adjacency matrix,
while introducing uncertainty into M allows the method to
perform probabilistic reasoning. However, this is not the
case for previous methods, as we report their Hits@1 on

8

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

Method avgp avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

CQD .457 - .782 .534 .378 .549 .473 .338 .212 .604 .243 - - - - -
GNN-QE .878 .984 .716 .974 .973 .848 .620 .874 .902 .999 .994 .995 .988 .964 .977 .996
QTO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4. Valid Hits@1 results (%) on easy complex query answering across all query types, evaluated on FB15k-237.

Method 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

CQD 24.8 37.6 12.4 9.6 41.2 84.8 9.6 25.4 - - - - -
GNN-QE 9.0 13.6 9.2 14.4 13.4 13.6 9.2 13.4 9.2 14.0 13.8 13.8 13.8
QTO 7.6 13.6 3.6 4.2 8.4 7.8 3.8 8.8 3.6 4.6 9.2 8.8 10.6

Table 5. Inference time (ms/query) on each type of query on FB15k-237, evaluated on one RTX 3090 GPU.

easy answers in Table 4. The results indicate that trainable
method such as GNN-QE does not memorize the existing
edges in the KG well, while optimization-based CQD losses
accuracy even on easy answers to the approximation. In
contrast, QTO can faithfully answer complex queries based
on existing edges, due to our theoretical guarantee.

Reasoning efficiency. One common concern for QTO is its
efficiency, since it involves (sparse) matrix products between
matrices with sizes of |V|×|V|. We report the inference time
on each type of query in Table 5. As we can see, benefiting
from GPU acceleration on matrix product, QTO achieves
even higher efficiency compared to previous methods.

5. Conclusion
This paper proposes a novel optimization-based method
QTO (Query Computation Tree Optimization) for answer-
ing complex logical queries on knowledge graphs. QTO
utilizes a pretrained KGE link predictor to score each one-
hop atom, and can efficiently find an optimal set of entity
assignment that maximizes the truth value of the complex
query. In particular, QTO optimizes directly on the tree-like
computation graph, and searches for the optimal solution by
a forward-backward propagation procedure. Experiments
show that QTO significantly outperforms previous methods.
Moreover, QTO is the first neural method that can explicit
interpret the intermediate variables for any answer, and is
faithful to the existing relationships in the graph.

Limitation
Although our method provides more accurate answers for
logical queries on KGs, it still suffers from two limitations.
The first pertains to scalability: the process of obtaining a
pre-computed adjacency matrix can be both time-consuming
and resource-intensive, especially for larger KGs. We pro-
vide some insights and future directions to mitigate such
issue in Appendix E. Another challenge lies in the restricted
nature of supported query types. To elaborate, our opti-

mization method is only compatible with tree-like query
structures, i.e., the query computation tree. Unfortunately,
it lacks the ability to accommodate cyclic query structures,
or queries that contain more than one answer variables.

Acknowledgement
This work is supported by a grant from the Institute for
Guo Qiang, Tsinghua University (2019GQB0003), and the
NSFC Youth Project (62006136). We gracefully thank all
our anonymous reviewers for their fruitful suggestions.

References
Arakelyan, E., Daza, D., Minervini, P., and Cochez, M.

Complex query answering with neural link predictors. In
International Conference on Learning Representations,
2021.

Bai, Y., Ying, Z., Ren, H., and Leskovec, J. Modeling
heterogeneous hierarchies with relation-specific hyper-
bolic cones. Advances in Neural Information Processing
Systems, 34:12316–12327, 2021.

Bai, Y., Lv, X., Li, J., Hou, L., Qu, Y., Dai, Z., and Xiong, F.
SQUIRE: A sequence-to-sequence framework for multi-
hop knowledge graph reasoning. In EMNLP, 2022.

Balažević, I., Allen, C., and Hospedales, T. TuckER: Tensor
factorization for knowledge graph completion. In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 5185–5194, 2019.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. Advances in neural information
processing systems, 26, 2013.

Chami, I., Wolf, A., Juan, D.-C., Sala, F., Ravi, S., and

9

https://openreview.net/pdf?id=Mos9F9kDwkz
https://proceedings.neurips.cc/paper/2021/file/662a2e96162905620397b19c9d249781-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/662a2e96162905620397b19c9d249781-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/662a2e96162905620397b19c9d249781-Paper.pdf
https://arxiv.org/pdf/2201.06206.pdf
https://arxiv.org/pdf/2201.06206.pdf
https://aclanthology.org/D19-1522.pdf
https://aclanthology.org/D19-1522.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

Ré, C. Low-dimensional hyperbolic knowledge graph
embeddings. In ACL, 2020.

Chen, X., Hu, Z., and Sun, Y. Fuzzy logic based logical
query answering on knowledge graphs. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 3939–3948, 2022.

Chen, Y., Minervini, P., Riedel, S., and Stenetorp, P. Re-
lation prediction as an auxiliary training objective for
improving multi-relational graph representations. In 3rd
Conference on Automated Knowledge Base Construction,
2021.

Choudhary, N., Rao, N., Katariya, S., Subbian, K., and
Reddy, C. K. Self-supervised hyperboloid representa-
tions from logical queries over knowledge graphs. In
Proceedings of the Web Conference 2021, pp. 1373–1384,
2021.

Dalvi, N. and Suciu, D. Efficient query evaluation on prob-
abilistic databases. The VLDB Journal, 16(4):523–544,
2007.

Das, R., Dhuliawala, S., Zaheer, M., Vilnis, L., Durugkar,
I., Krishnamurthy, A., Smola, A., and McCallum, A. Go
for a walk and arrive at the answer: reasoning over paths
in knowledge bases using reinforcement learning. In
International Conference on Learning Representations,
2018.

Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S.
Convolutional 2d knowledge graph embeddings. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Guu, K., Miller, J., and Liang, P. Traversing knowledge
graphs in vector space. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pp. 318–327, 2015.

Hájek, P. Metamathematics of fuzzy logic, volume 4.
Springer Science & Business Media, 2013.

Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., and
Leskovec, J. Embedding logical queries on knowledge
graphs. Advances in neural information processing sys-
tems, 31, 2018.

Klement, E. P., Mesiar, R., and Pap, E. Triangular norms,
volume 8. Springer Science & Business Media, 2013.

Klir, G. and Yuan, B. Fuzzy sets and fuzzy logic, volume 4.
Prentice hall New Jersey, 1995.

Lacroix, T., Usunier, N., and Obozinski, G. Canonical
tensor decomposition for knowledge base completion.
In International Conference on Machine Learning, pp.
2863–2872. PMLR, 2018.

Lin, X. V., Socher, R., and Xiong, C. Multi-hop knowledge
graph reasoning with reward shaping. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 3243–3253, 2018.

Lv, X., Gu, Y., Han, X., Hou, L., Li, J., and Liu, Z. Adapting
meta knowledge graph information for multi-hop reason-
ing over few-shot relations. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp.
3376–3381, 2019.

Meilicke, C., Chekol, M. W., Ruffinelli, D., and Stucken-
schmidt, H. Anytime bottom-up rule learning for knowl-
edge graph completion. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, pp.
3137–3143, 2019.

Pearl, J. Reverend bayes on inference engines: A distributed
hierarchical approach. In AAAI, 1982.

Pearl, J. Causality. Cambridge university press, 2009.

Ren, H. and Leskovec, J. Beta embeddings for multi-hop
logical reasoning in knowledge graphs. Advances in Neu-
ral Information Processing Systems, 33:19716–19726,
2020.

Ren, H., Hu, W., and Leskovec, J. Query2box: reason-
ing over knowledge graphs in vector space using box
embeddings. In International Conference on Learning
Representations, 2019.

Safavi, T., Koutra, D., and Meij, E. Evaluating the cali-
bration of knowledge graph embeddings for trustworthy
link prediction. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pp. 8308–8321, 2020.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. v. d.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. RotatE: Knowl-
edge graph embedding by relational rotation in complex
space. In International Conference on Learning Repre-
sentations, 2018.

Toutanova, K. and Chen, D. Observed versus latent features
for knowledge base and text inference. In Proceedings of
the 3rd workshop on continuous vector space models and
their compositionality, pp. 57–66, 2015.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and
Bouchard, G. Complex embeddings for simple link pre-
diction. In ICML, 2016.

10

https://aclanthology.org/2020.acl-main.617.pdf
https://aclanthology.org/2020.acl-main.617.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/20310/20069
https://ojs.aaai.org/index.php/AAAI/article/view/20310/20069
https://openreview.net/pdf?id=Qa3uS3H7-Le
https://openreview.net/pdf?id=Qa3uS3H7-Le
https://openreview.net/pdf?id=Qa3uS3H7-Le
https://arxiv.org/pdf/2012.13023.pdf
https://arxiv.org/pdf/2012.13023.pdf
https://www.vldb.org/conf/2004/RS22P1.PDF
https://www.vldb.org/conf/2004/RS22P1.PDF
https://openreview.net/pdf?id=Syg-YfWCW
https://openreview.net/pdf?id=Syg-YfWCW
https://openreview.net/pdf?id=Syg-YfWCW
https://ojs.aaai.org/index.php/AAAI/article/view/11573/11432
https://aclanthology.org/D15-1038.pdf
https://aclanthology.org/D15-1038.pdf
https://proceedings.neurips.cc/paper/2018/file/ef50c335cca9f340bde656363ebd02fd-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ef50c335cca9f340bde656363ebd02fd-Paper.pdf
http://proceedings.mlr.press/v80/lacroix18a/lacroix18a.pdf
http://proceedings.mlr.press/v80/lacroix18a/lacroix18a.pdf
https://aclanthology.org/D18-1362.pdf
https://aclanthology.org/D18-1362.pdf
https://aclanthology.org/D19-1334.pdf
https://aclanthology.org/D19-1334.pdf
https://aclanthology.org/D19-1334.pdf
https://dl.acm.org/doi/abs/10.5555/3367471.3367477
https://dl.acm.org/doi/abs/10.5555/3367471.3367477
https://www.aaai.org/Papers/AAAI/1982/AAAI82-032.pdf
https://www.aaai.org/Papers/AAAI/1982/AAAI82-032.pdf
https://proceedings.neurips.cc/paper/2020/file/e43739bba7cdb577e9e3e4e42447f5a5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e43739bba7cdb577e9e3e4e42447f5a5-Paper.pdf
https://openreview.net/pdf?id=BJgr4kSFDS
https://openreview.net/pdf?id=BJgr4kSFDS
https://openreview.net/pdf?id=BJgr4kSFDS
https://aclanthology.org/2020.emnlp-main.667.pdf
https://aclanthology.org/2020.emnlp-main.667.pdf
https://aclanthology.org/2020.emnlp-main.667.pdf
https://arxiv.org/pdf/1703.06103.pdf
https://arxiv.org/pdf/1703.06103.pdf
https://openreview.net/pdf?id=HkgEQnRqYQ
https://openreview.net/pdf?id=HkgEQnRqYQ
https://openreview.net/pdf?id=HkgEQnRqYQ
https://aclanthology.org/W15-4007.pdf
https://aclanthology.org/W15-4007.pdf
http://proceedings.mlr.press/v48/trouillon16.pdf
http://proceedings.mlr.press/v48/trouillon16.pdf

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

Xiong, W., Hoang, T., and Wang, W. Y. DeepPath: A rein-
forcement learning method for knowledge graph reason-
ing. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 564–573,
2017.

Yang, F., Yang, Z., and Cohen, W. W. Differentiable learning
of logical rules for knowledge base reasoning. Advances
in neural information processing systems, 30, 2017.

Zhang, Z., Wang, J., Chen, J., Ji, S., and Wu, F. Cone:
Cone embeddings for multi-hop reasoning over knowl-
edge graphs. Advances in Neural Information Processing
Systems, 34:19172–19183, 2021.

Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. Neural
bellman-ford networks: A general graph neural network
framework for link prediction. Advances in Neural Infor-
mation Processing Systems, 34:29476–29490, 2021.

Zhu, Z., Galkin, M., Zhang, Z., and Tang, J. Neural-
symbolic models for logical queries on knowledge graphs.
In Proceedings of the 39th International Conference on
Machine Learning, volume 162, pp. 27454–27478, 2022.

Zou, L., Mo, J., Chen, L., Özsu, M. T., and Zhao, D. gStore:
answering SPARQL queries via subgraph matching. Pro-
ceedings of the VLDB Endowment, 4(8):482–493, 2011.

11

https://aclanthology.org/D17-1060.pdf
https://aclanthology.org/D17-1060.pdf
https://aclanthology.org/D17-1060.pdf
https://proceedings.neurips.cc/paper/2017/file/0e55666a4ad822e0e34299df3591d979-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0e55666a4ad822e0e34299df3591d979-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a0160709701140704575d499c997b6ca-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a0160709701140704575d499c997b6ca-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a0160709701140704575d499c997b6ca-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf
https://arxiv.org/pdf/2205.10128.pdf
https://arxiv.org/pdf/2205.10128.pdf
http://vldb.org/pvldb/vol4/p482-zou.pdf
http://vldb.org/pvldb/vol4/p482-zou.pdf

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

A. Conversion Between FOL Expression and Query Computation Tree
The conversion from a FOL expression (disjunctive normal form) to its query computation tree involves three steps:
dependency graph generation, union branches merging, and variable separation.

Dependency Graph Generation. Given a FOL expression, we first assign a unique node to each of the variables, and a
unique node to the constant entity in each of the one-hop atoms. Note that there might be several nodes that correspond to
the same constant entity, since they appear in different one-hop atoms. Then we use undirected edges to connect the nodes
according to the one-hop atoms. Specifically, if eij = r(v′, v) (or r(c, v)), then we connect the nodes of v′ (or c) and v by an
edge ri. Similarly, if eij = ¬r(v′, v) (or ¬r(c, v)), then we connect the nodes of v′ (or c) and v by an edge ¬ri. The notation
i here will be used to distinguish the edges from different conjunctions. The constructed undirected dependency multigraph
has to be a tree, in other words, it is a connected acyclic graph. We take the node v? as root, and assign directions for the
edges such that they all point from child nodes to their parent nodes, during which we have to handle the inverse of relations.
The constant entities are naturally leaf nodes in the tree, since each entity node is only connected to one variable node.

Union Branches Merging. Then we handle the union structures in the query computation tree. On the path τ from root to
every leaf node, if exists, we find the first node vi such that the edges between vi and its child node vj are all of the same
relation, but in different conjunctions: rt1 , rt2 , . . . , rtp . We merge these edges into a single edge rt1,t2,...tp , since they all
correspond to the same one-hop atom but in different conjunctions, they can be merged by the distributive law:

(P ∧Q) ∨ (P ∧R) ⇔ P ∧ (Q ∨R) (15)

We assert that there is a subpath from vi to some vk within the path τ that only consists of edges rt1,t2,...tp , and vk is
connected to different child nodes by relations from conjunctions t1, t2, . . . tp. We mark these edges as union, while the rest
of one-to-many structures are marked as intersection. Now the multigraph becomes a simple graph (no multiple edges).

Variable Separation. For the one-to-many intersection/union structures in the tree, we separate the parent node vk into
v1k, v

2
k, . . . for each of the child nodes, and connect the ith child node with vik by its original relational edge, while all

v1k, v
2
k, . . . connect to vk by intersection/union edges. Note that the union branches merging step may create one-to-many

structures that consist of both intersection and union edges, take Figure 5 for an example. This can be taken care of by
first separating vk into a union structure (v31 and v41 in the example), and then separating the child node into an intersection
structure (v11 and v21 in the example).

We show an example of converting a FOL expression to its query computation tree in Figure 5. One can verify that the logic
expression represented by the query computation tree is equivalent to the FOL expression.

FOL expression: (𝒓𝟏(𝒄𝟏, 𝒗𝟏) ∧ 𝒓𝟐(𝒄𝟐, 𝒗𝟏) ∧ 𝒓𝟒(𝒗𝟏, 𝒗𝟐)) ∨ (𝒓𝟑(𝒄𝟑, 𝒗𝟏) ∧ 𝒓𝟒(𝒗𝟏, 𝒗𝟐))

𝑐!

𝑐"

𝑐#

𝑣! 𝑣"

𝑟!

𝑟"

𝑟#

𝑟$

1. Dependency Graph Generation

𝑐!

𝑐" 𝑣! 𝑣"

𝑟!

𝑟"

𝑟#

𝑟$

2. Union Branches Merging

𝑐#

𝑣!!

𝑣!" 𝑣! 𝑣"𝑟$

3. Variable Separation

𝑐" 𝑟"

𝑐! 𝑟!

𝑣!$𝑐# 𝑟#

𝑣!#
∧

∨

Figure 5. Conversion from a FOL expression to its query computation tree.

Moreover, we believe that query computation tree actually serves as a more appropriate form to represent complex
logical questions on KGs. Although the FOL expression is more general, most kinds of the FOL expressions are rarely
asked in practice. In fact, query computation tree is more in line with human’s multi-hop questioning style — where
an intermediate variable is usually described by its relationships with other entities or their logical combinations, which
corresponds to a subtree rooted at the variable in the query computation tree.

12

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

B. Proof of Proposition 3.1: Equivalence of Optimization on the Query Computation Tree
Proposition 3.1. The optimization problem defined on the query computation tree is equivalent to that defined on its FOL
form.

Proof. Recall that T (v?) denotes the truth value of the query computation tree rooted at v?, thus to prove the equivalence
between the two optimization problems, it suffices to show that T (v?) = T (Q(v?)) where T (q(v?)) is the truth value of
the FOL expression corresponding to the query computation tree rooted at v?. We prove it by induction. Assume the
equation holds for the child nodes of v?, then for v?, consider the 4 types of edges connecting it to its child nodes. For type I
(intersection), then according to Eq. 1, it holds that

Q(v?) = ∧1≤i≤KQ(vi?) ⇒ T (Q(v?)) = ⊤1≤i≤KT (vi?) = T (v?) (16)

For type II (union), according to Eq. 1, we also have

Q(v?) = ∨1≤i≤KQ(vi?) ⇒ T (Q(v?)) = ⊥1≤i≤KT (vi?) = T (v?) (17)

For type III (relational projection), according to Eq. 2,

Q(v?) = r(c, v?) or Q(vk) ∧ r(vk, v?) ⇒ T (Q(v?)) = r(c, v?) or T (Q(vk)) ⊤ r(vk, v?) = T (v?) (18)

Similarly, for type IV (anti-relational projection), according to Eq. 2,

Q(v?) = ¬r(c, v?) or Q(vk) ∧ ¬r(vk, v?) ⇒ T (Q(v?)) = ¬r(c, v?) or T (Q(vk)) ⊤ ¬r(vk, v?) = T (v?) (19)

The trivial case is when the child node of v? is a constant entity, and it also holds true according to Eq. 18, 19. Therefore,
T (v?) = T (Q(v?)) is always true, indicating that the optimization on query computation tree is equivalent to the optimization
on its FOL expression.

C. Query Computation Tree Optimization Algorithm

Algorithm 1 Forward Propagation Function
function FORWARD(v, M , T)

V ← 1|V|

if v.type = intersection then
for each node u in v.child do

U, T ← FORWARD(u, M , T)
V ← V ∗ U

if v.type = union then
for each node u in v.child do

U, T ← FORWARD(u, M , T)
V ← V ∗ (1|V| − U)

V ← 1|V| − V
if v.type = relational then

if v.child is a constant entity i then
V ←M [v.r][i][:]

else
U, T ← FORWARD(v.child, M , T)
V ← maxj{UT ∗M [v.r][:][:]}

if v.type = anti-relational then
if v.child is a constant entity i then

V ← 1V −M [v.r][i][:]
else

U, T ← FORWARD(v.child, M , T)
V ← maxj{UT ∗ (1V×V −M [v.r][:][:])}

T (v)← V
return V, T

Algorithm 2 Backward Propagation Function
function BACKWARD(v, M , T , E, t)

E(v)← t
if v.type = intersection or union then

for each node u in v.child do
E ←BACKWARD(u, M , T , E, t)

if v.type = relational then
if v.child is not a constant node then

u← v.child
t′ ← argmax{T (u)T ∗M [v.r][:][t]}
E ←BACKWARD(u, M , T , E, t′)

if v.type = anti-relational then
if v.child is not a constant node then

u← v.child
t′ ← argmax{T (u)T ∗ (1|V|×1 −M [v.r][:][t])}
E ←BACKWARD(u, M , T , E, t′)

return E

Algorithm 3 Query Computation Tree Optimization
Input: neural adjacency matrix M , nodes in the query compu-
tation tree (each node has child and type members), and root v?
Output: optimal truth values T on root (our defined T∗(v?)
vector), and the optimal assignments E for v? = t
T,E ← {}
V, T ←FORWARD(v?, M , T)
E ←BACKWARD(v?, M , T , E, t)
return T,E

13

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

Alg. 1 shows the forward propagation function, which recursively calls itself on the child nodes to obtain the optimal
truth values of the child subtrees, until reaching a leaf node (constant entity). Alg. 2 shows the backward propagation
function, which also recursively calls itself on the child nodes to compute the optimal assignments for the child subtrees,
until reaching a leaf node. Our QTO algorithm is shown in Alg. 3, which calls the forward-propagation procedures to solve
the optimization problem.

D. Proof of Theorem 3.2: Optimality of QTO
Theorem 3.2. The forward procedure in Eq. 5-11 can find the maximum value of T (v?), and the backward procedure in
Eq. 12-14 returns a set of assignments that obtains the optimal truth value.

Proof. First, we show the optimality of the forward procedure by proving that the derived T∗(v) is indeed the maximum
truth value of the subquery rooted at v. We prove it by induction: suppose it holds for the subquery rooted at child nodes of
v?, then according to the derivation process in Eq. 5-10, it still holds for v?. The trivial case is when the child node of v? is a
constant entity, which also holds true according to Eq. 8, 10. Therefore, according to the definition of T∗(v?), the maximum
truth value for the query can be obtained by Eq. 11.

Next, we show that the backward procedure can find a set of assignments that obtains the optimal value. We prove it by
induction on the root of the query subtree. Suppose our backward procedure can find the optimal set of assignments for
the subquery rooted at every child node v of v?, when the child node is assigned an arbitrary e ∈ V . In other words, the
truth value of such a set of assignments is T (v) = T ∗(v = e). Then we consider the procedure on the subquery rooted at v?
when v? is assigned an arbitrary et ∈ V . For type I (intersection), by Eq. 1, 12, the truth value T (v?) under the returned
assignments is:

T (v?) = ⊤1≤i≤K(T (vi?)) = ⊤1≤i≤K(T ∗(vi? = et)) (20)

while
T ∗(v? = et) = max{⊤1≤i≤K(T (vi? = et))} = ⊤1≤i≤K(T ∗(vi? = et)) (21)

Hence T (v?) = T ∗(v? = et). Similarly, it also holds for type II (union):

T (v?) = ⊥1≤i≤K(T (vi?)) = ⊥1≤i≤K(T ∗(vi? = et)) = T ∗(v? = et) (22)

For type III (relational projection), by Eq. 2, 13, and the induction hypothesis, we have

T (v?) = T ∗(vk = e) ⊤ r(e, et), e = argmax
e∈V

{T ∗(vk = e) ⊤ r(e, et)}

⇒ T (v?) = max
e∈V

{T ∗(vk = e) ⊤ r(e, et)}
(23)

while by definition of T ∗, it holds that

T ∗(v? = et) = max{T (vk) ⊤ r(vk, et)} = max
e∈V

{T ∗(vk = e) ⊤ r(e, et)} (24)

Thus T (v?) = T ∗(v? = et). Similarly, for type IV (anti-relational projection), by Eq. 2, 14, it still holds:

T (v?) = T ∗(vk = e) ⊤ (1− r(e, et)), e = argmax
e∈V

{T ∗(vk = e) ⊤ (1− r(e, et))}

⇒ T (v?) = max
e∈V

{T ∗(vk = e) ⊤ (1− r(e, et))} = T ∗(v? = et)
(25)

Hence, the induction hypothesis holds for v?. The trivial case is when v? = c is a constant entity, and its truth value is
simply T (c) = T ∗(c) = 1. Therefore, by Eq. 11, the backward procedure from root v? returns a set of assignments that
obtains a truth value of

T (v?) = T ∗(v? = e), e = argmax
e∈V

{T ∗(v? = e)} ⇒ T (v?) = max
e∈V

{T ∗(v? = e)} (26)

which is the optimal truth value.

14

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

E. Discussions on Neural Adjacency Matrix
Neural Adjacency Matrix. An intriguing question is, can our method learn the parameters in the neural adjacency matrix?
In fact, our method supports optimization on the parameters, since each step is differentiable. However, we should not
directly optimize the neural adjacency matrix, since it does not generalize to missing links. More specifically, during the
learning procedure, the entries corresponding to already existing edges are pushed to 1 while other entries to 0, since such a
matrix would induce a correct answer. A more promising direction is to learn the calibration function that transforms the
KGE scores to probabilities between [0, 1] for the neural adjacency matrix, also known as KGE calibration (Safavi et al.,
2020). In our work, the calibration function is fixed, as shown in Eq. 3, 4, but more functionals can be defined to learn soft
“threshold” or “stretching” to better calibrate KGE scores to complex query answering.

Storage. We store the |R| × |V| × |V| neural adjacency matrix as a sparse tensor since most of its entries are 0 (filtered out
by threshold ϵ). For example, with an ϵ of 0.0002 on FB15k-237, only 1% of all entries are nonzero. We study the overlap
between the neural adjacency matrix and the truth adjacency matrix. On triplets in the training graph, the faithful rounding
(Eq. 4) ensures the corresponding entries in the neural adjacency matrix are 1. On triplets in valid+test graph, 99.1% of the
corresponding entries have a nonzero value (after filtering with ϵ = 0.0002), and the mean value of all the entries is 0.19.
Meanwhile, on false triplets (no such edges in the full graph), only 1.0% of the corresponding entries have a nonzero value,
and the mean value of all the entries is 1e-5. The gap between the corresponding entries in the neural adjacency matrix for
existing edges and non-existing edges is sufficient to distinguish between true and false triplets.

Scalability. For a given KG, its neural adjacency matrix M is pre-computed by a pretrained KGE model and then saved for
query answering. The pre-computing step on FB15k, FB15k-237, and NELL995 take 40mins, 7mins, and 7hrs, which are
all carried out on one RTX-3090 GPU. We see that the pre-computing time scales to the number of entities and relations in
the KG. A possible way to mitigate this problem may be to first predict what relations each entity possesses based on the
concept of the entity or other learnable property of the entity. Another way is to simplify M as a block matrix, and compute
each block in the corresponding subgraph. We leave the scalability of QTO to large KGs for future work.

F. Experiment Details
F.1. Dataset Statistics

Dataset #Entities #Relations #Training edges #Valid edges #Test edges

FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,505 237 272,115 17,526 20,438
NELL995 63,361 200 114,213 14,324 14,267

Table 6. Statistics of the three knowledge graph datasets.

Table 6 summarizes the statistics of the three datasets in our experiments. Note that the inverse of each relation is also added
to the graph, and can appear in the queries.

F.2. Query Structures

We use the 14 types of complex queries generated in (Ren et al., 2019; Ren & Leskovec, 2020). We show the query
computation tree for each type of query in Figure 6.

F.3. Implementation Details

We provide the best hyperparameters of the pretrained KGE 5 and QTO in Table 7. The hyperparameters for KGE, which is
a ComplEx model (Trouillon et al., 2016) trained with N3 regularizor (Lacroix et al., 2018) and auxiliary relation prediction
task (Chen et al., 2021), include embedding dimension d, learning rate lr, batch size b, regularization strength λ, auxiliary
relation prediction weight w, and the number of epochs. We recall that the hyperparameters in our QTO method include the
threshold ϵ and the negation scaling coefficient α.

5We utilize the KGE implementation from https://github.com/facebookresearch/ssl-relation-prediction (Chen et al., 2021).

15

https://github.com/facebookresearch/ssl-relation-prediction

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

ip 2u up 2in 3in

1p 2p 3p 2i 3i pi

inp pin pni

∧
∧

∧

∧
∧

∧ ∧ ∧

¬
¬

¬

¬

¬

∨ ∨

: constant entity

: variable

: answer variable

∧

Figure 6. Query structures, illustrated in their query computation tree representations.

KGE (ComplEx) QTO

d lr b λ w epoch ϵ α

FB15k 1000 0.1 100 0.01 0.1 100 0.001 6
FB15k-237 1000 0.1 1000 0.05 4 100 0.0002 3
NELL995 1000 0.1 1000 0.05 0 100 0.0002 6

Table 7. Hyperparameters of pretrained KGE and QTO.

G. More Experimental Results
G.1. Hits@1 on Complex Query Answering

Table 8 reports the Hits@1 result on complex query answering. On Hits@1 metric, QTO outperforms previous Sota method
GNN-QE by an average of 8.5%, 39.8%, and 20% over all query types on the three datasets.

G.2. More Plots on Complex Query Answering w.r.t. 1-hop Query Answering

Figure 7 reports the Test MRR on each type of complex queries w.r.t. the MRR performance on one-hop queries. We
observe a similar trend across all types of queries, verifying our conclusion in Sec. 4.2.

G.3. Hyperparameter Analysis

Table 9, 10 shows the effect of ϵ and α on FB15k-237.

G.4. QTO with Different One-hop Link Predictors

Table 11 reports the performance of QTO with different KGE models on FB15k-237.

G.5. More Results on Interpretation Study

Table 12 reports the accuracy on intermediate variable interpretation on FB15k and NELL995. We observe that QTO can
provide valid explanations for over 90% of the Hits@1 answers it predicts.

16

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

8

10

12

14

16

18

20

22

M
RR

 o
n

2p

QTO
GNN-QE
ConE
BetaE
CQD

(a) 2p-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

8

10

12

14

16

18

20

M
RR

 o
n

3p

QTO
GNN-QE
ConE
BetaE
CQD

(b) 3p-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

27.5

30.0

32.5

35.0

37.5

40.0

42.5

M
RR

 o
n

2i

QTO
GNN-QE
ConE
BetaE
CQD

(c) 2i-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

40

45

50

55

M
RR

 o
n

3i

QTO
GNN-QE
ConE
BetaE
CQD

(d) 3i-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

22.5

25.0

27.5

30.0

32.5

35.0

37.5

M
RR

 o
n

pi

QTO
GNN-QE
ConE
BetaE
CQD

(e) pi-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

12.5

15.0

17.5

20.0

22.5

25.0

27.5

M
RR

 o
n

ip

QTO
GNN-QE
ConE
BetaE
CQD

(f) ip-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

7.5

10.0

12.5

15.0

17.5

20.0

22.5

M
RR

 o
n

2u

QTO
GNN-QE
ConE
BetaE
CQD

(g) 2u-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

8

10

12

14

16

18

20

22

M
RR

 o
n

up

QTO
GNN-QE
ConE
BetaE
CQD

(h) up-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

6

8

10

12

14

16

M
RR

 o
n

2i
n

QTO
GNN-QE
ConE
BetaE

(i) 2in-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

10

15

20

25

M
RR

 o
n

3i
n

QTO
GNN-QE
ConE
BetaE

(j) 3in-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

8

10

12

14

M
RR

 o
n

in
p

QTO
GNN-QE
ConE
BetaE

(k) inp-1p

32.5 35.0 37.5 40.0 42.5 45.0 47.5
MRR on 1p

4

6

8

10

12

14

M
RR

 o
n

pi
n

QTO
GNN-QE
ConE
BetaE

(l) pin-1p

Figure 7. Test MRR on each type of queries w.r.t. MRR on 1p (one-hop) queries, evaluated on FB15k-237.

17

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

Georgia Tech

school color team color-1

Q: Which sports team has the team color as Georgia
Tech’s school color?

𝒖 𝒗

𝒖 =?𝒗 =? rank correctness

Kansas City Royals White 31 𝑻𝒓𝒖𝒆

Barnsley F.C. White 48 𝑻𝒓𝒖𝒆

Chicago White Sox Black 10 𝑭𝒂𝒍𝒔𝒆

missing

1 2

1,2

1,2

1

Orlando Magic Blue 61 𝑭𝒂𝒍𝒔𝒆 1

(a) Case study on 2p query

∧

Drama

Male

genre-1

gender-1

nominated for-1

Q: Which male is nominated for a drama movie?

𝒖

𝒗

𝒗

𝒗

𝒖 =?𝒗 =? rank correctness

Dick Wolf Law & Order 1 𝑻𝒓𝒖𝒆

Peter Boyle The X-Files 1 𝑻𝒓𝒖𝒆

Brendan Coyle Downton Abbey 467 𝑻𝒓𝒖𝒆

missing

1 2

3

1

3

1, 3

Michael Giacchino Ratatouille 1549 𝑭𝒂𝒍𝒔𝒆 1

(b) Case study on pi query

∧
Female

gender-1

award for-1

Q: What film does the female who is awarded for film
“8 Women” perform in?

𝒖 𝒗

𝒖

𝒖

𝒖 =?𝒗 =? rank correctness

Dancer in the Dark Catherine Deneuve 1 𝑻𝒓𝒖𝒆

Amour Isabelle Huppert 1 𝑻𝒓𝒖𝒆

I Heart Huckabees Isabelle Huppert 467 𝑻𝒓𝒖𝒆

missing

1

3

2

2

2

Heaven's Gate Catherine Deneuve 919 𝑭𝒂𝒍𝒔𝒆 3

perform in

8 Women

2

(c) Case study on ip query

Q: Which Jewish person is not nominated for the film
that wins the 70th Academy Awards? 𝒖 =?𝒗 =? rank correctness

Dustin Hoffman Men in Black 6 𝑻𝒓𝒖𝒆

Maurice Sendak The Full Monty 9 𝑻𝒓𝒖𝒆

Jack Black The Full Monty 9 𝑻𝒓𝒖𝒆

missing

3

3

2

J. D. Salinger The Full Monty 78 𝑻𝒓𝒖𝒆 2

∧

70th Academy
Awards

Jewish people

win-1

ethnicity-1

¬nominated for-1

𝒖

𝒗

𝒗

𝒗

1 2

3

(d) Case study on pni query

Figure 8. Case study of QTO’s interpretation.

18

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

Model avgp avgood avgn 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15k

GQE 16.6 11.0 - 34.2 8.3 5.0 23.8 34.9 15.5 11.2 11.5 5.6 - - - - -
Query2Box 26.8 18.7 - 52.0 12.7 7.8 40.5 53.4 26.7 16.7 22.0 9.4 - - - - -
BetaE 31.3 24.2 5.2 52.0 17.0 16.9 43.5 55.3 32.3 19.3 28.1 16.9 6.4 6.7 5.5 2.0 5.3
CQD-CO 39.7 26.4 - 85.8 17.8 9.0 67.6 71.7 34.5 24.5 30.9 15.5 - - - - -
CQD-Beam 51.9 42.7 - 85.8 48.6 22.5 67.6 71.7 51.7 62.3 31.7 25.0 - - - - -
ConE 39.6 33.0 7.3 62.4 23.8 20.4 53.6 64.1 39.6 25.6 44.9 21.7 9.4 9.1 6.0 4.3 7.5
GNN-QE 67.3 62.2 28.6 86.1 63.5 52.5 74.8 80.1 63.6 65.1 67.1 53.0 35.4 33.1 33.8 18.6 21.8

QTO 68.6 66.0 39.1 86.6 60.9 51.9 75.3 79.0 69.2 68.8 71.8 54.3 50.3 50.3 39.1 36.9 18.8

FB15k-237

GQE 8.8 4.9 - 22.4 2.8 2.1 11.7 20.9 8.4 5.7 3.3 2.1 - - - - -
Query2Box 12.3 7.0 - 28.3 4.1 3.0 17.5 29.5 12.3 7.1 5.2 3.3 - - - - -
BetaE 13.4 7.9 2.8 28.9 5.5 4.9 18.3 31.7 14.0 6.7 6.3 4.6 1.5 7.7 3.0 0.9 0.9
CQD-CO 14.7 9.5 - 36.6 4.7 3.0 20.7 29.6 15.5 9.9 8.6 4.0 - - - - -
CQD-Beam 15.1 9.7 - 36.6 6.3 4.3 20.7 29.6 13.5 12.1 8.7 4.3 - - - - -
ConE 15.6 9.5 2.2 31.9 6.9 5.3 21.9 36.6 17.0 7.8 8.0 5.3 1.8 3.7 3.4 1.3 1.0
GNN-QE 19.1 13.0 4.3 32.8 8.2 6.5 27.7 44.6 22.4 12.3 9.8 7.6 4.1 8.1 4.1 2.5 2.7

QTO 25.4 19.9 8.3 39.5 14.3 14.7 33.2 47.2 29.0 20.6 15.1 14.8 8.6 15.9 8.5 6.4 2.0

NELL-995

GQE 9.9 6.9 - 15.4 6.7 5.0 14.3 20.4 10.6 9.0 2.9 5.0 - - - - -
Query2Box 14.1 8.8 - 23.8 8.7 6.9 20.3 31.5 14.3 10.7 5.0 6.0 - - - - -
BetaE 17.8 9.6 2.1 43.5 8.1 7.0 27.2 36.5 17.4 9.3 6.9 4.7 1.6 2.2 4.8 0.7 1.2
CQD-CO 21.3 13.9 - 51.2 11.8 9.0 28.4 36.3 22.4 15.5 9.9 7.6 - - - - -
CQD-Beam 21.0 13.2 - 51.2 14.3 6.3 28.4 36.3 18.1 17.4 10.2 7.2 - - - - -
ConE 19.8 11.6 2.2 43.6 10.7 9.0 28.6 39.8 19.2 11.4 9.0 6.6 1.4 2.6 5.2 0.8 1.2
GNN-QE 21.5 13.2 3.6 43.5 12.9 9.9 32.5 42.4 23.5 12.9 8.8 7.4 3.2 5.9 5.4 1.6 2.0

QTO 24.8 16.7 6.1 51.6 17.1 15.3 32.1 40.8 23.1 19.9 12.3 11.3 5.6 9.4 9.9 3.5 2.1

Table 8. Test Hits@1 results (%) on complex query answering across all query types. avgp is the average on EPFO queries; avgood is the
average on out-of-distribution (OOD) queries; avgn is the average on queries with negation.

ϵ 0.1 0.01 0.001 0.0002

memory usage 19M 82M 817M 20G
avgp (%) 24.5 31.5 33.1 33.5

Table 9. Effect of ϵ on memory usage and avgp MRR.

α 0.5 1 3 5 7 9

avgn (%) 7.4 13.8 15.5 14.9 13.8 13.2

Table 10. Effect of α on avgn MRR.

G.6. Case Study on QTO’s Interpretation

We report case studies on QTO’s interpretation in Figure 8. We include both success cases, where the assignments can be
verified by the full graph, and failure cases where the assignments are not viable. For each set of assignments, we provide
the rank of its answer in QTO’s prediction, the correctness of the assignments, and the missing link in the training graph that
need to be predicted for deducing the answer.

G.7. More Results on Cardinality Prediction

Table 13 reports the mean absolute percentage error (MAPE) on cardinality prediction on FB15k and NELL995. We see that
QTO outperforms GNN-QE by a large margin on these two datasets, and the advantage is consistent across all types of
queries.

19

Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization

avgp 1p 2p 3p 2i 3i pi ip 2u up

QTO’s performance under different KGE models

QTO+TransE 22.1 43.2 11.5 9.7 28.1 41.5 23.3 17.8 13.4 9.7
QTO+RotatE 22.4 43.8 11.7 9.8 28.7 42.2 23.6 18.0 14.1 9.7
QTO+ComplEx (w/ N3&RP) 33.5 49.0 21.4 21.2 43.1 56.8 38.1 28.0 22.7 21.4

Comparison with prior methods under the same KGE model

CQD-Beam 22.3 46.7 11.6 8.0 31.2 40.6 21.2 18.7 14.6 8.4
QTO+ComplEx (w/ N3) 28.7 46.7 16.0 15.1 38.7 51.2 32.8 23.6 18.1 15.6
GNN-QE 26.8 42.8 14.7 11.8 38.3 54.1 31.1 18.9 16.2 13.4
QTO+NBFNet 27.3 51.7 17.5 13.3 31.8 43.0 28.9 24.2 22.3 12.6

Table 11. MRR (%) on FB15k-237, RP is short for the relation prediction task (Chen et al., 2021) during KGE training.

2p 3p pi ip up inp pin pni

FB15k

on Hits@1 98.2 96.3 98.2 98.2 98.2 96.2 98.6 97.8
on Hits@3 97.4 94.8 97.3 97.1 97.3 94.6 97.7 98.3
on Hits@10 96.0 92.7 96.6 96.0 95.7 92.8 96.3 98.7
on All 90.5 85.3 94.1 91.7 89.2 81.8 90.5 97.7

NELL995

on Hits@1 90.7 81.8 92.3 92.2 91.1 74.9 89.7 91.5
on Hits@3 88.3 77.2 91.6 89.9 88.8 71.5 86.4 93.8
on Hits@10 86.1 75.2 90.8 88.3 85.6 68.6 84.5 95.2
on All 76.4 64.4 81.5 82.4 77.2 54.5 74.3 95.1

Table 12. Accuracy (%) of intermediate variable interpretation given the Hits@K answers that QTO predicts and all true answers, evaluated
on FB15k and NELL995.

Method avg 1p 2p 3p 2i 3i pi ip 2u up

FB15k

GNN-QE 37.1 34.4 29.7 34.7 39.1 57.3 47.8 34.6 13.5 26.5
QTO 23.1 11.7 24.1 29.5 25.5 27.2 29.3 25.2 12.4 22.7

NELL995

GNN-QE 44.0 61.9 38.2 47.1 56.6 72.3 49.5 45.8 19.9 36.2
QTO 37.6 40.1 32.3 39.3 48.2 60.7 37.7 42.4 16.8 20.5

Table 13. MAPE (%, ↓) on answer set cardinality prediction, evaluated on FB15k and NELL995.

20

