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Abstract
Optimal transport (OT) has gained popularity due
to its various applications in fields such as ma-
chine learning, statistics, and signal processing.
However, the balanced mass requirement limits
its performance in practical problems. To address
these limitations, variants of the OT problem, in-
cluding unbalanced OT, Optimal partial transport
(OPT), and Hellinger Kantorovich (HK), have
been proposed. In this paper, we propose the Lin-
ear optimal partial transport (LOPT) embedding,
which extends the (local) linearization technique
on OT and HK to the OPT problem. The pro-
posed embedding allows for faster computation
of OPT distance between pairs of positive mea-
sures. Besides our theoretical contributions, we
demonstrate the LOPT embedding technique in
point-cloud interpolation and PCA analysis. Our
code is available at https://github.com/
Baio0/LinearOPT.

1. Introduction
The Optimal Transport (OT) problem has found numerous
applications in machine learning (ML), computer vision,
and graphics. The probability metrics and dissimilarity mea-
sures emerging from the OT theory, e.g., Wasserstein dis-
tances and their variations, are used in diverse applications,
including training generative models (Arjovsky et al., 2017;
Genevay et al., 2017; Liu et al., 2019), domain adaptation
(Courty et al., 2014; 2017), bayesian inference (Kim et al.,
2013), regression (Janati et al., 2019), clustering (Ye et al.,
2017), learning from graphs (Kolouri et al., 2020) and point
sets (Naderializadeh et al., 2021; Nguyen et al., 2023), to
name a few. These metrics define a powerful geometry for
comparing probability measures with numerous desirable
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properties, for instance, parameterized geodesics (Ambrosio
et al., 2005), barycenters (Cuturi & Doucet, 2014), and a
weak Riemannian structure (Villani, 2003).

In large-scale machine learning applications, optimal trans-
port approaches face two main challenges. First, the OT
problem is computationally expensive. This has motivated
many approximations that lead to significant speedups (Cu-
turi, 2013; Chizat et al., 2020; Scetbon & marco cuturi,
2022). Second, while OT is designed for comparing prob-
ability measures, many ML problems require comparing
non-negative measures with varying total amounts of mass.
This has led to the recent advances in unbalanced optimal
transport (Chizat et al., 2015; 2018b; Liero et al., 2018) and
optimal partial transport (Caffarelli & McCann, 2010; Fi-
galli, 2010; Figalli & Gigli, 2010). Such unbalanced/partial
optimal transport formulations have been recently used to
improve minibatch optimal transport (Nguyen et al., 2022)
and for point-cloud registration (Bai et al., 2022).

Comparing K (probability) measures requires the pairwise
calculation of transport-based distances, which, despite the
significant recent computational speed-ups, remains to be
relatively expensive. To address this problem, Wang et al.
(2013) proposed the Linear Optimal Transport (LOT) frame-
work, which linearizes the 2-Wasserstein distance utilizing
its weak Riemannian structure. In short, the probability
measures are embedded into the tangent space at a fixed
reference measure (e.g., the measures’ Wasserstein barycen-
ter) through a logarithmic map. The Euclidean distances
between the embedded measures then approximate the 2-
Wasserstein distance between the probability measures. The
LOT framework is computationally attractive as it only re-
quires the computation of one optimal transport problem
per input measure, reducing the otherwise quadratic cost to
linear. Moreover, the framework provides theoretical guar-
antees on convexifying certain sets of probability measures
(Moosmüller & Cloninger, 2023; Aldroubi et al., 2021),
which is critical in supervised and unsupervised learning
from sets of probability measures. The LOT embedding has
recently found diverse applications, from comparing collider
events in physics (Cai et al., 2020) and comparing medical
images (Basu et al., 2014; Kundu et al., 2018) to permuta-
tion invariant pooling for comparing graphs (Kolouri et al.,
2020) and point sets (Naderializadeh et al., 2021).
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Many applications in ML involve comparing non-negative
measures (often empirical measures) with varying total
amounts of mass, e.g., domain adaptation (Fatras et al.,
2021). Moreover, OT distances (or dissimilarity measures)
are often not robust against outliers and noise, resulting
in potentially high transportation costs for outliers. Many
recent publications have focused on variants of the OT
problem that allow for comparing non-negative measures
with unequal mass. For instance, the optimal partial trans-
port (OPT) problem (Caffarelli & McCann, 2010; Figalli,
2010; Figalli & Gigli, 2010), Kantorovich–Rubinstein norm
(Guittet, 2002; Lellmann et al., 2014), and the Hellinger–
Kantorovich distance (Chizat et al., 2018a; Liero et al.,
2018). These methods fall under the broad category of
“unbalanced optimal transport” (Chizat et al., 2018b; Liero
et al., 2018). The existing solvers for “unbalanced opti-
mal transport” problems are generally as expensive or more
expensive than the OT solvers. Hence, computation time
remains a main bottleneck of these approaches.

To reduce the computational burden for comparing unbal-
anced measures, Cai et al. (2022) proposed a clever exten-
sion for the LOT framework to unbalanced nonnegative
measures by linearizing the Hellinger-Kantorovich, denoted
as Linearized Hellinger-Kantorovich (LHK), distance, with
many desirable theoretical properties. However, an unin-
tuitive caveat about HK and LHK formulation is that the
geodesic for the transported portion of the mass does not
resemble the OT geodesic. In particular, the transported
mass does not maintain a constant mass as it is transported
(please see Figure 1). In contrast, OPT behaves exactly like
OT for the transported mass with the trade-off of losing the
Riemannian structure of HK.

Contributions: In this paper, inspired by OT geodesics, we
provide an OPT interpolation technique using its dynamic
formulation and explain how to compute it for empirical
distributions using barycentric projections. We use this
interpolation to embed the space of measures in a euclidean
space using optimal partial transport concerning a reference
measure. This allows us to extend the LOT framework
to LOPT, a linearized version of OPT. Thus, we reduce
the computational burden of OPT while maintaining the
decoupling properties between noise (created and destroyed
mass) and signal (transported mass) of OPT. We propose a
LOPT discrepancy measure and a LOPT interpolating curve
and contrast them with their OPT counterparts. Finally, we
demonstrate applications of the new framework in point
cloud interpolation and PCA analysis, showing that the new
technique is more robust to noise.

Organization: In section 2, we review Optimal Transport
Theory and the Linear Optimal Transport framework to set
the basis and intuitions on which we build our new tech-
niques. In Section 3 we review Optimal Partial Transport
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Figure 1. The depiction of the HK and OPT geodesics between two
measures, at times t ∈ {0, 0.25, 0.5, 0.75, 1}. The top row (Blue)
represents two initial deltas of mass one located at positions -1.2
and -1. The bottom row (Purple) shows two final deltas of mass one
located at 1 and 1.2. At intermediate time steps t = 0.25, 0.5, 0.75,
the transported part (middle delta moving from -1 to 1) changes
mass for HK while its mass remains constant for OPT. Outer
masses (located at -1.2 for initial time t = 0, and at 1.2 for final
time t = 1) are being destroyed and created, so mass changes are
expected. Notably, mass is created/destroyed with a linear rate for
OPT and a nonlinear rate for HK. See Appendix H.4 for further
analysis.

Theory and present an explicit solution to its Dynamic for-
mulation that we use to introduce the Linear Optimal Partial
Transport framework (LOPT). We define LOPT Embedding,
LOPT Discrepancy, LOPT interpolation and give explicit
ways to work with empirical data. In Section 4 we show
applications of the LOPT framework to approximate OPT
distances, to interpolate between point cloud datasets, and
to preprocess data for PCA analysis. In the appendix, we
provide proofs for all the results, new or old, for which we
could not find a proof in the literature.

2. Background: OT and LOT
2.1. Static Formulation of Optimal Transport

Let P(Ω) be the set of Borel probability measures defined
in a convex compact subset Ω of Rd, and consider µ0, µj ∈
P(Ω). The Optimal Transport (OT) problem between µ0

and µj is that of finding the cheapest way to transport all
the mass distributed according to the reference measure µ0

onto a new distribution of mass determined by the target
measure µj . Mathematically, it was stated by Kantorovich
as the minimization problem

OT (µ0, µj) := inf
γ∈Γ(µ0,µj)

C(γ;µ0, µj) (1)

for C(γ;µ0, µj) :=

∫
Ω2

∥x0 − xj∥2dγ(x0, xj), (2)
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where Γ(µ0, µj) is the set of all joint probability measures
in Ω2 with marginals µ0 and µj . A measure γ ∈ Γ(µ0, µj)
is called a transportation plan, and given measurable sets
A,B ∈ Ω, the coupling γ(A×B) describes how much mass
originally in the set A is transported into the set B. The
squared of the Euclidean distance1 ∥x0−xj∥2 is interpreted
as the cost of transporting a unit mass located at x0 to xj .
Therefore, C(γ;µ0, µj) represents the total cost of moving
µ0 to µj according to γ. Finally, we will denote the set of all
plans that achieve the infimum in (1), which is non-empty
(Villani, 2003), as Γ∗(µ0, µj).

Under certain conditions (e.g. when µ0 has continuous
density), an optimal plan γ can be induced by a rule/map T
that takes all the mass at each position x to a unique point
T (x). If that is the case, we say that γ does not split mass
and that it is induced by a map T. In fact, it is concentrated
on the graph of T in the sense that for all measurable sets
A,B ⊂ Ω, γ(A×B) = µ0({x ∈ A : T (x) ∈ B}), and we
will write it as the pushforward γ = (id× T )#µ

0. Hence,
(1) reads as

OT (µ0, µj) =

∫
Ω

∥x− T (x)∥2dµ0(x) (3)

The function T : Ω → Ω is called a Monge map, and when
µ0 is absolutely continuous it is unique (Brenier, 1991).

Finally, the square root of the optimal value OT (·, ·) is ex-
actly the so-called Wasserstein distance, W2, in P(Ω) (Vil-
lani, 2003, Th.7.3), and we will call it also as OT squared
distance. In addition, with this distance, P(Ω) is not only
a metric space but also a Riemannian manifold (Villani,
2003). In particular, the tangent space of any µ ∈ P(Ω) is
Tµ = L2(Ω;Rd, µ) = {u : Ω → Rd : ∥u∥2µ <∞}, where

∥u∥2µ :=

∫
Ω

∥u(x)∥2dµ(x). (4)

2.2. Dynamic Formulation of Optimal Transport

To understand the framework of Linear Optimal Transport
(LOT) we will use the dynamic formulation of the OT prob-
lem. Optimal plans and maps can be viewed as a static way
of matching two distributions. They tell us where each mass
in the initial distribution should end, but they do not tell
the full story of how the system evolves from initial to final
configurations.

In the dynamic formulation, we consider ρ ∈ P([0, 1]× Ω)
a curve of measures parametrized in time that describes the
distribution of mass ρt := ρ(t, ·) ∈ P(Ω) at each instant
0 ≤ t ≤ 1. We will require the curve to be sufficiently
smooth, to have boundary conditions ρ0 = µ0, ρ1 = µj ,

1More general cost functions might be used, but they are be-
yond the scope of this article.

and to satisfy the conservation of mass law. Then, it is well
known that there exists a velocity vector field vt := v(t, ·)
such that ρt satisfies the continuity equation2 with boundary
conditions

∂tρ+∇ · ρv = 0, ρ0 = µ0, ρ1 = µj . (5)

The length3 of the curve can be stated as
∫
[0,1]×Ω

∥v∥2dρ :=∫ 1

0
∥vt∥2ρt

dt, for ∥ · ∥ρt
as in (4), and OT (µ0, µj) coincides

with the length of the shortest curve between µ0 and µj (Be-
namou & Brenier, 2000). Hence, the dynamical formulation
of the OT problem (1) reads as

OT (µ0, µj) = inf
(ρ,v)∈CE(µ0,µj)

∫
[0,1]×Ω

∥v∥2dρ, (6)

where CE(µ0, µj) is the set of pairs (ρ, v), where ρ ∈
P([0, 1]× Ω), and v : [0, 1]× Ω → Rd, satisfying (5).

Under the assumption of existence of an optimal Monge
map T , an optimal solution for (6) can be given explicitly
and is pretty intuitive. If a particle starts at position x and
finishes at position T (x), then for 0 < t < 1 it will be at
the point

Tt(x) := (1− t)x+ tT (x). (7)

Then, varying both the time t and x ∈ Ω, the mapping (7)
can be interpreted as a flow whose time velocity4 is

vt(x) = T (x0)− x0, for x = Tt(x0). (8)

To obtain the curve of probability measures ρt, one can
evolve µ0 through the flow Tt using the formula ρt(A) =
µ0(T

−1
t (A)) for any measurable set A. That is, ρt is the

push-forward of µ0 by Tt

ρt = (Tt)#µ
0, 0 ≤ t ≤ 1. (9)

The pair (ρ, v) defined by (9) and (8) satisfies the continuity
equation (5) and solves (6). Moreover, the curve ρt is a
constant speed geodesic in P(Ω) between µ0 and µj (Figalli
& Glaudo, 2021), i.e., it satisfies that for all 0 ≤ s ≤ t ≤ 1√

OT (ρs, ρt) = (t− s)
√
OT (ρ0, ρ1). (10)

A confirmation of this comes from comparing the OT cost
(3) with (8) obtaining

OT (µ0, µj) =

∫
Ω

∥v0(x)∥2dµ0(x) (11)

which tells us that we only need the speed at the initial
time to compute the total length of the curve. Moreover,
OT (µ0, µj) coincides with the squared norm of the tangent
vector v0 in the tangent space Tµ0 of P(Ω) at µ0.

2The continuity equation is satisfied weakly or in the sense of
distributions. See (Villani, 2003; Santambrogio, 2015).

3Precisely, the length of the curve ρ, with respect to the Wasser-
stein distance, should be

∫ 1

0
∥vt∥ρtdt, but this will make no differ-

ence in the solutions of (6) since they are constant speed geodesics.
4For each (t, x) ∈ (0, 1)× Ω, the vector vt(x) is well defined

as Tt is invertible. See (Santambrogio, 2015, Lemma 5.29).
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2.3. Linear Optimal Transport Embedding

Inspired by the induced Riemannian geometry of the OT
squared distance, Wang et al. (2013) proposed the so-called
Linear Optimal Transportation (LOT) framework. Given
two target measures µi, µj , the main idea relies on consider-
ing a reference measure µ0 and embed these target measures
into the tangent space Tµ0 . This is done by identifying each
measure µj with the curve (9) minimizing OT (µ0, µj) and
computing its velocity (tangent vector) at t = 0 using (8).

Formally, let us fix a continuous probability reference
measure µ0. Then, the LOT embedding (Moosmüller &
Cloninger, 2023) is defined as

µj 7→ uj := T j − id ∀ µj ∈ P(Ω) (12)

where T j is the optimal Monge map between µ0 and µj .
Notice that by (3), (4) and (11) we have

∥uj∥2µ0 = OT (µ0, µj). (13)

After this embedding, one can use the distance in Tµ0 be-
tween the projected measures to define a new distance in
P(Ω) that can be used to approximate OT (µi, µj). The
LOT squared distance is defined as

LOTµ0(µi, µj) := ∥ui − uj∥2µ0 . (14)

2.4. LOT in the Discrete Setting

For discrete probability measures µ0, µj of the form

µ0 =

N0∑
n=1

p0nδx0
n
, µj =

Nj∑
n=1

pjnδxj
n
, (15)

a Monge map T j for OT (µ0, µj) may not exist. Following
Wang et al. (2013), in this setting, the target measure µj

can be replaced by a new measure µ̂j for which an optimal
transport Monge map exists. For that, given an optimal plan
γj ∈ Γ∗(µ0, µj), it can be viewed as a N0 × Ni matrix
whose value at position (n,m) represents how much mass
from x0n should be taken to xjm. Then, we define the OT
barycentric projection5 of µj with respect to µ0 as

µ̂j :=

N0∑
n=1

p0nδx̂j
n
, where x̂jn :=

1

p0n

Nj∑
m=1

γjn,mx
j
m. (16)

The new measure µ̂j is regarded as an N0-point representa-
tion of the target measure µj . The following lemma guaran-
tees the existence of a Monge map between µ0 and µ̂j .

Lemma 2.1. Let µ0 and µj be two discrete probability
measures as in (15), and consider an OT barycentric projec-
tion µ̂j of µj with respect to µ0 as in (16). Then, the map
x0n 7→ x̂jn given by (16) solves the OT problem OT (µ0, µ̂j).

5We refer to (Ambrosio et al., 2005) for the rigorous definition.

It is easy to show that if the optimal transport plan γj is
induced by a Monge map, then µ̂j = µj . As a consequence,
the OT barycentric projection is an actual projection in the
sense that it is idempotent.

Similar to the continuous case (12), given a discrete refer-
ence measure µ0, we can define the LOT embedding for a
discrete measure µj as the rule

µj 7→ uj := [(x̂j1 − x01), . . . , (x̂
j
N0

− x0N0
)].6 (17)

The range Tµ0
of this application is identified with Rd×N0

with the norm ∥u∥µ0 :=
∑N0

n=1 ∥u(n)∥2p0n, where u(n) ∈
Rd denotes the nth entry of u. We call (Rd×N0 , ∥ · ∥µ0) the
embedding space.

By the discussion above, if the optimal plan γj for problem
OT(µ0, µj) is induced by a Monge map, then the discrete
embedding is consistent with (13) in the sense that

∥uj∥2µ0 = OT (µ0, µ̂j) = OT (µ0, µj). (18)

Hence, as in section 2.3, we can use the distance between
embedded measures in (Rd×N0 , ∥ · ∥µ0

) to define a discrep-
ancy in the space of discrete probabilities that can be used
to approximate OT (µi, µj). The LOT discrepancy7 is de-
fined as

LOTµ0(µi, µj) := ∥ui − uj∥2µ0 . (19)

We call it a discrepancy because it is not a squared metric be-
tween discrete measures. It does not necessarily satisfy that
LOT (µi, µj) ̸= 0 for every distinct µi, µj . Nevertheless,
∥ui − uj∥µ0 is a metric in the embedding space.

2.5. OT and LOT Geodesics in Discrete Settings

Let µi, µj be discrete probability measures as in (15) (with
‘i’ in place of 0). If an optimal Monge map T forOT (µi, µj)
exists, a constant speed geodesic ρt between µi and µj , for
the OT squared distance, can be found by mimicking (9).
Explicitly, with Tt as in (7),

ρt = (Tt)#µ
i =

Ni∑
n=1

pinδ(1−t)xi
n+tT (xi

n)
. (20)

In practice, one replaces µj by its OT barycentric projection
with respect to µi (and so, the existence of an optimal Monge
map is guaranteed by Lemma 2.1).

6In (Wang et al., 2013), the embedded vector is defined as the
the element-wise multiplication uj ⊙√

p0, In addition, µ̂j , uj are
determined by γj , but we ignore the subscript ‘γj’ for convenience.

7In (Wang et al., 2013), LOT is defined by the infimum over all
possible optimal pairs (γi, γj). We do not distinguish these two
formulations for convenience in this paper. Additionally, (19) is
determined by the choice of (γi, γj).
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Now, given a discrete reference µ0, the LOT discrepancy
provides a new structure to the space of discrete probability
densities. Therefore, we can provide a substitute for the
OT geodesic (20) between µi and µj . Assume we have the
embeddings µi 7→ ui, µj 7→ uj as in (17). The geodesic
between ui and uj in the LOT embedding space Rd×N0 has
the simple form ut = (1− t)ui + tuj . This correlates with
the curve ρ̂t in P(Ω) induced by the map T̂ : x̂in 7→ x̂jn

8 as

ρ̂t := (T̂t)#µ̂
i =

N0∑
n=1

p0nδx0
n+ut(n). (21)

By abuse of notation, we call this curve the LOT geodesic
between µi and µj . Nevertheless, it is a geodesic between
their barycentric projections since it satisfies the following.
Proposition 2.2. Let ρ̂t be defined as (21), and ρ̂0 =
µ̂i, ρ̂1 = µ̂j , then for all 0 ≤ s ≤ t ≤ 1√

LOTµ0(ρ̂s, ρ̂t) = (t− s)
√
LOTµ0(ρ̂0, ρ̂1). (22)

3. Linear Optimal Partial Transport
Embedding

3.1. Static Formulation of Optimal Partial Transport

In addition to mass transportation, the OPT problem allows
mass destruction at the source and mass creation at the
target. Let M+(Ω) denote the set of all positive finite
Borel measures defined on Ω. For λ ≥ 0 the OPT problem
between µ0, µj ∈ M+(Ω) can be formulated as

OPTλ(µ
0, µj) := inf

γ∈Γ≤(µ0,µj)
C(γ;µ0, µj , λ) (23)

for C(γ;µ0, µj , λ) :=

∫
Ω2

∥x0 − xj∥2dγ(x0, xj)

+ λ(|µ0 − γ0|+ |µj − γ1|) (24)

where |µ0−γ0| is the total mass of µ0−γ0 (resp. |µj−γ1|),
and Γ≤(µ

0, µj) denotes the set of all measures in Ω2 with
marginals γ0 and γ1 satisfying γ0 ≤ µ0 (i.e., γ0(E) ≤
µ0(E) for all measurable set E), and γ1 ≤ µj . Here, the
mass destruction and creation penalty is linear, parametrized
by λ. The set of minimizers Γ∗

≤(µ
0, µj) of (23) is non-

empty (Figalli, 2010). One can further restrict Γ≤(µ
0, µj) to

the set of partial transport plans γ such that ∥x0−xj∥2 < 2λ
for all (x0, xj) ∈ supp(γ) (Bai et al., 2022, Lemma 3.2).
This means that if the usual transportation cost is greater
than 2λ, it is better to create/destroy mass.

3.2. Dynamic Formulation of Optimal Partial Transport

Adding a forcing term ζ to the continuity equation (6), one
can take into account curves that allow creation and destruc-
tion of mass. That is, those who break the conservation of

8This map can be understood as the one that transports µ̂i onto
µ̂j pivoting on the reference: µ̂i 7→ µ0 7→ µ̂j .

mass law. Thus, it is natural that the minimization problem
(23) can be rewritten (Chizat et al., 2018b, Th. 5.2) into a
dynamic formulation as

OPTλ(µ
0, µj) = inf

(ρ,v,ζ)∈FCE(µ0,µj)

∫
[0,1]×Ω

∥v∥2dρ+λ|ζ|

(25)
where FCE(µ0, µj) is the set of tuples (ρ, v, ζ) such that
ρ ∈ M+([0, 1]×Ω), ζ ∈ M([0, 1]×Ω) (where M stands
for signed measures) and v : [0, 1]× Ω → Rd, satisfying

∂tρ+∇ · ρv = ζ, ρ0 = µ0, ρ1 = µj . (26)

As in the case of OT, under certain conditions on the mini-
mizers γ of (23), one curve ρt that minimizes the dynamic
formulation (25) is quite intuitive. We show in the next
proposition that it consists of three parts γt, (1− t)ν0 and
tνj (see (27), (28), and (29) below). The first is a curve that
only transports mass, and the second and third destroy and
create mass at constant rates |ν0|, |νj |, respectively.

Proposition 3.1. Let γ∗ ∈ Γ∗
≤(µ

0, µj) be of the form γ∗ =
(id× T )#γ

∗
0 for T : Ω → Ω a (measurable) map. Let

ν0 := µ0 − γ∗0 , νj := µj − γ∗1 , (27)
Tt(x) := (1− t)x+ tT (x), γt := (Tt)#γ

∗
0 . (28)

Then, an optimal solution (ρ, v, ζ) for (25) is given by

ρt := γt + (1− t)ν0 + tνj , (29)
vt(x) := T (x0)− x0, if x = Tt(x0). (30)

ζt := νj − ν0 (31)

Moreover, plugging in (ρ, v, ζ) into (25), it holds that

OPTλ(µ
0, µj) = ∥v0∥2γ∗

0 ,2λ
+ λ(|ν0|+ |νj |), (32)

where v0(x) = T (x)− x (i.e., vt at time t = 0), and

∥v∥2µ,2λ :=

∫
Ω

min(∥v∥2, 2λ)dµ, for v : Ω → Rd.

In analogy to the OT squared distance, we also call the
optimal partial cost (32) as the OPT squared distance.

3.3. Linear Optimal Partial Transport Embedding

Definition 3.2. Let µ0, µj ∈ M+(Ω) such that
OPTλ(µ

0, µj) is solved by a plan induced by a map. The
LOPT embedding of µj with respect to µ0 is defined as

µj 7→ (uj , µ̄j , νj) := (v0, γ0, ν
j) (33)

where v0, γ0, νj are defined as in Proposition 3.1.

Let us compare the LOPT (33) and LOT (12) embeddings.
The first component v0 represents the tangent of the curve
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that transports mass from the reference to the target. This
is exactly the same as the LOT embedding. In contrast to
LOT, the second component γ0 is necessary since we need
to specify what part of the reference is being transported.
The third component νj can be thought of as the tangent
vector of the part that creates mass. There is no need to save
the destroyed mass because it can be inferred from the other
quantities.

Now, let µ0 ∧ µj be the minimum measure9 between µ0 and
µj . By the above definition, µ0 7→ (u0, µ̄0, ν0) = (0, µ0, 0).
Therefore, (32) can be rewritten

OPTλ(µ
0, µj) = ∥u0 − uj∥2µ̄0∧µ̄j ,2λ

+ λ(|µ̄0 − µ̄j |+ |ν0 − νj |) (34)

This motivates the definition of the LOPT discrepancy.10

Definition 3.3. Consider a reference µ0 ∈ M+(Ω) and
target measures µi, µj ∈ M+(Ω) such that OPTλ(µ0, µi)
and OPTλ(µ0, µj) can be solved by plans induced by map-
pings as in the hypothesis of Proposition 3.1. Let (ui, µ̄i, νi)
and (uj , µ̄j , νj) be the LOPT embeddings of µi and µj with
respect to µ0. The LOPT discrepancy between µi and µj

with respect to µ0 is defined as

LOPTµ0,λ(µ
i, µj) := ∥ui − uj∥2µ̄i∧µ̄j ,2λ

+ λ(|µ̄i − µ̄j |+ |νi − νj |) (35)

Similar to the LOT framework, by equation (34), LOPT can
recover OPT when µi = µ0. That is,

LOPTµ0,λ(µ
0, µj) = OPTλ(µ

0, µj).

3.4. LOPT in the Discrete Setting

If µ0, µj are N0, Nj−size discrete non-negative measures
as in (15) (but not necessarily with total mass 1), the OPT
problem (23) can be written as

min
γ∈Γ≤(µ0,µj)

∑
n,m

∥x0n − xjm∥2γn,m + λ(|p0|+ |pj | − 2|γ|)

where the set Γ≤(µ
0, µj) can be viewed as the subset of

N0 ×Nj matrices with non-negative entries

Γ≤(µ
0, µj) := {γ ∈ RN0×Nj

+ : γ1Nj
≤ p0, γT 1N0

≤ pj},

where 1N0
denotes the N0 × 1 vector whose entries are 1

(resp. 1Nj
), p0 = [p01, . . . , p

0
N0

] is the vector of weights
of µ0 (resp. pj), γ1Nj ≤ p0 means that component-wise

9Formally, µ0∧µj(B) := inf
{
µ0 (B1) + µj (B2)

}
for every

Borel set B, where the infimum is taken over all partitions of B.,
i.e. B = B1 ∪B2, B1 ∩B2 = ∅, given by Borel sets B1, B2.

10LOPTλ is not a rigorous metric.

holds the ‘≤’ (resp. γT 1N0
≤ pj , where γT is the transpose

of γ), and |p0| =
∑N0

n=1 |p0n| is the total mass of µ0 (resp.
|pj |, |γ|). The marginals are γ0 := γ1Nj

, and γ1 := γT 1N0
.

Similar to OT, when an optimal plan γj for OPTλ(µ0, µ̂j)
is not induced by a map, we can replace the target measure
µj by an OPT barycentric projection µ̂j for which a map
exists. Therefore, allowing us to apply the LOPT embedding
(see (33) and (40) below).

Definition 3.4. Let µ0 and µj be positive discrete measures,
and γj ∈ Γ∗

≤(µ
0, µj). The OPT barycentric projection11

of µj with respect to µ0 is defined as

µ̂j :=

N0∑
n=1

p̂jnδx̂j
n
, where (36)

p̂jn :=

Nj∑
m=1

γjn,m, 1 ≤ n ≤ N0, (37)

x̂jn :=

{
1

p̂j
n

∑Nj

m=1 γ
j
n,mx

j
m if p̂jn > 0

x0n if p̂jn = 0.
(38)

Theorem 3.5. In the same setting of Definition 3.4, the map
x0n 7→ x̂jn given by (38) solves the problem OPTλ(µ

0, µ̂j),
in the sense that induces the partial optimal plan γ̂j =
diag(p̂j1, . . . , p̂

j
N0

).

It is worth noting that when we take a barycentric projection
of a measure, some information is lost. Specifically, the
information about the part of µj that is not transported from
the reference µ0. This has some minor consequences.

First, unlike (18), the optimal partial transport cost
OPTλ(µ

0, µj) changes when we replace µj by µ̂j . Never-
theless, the following relation holds.

Theorem 3.6. In the same setting of Definition 3.4, if γj is
induced by a map, then

OPTλ(µ
0, µj) = OPTλ(µ

0, µ̂j) + λ(|µj | − |µ̂j |) (39)

The second consequence12 is that the LOPT embedding of
µ̂j will always have a null third component. That is,

µ̂j 7→ ([x̂j1 − x01, . . . , x̂
j
N0

− x0N0
],

N0∑
n=1

p̂jnδx0
n
, 0). (40)

Therefore, we represent this embedding as µ̂j 7→ (uj , p̂j),
for uj = [x̂j1−x01, . . . , x̂

j
N0

−x0N0
] and p̂j = [p̂j1, . . . , p̂

j
N0

].
The last consequence is given in the next result.

11Notice that in (16) we had p0n =
∑Nj

m=1 γ
j
n,m. This leads to

introducing p̂jn as in (37). That is, p̂jn plays the role of p0n in the
OPT framework. However, here p̂jn depends on γj (on its first
marginal γj

0) and not only on µ0, and so we add a superscript ‘j’.
12This is indeed an advantage since it allows the range of the

embedding to always have the same dimension N0 × (d+ 1).
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Proposition 3.7. If µ0, µi, µj are discrete and satisfy the
conditions of Definition 3.3, then

LOPTµ0,λ(µ
i, µj) = LOPTµ0,λ(µ̂

i, µ̂j) + λCi,j (41)

where Ci,j = |µi| − |µ̂i|+ |µj | − |µ̂j |.

As a byproduct we can define the LOPT discrepancy for
any pair of discrete measures µi, µj as the right-hand side
of (41). In practice, unless to approximate OPTλ(µi, µj),
we set Ci,j = 0 in (41). That is,

LOPTµ0,λ(µ
i, µj) := LOPTµ0,λ(µ̂

i, µ̂j). (42)

3.5. OPT and LOPT Interpolation

Inspired by OT and LOT geodesics as defined in section 2.5,
but lacking the Riemannian structure provided by the OT
squared norm, we propose an OPT interpolation curve and
its LOPT approximation.

For the OPT interpolation between two measures µi, µj for
which exists γ ∈ Γ∗

≤(µ
i, µj) of the form γ = (id×T )#γ0 ,

a natural candidate is the solution ρt of the dynamic for-
mulation of OPTλ(µi, µj). The exact expression is given
by Proposition 3.1. When working with general discrete
measures µi, µj (as in (15), with ‘i’ in place of 0) such γ
is not guaranteed to exist. Then, we replace the latter with
its OPT barycentric projection with respect to µi. And by
Theorem 3.5 the map T : xin 7→ x̂jn solves OPTλ(µi, µ̂j)
and the OPT interpolating curve is13

t 7→
Ni∑
n=1

p̂jnδ(1−t)xi
n+tT (xi

n)
+ (1− t)

Ni∑
n=1

(pin − p̂jn)δxi
n
.

When working with a multitude of measures, it is conve-
nient to consider a reference µ0 and embed the measures
in R(d+1)×N0 using LOPT. Hence, doing computations in a
simpler space. Below we provide the LOPT interpolation.

Definition 3.8. Given discrete measures µ0, µi, µj , with µ0

as the reference, let (ui, p̂i), (uj , p̂i) be the LOPT embed-
dings of µi, µj . Let p̂ij := p̂i∧p̂j , and ut := (1−t)ui+tuj .
We define the LOPT interpolating curve between µi and
µj by

t 7→
∑

k∈DT

p̂ijk δx0
k+ut(k) + (1− t)

∑
k∈DD

(p̂ik − p̂ijk )δx0
k+ui

k

+ t
∑

k∈DC

(p̂jk − p̂ijk )δx0
k+uj

k

where DT = {k : p̂ijk > 0}, DD = {k : p̂ik > p̂ijk )} and
DC = {k : p̂ijk < p̂jk)} are respectively the sets where we
transport, destroy and create mass.

13p̂jn are the coefficients of µ̂j with respect to µi analogous to
(36).

(a) Mean of the error (b) Medean of the error

Figure 2. Graphs of the mean and median relative errors between
OPTλ and LOPTλ,µ0 as a function of the parameter λ.

4. Applications
Approximation of OPT Distance: Similar to LOT (Wang
et al., 2013), and Linear Hellinger Kantorovich (LHK) (Cai
et al., 2022), we test the approximation performance of
OPT using LOPT. Given K empirical measures {µi}Ki=1,
for each pair (µi, µj), we compute OPTλ(µ

i, µj) and
LOPTµ0,λ(µ

i, µj) and the mean or median of all pairs
(µi, µj) of relative error defined as

|OPTλ(µi, µj)− LOPTµ0,λ(µ
i, µj)|

OPTλ(µi, µj)
.

Similar to LOT and LHK, the choice of µ0 is critical for
the accurate approximation of OPT. If µ0 is far away from
{µi}Ki=1, the linearization is a poor approximation because
the mass in µi and µ0 would only be destroyed or created.
In practice, one candidate for µ0 is the barycenter of the
set of measures {µi}. The OPT can be converted into OT
problem (Caffarelli & McCann, 2010), and one can use OT
barycenter (Cuturi & Doucet, 2014) to find µ0.

For our experiments, we created K point sets of size
N = 500 for K different Gaussian distributions in R2. In
particular, µi ∼ N (mi, I), where mi is randomly selected
such that ∥mi∥ =

√
3 for i = 1, ...,K. For the reference,

we picked an N point representation of µ0 ∼ N (m, I) with
m =

∑
mi/K. We repeated each experiment 10 times.

To exhibit the effect of the parameter λ in the approxima-
tion, the relative errors are shown in Figure 2. For the
histogram of the relative errors for each value of λ and
each number of measures K, we refer to Figure 6 in the
Appendix H. For large λ, most mass is transported and
OT (µi, µj) ≈ OPTλ(µ

i, µj), the performance of LOPT is
close to that of LOT, and the relative error is small.

In Figure 3 we report wall clock times of OPT vs LOPT for
λ = 5. We use linear programming (Karmarkar, 1984) to
solve each OPT problem with a cost of O(N3log(N)) each.
Thus, computing the OPT distance pair-wisely for {µi}Ki=1

requires O(K2N3log(N)). In contrast, to compute LOPT ,
we only need to solve K optimal partial transport problems
for the embeddings (see (33) or (40)). Computing LOPT
discrepancies after the embeddings is linear. Thus, the total
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Figure 3. Wall-clock time between OPT and LOPT. The LP solver
in PythonOT (Flamary et al., 2021) is applied to each individual
OPT problem, with 100N maximum number of iterations.

computational cost is O(KN3log(N) + K2N). The ex-
periment was conducted on a Linux computer with AMD
EPYC 7702P CPU with 64 cores and 256GB DDR4 RAM.

Point Cloud Interpolation: We test OT geodesic, LOT
geodesic, HK geodesic, LHK geodesic, OPT interpolation,
and LOPT interpolation on the point cloud MNIST dataset.
We compute different transport curves between point sets
of the digits 0 and 9. Each digit is a weighted point set
{xjn, pjn}

Nj

n=1, j = 1, 2, that we consider as a discrete mea-
sure of the form µj =

∑Nj

n=1 p
j
nδxj

n
+ 1/Nj

∑ηNj

m=1 δyj
m

,
where the first sum corresponds to the clean data normalized
to have total mass 1, and the second sum is constructed with
samples from a uniform distribution acting as noise with
total mass η. Each xjn is a point in the square region [0, 20]2

and each yjm is a point in the square region [−10, 30]2. For
HK, OPT, LHK and LOPT, we use the distributions µj

without re-normalization, while for OT and LOT, we re-
normalize them. The reference in LOT, LHK and LOPT is
taken as the OT barycenter of a sample of the digits 0, 1,
and 9 not including the ones used for interpolation, and nor-
malized to have unit total mass. We test for η = 0, 0.5, 0.75
(see Figure 8 in the Appendix H). The results for η = 0.5
are shown in Figure 4. We can see that OT and LOT do
not eliminate noise points. HK, OPT still retains much of
the noise because interpolation is essentially between µ1

and µ̂2 (with respect to µ1). So µ1 acts as a reference that
still has a lot of noise. In LHK, LOPT, by selecting the
same reference as LOT we see that the noise significantly
decreases. In the HK and LHK cases, we notice not only
how the masses vary, but also how their relative positions
change obtaining a very different configuration at the end
of the interpolation. OPT and LOPT instead returns a more
natural interpolation because of the mass preservation of the
transported portion and the decoupling between transport
and destruction/creation of mass.

Figure 4. We demonstrate the OT geodesic, HK geodesic, OPT in-
terpolation, LOT geodesic, LHK geodesic and LOPT interpolation
in MNIST dataset. In LOT geodesic and LOPT interpolation, we
use the same reference measure. The percentage of noise η is set
to 0.5. In OPT and LOPT interpolation, we set λ = 20; in HK and
LHK, we set the scaling to be 2.5.

PCA analysis: We compare the results of performing PCA
on the embedding space of LOT, LHK and LOPT for point
cloud MNIST. We take 900 digits from the dataset corre-
sponding to digits 0, 1 and 3 in equal proportions. Each ele-
ment is a weighted point set {xjn, pjn}

Nj

n=1 that we consider
as a discrete measure with added noise as in the previous
experiment. The reference, µ0, is set to the OT barycenter of
30 samples from the clean data. For LOT we re-normalize
each µj to have a total mass of 1, while we do not re-
normalize for LOPT. Let Sη := {µj : noise level = η}900j=1.
We embed Sη using LOT, LHK and LOPT and apply PCA
on the embedded vectors {uj}. In Figure 5 we show the first
two principal components of the set of embedded vectors
based on LOT, LHK and LOPT for noise levels η = 0, 0.75.
It can be seen that when there is no noise, the PCA dimen-
sion reduction technique works well for all three embedding
methods. When η = 0.75, the method fails for LOT embed-
ding, but the dimension-reduced data is still separable for
LOPT and LHK. For the running time, LOT, LOPT requires
60-80 seconds and LHK requires about 300-350 seconds.
The experiments are conducted on a Linux computer with
AMD EPYC 7702P CPU with 64 cores and 256GB DDR4
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Figure 5. We plot the first two principal components of each uj

based on LOT and LOPT. For LOPT, we set λ = 20.0, and for
LHK, we set the scaling to be 2.5.

RAM.

We refer the reader to Appendix H for further details and
analysis.

5. Summary
We proposed a Linear Optimal Partial Transport (LOPT)
technique that allows us to embed distributions with differ-
ent masses into a fixed dimensional space in which several
calculations are significantly simplified. We show how to
implement this for real data distributions allowing us to
reduce the computational cost in applications that would
benefit from the use of optimal (partial) transport. We fi-
nally provide comparisons with previous techniques and
show some concrete applications. In particular, we show
that LOPT is more robust and computational efficient in the
presence of noise than previous methods. For future work,
we will continue to investigate the comparison of LHK and
LOPT, and the potential applications of LOPT in other ma-
chine learning and data science tasks, such as Barycenter
problems, graph embedding, task similarity measurement
in transfer learning, and so on.
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Birkhäuser, 2015.

Scetbon, M. and marco cuturi. Low-rank optimal trans-
port: Approximation, statistics and debiasing. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=4btNeXKFAQ.

Villani, C. Topics in Optimal Transportation, volume 58.
American Mathematical Society, 2003. URL http://
www.ams.org/gsm/058.
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Appendix

We refer to the main text for references.

A. Notation

• (Rd, ∥ · ∥), d-dimensional Euclidean space endowed with the standard Euclidean norm ∥x∥ =
√∑d

k=1 |x(k)2|. d(·, ·)
is the associated distance, i.e., d(x, y) = ∥x− y∥.

• x · y canonical inner product in Rd.

• 1N , column vector of size N × 1 with all entries equal to 1.

• diag(p1, . . . , pN ), diagonal matrix.

• wT , transpose of a matrix w.

• R+, non-negative real numbers.

• Ω, convex and compact subset of Rd. Ω2 = Ω× Ω.

• P(Ω), set of probability Borel measures defined in Ω.

• M+(Ω), set of positive finite Borel measures defined in Ω.

• M, set of signed measures.

• π0 : Ω2 → Ω, π0(x0, x1) := x0; π1 : Ω2 → Ω, π1(x0, x1) := x1, standard projections.

• F#µ, push-forward of the measure µ by the function. F#µ(B) = µ(F−1(B)) for all measurable set B, where
F−1(B) = {x : F (x) ∈ B}.

• δx, Dirac measure concentrated on x.

• µ =
∑N

n=1 pnδxn
, discrete measure (xn ∈ Ω, pn ∈ R+). The coefficients pn are called the weights of µ.

• supp(µ), support of the measure µ.

• µi ∧ µj minimum measure between µi and µj ; pi ∧ pj vector having at each n entry the minimum value pin and pjn.

• µ0 reference measure. µi, µj target measures. In the OT framework, they are in P(Ω). In the OPT framework, they are
in M+(Ω).

• Γ(µ0, µj) = {γ ∈ P(Ω2) : π0#γ = µ0, π1#γ = µj}, set of Kantorovich transport plans.

• C(γ;µ0, µj) =
∫
Ω2 ∥x0 − xj∥2dγ(x0, xj), Kantorovich cost given by the transportation plan γ between µ0 and µj .

• Γ∗(µ0, µj), set of optimal Kantorovich transport plans.

• T , optimal transport Monge map.

• id, identity map id(x) = x.

• Tt(x) = (1− t)x+ tT (x) for T : Ω → Ω. Viewed as a function of (t, x), it is a flow.

• In section 2: ρ ∈ P([0, 1]× Ω) curve of measures. At each 0 ≤ t ≤, ρt ∈ P(Ω). In section 3: analogous, replacing P
by M+.

• v : [0, 1]× Ω → Rd. at each time vt : Ω → Rd is a vector field. v0, initial velocity.

• ∇ · V , divergence of the vector field V with respect to the spatial variable x.

• ∂tρ+∇ · ρv = 0, continuity equation.

12
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• CE(µ0, µj), set of solutions of the continuity equation with boundary conditions µ0 and µj .

• ∂tρ+∇ · ρv = ζ, continuity equation with forcing term ζ.

• FCE(µ0, µj), set solutions (ρ, v, ζ) of the continuity equation with forcing term with boundary conditions µ0 and µj .

• OT (µ0, µj), optimal transport minimization problem. See (1) for the Kantorovich formulation, and (6) for the dynamic
formulation.

• W2(µ
0, µj) =

√
OT (µ0, µj), 2-Wasserstein distance.

• Tµ = L2(Ω;Rd, µ), where ∥u∥2µ =
∫
Ω
∥u(x)∥2dµ(x) (if µ is discrete, Tµ is identified with Rd×N and ∥u∥2µ =∑N

n=1 ∥u(n)∥2pn).

• LOTµ0(µi, µj), see (14) for continuous densities, and (19) for discrete measures.

• λ > 0, penalization in OPT.

• µ ≤ ν if µ(B) ≤ ν(E) for all measurable set E and we say that µ is dominated by ν.

• Γ≤(µ
0, µj) = {γ ∈ M+(Ω

2) : π0#γ ≤ µ0, π1#γ ≤ µj}, set of partial transport plans.

• γ0 := π0#γ, γ1 := π1#γ, marginals of γ ∈ M+(Ω
2).

• ν0 = µ0 − γ0 (for the reference µ0), νj = µj − γ1 (for the target µj).

• C(γ;µ0, µj , λ) =
∫
∥x0 − xj∥2dγ(x0, xj) + λ(|µ0 − γ0| + |µj − γ1|), partial transport cost given by the partial

transportation plan γ between µ0 and µj with penalization λ.

• Γ∗
≤(µ

0, µj), set of optimal partial transport plans.

• OPT (µ0, µj), partial optimal transport minimization problem between µ0 and µj . See (23) for the static formulation,
and (25) for the dynamic formulation.

• ∥v∥2µ,2λ :=
∫
Ω
min(∥v∥2, 2λ)dµ

• LOPTλ(µi, µj), see (35), and (42) and the discussion above.

• µj 7→ uj , LOT embedding (fixing first a reference µ0 ∈ P(Ω)). If µ0 has continuous density, uj := vj0 = T j − id,
and so it is a map from measures µj ∈ P(Ω) to vector fields ui defined in Ω, see (12). For discrete measures (µ0, µj

discrete), LOT embedding is needed first, and in this case, the embedding is a map from discrete probability to Rd×N0 ,
see (17).

• µ, OT and OPT barycentric projection of µ with respect to a reference µ0 (in P or M+, resp.), see (16) and (36),
respectively. x̂n denote the new locations where µ̂ is concentrated. p0n and p̂n denote the wights of µ̂ for OT and OPT,
respectively.

• ut = (1− t)ui + tuj , geodesic in LOT embedding space.

• ρ̂t, LOT geodesic.

• LOPT embeding, see (33), and (40).

• OPT interpolating curve, and LOPT interpolating curve are defined in section 3.5.

13
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B. Proof of lemma 2.1
Proof. We fix γ∗ ∈ Γ∗(µ0, µj)14, and then we compute the map x0n 7→ x̂jn according to (16). This map induces a
transportation plan γ̂∗ := diag(p01, . . . , p

0
N0

) ∈ RN0×N0
+ . We will prove that γ̂∗ ∈ Γ∗(µ0, µ̂j). By definition, it is easy

to see that its marginals are µ0 and µ̂j . The complicated part is to prove optimality. Let γ̂ ∈ Γ(µ0, µ̂j) be an arbitrary
transportation plan between µ0 and µj (i.e. γ1N0

= γT 1N0
= p0). We need to show

C(γ̂∗;µ0, µ̂j) ≤ C(γ̂;µ0, µ̂j). (43)

Since γ̂∗ is a diagonal matrix with positive diagonal, its inverse matrix is (γ∗)−1 = diag(1/p01, . . . , 1/p
0
N0

). We define

γ := γ̂(γ∗)−1γ∗ ∈ RN0×Nj

+ .

We claim γ ∈ Γ(µ0, µj). Indeed,

γ1Nj
= γ̂(γ∗)−1γ∗1Nj

= γ̂(γ∗)−1p0 = γ̂1N0
= p0 (44)

γT 1N0 = (γ∗)T (γ∗)−1γ̂T 1N0 = (γ∗)T (γ∗)−1p0 = (γ∗)T 1N0 = pj , (45)

where the second equality in (44) and the third equality in (45) follow from the fact γ∗ ∈ Γ(µ0, µ1), and the fourth equality
in (44) and the second equality in (45) hold since γ̂ ∈ Γ(µ0, µ̂j).

Since γ∗ is optimal for OT (µ, µj),we have C(γ∗;µ0, µj) ≤ C(γ;µ0, µj) to denote the transportation cost for γ∗ and γ,
respectively. We write

C(γ∗;µ0, µj) =

N0∑
n=1

Nj∑
m=1

∥x0n − xjm∥2γ∗n,m

=

N0∑
n=1

∥x0n∥2p0n +

Nj∑
m=1

∥xjm∥2pjm − 2

N0∑
n=1

Nj∑
m=1

xn · xjm γ∗n,m

= K1 − 2

N0∑
n=1

Nj∑
m=1

x̂n · xjm γ∗n,m,

where K1 is a constant (which only depends on µ0, µj). Similarly,

C(γ;µ0, µj) = K1 − 2

N0∑
n=1

Nj∑
m=1

x0n · xjm γn,m

= K1 − 2

N0∑
n=1

Nj∑
m=1

N0∑
ℓ=1

γ̂n,ℓγ
∗
ℓ,m

p0ℓ
x0n · xjm

Analogously, we have

C(γ̂∗;µ0, µ̂j) =

N0∑
n=1

N0∑
m=1

∥x̂n − x̂jm∥2γ̂∗n,m

=

N0∑
n=1

∥x0n∥2p0n +

N0∑
m=1

∥x̂jm∥2p0m − 2

N0∑
n=1

N0∑
m=1

x0n · x̂jm γ̂∗n,m

= K2 − 2

N0∑
n=1

Nj∑
m=1

x0n · xjm γ∗n,m

= K2 −K1 + C(γ∗;µ0, µj) (46)

14Although in subsection 2.4 we use the notation γj ∈ Γ∗(µ0, µj), here we use the notation γ∗ to emphasize that we are fixing an
optimal plan.
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where K2 is constant (which only depends on µ0 and µ̂j) and similarly

C(γ̂;µ0, µ̂j) = K2 − 2

N0∑
n=1

Nj∑
m=1

N0∑
ℓ=1

γ̂n,ℓγ
∗
ℓ,m

p0ℓ
x0n · xjm

= K2 −K1 + C(γ;µ0, µ1) (47)

Therefore, by (46) and (47), we have that C(γ∗;µ0, µj) ≤ C(γ;µ0, µj) if and only if C(γ̂∗;µ0, µ̂j) ≤ C(γ̂;µ0, µ̂j). So,
we conclude the proof by the fact γ∗ is optimal for OT (µ0, µ

j).

C. Proof of Proposition 2.2

Lemma C.1. Given discrete measures µ0 =
∑N0

k=1 p
0
kδx0

k
, µ1 =

∑N0

k=1 p
0
kδx1

k
, µ2 =

∑N0

k=1 p
0
kδx2

k
, suppose that the maps

x0k 7→ x1k and x0k 7→ x2k solve OT (µ0, µ1) and OT (µ0, µ2), respectively. For t ∈ [0, 1], define µt :=
∑N0

k=1 p
0
kδ(1−t)x1

k+tx2
k
.

Then, the mapping Tt : x0k 7→ (1− t)x1k + tx2k solves the problem OT (µ0, µt).

Proof. Let γ∗ = diag(p01, . . . , p
0
N0

) be the corresponding transportation plan induced by Tt. Consider an arbitrary
γ ∈ RN0×N0

+ such that γ ∈ Γ(µ0, µt). We need to show

C(γ∗;µ0, µt) ≤ C(γ;µ0, µt).

We have

C(γ∗;µ0, µt) =

N0∑
k,k′=1

∥x0k − (1− t)x1k′ − tx2k′∥2 γ∗k,k′

=

N0∑
k=1

∥x0k∥2p0k +

N0∑
k=1

∥(1− t)x1k′ + tx2k′∥2p0k − 2

N0∑
k,k′=1

x0k · ((1− t)x1k′ + tx2k′)

= K − 2

(1− t)

N0∑
k,k′=1

x̂k · x1k′ γ∗k,k′ + t

N0∑
k,k′=1

x̂k · x2k′ γ∗k,k′

 , (48)

where in third equation, K is a constant which only depends on the marginals µ0, µt. Similarly,

C(γ;µ0, µt) = K − 2

(1− t)

N0∑
k,k′=1

x̂k · x1k′γk,k′ + t

N0∑
k,k′=1

x̂k · x2k′ γk,k′

 . (49)

By the fact that γ, γ∗ ∈ Γ(µ̂, µt) = Γ(µ0, µ1) = Γ(µ0, µ2), and that γ∗ is optimal for OT (µ̂, µ1), OT (µ̂, µ2), we have

N0∑
k,k′=1

x̂k · x1k′ γ∗k,k′ ≥
N0∑

k,k′=1

x̂k · x1k′ γk,k′ and
N0∑

k,k′=1

x̂k · x2k′ γ∗k,k′ ≥
N0∑

k,k′=1

x̂k · x2k′ γk,k′ .

Thus, by (48) and (49), we have C(γ∗; µ̂, µt) ≤ C(γ; µ̂, µt), and this completes the proof.

Proof of Proposition 2.2. Consider 0 ≤ s ≤ t ≤ 1. By Lemma 2.1, the maps T i : x0k 7→ x̂ik, T j : x0k 7→ x̂jk solve
OT (µ0, µ̂i), OT (µ0, µ̂j), respectively. Moreover, by Lemma C.1 (under the appropriate renaming), we have the mapping

x0k 7→ (1− s)x̂ik + sx̂jk = x0k + (1− s)uik + sujk, 1 ≤ k ≤ N0

solves OT (µ0, ρ̂s), and similarly

x0k 7→ (1− t)x̂ik + tx̂jk = x0k + (1− t)uik + tujk, 1 ≤ k ≤ N0

15
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solves OT (µ0, ρ̂t).

Thus,

LOTµ0(ρ̂s, ρ̂t) =

N0∑
k=1

∥((1− s)x̂ik + sx̂jk)− ((1− t)x̂ik + tx̂jk)∥
2 p0k

=

N0∑
k=1

(t− s)2∥x̂ik − x̂jk∥
2 p0k

= (t− s)2LOTµ0(µi, µj),

and this finishes the proof.

D. Proof of proposition 3.1
This result relies on the definition (29) of the curve ρt, which is inspired by the fact that solutions of non-homogeneous
equations are given by solutions of the associated homogeneous equation plus a particular solution of the non-homogeneous.
We choose the first term of ρt as a solution of a (homogeneous) continuity equation (γt defined in (28)), and the second
term (γt := (1− t)ν0 + tνj) as an appropriate particular solution of the equation (26) with forcing term ζ defined in (31).
Moreover, the curve ρt will become optimal for (25) since both γt and γt are ‘optimal’ in different senses. On the one hand,
γt is optimal for a classical optimal transport problem15. On the other hand, γt is defined as a line interpolating the new part
introduced by the framework of partial transportation, ‘destruction and creation of mass’.

Although this is the core idea behind the proposition, to prove it we need several lemmas to deal with the details and
subtleties.

First, we mention that, the push-forward measure F#µ can be defined satisfying the formula of change of variables∫
A

g(x) dF#µ(x) =

∫
F−1(A)

g(F (x)) dµ(x)

for all measurable set A, and all measurable function g, where F−1(A) = {x : F (x) ∈ A}. This is a general fact, and as
an immediate consequence, we have conservation of mass

|F#µ| = |µ|.

Then, in our case, the second term in the cost function (24) we can be written as

λ(|µ0 − γ0|+ |µj − γ1| = λ(|µ0|+ |µ1| − 2|γ|)

since γ0 and γ1 are dominated by µ0 and µj , respectively, in the sense that γ0 ≤ µ0 and γ1 ≤ µj .

Finally, we would like to point out that when we say that (ρ, v, ζ) is a solution for equation (26), we mean that it is a weak
solution or, equivalently, it is a solution in the distributional sense (Santambrogio, 2015, Section 4 4). That is, for any test
function ψ : Ω → R continuous differentiable with compact support, (ρ, v, ζ) satisfies

∂t

(∫
Ω

ψ dρt

)
−

∫
Ω

∇ψ · vt dρt =
∫
Ω

ψ dζt,

or, equivalently, for any test function ϕ : [0, 1]× Ω → R continuous differentiable with compact support, (ρ, v, ζ) satisfies∫
[0,1]×Ω

∂tϕdρ+

∫
[0,1]×Ω

∇ϕ · v dρ+
∫
[0,1]×Ω

dζ =

∫
Ω

ϕ(1, ·) dµj −
∫
Ω

ϕ(0, ·) dµ0.

Lemma D.1. If γ∗ is optimal for OPTλ(µ0, µ1), and has marginals γ∗0 and γ∗1 , then γ∗ is optimal for OPTλ(µ0, γ∗1 ),
OPTλ(γ

∗
0 , µ

1) and OT (γ∗0 , γ
∗
1).

15Here we will strongly use that the fixed partial optimal transport plan γ∗ ∈ Γ∗
≤(µ

0, µj) in the hypothesis of the proposition has the
form γ∗ = (I × T )#γ∗

0 , for a map T : Ω → Ω
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Proof. LetC(γ;µ0, µ1, λ) denote the objective function of the minimization problemOPTλ(µ
0, µ1), and similarly consider

C(γ; γ∗0 , µ
1, λ), C(γ;µ0, γ∗1 , λ). Also, let C(γ, γ∗0 , γ

∗
1) be the objective function of OT (γ∗0 , γ

∗
1 ).

First, given an arbitrary plan γ ∈ Γ(γ∗0 , γ
∗
1 ) ⊂ Γ≤(µ

0, µ1), we have

C(γ;µ0, µ1, λ) =

∫
Ω2

∥x0 − x1∥2dγ(x0, x1) + λ(|µ0 − γ0|+ |µ1 − γ1|)

= C(γ; γ∗0 , γ
∗
1 ) + λ(|µ0 − γ0|+ |µ1 − γ1|).

Since C(γ∗;µ0, µ1, λ) ≤ C(γ;µ0, µ1, λ), we have C(γ∗; γ∗0 , γ
∗
1 ) ≤ C(γ; γ∗0 , γ

∗
1 ). Thus, γ∗ is optimal for OT (γ∗0 , γ

∗
1).

Similarly, for every γ ∈ Γ≤(γ
∗
0 , µ

1), we have C(γ;µ0, µ1, λ) = C(γ; γ∗0 , µ
1) + λ|µ0 − γ∗0 | and thus γ∗ is optimal for

OPTλ(γ
∗
0 , µ

1). Analogously, γ∗ is optimal for OPTλ(µ
0, γ∗1 ).

Lemma D.2. If γ∗ ∈ Γ∗
≤(µ

0, µ1), then d
(
supp(ν0), supp(ν1)

)
≥

√
2λ, where ν0 = µ0 − γ0, ν1 = µ1 − γ1, and d is the

Euclidean distance in Rd.

Proof. We will proceed by contradiction. Assume that d
(
supp(ν0), supp(ν1)

)
<

√
2λ. Then, there exist x̃0 ∈ supp(ν0)

and x̃1 ∈ supp(ν1) such that ∥x̃0 − x̃1∥ <
√
2λ. Moreover, we can choose ε > 0 such ν0(B(x̃0, ε)) > 0 and

ν1(B(x̃1, ε)) > 0, where B(x̃i, ε) denotes the ball in Rd of radius ε centered at x̃i.

We will construct γ̃ ∈ Γ≤(µ
0, µ1) with transportation cost strictly less than OPTλ(µ

0, µ1), leading to a contra-
diction. For i = 0, 1 we denote by ν̃i the probability measure given by 1

νi(B(x̃i,ε))ν
i restricted to B(x̃i, ε). Let

δ = min{ν0(B(x̃0, ε)), ν1(B(x̃1, ε))}. Now, we consider

γ̃ := γ∗ + δ( ν̃0 × ν̃1).

Then, γ̃ ∈ Γ≤(µ
0, µ1) because

πi#γ̃ = γi + δν̃i ≤ γi + νi = µi for i = 0, 1.

The partial transport cost of γ̃ is

C(γ̃, µ0, µ1, λ) =

∫
Ω2

∥x0 − x1∥2 dγ̃ + λ(|µ0|+ |µ1| − 2|γ̃|)

=

∫
Ω2

∥x0 − x1∥2 dγ + δ

∫
Ω2

∥x0 − x1∥2 d(ν̃0 × ν̃1) + λ(|µ0|+ |µ1| − 2|γ| − 2δ|ν̃0 × ν̃1|)

= OPTλ(µ
0, µ1) + δ

∫
B(x̃0,ε)×B(x̃1,ε)

∥x0 − x1∥2 d(ν̃0 × ν̃1)− 2λδ

< OPTλ(µ
0, µ1) + 2λδ − 2λδ = OPTλ(µ

0, µ1),

which is a contradiction.

Lemma D.3. Using the notation and hypothesis of Proposition 3.1, for t ∈ (0, 1) let Dt := {x : vt(x) ̸= 0}. Then,
γt ∧ ν0 ≡ γt ∧ νj ≡ 0 over Dt.

Proof. We will prove this for γt ∧ ν0. The other case is analogous. Suppose by contradiction that γt ∧ ν0 is not the null
measure. By Lemma D.1, we know that γ∗ is optimal for OT (γ∗0 , γ

∗
1). Since we are also assuming that γ is induced by a

map T , i.e. γ∗ = (I × T )#γ
∗
0 , then T is an optimal Monge map between γ∗0 and γ∗1 . Therefore, the map Tt : Ω → Ω is

invertible (see for example (Santambrogio, 2015, Lemma 5.29)). For ease of notation we will denote ν̃0 := γt ∧ ν0 as a
measure in Dt.

The idea of the proof is to exhibit a plan γ̃ with smaller OPTλ cost than γ∗, which will be a contradiction since γ∗ ∈
Γ∗
≤(µ

0µj). Let us define
γ̃ := γ∗ + (I, T ◦ T−1

t )#ν̃
0 − (I, T )#(T

−1
t )#ν̃

0.
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Then, γ̃ ∈ Γ≤(µ
0, µj) since

π0#γ̃ = π0#γ
∗ + ν̃0 − (T−1

t )#ν̃
0 ≤ γ∗0 + ν̃0 ≤ µ0,

π1#γ̃ = π1#γ
∗ + (T ◦ T−1

t )#ν̃
0 − (T ◦ T−1

t )#ν̃
0 = γ∗1 . (and we know γ∗1 ≤ µj).

From the last equation we can also conclude that |γ̃| = |γ∗1 | = |γ∗|. Therefore, the partial transportation cost for γ̃ is∫
Ω2

∥x− y∥2dγ̃(x, y) + λ(|µ0|+ |µj | − 2|γ̃|)

=

∫
Ω2

∥x− y∥dγ∗(x, y) + λ(|µ0|+ |µj | − 2|γ|)︸ ︷︷ ︸
OPTλ(µ0,µj)

+

∫
Dt

(
∥x− T (T−1

t (x))∥2 − ∥T−1
t (x)− T (T−1

t (x))∥2
)
dν̃0(x)

< OPTλ(µ
0, µ1)

where in the last inequality we used that if y = T−1
t (x) we have

∥Tt(y)− T (y)∥ = ∥(1− t)y + tT (y)− T (y)∥ = (1− t)∥y − T (y)∥ < ∥y − T (y)∥ for t ∈ (0, 1).

Lemma D.4. Using the notation and hypothesis of Proposition 3.1, for t ∈ (0, 1) the vector-valued measures vt · ν0 and
vt · νj are exactly zero.

Proof. We prove this for vt · ν0. The other case is analogous. We recall that the measure vt · ν0 is determined by∫
Ω

Φ(x) · vt(x) dν0(x)

for all measurable functions Φ : Ω → Rd, where Φ(x) · vt(x) denotes the usual dot product in Rd between the vectors Φ(x)
and vt(x).

From Lemma D.3 we know that γt ∧ ν0 ≡ 0 over Dt. Therefore, γt and ν0 are mutually singular in that set. This implies
that we can decompose Dt into two disjoint sets D1, D2 such that γt(D1) = 0 = ν0(D2). Since vt is a function defined
γt–almost everywhere (up to sets of null measure with respect to γt), we can assume without loss of generality that vt ≡ 0
on D1.

Let Φ : Ω → Rd be a measurable vector-valued function over Ω. Using that vt ≡ 0 in Ω \ Dt and in D1, and that
ν0(D2) = 0, we obtain∫

Ω

Φ(x) · vt(x) dν0(x) =
∫
Ω\Dt

Φ(x) · vt(x) dν0(x) +
∫
D1

Φ(x) · vt(x) dν0(x) +
∫
D2

Φ(x) · vt(x) dν0(x) = 0.

Since Φ was arbitrary, we can conclude that vt · ν0 ≡ 0.

Lemma D.5. Using the notation and hypothesis of Proposition 3.1, the measure γt = (1− t)ν0 + tν1 satisfies the equation{
∂tγ +∇ · γv = ζ

γ0 = ν0, γ1 = ν1.
(50)

Proof. From Lemma D.4 we have that vt ·γt = (1− t)vt ·ν0+ tvt ·ν1 = 0, then ∇·γv = 0. It is easy to see that γ satisfies
the boundary conditions by replacing t = 0 and t = 1 in its definition. Also, ∂tγ = ν1 − ν0. Then, since ζt = ν1 − ν0 for
every t, we get ∂tγ +∇ · γv = ν1 − ν0 + 0 = ζt.

Proof of Proposition 3.1.

First, we address that the v : [0, 1]× Ω → Rd is well defined. Indeed, by Lemma D.1, we have that γ∗ = (id× T )#γ
∗
0 is

optimal for OT (γ∗0 , γ
∗
1 ). Thus, for each (t, x) ∈ [0, 1]× Ω, by so-called cyclical monotonicity property of the support of
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classical optimal transport plans, there exists at most one x0 ∈ supp(γ∗0 ) such that Tt(x0) = x, see (Santambrogio, 2015,
Lemma 5.29). So, vt(x) in (30) is well defined by understanding its definition as

vt(x) =

{
T (x0)− x0 if x = Tt(x0), for x0 ∈ supp(γ∗0 )

0 elsewhere.

Now, we check that (ρ, v, ζ) defined in (29), (30), (31) is a solution for (26). In fact,

ρt = γt + γt

where γt is given by (28), and γt is as in Lemma D.5. Then, from section 2.2, (γ, v) solves the continuity equation (5) since
γ∗ = (I × T )#γ

∗
0 ∈ Γ∗(γ∗0 , γ

∗
1 ) (Lemma D.1), and from its definition γt = (Tt)#γ

∗
0 coincides with (9) in this context, as

well as vt coincides with (8) (the support of vt lies on the support of γ∗0 ). On the other hand, from Lemma D.5, γt solves
(50). Therefore, by linearity,

∂tρt +∇ · ρtvt = ∂tγt +∇ · γtvt︸ ︷︷ ︸
0

+ ∂tγt +∇ · γtvt︸ ︷︷ ︸
ζt

= ζt

Finally, by plugging in (ρ, v, ζ) into the objective function in (25), we have:∫
[0,1]×Ω

∥v∥2dρ+ λ|ζ| =
∫
[0,1]×Ω

∥v∥2 dγt dt+ λ|ζ|

=

∫
Ω

∥T (x0)− x0∥2 dγ∗0 (x0) + λ(|ν0|+ |ν1|)

=

∫
Ω2

∥x0 − xj∥2 dγ∗(x0, xj) + λ(|µ0 − γ∗0 |+ |µj − γ∗1 |)

= OPTλ(µ
0, µj)

since γ∗ ∈ Γ∗
≤(µ

0, µj). So, this shows that (ρ, v, ζ) is minimum for (25).

The ‘moreover’ part holds from the above identities, using that∫
Ω

∥v0∥2dγ∗0(x0) + λ(|ν0|+ |ν1|) =
∫
Ω

min(∥v0∥2, 2λ)dγ∗0 (x0) + λ(|ν0|+ |ν1|) for v0(x0) = T (x0)− x0,

since γ∗ is such that ∥x0 − xj∥2 < 2λ for all (x0, xj) ∈ supp(γ) (Bai et al., 2022, Lemma 3.2).

E. Proof of Theorem 3.5
The proof will be similar to that of Lemma 2.1.

Proof. We fixed γj ∈ Γ∗
≤(µ

0, µj). We will understand the second marginal distribution π1#γj induced by γj , either as

the vector γj1 := (γj)T 1N0 or as the measure
∑Nj

m=1(γ
j
1)mδxj

m
, and, by abuse of notation, we will write π1#γj = γj1

(analogously for π0#γj).

Let γ̂j := diag(p̂j1, . . . , p̂
j
N0

) denote the transportation plan induced by mapping x0k 7→ x̂jk. Let D := {k ∈ {1, . . . N0} :

p̂jk > 0}.

Given any γ̂ ∈ Γ≤(µ
0, µ̂j), we need to show

C(γ̂j ;µ0, µ̂j , λ) ≤ C(γ̂;µ0, µ̂j , λ). (51)

We recall that we are denoting by p0 the vector of weights of the discrete measure µ0 (analogously, pj and p̂j are the vectors
of weights of µj and µ̂j , resp).
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In general, if we consider any transportation plan γ′ ∈ Γ≤(µ0, γ
j
1), we have that

C(γ′;µ0, γj1, λ) =

N0∑
k=1

Nj∑
i=1

∥x0k − xji∥
2γ′k,i + λ(|p0|+ |γj1| − 2|γ′|)

=

N0∑
k=1

Nj∑
i=1

∥x0k − xji∥
2γ′k,i + λ(|p0|+ |pj | − 2|γ′|) + λ(−|pj | − |γj1|)

= C(γ′;µ0, µj , λ) + λ(−|pj | − |γj1|).

Similarly,

C(γj ;µ0, γj1, λ) = C(γj ;µ0, µj , λ) + λ(−|pj | − |γj1|)

Since γj is optimal for OPTλ(µ
0, µj), then C(γj ;µ0, µj , λ) ≤ C(γ′;µ0, µj , λ) and thus C(γj ;µ0, γj1, λ) ≤

C(γ′;µ0, γj1, λ).

However, we need to have more control over the bounds in order to compare different costs. Therefore, as we did in Lemma
2.1, we will define a particular plan γ to use a pivot and obtain (51).

With a slight abuse of notation, we define

γ := γ̂
1

γ̂j
γj

where we mean that (
1

γ̂j
γj
)

ki

:=

{
γjk,i/γ̂

j
k,k if k ∈ D

0 elsewhere.

First, we claim γ ∈ Γ≤(µ
0, γj1). Indeed, we have

γ1Nj = γ̂
1

γ̂j
γj1Nj = γ̂

1

γ̂j
p̂j = γ̂β ≤ p0 (52)

γT 1N0
= (γj)T

1

γ̂j
γ̂T 1N0

≤ (γj)T
1

γ̂j
p̂j = (γj)Tβ = γj1, (53)

where β ∈ RN0×1 is defined with βk = 1 if k ∈ D and βk = 0 elsewhere. In fact, in (52), the first inequality follows from
the fact each entry in the N0 × 1 vector 1

γ̂j p̂
j is either 0 or 1; and the second inequality holds since γ̂ ∈ Γ≤(µ

0, µ̂j). And in
(53), the inequality follows from the fact γ̂T ∈ Γ≤(µ

0, µ̂j).

In addition, since (γ̂j)T 1N0
≤ p̂j , we have γ̂k,k′ = 0,∀k′ /∈ D, k ∈ {1, . . . , N0}. Thus we have

γ1Nj
= γ̂β = γ̂1N0

that is the first marginals of γ and γ̂ are same and thus |γ| = |γ̂|.

We compute the transportation costs induced by γj , γ, γ̂j , γ̂:

C(γj ;µ0, γj1, λ) =

Nj∑
i=1

∑
k∈D

∥x0k − xji∥
2γjk,i + λ(|p0|+ |γj1| − 2|γj |)

=
∑
k∈D

∥x0k∥2(γ
j
0)k +

Nj∑
i=1

∥xji∥
2(γj1)i − 2

∑
k∈D

Nj∑
i=1

x0k · xji γ
j
k,i + λ(|p0|+ |γj1| − 2|γj |)

=
∑
k∈D

∥x0k∥2p̂
j
k +

Nj∑
i=1

∥xji∥
2(γj1)i − 2

∑
k∈D

Nj∑
i=1

x0k · xji γ
j
k,i + λ(|p0|+ |γj1| − 2|γj |)

20



Linear Optimal Partial Transport Embedding

Similarly,

C(γ̂j ;µ0, µ̂j , λ) =
∑
k∈D

∥x0k∥2(γ̂
j
0)k +

∑
k′∈D

∥x̂jk′∥2p̂jk′ − 2
∑
k∈D

∑
k′∈D

x0k · x̂jk′ γ̂
j
k,k′ + λ(|p0|+ |p̂j | − 2|γ̂j |)

=
∑
k∈D

∥x0k∥2p̂
j
k +

∑
k′∈D

∥x̂jk′∥2p̂jk′ − 2
∑
k∈D

∑
k′∈D

Nj∑
i=1

x0k · xji γ
j
k′,i

γ̂jk,k′

γ̂jk′,k′

+ λ(|p0|+ |γj1| − 2|γj |)

=
∑
k∈D

∥x0k∥2p̂
j
k +

∑
k′∈D

∥x̂jk′∥2p̂jk′ − 2
∑
k∈D

Nj∑
i=1

x0k · xji γ
j
k,i + λ(|p0|+ |γj1| − 2|γj |)

= C(γj ;µ0, γj1, λ)−
Nj∑
i=1

∥xji∥
2(γj1)i +

∑
k′∈D

∥x̂jk′∥2p̂jk′ (54)

And also,

C(γ;µ0, γj1, λ) =

N0∑
k=1

∥x0k∥2(γ0)k +

Nj∑
i=1

∥xji∥
2(γ1)i − 2

N0∑
k=1

Nj∑
i=1

∑
k′∈D

x0k · xji γ̂k,k′
γjk′,i

γ̂jk′,k′

+ λ(|p0|+ |γj1| − 2|γ|),

C(γ̂;µ0, µ̂j , λ) =

N0∑
k=1

∥x0k∥2(γ̂0)k +
∑
k′∈D

∥x̂jk′∥2(γ̂1)k′ − 2

N0∑
k=1

∑
k′∈D

N0∑
i=1

x0k · xji γ̂
j
k,k′

γjk′,i

γ̂jk′,k′

+ λ(|p0|+ |p̂j | − 2|γ̂|)

= C(γ;µ0, γj1, λ)−
Nj∑
i=1

∥xji∥
2(γ1)i +

∑
k′∈D

∥x̂jk′∥2(γ̂1)k′ (55)

Let p̄ := π1#γ̂ (vector of weights). We have p̄ ≤ p̂j . Combining with (54) and (55), we have

C(γ̂j ;µ0, µ̂j , λ)− C(γ̂;µ0, µ̂j , λ)

= C(γj ;µ0, γj1, λ)− C(γ;µ0, γj1, λ) +

Nj∑
i=1

∥xji∥
2
∑
k∈D

(
p̄k − p̂jk
p̂jk

) +

N0∑
k′=1

|x̂jk|
2(p̂jk − p̄)

≤
Nj∑
i=1

∥xji∥
2
∑
k∈D

(
p̄k − p̂jk
p̂jk

) +

N0∑
k′=1

|x̂jk|
2(p̂jk − p̄) (56)

where the inequality holds sine γj is optimal for OPTλ(µ0, γj1).

Let

F (p̄) :=

Nj∑
i=1

∥xji∥
2
∑
k∈D

(
p̄k − p̂jk
p̂jk

) +

N0∑
k′=1

|x̂jk|
2(p̂jk − p̄)

Note that if k /∈ D, then p̄k = p̂k = 0; and for k ∈ D, we have

∂

∂p̄k
F =

∑
i: γj

k,i>0

∥xji∥
2
γjk,i

p̂jk
− ∥x̂jk∥

2 ≥ 0

where the inequality holds by the fact
∑

i: γj
k,i>0

γj
k,i

p̂j
k

= 1 and Jensen’s inequality (in particular, E(∥X∥2) ≥ ∥E[X]∥2 for a

random vector X). Combining with the fact F (p̄) = 0 when p̄k achieves its maximum p̂jk for each k, we have

F (p̄) ≤ 0, ∀ 0 ≤ p̄ ≤ pj .

Thus C(γ̂j ;µ0, µ̂j , λ) ≤ C(γ̂;µ0, µ̂j , λ) by (56), and we conclude the proof.
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F. Proof of Theorem 3.6
Proof. Without loss of generality, we assume that γj ∈ Γ∗

≤(µ
0, µj) is induced by a 1-1 map. We can suppose this since

the trick is that we will end up with an N0-point representation of µj when we get µ̂j . For example, if two x0n and x0m are
mapped to the same point T (x0n) = T (x0m), when performing the barycentric, we can split this into two different labels
with corresponding labels. (The moral is that the labels are important, rather than where the mass is located.) Therefore,
γj ∈ RN0×Nj is such that in each row and column there exists at most one positive entry, and all others are zero. Let
γ̂ := diag(p̂j1, . . . , p̂

j
N0

). Then, by the definition of µ̂j , we have C(γj ;µ0, µj , λ) = C(γ̂;µ0, µ̂j , λ). Thus,

OPTλ(µ
0, µj) = C(γj ;µ0, µj , λ)

= C(γj ;µ0, γj , λ) + λ(|µj | − |γj1|)
= C(γ̂;µ0, µ̂j , λ) + λ(|µj | − |µ̂j |)
= OPTλ(µ

0, µ̂j) + λ(|µj | − |µ̂j |),

where the last equality holds from Theorem 3.5. This concludes the proof.

Moreover, from the above identities (for discrete measure) we can express

OPTλ(µ
0, µj) =

N0∑
k=1

p̂k∥x0k − x̂jk∥
2 + λ|p0 − p̂jk|+ λ(|pj | − |p̂j |).

G. Proof of Proposition 3.7
Proof. The result follows from (40) and (35). Indeed, we have

LOPTλ,µ0(µ̂
j , µ̂j) = ∥ui − uj∥p̂i∧p̂j ,2λ + λ(|p̂i − p̂j |) and

LOPTλ,µ0(µ
j , µj) = ∥ui − uj∥p̂i∧p̂j ,2λ + λ(|p̂i − p̂j |) + λ(|νi − νj |),

since the LOPT barycentric projection of µi is basically µi without the mass that needs to be created from the reference
(analogously for µj).

H. Applications
For completeness, we will expand on the experiments and discussion presented in Section 4, as well as on Figure 1 which
contrasts the HK technique with OPT from the point of view of interpolation of measures.

First, we recall that similar to LOT (Wang et al., 2013) and (Moosmüller & Cloninger, 2023), the goal of LOPT is
not exclusively to approximate OPT, but to propose new transport-based metrics (or discrepancy measures) that are
computationally less expensive and easier to work with than OT or OPT, specifically when many measures must be
compared.

Also, one of the main advantages of the linearization step is that it allows us to embed sets of probability (resp. positive
finite) measures into a linear space (Tµ0 space). Moreover, it does it in a way that allows us to use the Tµ0-metric in that
space as a proxy (or replacement) for more complicated transport metrics while preserving the natural properties of transport
theory. As a consequence, data analysis can be performed using Euclidean metric in a simple vector space.

H.1. Approximation of OPT Distance

For a better understanding of the errors plotted in Figure 2, the following Figure 6 shows the histograms of the relative errors
for different values of λ and each number of measures K = 5, 10, 15.
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Figure 6. Histogram of relatives errors (depicted in Figure 2) between OPTλ and LOPTλ,µ0 . (Number of samples N = 500. Number
of repetitions = 10. Dimension = 2. –measures on R2–.)

As said in Section 4, we recall that for these experiments, we created K point sets of size N for K different Gaussian
distributions in R2. In particular, µi ∼ N (mi, I), where mi is randomly selected such that ∥mi∥ =

√
3 for i = 1, ...,K.

For the reference, we picked an N point representation of µ0 ∼ N (m, I) with m =
∑
mi/K. For figures 2 and 6, the

sample size N was set equal to 500.

In what follows, we include tests for N = 200, 250, 300, 350, ..., 900, 950, 1000 and K = 2, 4. For each (N,K), we
repeated each experiment 10 times. The relative errors are shown in Figure 7. For large λ, most mass is transported and
OT (µi, µj) ≈ OPTλ(µ

i, µj), the performance of LOPT is close to that of LOT, and the relative error is small. For small
λ, almost no mass is transported, OPTλ(µi, µj) ≈ λ(|µi| + |µj |) ≈ λ(|µi| − |µ̂i| + |µj | − |µ̂j |) ≈ LOPTµ0,λ(µ

i, µj),
and we still have a small error. In between, e.g., λ = 5, we have the largest relative error. Similar results were obtained by
setting the reference as the OT barycenter.
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Figure 7. The average relative error between OPTλ and LOPTλ,µ0 between all pairs of discrete measures µi and µj .

H.2. PCA analysis

For problems where doing pair-wise comparisons between K distributions is needed, in the classical optimal (partial)
transport setting we have to solve

(
K
2

)
OT (resp. OPT) problems. In the LOT (resp. LOPT) framework, however, one only

needs to perform K OT (resp. OPT) problems (matching each distribution with a reference measure).
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One very ubiquitous example is to do clustering or classification of measures. For this case, the number of target measures
K representing different samples is usually very large. For the particular case of data analysis on Point Cloud MNIST,
after using PCA in the embedding space (see Figure 5), it can be observed that the LOT framework is a natural option for
separating different digits, but the equal mass requirement is too restrictive in the presence of noise. LOPT performs better
since it does not have this restriction. This is one example where the number of measures K = 900 is much larger than 2.

H.3. Point Cloud Interpolation

Here, we add the results of the experiments mentioned in Section 4 which complete Figure 4. In the new Figure 8, in fact,
Figure 4 corresponds to the subfigure 8b. We conducted experiments using three digits (0, 1, and 9) from the PointCloud
MNIST dataset, with 300 point sets per digit. We utilized LOPT embedding to calculate and visualize the interpolation
between pairs of digits. We chose the barycenter between 0, 1, and 9 as the reference for our experiment. However, to
avoid redundant results, in the main paper, we only demonstrated the interpolation between 0 and 9 in our main paper. The
remaining plots for the other digit pairs using different levels of noise η are included here for completeness. Later, in Section
H.4, Figure 11 will add the plots for the HK technique and its linearized version.

(a) η = 0 (b) η = 0.5 (c) η = 0.75

(d) η = 0 (e) η = 0.5 (f) η = 0.75

Figure 8. Interpolation between two point-clouds at different times t ∈ {0, 0.25, 0.5, 0.75, 1}. Different values of noise η were considered
for the different interpolation approaches (OT, LOP, OPT, LOPT). For LOT and LOPT the reference measure is the barycenter between the
PointClouds 0, 1, and 9 with no noise. Top row: Interpolation between digits 0 and 9. Bottom row: Interpolation between digits 0 and 1.
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H.4. Preliminary comparisons between LHK and LOPT

The contrasts between the Linearized Hellinger-Kantorovich (LHK) (Cai et al., 2022) and the LOPT approaches come from
the differences between HK (Hellinger-Kantorovich) and OPT distances.

The main issue is that for HK transportation between two measures, the transported portion of the mass does not resemble
the OT-geodesic where mass is preserved. In other words, HK changes the mass as it transports it, while OPT preserves it.

This issue is depicted in Figure 1. In that figure, both the initial (blue) and final (purple) distributions of masses are two
unit-mass delta measures at different locations. Mass decreases and then increases while being transported for HK, while it
remains constant for OPT. For HK, the transported portion of the mass does not resemble the OT-geodesic where mass is
preserved. In other words, HK changes the mass as it transports it, while OPT preserves it.

To illustrate better this point, we incorporate here Figure 9 which is the two-dimensional analog of Figure 1.

Figure 9. HK vs. OPT interpolation between two delta measures of unit mass located at different positions. Two scenarios are shown
for each transport framework varying the respective parameters (s for HK, and λ for OPT). Blue circles stand for the cases when the
geodesic transports mass. Triangular shapes represent destruction and creation of mass. Triangles pointing down in orange indicate the
locations where mass will be destroyed. Triangles pointing up in green indicate the locations where mass will be created. On top of
that shadows are added to emphasize the change of mass from initial and final configurations. The Top two plots exhibit two extreme
cases when performing HK geodesic. When s is small, everything is created/destroyed, when s is large everything is transported without
mass-preservation. On the other side, the Bottom two plots show the two analogous cases for OPT geodesics. When λ is small we observe
creation/destruction, when λ is large we have mass-preserving transportation. The intermediate cases are treated in the following.

In addition, in Figure 10 we not only compare HK and OPT, but also LHK and LOPT. The top subfigure 10a shows the
measures µ1 (blue dots) and µ2 (orange crosses) to be interpolated with the different techniques in the next subfigures 10b
and 10c. Also, in 10a we plot the reference µ0 (green triangles) which is going to be used only in experiment 10c. The
measures µ1 and µ2 are interpreted as follows. The three masses on the interior, forming a triangle, can be considered as the
signal information and the two masses on the corners can be considered noise. That is, we can assume they are just two noisy
point cloud representations of the same distribution shifted. We want to transport the three masses in the middle without
affecting their mass and relative positions too much. Subfigure 10b shows HK and OPT interpolation between the two
measures µ1 and µ2. In the HK cases, we notice not only how the masses vary, but also how their relative positions change
obtaining a very different configuration at the end of the interpolation. OPT instead returns a more natural interpolation
because of the mass preservation of the transported portion and the decoupling between transport and destruction/creation of
mass. Finally, subfigure 10c shows the interpolation of µ1 and µ2 for LHK and LOPT. The reference measure µ0 is the
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same for both and we can see the denoising effect due to the fact that, for the three measures, the mass is concentrated in the
triangular region in the center. However, while mass and structure-preserving transportation can be seen for LOPT, for LHK
the shape of the configuration changes.

On top of that, as is often the case on quantization, point cloud representations of measures are given as samples with
uniform mass. OPT/LOPT interpolation will not change the mass of each transported point. Therefore, the intermediate
steps of an algorithm using OPT/LOPT transport benefit from conserving the same type of representation. That is, as a
uniform set of points.
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(a) Plot of two measures (µ1 as blue circles and µ2 as orange crosses, where each point has mass one), and a reference measure µ0

(concentrated on the three green triangular locations, unit mass each).

(b) HK and OPT interpolation between the two measures µ1 and µ2 at different times. The color code is the same as for Figure 9.

(c) LHK and LOPT interpolation between the two measures µ1 and µ2 at different times using for both cases the same reference µ0.

Figure 10. HK vs OPT and LHK vs LOPT
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For comparison on PointCloud interpolation using MNIST, we include Figure 11 that illustrates OPT, LOPT, HK, and LHK
interpolation for digit pairs (0,1) and (0,9). In the visualizations, the size of each circle is plotted according to amount of the
mass at each location.

(a) Samples of digits 0, 1, and 9 from MNIST Data Set. Top row: clean point cloud. Bottom row: 50% of noise.

(b) Noise level η = 0. (c) Noise level η = 0.5

(d) Noise level η = 0. (e) Noise level η = 0.5.

Figure 11. Point cloud interpolation using all the techniques unbalanced transportation HK, OPT, LHK, and LOPT.

However, we do not claim the presented LOPT tool to be a one size fits all kind of tool. We are working on the subtle
differences between LHK and LOPT and expect to have a complete and clear picture in the future. The aim of this article
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was to present a new tool with an intuitive introduction and motivation so that the OT community would benefit from it.

H.5. Barycenter computation

Can the linear embedding technique be used to compute the barycenter of a set of measures, e.g., by computing the barycenter
of the embeddings and performing an inversion to the original space?

One can first calculate the mean of the embedded measures, and recover a measure from this mean. The recovered measure is
not necessarily the OPT barycenter, however, one can repeat this process and obtain better approximations of the barycenter.
Similar to LOT, we have numerically observed that such a process will converge to a measure that is close to the barycenter.
However, there are several technical considerations that one needs to pay close attention. For instance, the choice of λ and
the choice of the initial reference measure are critical in this process.

Figure 12. The depiction of barycenters between digits 0 and 1, and between 0 and 9 using the LOPT technique. Left panel: original
measures (point-clouds) µ1 (digit 0), µ2 (digit 1), and µ3 (digit 9). We considered them with no noise on the top left panel (η = 0), and
with corrupted under noise on the bottom left panel (level of noise η = 0.5). Right panel: The first row is the result that both initial
measure and data µ1, µ2, µ3 are clean data; the second row is the result of clean initial measure and noise corrupted data; the third row is
the result for noise corrupted initial measure and data.
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