
Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Justin Baker∗ 1 Qingsong Wang∗ 1 Cory Hauck 2 Bao Wang 1

Abstract
Implicit graph neural networks (IGNNs) – that
solve a fixed-point equilibrium equation using Pi-
card iteration for representation learning – have
shown remarkable performance in learning long-
range dependencies (LRD) in the underlying
graphs. However, IGNNs suffer from several
issues, including 1) their expressivity is limited
by their parameterizations for the well-posedness
guarantee, 2) IGNNs are unstable in learning
LRD, and 3) IGNNs become computationally in-
efficient when learning LRD. In this paper, we
provide a new well-posedness characterization
for IGNNs leveraging monotone operator the-
ory, resulting in a much more expressive param-
eterization than the existing one. We also pro-
pose an orthogonal parameterization for IGNN
based on Cayley transform to stabilize learn-
ing LRD. Furthermore, we leverage Anderson-
accelerated operator splitting schemes to effi-
ciently solve for the fixed point of the equilib-
rium equation of IGNN with monotone or or-
thogonal parameterization. We verify the com-
putational efficiency and accuracy of the new
models over existing IGNNs on various graph
learning tasks at both graph and node levels.
Code is available at https://github.com/
Utah-Math-Data-Science/MIGNN

1. Introduction
Implicit graph neural networks (IGNNs) – that solve a fixed-
point equilibrium equation using Picard iteration for graph
representation learning – can learn long-range dependen-
cies (LRD) in the underlying graphs, showing remarkable
performance for various tasks [49; 24; 39; 43; 15]. Let
G = (V,E) represent a graph, where V is the set of nodes,

*Equal contribution 1Department of Mathematics and Scien-
tific Computing and Imaging Insitute, University of Utah. 2Oak
Ridge National Laboratory. Correspondence to: Bao Wang <wang-
baonj@gmail.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

and E ⊆ V × V is the set of edges. The connectivity of G
can be represented by the adjacency matrix A ∈ Rn×n with
Aij = 1 if there is an edge connecting nodes i, j ∈ V ; oth-
erwise Aij = 0. Let X ∈ Rd×n be the initial node features
whose i-th column xi ∈ Rd is the initial feature of the i-th
node. IGNN [24] learns the node representation by finding
the fixed point, denoted as Z∗, of the Picard iteration below

Z(k+1) = σ
(
WZ(k)G+ gB(X)

)
, for k = 0, 1, · · · , (1)

where σ is the nonlinearity (e.g. ReLU), gB is a func-
tion parameterized by B (e.g. gB(X) = BXG), ma-
trices W and B ∈ Rd×d are learnable weights, and
G is a graph-related matrix. In IGNN, G is chosen as
Â := D̂−1/2(I +A)D̂−1/2 with I being the identity ma-
trix and D̂ is the degree matrix with D̂ii = 1 +

∑n
j=1 Aij .

The prediction of IGNN is given by fΘ(Z
∗), a function pa-

rameterized by Θ. IGNNs have several merits: 1) The depth
of IGNN is adaptive to particular data and tasks rather than
fixed. 2) Training IGNNs requires constant memory inde-
pendent of their depth – leveraging implicit differentiation
[46; 1; 35; 12]. 3) IGNNs have better potential to capture
LRD of the underlying graph compared to existing GNNs,
including GCN [55], GAT [52], SSE [16], and SGC [59].
Moreover, the bias term used by IGNN helps to overcome
the over-smoothing issue of deep GNNs, which has also
been studied in [51]. Nevertheless, we notice that IGNN has
limited expressivity for graph learning and is unstable and
inefficient in learning LRD, and we provide details about
these issues below.

Well-posedness of IGNN limits its expressivity. IGNN
constrains the weight matrix W using a tractable projected
gradient descent method to ensure the well-posedness of
Picard iteration [24], constraining the magnitude of W ’s
eigenvalues to be less than one; see Sec. 2 for details. This
limits the selection of W and thereby limits the expressivity
of IGNNs.

IGNN is unstable and inefficient in learning LRD. To
understand when IGNN can learn LRD, we run IGNN using
the settings in [24] to classify directed chains – a synthetic
dataset designed to test the effectiveness of GNNs in learn-
ing LRD [24] and we discuss details of this dataset and task
in Sec. 5.1. Fig. 1 plots epoch vs. accuracy of IGNN for
the chain classification. Here, each epoch means iterating
Equation (1) until convergence and then updating W and B.

1

https://github.com/Utah-Math-Data-Science/MIGNN
https://github.com/Utah-Math-Data-Science/MIGNN

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

0 100 200 300 400 500
Epoch

60

80

100
Ac

cu
ra

cy
(%

)

0 100 200 300 400 500
Epoch

46

48

50

52

54

Ac
cu

ra
cy

(%
)

Train Validate Test

0 100 200 300 400 500
Epoch

40

60

80

100

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

34

36

38

40

42

Ac
cu

ra
cy

(%
)

Train Validate Test

Figure 1. Epoch vs. training, validation, and test accuracy of IGNN
for classifying directed chains. First row: binary chains of length
100 (left) and 250 (right). Second row: three-class chains of length
80 (left) and 100 (right). Notice that the training, validation, and
test accuracy curves in the left panel are close to each other. The
figures in the left panel use the same legend as the right ones.

IGNN can classify binary chains perfectly at length 100 but
performs near-random guesses when the length is 250; see
the first row of Fig. 1. For the three-class chains, IGNN’s
performance is very poor at chain length 100 but performs
well at length 80; see the second row of Fig. 1.

We investigate the results in Fig. 1 by studying the dynamics
of eigenvalues of the matrix |W |1. For illustrative purpose,
we consider λ1(|W |) and λ2(|W |), the largest and sec-
ond largest eigenvalues of |W | in magnitude. Fig. 2 (left)
contrasts the evolution of the magnitude of λ1(|W |) and
λ2(|W |) of IGNN when classifying nodes on chains with
different lengths. We see that the magnitude of both eigen-
values goes to 1 when IGNN becomes accurate. However,
Fig. 2 (right) shows that IGNN takes many more iterations
in each epoch when the magnitude of eigenvalues gets close
to 1. Indeed, when λ1(|W |) → 1, the Lipschitz constant
of the linear map WZG + gB(X) is close to 1, slowing
down the convergence of the Picard iteration. The results in
Fig. 2 echo our intuition: the representation of a given node
aggregates one more hop of neighboring nodes’ information
after each Picard iteration; when the magnitude of eigenval-
ues gets close to 1, Equation (1) converges slowly so that
IGNN can capture LRD before Picard iteration converges.

We report the classification results of different lengths in
Appendix H; these results show prevalently that IGNNs
suffer from two bottlenecks: 1) An inherent tradeoff between
computational efficiency and capability for learning LRD.
2) The performance of IGNNs, based on Picard iteration, is
unstable across tasks. In particular, starting from random
Gaussian initialization of W – the default initialization –
IGNN cannot learn LRD if none of the eigenvalues of W
gets close to 1 in magnitude.

1|W | is obtained by taking the entry-wise absolute value of W .

0 100 200 300 400 500
Epoch

0.00

0.25

0.50

0.75

1.00

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

100
250

0 100 200 300 400 500
Epoch

0.25

0.50

0.75

1.00

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

80
100

Figure 2. Epoch vs. the magnitude of λ1(|W |) and λ2(|W |) and
the iterations required for each epoch. First row: binary chains,
second row: three-class chains. In left and right plots, red and blue
lines represent different chain lengths. On the left, we use solid
and dashed lines to plot λ1(|W |) and λ2(|W |), respectively.

1.1. Our contribution
We develop expressive, stable, and computationally efficient
monotone operator IGNN (MIGNN) 2. To boost the expres-
sivity of IGNN, we derive a new well-posedness condition
for MIGNN based on an extension of the well-posedness
condition of monotone operator equilibrium networks [57]
to IGNNs; see Sec 2. The new well-posedness condition
informs us to design a monotone parameterization of W ,
whose eigenvalues can take a much wider range than that of
IGNNs. To stabilize IGNN for learning LRD, we propose
a Cayley transform-based orthogonal parameterization of
W for MIGNN; see Sec. 3. Picard iteration is inefficient or
impossible to find the fixed point of MIGNN with monotone
or orthogonal parameterization. As such, we implement
MIGNNs leveraging operator splitting schemes; see Sec. 4.
We verify the efficacy of MIGNN on various benchmark
tasks; see Sec. 5.

1.2. Additional related work
We briefly review some representative related works in three
directions: 1) deep equilibrium models (DEQs), a.k.a. fixed-
point networks, 2) implicit GNNs based on fixed-point net-
works, and 3) orthogonal parameterizations for recurrent
neural networks (RNNs).

DEQ. IGNNs are related to DEQs [5; 17; 6], but the equi-
librium equation of IGNN differs from DEQ’s in that IGNN
encodes graph structure. DEQs are a class of infinite depth
weight-tied feedforward neural networks with forward prop-
agation using root-finding and backpropagation using im-
plicit differentiation. As a result, training DEQs only re-
quires constant memory independent of the network’s depth.
Monotone operator theory has been used to guarantee the
convergence of DEQs [57] and to improve the robustness
of implicit networks [28]. The convergence of DEQs has
also been considered by constraining the network’s weights

2Starting from here, we use MIGNN to stress that the model is
based on monotone operator theory.

2

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

[33]. Linearized DEQs are studied in [30]. Jacobian regu-
larization has been used to stabilize the training of DEQs
[7]. Anderson-accelerated DEQs with learned acceleration-
related hyperparameters are also proposed [8].

Implicit GNNs. Several efforts devoted to advancing
IGNNs are based on fixed-point networks: EIGNN removes
the nonlinearity in each intermediate iteration and derives a
closed form of the infinite iterations [39], convergent graph
solver (CGS) is an IGNN model with convergence guaran-
tees by constructing the input-dependent linear contracting
iterative maps [43], GIND leverages implicit nonlinear dif-
fusion to access infinite hops of neighbors [15].

Orthogonal parameterization for deep learning. The
Picard iteration Equation (1) is related to the hidden state
updates of RNNs [46; 18; 1; 34; 41]. Learning LRD is
challenging for RNNs due to exploding and vanishing gra-
dient during backpropagation through time [56; 10; 44;
41; 54; 42]. Enforcing orthogonal parameterization for
RNNs is an effective approach to overcome exploding and
vanishing gradients, benefiting RNNs for learning LRD
[3; 58; 29; 53; 40; 25].

1.3. Notation
We denote scalars by lower- or upper-case letters and vec-
tors/matrices with lower- or upper-case boldface letters. For
a vector a, we use ∥a∥ and ∥a∥∞ to denote its ℓ2 and ℓ∞
norms, respectively. We use I to denote the identity matrix
whose dimension can be inferred from the context. For a
matrix A, we denote its transpose by A⊤, its inverse by
A−1, its Frobenius, induced ℓ2, and induced ℓ∞ norms by
∥A∥F , ∥A∥, and ∥A∥∞, respectively, and its i-th largest
eigenvalue in magnitude by λi(W). Given matrices A
and B, we denote their Kronecker/entry-wise product as
A ⊗ B/A ⊙ B, and denote A ≻ B (A ⪰ B) if A − B
is positive definite (semi-positive definite). We denote the
vectorized A in column-major order as vec(A).

2. Well-posedness of MIGNN
We characterize the well-posedness of MIGNN leveraging
monotone operator theory; see Appendix B for a brief re-
view. Using the Kronecker product3 and vectorization of
a matrix, we can rewrite Equation (1) into the following
equivalent vectorized form

vec(Z(k+1)) = σ
(
G⊤ ⊗W vec(Z(k)) + vec(gB(X))

)
. (2)

Gu et al. propose the well-posedness condition of IGNN as
λ1(|G⊤ ⊗ W |) < 1, guaranteeing that the unique fixed
point of Equation (2) can be found by Picard iteration.
Let G = Â introduced before, then all eigenvalues of
G are in [−1, 1] with λ1(G) = 1. Therefore, the well-
posedness of IGNN is equivalent to requiring λ1(|W |) < 1
as λ1(|G⊤ ⊗ W |) = λ1(G)λ1(|W |) = λ1(|W |). Then,

3See Appendix D for a review of some properties about the
Kronecker product.

IGNN parameterizes W by relaxing the well-posedness
condition λ1(|W |) < 1 to ∥W ∥∞ < 1, which constrains
the magnitudes of eigenvalues of W to be less than 1.

To allow a wider range of W and enhance the expressivity,
we utilize the monotone operator theory. Following the
discussion in [57], assuming σ to be a proximal operator4 of
a convex closed proper function f , finding the fixed point of
Equation (2) is equivalent to solving the monotone inclusion
problem: find 0 ∈ (F + G)(vec(Z)) with F and G being
two set-valued functions, given below

F(vec(Z)) = (I −G⊤ ⊗W)vec(Z)− vec(gB(X))

G = ∂f,
(3)

where ∂f denotes the subgradient f . While it may seem that
the above discussion is placing a strong restriction on σ, we
want to note that most activation functions commonly used
in machine learning satisfy this requirement. For example,
when σ is ReLU, then σ = proxαf for ∀α > 0 with f being
the indicator of the positive octant, i.e. f(x) = I{x ≥ 0}.
The above monotone inclusion problem admits a unique
solution if the operator F is strongly monotone, i.e. I −
G⊤ ⊗W ⪰ mI or

1

2

(
G⊤ ⊗W +G⊗W⊤)

⪯ (1−m)I.

Therefore, we obtain the following well-posedness condi-
tion for MIGNN:
Proposition 2.1 (Well-posedness condition for MIGNN).
Let the nonlinearity σ be ReLU and K = 1

2 (G
⊤ ⊗ W +

G ⊗W⊤). Then the MIGNN model Equation (2) is well-
posed as long as K ⪯ (1−m)I for some m > 0. As K is
symmetric, K ⪯ (1−m)I is equivalent to requiring that
each eigenvalue of K is no more than 1−m.

We prove Proposition 2.1 in the appendix; similarly, the
proofs of all the other theoretical results are provided in the
appendix. The well-posedness condition in Proposition 2.1
allows for more flexible parameterizations than [24] by
enabling the real part of eigenvalues of W to be in the
interval (−∞, 1) and the imaginary part to be arbitrary.

3. Parameterizations of MIGNN
This section presents the monotone and orthogonal param-
eterizations of W for MIGNN in Equation (2); the two
parameterizations can enhance IGNN’s expressivity and
stabilize learning LRD, respectively.

3.1. Monotone parameterization
Proposition 2.1 informs us to design a more expressive pa-
rameterization of W for MIGNN than that used for IGNN.
Proposition 3.1 (Monotone parameterization). Let G =
(V,E) be a graph and let G be L/2 with L := D−1/2(D−

4The proximal operator of a function f is defined as
proxα

f (x) ≡ argminz

{
1
2
∥x− z∥2 + αf(z)

}
for α > 0.

3

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

A)D−1/2 being the (symmetric) normalized Laplacian,
where A is the adjacency matrix and D is the degree matrix
with Dii =

∑n
j=1 Aij . Then the following MIGNN model:

Z(k+1) = σ
(
WZ(k)G+ gB(X)

)
is well-posed when W is parameterized as follows:

W = (1−m)I −CC⊤ + F − F⊤, (4)

where C,F ∈ Rd×d are arbitrary matrices, and m > 0.

Remark 3.2. In monotone parameterization, we set G to
be L/2, whose eigenvalues are in [0, 1]. In contrast, the
eigenvalues of Â used in IGNN, see Sec. 1, are in [−1, 1].
Next, we parameterize W as in Equation (4), whose eigen-
values have real part in (−∞, 1−m]. Thus, 1

2 (G
⊤ ⊗W +

G⊗W⊤) ⪯ (1−m)I , guaranteeing the well-posedness
of MIGNN. Moreover, W = (1−m)I−CC⊤+F −F⊤

describes all possible W that satisfy W ⪯ (1−m)I .

3.2. Orthogonal parameterization
As discussed in Sec. 1, IGNN learns LRD when λ1(|W |)
approaches 1 in magnitude. This is often not the case
when starting from Gaussian random initialization – making
IGNN unstable for learning LRD. Inspired by the unitary
RNN [3], we propose to use the orthogonal parameteriza-
tion [25; 38; 37] with a learnable scaling factor to stabilize
MIGNN in learning LRD. In particular, we parameterize
W by the following scaled Cayley map:

W = ϕ(γ)(I − S)(I + S)−1, (5)

where ϕ(·) is the sigmoid function and γ ∈ R is a learnable
parameter ensuring ϕ(γ) ∈ (0, 1). S = C − C⊤ is a
skew-symmetric matrix with C ∈ Rd×d being an arbitrary
parameterized matrix. It is evident that MIGNN with the
parameterization in Equation (5) is well-posed with G being
Â defined in Sec. 1. Also, all eigenvalues of (I − S)(I +
S)−1 have magnitude 1; see a derivation in Appendix E.3.
To effectively learn LRD, MIGNN only requires the scalar
ϕ(γ) to converge to 1.

4. Implementation of MIGNN
Notice that Picard iteration does not converge when mono-
tone parameterization is applied and converges slowly
when orthogonal parameterization is used if ϕ(γ) → 1.
Thus, we leverage the operator splitting schemes to find
the fixed point of MIGNN with monotone or orthogonal
parameterization. There are three widely used operator
splitting schemes, forward-backward, Peaceman-Rachford,
and Douglas-Rachford splitting [48], which will be con-
sidered in this paper. Operator splitting schemes often
converge faster than Picard iteration and guarantee con-
vergence even when Picard iteration fails [48]. In particu-
lar, for small graphs and tasks where learning LRD is not
crucial, we use Anderson-accelerated forward-backward

splitting (FB) to implement MIGNN with monotone pa-
rameterization. For tasks that require learning LRD, we
employ Anderson-accelerated Peaceman-Rachford splitting
(PR)5, with Neumann series approximation, to implement
MIGNN with orthogonal parameterization. We provide the
rationale for these choices in Secs. 4.1.1 and 4.1.2. We
structure this section as follows: In Sec. 4.1, we present FB
(Sec. 4.1.1)/PR (Sec. 4.1.2) for finding the fixed point of
MIGNNs using monotone/orthogonal parameterization. In
Sec. 4.2, we present algorithms for updating the parameters
of MIGNN.

4.1. Forward propagation for finding the fixed point

4.1.1. FORWARD-BACKWARD SPLITTING

We can find the fixed point of MIGNN in Equation (2) via
FB using the following iterative scheme:

Z(k+1) := FFB
α (Z(k))

:= proxα
f

(
Z(k) − α ·

(
Z(k) −WZ(k)G− gB(X)

))
,

(6)

where constant α > 0. We provide a detailed implementa-
tion of FB in Appendix F.1. The Lipschitz constant of the FB
iteration is LFB :=

√
1− 2αm+ α2∥I −G⊤ ⊗W ∥2,

see Sec. 5 in [48]. Therefore, FB converges to the fixed
point if α < 2m/∥I −G⊤ ⊗W ∥2. By choosing a proper
α, FB can converge in the regime that Picard iteration does
not. However, when the monotone parameterization is used
∥W ∥ can be arbitrarily large. Thus α needs to be small
to guarantee the convergence of FB, in which case the Lip-
schitz constant is close to 1, and the convergence of FB
will be significantly slowed. FB is appealing for learning
with small graphs and tasks where learning LRD is not
crucial. In this case, we use monotone parameterization
to improve the expressivity of the model, and we denote
MIGNN with monotone parameterization using FB as
MIGNN-Mon. For large graphs and tasks that require learn-
ing LRD, FB suffers from slow convergence. Next, we will
present PR, which is better for learning large-scale graphs
and LRD. Furthermore, we argue that PR is unsuitable for
implementing MIGNN with monotone parameterization.

4.1.2. PEACEMAN-RACHFORD SPLITTING

PR used in [57] is guaranteed to converge for a much broader
choice of α and requires fewer iterations than FB. However,
each iteration of PR requires inverting large matrices, which
is computationally much more expensive and less scalable
than FB. More precisely, PR finds the solution Z∗ of the
MIGNN by letting Z∗ = proxαf (U

∗) where U∗ ∈ Rd×n

is obtained from the fixed-point iteration vec(U (k+1)) =
FPR
α (vec(U (k))) := CFCG(vec(U (k))) with CF and CG

being the Cayley operators (see Appendix B for details) of
F and G, respectively. Let u(k) be the shorthand notation

5We denote Anderson-accelerated FB and PR as FB and PR.

4

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

of vec(U (k)). Then we can formulate PR as follows:

u(k+1) := FPR
α (u(k)) = 2V

(
2 proxα

f (u
(k))− u(k)+

α vec(gB(X))
)
− 2 proxα

f (u
(k)) + u(k),

(7)

where V := (I+α(I−G⊤⊗W))−1 and u(0) is the zero
vector. With the parameterizations discussed in Sec. 3, the
linear operator F in Equation (3) is strongly monotone and
L-Lipschitz where L = ∥I − G⊤ ⊗ W ∥. Therefore, its
Cayley operator CF and hence FPR

α is contractive with the
optimal choice of α being 1/L; see Section 6 in [48]. In
particular, it is suggested to choose α = 1/(1+ϕ(γ)) when
using orthogonal parameterization W = ϕ(γ)(I − S)(1 +
S)−1. The pseudocode for the detailed implementation of
PR in Equation (7) can be found in Appendix F.1.
Remark 4.1. Douglas-Rachford splitting (DR) is another
option for finding the fixed point of the equilibrium equation,
which is often faster than PR. However, in our case PR is
contractive, making it faster than DR for the same α.

PR also benefits MIGNNs in learning LRD when an or-
thogonal parameterization is used. To see this, we have the
following Neumann series expansion of V (u(k)):

V (u(k)) = (I + α(I −G⊤ ⊗W))−1(u(k))

=
1

1 + α

(
I − G⊤ ⊗W

1 + 1/α

)−1

(u(k))

=
1

1 + α

∞∑
i=0

vec
(
W iU (k)Gi

)
(1 + 1/α)i

(8)

where the last equality follows from (A⊗B)k = Ak⊗Bk,
and (A ⊗ B)vec(C) = vec(BCA⊤) for ∀A,B and C
that satisfy dimensional consistency. Equation (8) indi-
cates that each node can access information from its ∞-hop
neighbors in a single PR iteration for MIGNN with orthog-
onal parameterization. This cannot be said of monotone
parameterization with large ∥W ∥, as the Neumann series
expansion in the last equality of Equation (8) no longer ap-
plies. Evaluating 1

1+α

(
I−G⊤⊗W

1+1/α

)−1
(u(k)) can be carried

out by using Bartels–Stewart algorithm [9], which converts
computing V into diagonalizing the matrix G⊤ and W ,
respectively. From Equation (8), we have

V (vec(U (k)))

=
1

1 + α
vec

(
QW

[
H ⊙

(
Q−1

W U (k)QG⊤

)]
Q⊤

G⊤

) (9)

where QG⊤ΛG⊤Q⊤
G⊤ and QWΛWQ−1

W are the eigen-
decomposition of G⊤ and of W , respectively, and
H ∈ Rd×n whose (i, j)-th entry is Hij = 1/

(
1 −

1
1+1/α (ΛW)ii(ΛG⊤)jj

). We provide a proof of Equa-
tion (9) in Appendix E.4. According to Equation (9), one
only needs to calculate the eigen-decomposition of G once
prior to training and the eigen-decomposition of W once

per epoch. The above matrix inversion procedure echos
the idea of EIGNN [39]. MIGNN has multiple layers, with
each fixed point iteration representing one layer. In contrast,
EIGNN is reduced to a one-layer model; see Appendix A.2
for details on EIGNN.

Although PR can capture LRD in a single iteration, comput-
ing V in Equation (7) requires computationally prohibitive
matrix inversion. To overcome this computational issue,
we use Neumann series expansion to approximate the ma-
trix inversion when orthogonal parameterization is used
for MIGNN. Notice that the Neumann series approximation
does not work for MIGNN using monotone parameterization
since we can no longer use the Neumann series approxima-
tion. Therefore, MIGNN with monotone parameterization
using PR splitting is not scalable to learning large graphs.

Neumann series approximation. In the orthogonal param-
eterization of W we have ∥G⊤⊗W

1+1/α ∥ < 1, ensuring efficient
approximation of V in Equation (7) using only a few terms
of its Neumann series expansion. The K-th order Neumann
series expansion of V (vec(U (k))) is given by

NK(vec(U (k))) :=
1

1 + α

K∑
i=0

vec
(
W iU (k)Gi

)
(1 + 1/α)i

. (10)

According to Equation (7), the K-th order Neumann series
approximated PR iteration function, denoted as F̃PR,K

α , can
be written as follows:

u(k+1) := F̃PR,K
α (u(k)) = 2NK

(
2 proxα

f (u
(k))− u(k)

+ α vec(gB(X))
)
− 2 proxα

f (u
(k)) + u(k).

(11)

Each node can access information from its K-hop neighbors
using the K-th order Neumann series approximated PR
iteration, which is more efficient than the existing IGNN.
Also, such a treatment can significantly accelerate forward
propagation. We can intuitively understand this as follows:
Each iteration of MIGNN, with K-th order Neumann series
approximated PR iteration, aggregates information from
K-hop neighbors, enabling the use of much fewer iterations
than that of IGNN, which aggregates one hop per iteration.
MIGNN can use a much smaller λ1(|W |) than IGNN to
reach the same number of hops, meaning MIGNN converges
much faster than IGNN.

Regarding the computational complexity: In each epoch, the
parameter K in the K-th order Neumann series affects the
training time complexity linearly as O(KMd|EP |), where
|EP | denotes the number of non-zero entries in the graph-
related matrix G, M denotes the maximal number of it-
erations, and d is the feature dimension which is much
smaller than the number of nodes. We denote the model as
MIGNN-NK when W is parameterized with orthogonal
parameterization, and the fixed point is obtained using
K-th order Neumann series approximated PR iteration.

5

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

4.1.3. ANDERSON ACCELERATION

Note that the main steps in both FB and PR involve solving
iterative equations, e.g. Equations (6) and (7), and we can
utilize Anderson acceleration [2] to accelerate the conver-
gence of these iterative equations. We provide the detailed
formulation and pseudocode for Anderson-accelerated oper-
ator splitting-based MIGNNs in Appendix F.3.

4.2. Backward propagation for updating MIGNNs
We derive backpropagation for MIGNN based on implicit
differentiation [23; 5; 17]. Recall that the vectorized
MIGNN vec(Z) = σ

(
G⊤ ⊗W vec(Z) + vec(gB(X))

)
,

has equilibrium point vec(Z∗). For any loss function ℓ and
any parameter θ (W or B), we have

∂ℓ

∂θ
=

∂ℓ

∂vec(Z∗)

(
I − J

(
G⊤ ⊗W

))−1

×
∂σ

(
G⊤ ⊗W vec(Z∗) + vec(gB(X))

)
∂θ

(12)

where J is the Jacobian of the nonlinearity σ evaluated at
G⊤ ⊗W vec(Z∗) + vec(gB(X)) . The values of the first
and last term in Equation (12) can be found through auto-
matic differentiation by running one more iteration in the
forward pass. Note that the product of the first two terms
remains the same for any θ. Hence one only needs to com-
pute it once in each backward pass. However, it can still be
expensive to find (∂ℓ)/(∂vec(Z∗))(I −J

(
G⊤ ⊗W

)
)−1.

Following Theorem 2 in [57], the operator splitting meth-
ods can be used in the backward pass so that computing
(I − J(G⊤ ⊗ W))−1 can be converted into computing
V = (I − (G⊤ ⊗W))−1, which is already calculated in
the forward pass; see Appendix F.2. Similar to the forward
propagation, the backpropagation can also benefit from An-
derson acceleration using an iterative formulation, and we
provide more details in Appendix F.2.

5. Experimental Results
In this section, we compare the performance of MIGNN-
Mon and MIGNN-NK with IGNN and several other popular
GNNs on various graph classification tasks at both node
and graph levels. We aim to show that 1) MIGNN-Mon
is more expressive than IGNN for both node and graph
classifications, and 2) MIGNN-NK can learn LRD stably.
The training procedure details and hyperparameters used in
each task are provided in Appendix J.

5.1. Directed chain classification
We first test MIGNNs on the synthetic chain task using
the experimental setup from [39], which is designed to test
the efficacy of GNNs in learning LRD. The chain dataset
comprises c classes and nc single-linked directed chains,
each containing l nodes. For each chain, only the feature
on the first node has the label information, and the goal is
to classify all other nodes in the chain with the same label.

Note that to classify nodes accurately, the information of the
first node needs to be propagated to all the remaining nodes,
requiring GNNs to learn LRD. The data is partitioned into
training, validation, and test sets of 5%, 10%, and 85%,
respectively. We consider binary (c = 2) and three-class
classification (c = 3) problems over several different chain
lengths. For IGNN, we use the experimental settings used
in [24]. We consider MIGNN-NK for this task. Fig. 3
shows the averaged test accuracy over 5 random seeds of
different models for classifying directed chains of length
ranging from 50 to 300 in an increment of 50 for the binary
case and from 40 to 200 in an increment of 20 for the three-
class case. Both MIGNN-N3 and MIGNN-N5 classify the
chains almost perfectly for all random initializations of the
considered chain lengths for both binary and three-class
classification tasks. We study the impact of the order of
Neumann series approximation on the chain classification
accuracy and computational time in Appendix G.

50 100 150 200 250 300
Chain Length

60

80

100
Ac

cu
ra

cy
(%

)

50 100 150 200
Chain Length

40

60

80

100

Ac
cu

ra
cy

(%
)

IGNN
MIGNN-N1

MIGNN-N3
MIGNN-N5

Figure 3. The accuracy of IGNN and MIGNN of different config-
urations for classifying chains of different lengths. Left: binary
classification (c = 2). Right: three-class classification (c = 3).
The legend for the left figure is the same as that in the right one.

Based on the operator splitting theory, we expect MIGNNs
to be more computationally efficient than IGNNs when both
models can accurately classify the nodes. Fig. 4 compares
the accuracy and computational efficiency of MIGNN-N2
over IGNN for a three-class chain classification. We see
that MIGNN-N2 achieves and maintains perfect accuracy
(left panel) after around 200 epochs and takes approximately
constant time (middle panel) and iterations (right panel) for
each epoch. In contrast, IGNN abruptly changes around
epoch 350, resulting in a significantly increased iteration
count and time elapsed for each epoch.

5.2. A graph node classification task
In this section, we compare MIGNN-N1 against IGNN
and other GNNs for a larger-scale graph node classifica-
tion task – Amazon co-purchasing dataset, which contains
334863 nodes, 925872 edges, and the diameter of the graph
is 44 [63]; we provide details of the Amazon co-purchasing
dataset in Appendix I. Learning LRD is crucial for accu-
rately classifying the graph node in this task [24]. As in
[16], we train on portions of the graph ranging from 5% to
9%, and test on sets representing 10% of the total graph.
We report both Macro-F1 and Micro-F1, which are consis-
tent with [24]. Fig. 5 contrasts the computational cost of
MIGNN-N1 with IGNN using 5% of the graph for training.
We observe that λ1(|W |) of MIGNN-N1 is close to one

6

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

200 300 400 500
Epoch

40

60

80

100

Ac
cu

ra
cy

(%
)

200 300 400 500
Epoch

0.2

0.4

0.6

Ti
m

e
El

ap
se

d
(s

)

200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

IGNN
MIGNN-N2

Figure 4. The accuracy and efficiency of MIGNN-N2 over IGNN for three class chains, of length 140, classification. The time elapsed is
computed for both forward and backward propagation. The number of iterations in the forward pass is plotted on the right. The left two
panels share the same legend as the right one.

0 200 400 600
Epoch

0.75

0.85

0.95

1(
|W

|)

0 200 400 600
Epoch

5

10

15

Ti
m

e
El

ap
se

d
(s

)
0 200 400 600

Epoch
0

100

200

300

Ite

ra
tio

ns

IGNN
MIGNN-N1

Figure 5. Epoch vs. λ1(|W |), the time required for each epoch, and iterations required for each epoch of IGNN and MIGNN-N1 for the
Amazon dataset with 5% training portion. The time elapsed is computed for both forward and backward propagation. The number of
iterations in the forward pass is plotted on the right. The left two panels share the same legend as the right one.

Portion 0.05 0.06 0.07 0.08 0.09
GCN [32] 82.01/78.96 83.15/80.43 84.15/81.31 85.05/82.12 85.57/82.68
SGC [59] 79.26/77.80 81.26/79.94 83.05/81.73 84.31/83.02 85.47/84.05
SSE [16] 84.52/81.14 85.05/81.56 85.57/82.33 86.42/83.07 86.98/83.98

IGNN [24] 84.01/80.85 85.31/82.33 85.57/82.85 86.43/84.12 87.26/84.68
MIGNN-N1 84.59/81.40 85.37/82.13 85.89/83.44 86.65/84.22 87.09/84.59

Table 1. Amazon Micro-F1/Macro-F1 accuracy (%). We take the results of the baseline models from [24].

but much smaller than that of IGNN (Fig. 5 left), implying
MIGNN-N1 can learn LRD while exhibiting faster conver-
gence than IGNN as confirmed by the fact that MIGNN-N1
saves significantly in computational time (Fig. 5 middle)
and the number of iterations (Fig. 5 right) over IGNN.

0.05 0.06 0.07 0.08 0.09
Fraction

75

80

85

90

M
icr

o-
F1

 (%
)

0.05 0.06 0.07 0.08 0.09
Fraction

75.0

77.5

80.0

82.5

85.0

M
ac

ro
-F

1
(%

)

GCN
SGC
SSE
IGNN

MIGNN-N1

Figure 6. Fraction vs. Micro-F1 (left) and Macro-F1 (right) train-
ing accuracy on the Amazon dataset.

Fig. 6 contrasts MIGNN-N1 with baseline models (the same
as those on [24] except we exclude the worst performed
one) when trained on portions of the graph ranging from
5% to 9%. We see that MIGNN-N1 outperforms almost
all baseline models over all different portions of the graph
for the training. Though MIGNN-N1 does not outperform
IGNN significantly, MIGNN-N1 enjoys significant computa-
tional advantages over IGNN. In this task, implicit models,
including IGNN and MIGNN-N1 outperform all explicit
models by a remarkable margin. Table 1 lists the accuracy
numbers corresponding to Fig. 6.

5.3. Some other small-scale node classification tasks
We further test MIGNNs with both parameterizations for
a few small-scale graph node classification tasks, includ-
ing Cora, Citeseer, and Pubmed; each dataset’s statis-

tics of node/edge/average shortest path between nodes are
2485/5069/5.27, 2120/3679/9.31, 19717/44324/6.34, re-
spectively. Learning LRD is not crucial for these tasks
since the graph’s diameter is quite small. However, even for
these small-scale graph node classification tasks MIGNN
is still able to outperform IGNN and can even outperform
many explicit GNNS and other improved implicit models.
We use the training procedure outlined in [15] and report
the mean accuracy of 10-fold cross-validation in Table 2,
where the baseline explicit models are those that achieve
strong results for these three datasets [15]. These results
confirm the expressivity of MIGNN using monotone pa-
rameterization. Both MIGNN models outperform IGNN
and even outperform many explicit and improved implicit
GNNs. We provide experimental details in Appendix J.

Datasets Cora Citeseer Pubmed
Geom-GCN [45] 85.35 ± 1.57 78.02 ± 1.15 89.95 ± 0.47

GCNII [14] 88.37 ± 1.25 77.33 ± 1.48 90.15 ± 0.43
APPNP [20] 85.09 ± 0.25 75.73 ± 0.30 79.73 ± 0.31

GCN+GDC [22] 83.58 ± 0.23 73.35 ± 0.27 78.72 ± 0.37
GIND [15] 88.25 76.81 89.22
IGNN [24] 85.80 75.24 87.66

EIGNN [39] 85.89 75.31 87.92
MIGNN-Mon 87.02 ± 1.2 76.15 ± 1.8 89.18 ± .40
MIGNN-NK 88.31 ± 1.2 76.91 ± 1.6 89.28 ± 0.35

Table 2. Classification mean accuracy (%) ± standard deviation
for three small-scale node classification tasks (10-fold cross-
validation). We boldface the best accuracy for each task and color
the optimal accuracy of implicit models in blue. Here we take K in
MIGNN-NK as a hyper parameter and report the best performance
(Cora:8, Citeseer:10, PubMed:10).

7

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Datasets MUTAG PTC COX2 PROTEINS NCI1
graphs/Avg # nodes 188/17.9 344/25.5 467/41.2 1113/39.1 4110/29.8

WL [50] 84.1 ± 1.9 58.0 ± 2.5 83.2 ± 0.2 74.7 ± 0.5 84.5 ± 0.5
DCNN [4] 67.0 56.6 — 61.3 62.6

DGCNN [64] 85.8 58.6 — 75.5 74.4
GIN [61] 89.4 ± 5.6 64.6 ± 7.0 — 76.2 ± 3.4 82.7 ± 1.7

FDGNN [19] 88.5 ± 3.8 63.4 ± 5.4 83.3 ± 2.9 76.8 ± 2.9 77.8 ± 1.6
IGNN [24] 76.0 ± 13.4 60.5 ± 6.4 79.7 ± 3.4 76.5 ± 3.4 73.5 ± 1.9
GIND [15] 89.3 ± 7.4 66.9 ± 6.6 84.8 ± 4.2 77.2 ± 2.9 78.8 ± 2.9

MIGNN-Mon 81.8 ± 9.1 72.6 ± 6.7 85.0 ± 5.3 77.9 ± 3.4 73.6 ± 2.0
MIGNN-N1 86.1 ± 9.1 70.9 ± 6.5 86.5 ± 2.8 79.0 ± 3.3 78.4 ± 1.2
MIGNN-N3 91.4 ± 7.5 71.2 ± 3.2 88.2 ± 4.1 80.1 ± 3.8 80.8 ± 1.81

Table 3. Graph classification mean accuracy (%) ± standard deviation for 10-fold cross-validation.

5.4. Graph classification
We further verify that MIGNN-Mon can be more expressive
than IGNN for graph classification since the eigenvalues of
monotone parameterization are more flexible than IGNN.
We consider five bioinformatics-related graph classification
benchmarks: MUTAG, PTC, COX2, PROTEINS, and NCI1
[62], and some details of these datasets are provided in Ap-
pendix I. We perform training with 10-fold cross-validation
using the experimental setup of [24]. The averaged test ac-
curacy and standard deviation across the 10 folds are shown
in Table 3, where the baseline explicit GNNs are adopted
from [15]. For both IGNN and MIGNN-Mon, we use the
hyperparameters outlined in [24]. Clearly, MIGNN-Mon
outperforms IGNN on all five graph classification tasks. In-
deed, MIGNN outperforms all other implicit models (IGNN,
GIND, MGNII). To confirm that the enhanced expressiv-
ity is due to the expanded range of W , we report on the
evolution of λ1(|W |) for three of the ten folds of MUTAG
in Fig. 7, showing that λ1(|W |) exceeds one. Table 3 also
reports the accuracy of MIGNN-N1 and MIGNN-N3 and
compares with a few existing implicit GNNs, including
IGNN and GIND. Overall, MIGNN performs well for graph
classification; in particular, MIGNN-N3 achieves the best
accuracy on COX2 and PROTEINS tasks among all studied
models. We provide an ablation study of the impact of the
order of the Neumann series on classification accuracy and
computational time in Appendix G.

0 200 400 600 800 1000
Epoch

0

5

10

15

1(
|W

|)

Fold-1
Fold-5
Fold-10

Figure 7. λ1(|W |) of MIGNN-Mon vs. Epoch on MUTAG.

5.5. Physical diffusion in networks

We further consider a physical problem of fluid flow in
porous media, following [43]. The model is a 3D graph
whose nodes and edges correspond to pore chambers and
throats. We sample training graphs of different sizes be-
tween 100 and 500, which are generated to fit into 0.1 m3

200 300 400 500
Number of Pores

0.000

0.005

0.010

0.015

M
SE

IGNN MIGNN-N1 MIGNN-N3 MIGNN-Mon

Figure 8. The average MSE of 500 sampled test iterations vs. the
number of pores. The error bars represent the standard error of the
prediction. MIGNN with different parameterizations outperforms
IGNN by a significant amount.

cubes. We aim to predict the equilibrium pressures Z∗ in-
side pore networks G. We train MIGNN to minimize the
mean-squared error (MSE) between the prediction and Z∗.
We utilize the experimental setup of [43] and include their
reported results for IGNN. Both IGNN and MIGNN use the
same encoder and decoder architecture. Graphs of 50− 200
nodes are sampled in training and 1000 test graphs are gen-
erated for pore counts from 200 to 500. Fig. 8 shows the
MSE for the test graphs as the number of nodes (pores)
varies from 200 to 500. MIGNN with both monotone and
orthogonal parameterizations outperform IGNN by a sig-
nificant margin. For this task of learning physical diffusion
in networks, CGS [43] performs better than MIGNN and
IGNN in accuracy. As future work, we plan to integrate the
the learnable graph-related matrix G used in CGS with our
proposed MIGNN to further improve the performance of
MIGNN for learning physical diffusion in networks.

6. Concluding Remarks
We propose MIGNN based on a monotone operator view-
point of IGNN. In particular, MIGNN can be parameter-
ized more flexibly than the baseline IGNN. We provide
efficient implementations of MIGNN leveraging different
Anderson-accelerated operator splitting schemes. Numeri-
cally, MIGNN remarkably outperforms the baseline IGNN
in accuracy, stability, computational efficiency, and learning
long-range dependencies. As IGNNs are closely related to
RNNs, an interesting future direction is to explore if the
ideas from other RNN-related techniques that benefit learn-
ing long-range dependencies [60; 26] can be adapted to the
improvement of IGNNs.

8

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Acknowledgements
This material is based on research sponsored by NSF grants
DMS-1952339, DMS-2152762, and DMS-2208361, DOE
grant DE-SC0021142 and DE-SC0023490. Moreover, this
material is based, in part, upon work supported by the
U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, as part of their
Applied Mathematics Research Program. The work was
performed at the Oak Ridge National Laboratory, which
is managed by UT-Battelle, LLC under Contract No. De-
AC05-00OR22725. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript,
or allow others to do so, for the United States Govern-
ment purposes. The Department of Energy will provide
public access to these results of federally sponsored re-
search in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

References
[1] Almeida, L. B. A learning rule for asynchronous

perceptrons with feedback in a combinatorial environ-
ment. In Artificial neural networks: concept learning,
pp. 102–111, 1990.

[2] Anderson, D. G. Iterative procedures for nonlinear
integral equations. Journal of the ACM (JACM), 12(4):
547–560, 1965.

[3] Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolu-
tion recurrent neural networks. In International Con-
ference on Machine Learning, pp. 1120–1128, 2016.

[4] Atwood, J. and Towsley, D. Diffusion-convolutional
neural networks. In Advances in Neural Information
Processing Systems, volume 29, 2016.

[5] Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. Advances in Neural Information Processing
Systems, 32, 2019.

[6] Bai, S., Koltun, V., and Kolter, J. Z. Multiscale deep
equilibrium models. In Proceedings of the 34th Inter-
national Conference on Neural Information Process-
ing Systems, 2020.

[7] Bai, S., Koltun, V., and Kolter, J. Z. Stabilizing equi-
librium models by Jacobian regularization. In Interna-
tional Conference on Machine Learning, pp. 554–565.
PMLR, 2021.

[8] Bai, S., Koltun, V., and Kolter, J. Z. Neural deep
equilibrium solvers. In International Conference on
Learning Representations, 2022.

[9] Bartels, R. H. and Stewart, G. W. Solution of the
matrix equation ax+ xb= c [f4]. Communications of
the ACM, 15(9):820–826, 1972.

[10] Bengio, Y., Simard, P., and Frasconi, P. Learning long-
term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, 5(2):157–166,
1994.

[11] Biewald, L. Experiment tracking with weights and
biases, 2020. Software available from wandb.com.

[12] Blondel, M., Berthet, Q., Cuturi, M., Frostig, R.,
Hoyer, S., Llinares-López, F., Pedregosa, F., and Vert,
J.-P. Efficient and modular implicit differentiation.
arXiv preprint arXiv:2105.15183, 2021.

[13] Bolte, J., Le, T., Pauwels, E., and Silveti-Falls, T. Non-
smooth implicit differentiation for machine-learning
and optimization. Advances in neural information
processing systems, 34:13537–13549, 2021.

[14] Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y.
Simple and deep graph convolutional networks. In
International Conference on Machine Learning, pp.
1725–1735. PMLR, 2020.

[15] Chen, Q., Wang, Y., Wang, Y., Yang, J., and Lin, Z.
Optimization-induced graph implicit nonlinear diffu-
sion. In International Conference on Machine Learn-
ing, pp. 3648–3661. PMLR, 2022.

[16] Dai, H., Kozareva, Z., Dai, B., Smola, A., and Song,
L. Learning steady-states of iterative algorithms over
graphs. In International conference on machine learn-
ing, pp. 1106–1114. PMLR, 2018.

[17] El Ghaoui, L., Gu, F., Travacca, B., Askari, A., and
Tsai, A. Implicit deep learning. SIAM Journal on
Mathematics of Data Science, 3(3):930–958, 2021.

[18] Elman, J. L. Finding structure in time. Cognitive
Science, 14(2):179–211, 1990.

[19] Gallicchio, C. and Micheli, A. Fast and deep graph
neural networks. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34 (04), pp.
3898–3905, 2020.

[20] Gasteiger, J., Bojchevski, A., and Günnemann, S. Pre-
dict then propagate: Graph neural networks meet per-
sonalized pagerank. In International Conference on
Learning Representations, 2018.

[21] Gasteiger, J., Bojchevski, A., and Günnemann, S.
Combining neural networks with personalized pager-
ank for classification on graphs. In International Con-
ference on Learning Representations, 2019.

9

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

[22] Gasteiger, J., Weißenberger, S., and Günnemann, S.
Diffusion improves graph learning. In Advances in
Neural Information Processing Systems, volume 32,
2019.

[23] Gilbert, J. C. Automatic differentiation and iterative
processes. Optimization methods and software, 1(1):
13–21, 1992.

[24] Gu, F., Chang, H., Zhu, W., Sojoudi, S., and El Ghaoui,
L. Implicit graph neural networks. In Proceedings of
the 34th International Conference on Neural Informa-
tion Processing Systems, 2020.

[25] Helfrich, K., Willmott, D., and Ye, Q. Orthogonal re-
current neural networks with scaled cayley transform.
In International Conference on Machine Learning, pp.
1969–1978. PMLR, 2018.

[26] Hochreiter, S. and Schmidhuber, J. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

[27] Horn, R. A. and Johnson, C. R. Topics in matrix anal-
ysis, 1991. Cambridge University Presss, Cambridge,
37:39, 1991.

[28] Jafarpour, S., Davydov, A., Proskurnikov, A., and
Bullo, F. Robust Implicit Networks via Non-Euclidean
Contractions. In Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 9857–9868, 2021.

[29] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo,
S., LeCun, Y., Tegmark, M., and Soljačić, M. Tun-
able efficient unitary neural networks (eunn) and their
application to rnns. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70,
pp. 1733–1741. JMLR. org, 2017.

[30] Kawaguchi, K. On the theory of implicit deep learning:
Global convergence with implicit layers. In Interna-
tional Conference on Learning Representations, 2021.

[31] Kincaid, D. and Cheney, W. Numerical analysis,
brooks. Cole Publishing Company, 20:10–13, 1991.

[32] Kipf, T. N. and Welling, M. Semi-supervised classifi-
cation with graph convolutional networks. In Proceed-
ings of the 5th International Conference on Learning
Representations, 2017.

[33] Kolter, J. Z. and Manek, G. Learning stable deep
dynamics models. In Advances in Neural Information
Processing Systems, volume 32, 2019.

[34] Kolter, J. Z., Duvenaud, D., and Johnson, M. Deep im-
plicit layers - neural ODEs, deep equilibrium models,
and beyond, 2020.

[35] Krantz, S. G. and Parks, H. R. The implicit function
theorem: history, theory, and applications. Springer
Science & Business Media, 2002.

[36] Leskovec, J., Adamic, L. A., and Huberman, B. A.
The dynamics of viral marketing. ACM Transactions
on the Web (TWEB), 1(1):5–es, 2007.

[37] Lezcano Casado, M. Trivializations for gradient-based
optimization on manifolds. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

[38] Lezcano-Casado, M. and Martınez-Rubio, D. Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group.
In International Conference on Machine Learning, pp.
3794–3803. PMLR, 2019.

[39] Liu, J. and et al. Efficient graph neural networks. In
Advances in Neural Information Processing Systems,
2021.

[40] Mhammedi, Z., Hellicar, A., Rahman, A., and Bai-
ley, J. Efficient orthogonal parametrisation of recur-
rent neural networks using householder reflections. In
Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2401–2409. JMLR.
org, 2017.

[41] Nguyen, T., Baraniuk, R., Bertozzi, A., Osher, S., and
Wang, B. MomentumRNN: Integrating momentum
into recurrent neural networks. Advances in Neural
Information Processing Systems, 33:1924–1936, 2020.

[42] Nguyen, T. M., Baraniuk, R., Kirby, R., Osher, S., and
Wang, B. Momentum transformer: Closing the perfor-
mance gap between self-attention and its linearization.
In Mathematical and Scientific Machine Learning, pp.
189–204. PMLR, 2022.

[43] Park, J., Choo, J., and Park, J. Convergent graph
solvers. In International Conference on Learning Rep-
resentations, 2022.

[44] Pascanu, R., Mikolov, T., and Bengio, Y. On the
difficulty of training recurrent neural networks. In
International Conference on Machine Learning, pp.
1310–1318, 2013.

[45] Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-GCN: Geometric graph convolutional networks.
In International Conference on Learning Representa-
tions, 2020.

[46] Pineda, F. Generalization of back propagation to re-
current and higher order neural networks. In Neural
information processing systems, 1987.

10

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

[47] Robinson, S. M. An implicit-function theorem for a
class of nonsmooth functions. Mathematics of opera-
tions research, 16(2):292–309, 1991.

[48] Ryu, E. K. and Boyd, S. Primer on monotone operator
methods. Appl. Comput. Math, 15(1):3–43, 2016.

[49] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.,
and Monfardini, G. The graph neural network model.
IEEE transactions on neural networks, 20(1):61–80,
2008.

[50] Shervashidze, N., Vishwanathan, S., Petri, T.,
Mehlhorn, K., and Borgwardt, K. Efficient graphlet
kernels for large graph comparison. In Artificial intel-
ligence and statistics, pp. 488–495. PMLR, 2009.

[51] Thorpe, M., Nguyen, T. M., Xia, H., Strohmer, T.,
Bertozzi, A., Osher, S., and Wang, B. GRAND++:
Graph neural diffusion with a source term. In Interna-
tional Conference on Learning Representations, 2022.

[52] Velickovic, P., Cucurull, G., Casanova, A., Romero,
A., Lio, P., and Bengio, Y. Graph attention networks.
In International Conference on Learning Representa-
tions, 2018.

[53] Vorontsov, E., Trabelsi, C., Kadoury, S., and Pal, C.
On orthogonality and learning recurrent networks with
long term dependencies. In Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume
70, pp. 3570–3578. JMLR. org, 2017.

[54] Wang, B., Xia, H., Nguyen, T., and Osher, S. How
does momentum benefit deep neural networks archi-
tecture design? a few case studies. Research in the
Mathematical Sciences, 9(3):57, 2022.

[55] Welling, M. and Kipf, T. N. Semi-supervised clas-
sification with graph convolutional networks. In In-
ternational Conference on Learning Representations,
2016.

[56] Werbos, P. J. Generalization of backpropagation with
application to a recurrent gas market model. Neural
networks, 1(4):339–356, 1988.

[57] Winston, E. and Kolter, J. Z. Monotone operator equi-
librium networks. In Advances in neural informa-
tion processing systems, volume 33, pp. 10718–10728,
2020.

[58] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., and
Atlas, L. Full-capacity unitary recurrent neural net-
works. In Advances in Neural Information Processing
Systems, pp. 4880–4888, 2016.

[59] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and
Weinberger, K. Simplifying graph convolutional net-
works. In International conference on machine learn-
ing, pp. 6861–6871. PMLR, 2019.

[60] Xia, H., Suliafu, V., Ji, H., Nguyen, T., Bertozzi, A.,
Osher, S., and Wang, B. Heavy ball neural ordinary
differential equations. Advances in Neural Information
Processing Systems, 34:18646–18659, 2021.

[61] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? In International
Conference on Learning Representations, 2019.

[62] Yanardag, P. and Vishwanathan, S. Deep graph ker-
nels. In Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, pp. 1365–1374, 2015.

[63] Yang, J. and Leskovec, J. Defining and evaluating
network communities based on ground-truth. In Pro-
ceedings of the ACM SIGKDD Workshop on Mining
Data Semantics, pp. 1–8, 2012.

[64] Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An
end-to-end deep learning architecture for graph clas-
sification. In Proceedings of the AAAI conference on
artificial intelligence, volume 32 (1), 2018.

11

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Supplementary materials for
Implicit Graph Neural Networks: A Monotone Operator Viewpoint

A. A Brief Review of IGNN and Related Models
A.1. IGNN: Forward and backward propagation

IGNN employs a projected gradient descent method in the training phase to ensure their proposed well-posedness condition
is satisfied. In forward propagation, IGNN finds the equilibrium through the Picard iteration. During backward propagation,
IGNN uses the implicit function theorem at the equilibrium to compute the gradient. The computationally expensive
terms related to ∂ℓ

∂vec(Z∗)

(
I − J

(
G⊤ ⊗W

))−1
, see Section 4.2 for notations, is also computed implicitly through Picard

iteration.

A.2. EIGNN, CGS, and GIND

EIGNN. Efficient infinite-depth graph neural networks (EIGNN) is an implicit graph neural network model proposed by
Liu et al. [39] whose counterpart in explicit GNN is simple graph convolution (SGC) [59]. The main update step in EIGNN
is given by

Z(k+1) = γg(F)Z(k)G+X (13)

where Z(·) denotes the hidden feature, G is the normalized augmented adjacency matrix Â (see Section 1), X is the input
feature, g(F) is the weight matrix which is parameterized to guarantee convergence, and γ is a constant scalar in (0, 1).
Note that, there is no nonlinearity in the fixed-point Equation (13) and this allows EIGNN to find the equilibrium by the
following closed formula:

lim
k→∞

vec
(
Z(k+1)

)
= (I − γ(G⊤ ⊗ g(F)))−1 vec(X). (14)

For computation efficiency consideration, the matrix inverse operation is reduced to eigen-decomposition of G⊤ and g(F)
where the eigenvalue decomposition G⊤ is pre-calculated before training.

CGS. Convergent graph solver (CGS) is an implicit graph neural network proposed by Park et al. [43] where the fixed
point equation in use can be described as follows:

Z(k+1) = γZ(k)Gθ + gB(X) (15)

where Z(·) is the hidden feature, γ is the contraction factor, Gθ ∈ Rn×n is the graph-related matrix that is learnable and
gB(X) is the input-dependent bias term. Similar to the EIGNN case, the linearity in Equation (15) allows the fixed point to
be found by a closed formula.

GIND. The optimization-induced graph implicit nonlinear diffusion (GIND) is an implicit graph neural network proposed
by Chen et al. [15]. GIND involves a fixed point iteration equation of the following form:

Z(k+1) = −W⊤σ(W (Z(k) + gB(X))G)G⊤, (16)

where Z(·) is the hidden feature, W is the weight matrix, gB(X) is some input-dependent bias term, and G is a normaliza-
tion of the adjacency matrix A. The precise definition of G is given as G := D̂−1/2A/

√
2 where D̂ is the degree matrix

of the augmented adjacency matrix A+ I given as D̂ii := 1 +
∑

j Aij . The weight matrix W is parameterized so that
∥W ∥∥G∥ < 1. Similar to IGNN, the Picard iteration is employed to find the fixed point. The authors have claimed that
the new fixed-point equation (Equation (16)) represents a nonlinear diffusion process with anisotropic properties while
IGNN only represents a linear isotropic diffusion. However, we observe that GIND is closely related to the following simple
variant of IGNN where the main change is to

Z(k+1) = σ
(
W (−W⊤)Z(k)G⊤G+W gB(X)G

)
(17)

where the notations are the same as in Equation (16). In fact, once ∥W ∥∥G∥ < 1 and assume σ is a non-expansive activation
function (for example, tanh, ReLU, ELU), then Equation (17) is contractive and hence its fixed point exists. Let Z∗ be the

12

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

fixed-point of Equation (17), then we claim that Z̃ = −W⊤Z∗G⊤ is the fixed point of Equation (16) with the same W ,
G, and gB(X) used in both Equation (17) and Equation (16). This can be seen from the following direct calculation:

Z̃ = −W⊤Z∗G⊤

= −W⊤σ
(
W (−W⊤)Z∗G⊤G+W gB(X)G

)
G⊤

= −W⊤σ
(
WZ̃G+W gB(X)G

)
G⊤

= −W⊤σ
(
W (Z̃ + gB(X))G

)
G⊤.

B. A Brief Review of Monotone Operator Theory
B.1. Operators

In this section, we briefly review the definition and basic theory of monotone operators; more details can be found in [48].
We say T is a (set-valued) operator if T maps a point in Rd to a subset of Rd. and we denote this as T : Rd ⇒ Rd. We
define the graph of an operator as follows:

Gra T = {(x,u)|u ∈ T (x)}.

Mathematically, an operator and its graph are equivalent. In other words, we can view T : Rd ⇒ Rd as a point-to-set
mapping and as a subset of Rd × Rd.

Many notions for functions can be extended to operators. For example, the domain and range of an operator T are defined as

dom T = {x | T (x) ̸= ∅}, range T = {y | y = T (x),x ∈ Rd}.

If T and S are two operators, we define their composition as

T ◦ S(x) = T S(x) = T (S(x)),

and their sum as
(T + S)(x) = T (x) + S(x).

Alternatively, we can define the operator composition and sum using their graphs,

T S =
{
(x, z) | ∃ y (x,y) ∈ S, (y, z) ∈ T

}
,

T + S =
{
(x,y + z) | (x,y) ∈ T , (x, z) ∈ S

}
.

The identity (I) and zero (0) operators are defined as follows

I = {(x,x) | x ∈ Rd}, 0 = {(x,0) | x ∈ Rd}.

We say an operator T is L-Lipschitz (L > 0) if

∥T (x)− T (y)∥ ≤ L∥x− y∥, ∀x,y ∈ dom T ,

i.e.
∥u− v∥ ≤ L∥x− y∥, ∀(x,u), (y,v) ∈ T .

The inverse operator of T is defined as
T −1 = {(y,x) | (x,y) ∈ T }.

When 0 ∈ T (x), we say that x is a zero of T . We write the zero set of an operator T as

Zer T = {x | 0 ∈ T (x)} = T −1(0).

13

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

B.2. Monotone operators

An operator T on Rd is said to be monotone if

⟨u− v,x− y⟩ ≥ 0, ∀(x,u), (y,v) ∈ T ,

where ⟨·, ·⟩ denotes the inner product between two vectors. Equivalently, we can express monotonicity as

⟨T (x)− T (y),x− y⟩ ≥ 0, ∀x,y ∈ Rd.

Furthermore, we say the operator T is maximal monotone if there is no other monotone operator S s.t. Gra T ⊂ Gra S
properly. In other words, if the monotone operator T is not maximal, then there exists (x,u) /∈ T s.t. T ∪ {(x,u)} is still
monotone. A continuous monotone function F : Rd → Rd is maximal monotone.

An operator T : Rd ⇒ Rd is B-strongly monotone or B-coercive if B > 0 and

⟨u− v,x− y⟩ ≥ B∥x− y∥2, ∀(x,u), (y,v) ∈ T .

We say T is strongly monotone if it is B-strongly monotone for some unspecified constant B ∈ (0,∞). In particular, a
linear operator F(x) = Gx+ h for G ∈ Rd×d and h ∈ Rd is maximal monotone if and only if G+G⊤ ⪰ 0 (0 stands
for the matrix whose entries are all zero) and B-strongly monotone if 1

2 (G+G⊤) ⪰ BI . Similarly, a subdifferentiable
operator ∂f is maximal monotone if and only if f is a convex closed proper (CCP) function.

An operator T is β-cocoercive or β-inverse strongly monotone if β > 0 and

⟨u− v,x− y⟩ ≥ β∥u− v∥2, ∀(x,u), (y,v) ∈ T .

We say T is cocoercive if it is β-cocoercive for some unspecified constant β ∈ (0,∞). In particular, if the linear operator
F(x) = Gx+ h is B-strongly monotone and L-Lipschitz, then F is B

L2 -cocoercive.

C. A Brief Review of Operator Splitting Schemes
In this section, we provide a brief review of a few celebrated operator-splitting schemes for solving fixed-point equilibrium
equations.

C.1. Resolvent and Cayley operators

The resolvent and Cayley operators of an operator T is defined, respectively, as follows

RT = (I + αT)−1,

and
CT = 2RT − I,

where α > 0 is a constant. The resolvent and Cayley operators are both non-expansive, i.e. they both have Lipschitz
constant L ≤ 1 for any maximal monotone operator T , and the resolvent operator RT is contractive (i.e. L < 1) for strongly
monotone T , the Cayley operator CT is contractive for strongly monotone and Lipschitz T .

There are two well-known properties associated with the resolvent operators:

• First, when F(x) = Gx+ h is a linear operator, then

RF (x) =
(
I + αG

)−1
(x− αh).

• Second, when F = ∂f for some CCP function f , then the resolvent is given by the following proximal operator

RF (x) = proxαf (x) := argmin
z

{1
2
∥x− z∥2 + αf(z)

}
.

14

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

C.2. Operator splitting schemes

Operator splitting schemes refer to methods to find a zero in a sum of operators (assumed here to be maximal monotone), i.e.
find x s.t.

0 ∈ (F + G)(x).

We present a few popular operator splitting schemes for solving the above monotone inclusion problem.

• Forward-backward splitting (FB): Consider the monotone inclusion problem

findx∈Rd 0 ∈ (F + G)(x),

where F and G are maximal monotone and F is single-valued. Then for any α > 0, we have

0 ∈ (F + G)(x) ⇔ 0 ∈ (I + αG)(x)− (I − αF)(x)

⇔ (I + αG)(x) ∋ (I − αF)(x)

⇔ x = RG(I − αF)(x).

Therefore, x is a solution if and only if it is a fixed point of RG(I − αF). Moreover, assume F is β-cocoercive, then
the Picard iteration using forward-backward splitting can be written as

x(k+1) = RG(x
(k) − αFx(k)),

which converges if α ∈ (0, 2β) and Zer(F + G) ̸= ∅.

• Peaceman-Rachford splitting (PR): Consider the following monotone inclusion problem

findx∈Rd 0 ∈ (F + G)(x),

where F and G are maximal monotone. For any α > 0, we have

0 ∈ (F + G)(x) ⇔ 0 ∈ (I + αF)(x)− (I − αG)(x)
⇔ 0 ∈ (I + αF)(x)− CG(I + αG)(x)
⇔ 0 ∈ (I + αF)(x)− CG(z), z ∈ (I + αG)(x)
⇔ CG(z) ∈ (I + αF)RG(z), x = RG(z)

⇔ RFCG(z) = RG(z), x = RG(z)

⇔ CFCG(z) = z, x = RG(z).

Therefore, x is a solution if and only if there is a solution of the fixed-point equilibrium equation z = CFCG(z) and
x = RG(z), which is called Peaceman-Rachford splitting.

• Douglas-Rachford splitting (DR): Sometimes the operator CFCG is merely nonexpansive, the Picard iteration with PR
given below

z(k+1) = CFCG(z(k))

is not guaranteed to converge. To guarantee convergence, we note that for any ∀α > 0, we have

0 ∈ (F + G)(x) ⇔
(1
2
I +

1

2
CFCG

)
(z) = z, x = JG(z).

And the above splitting is called Douglas-Rachford splitting. The Picard iteration with DR can be written as follows:

x(k+1/2) = RG(z
(k))

x(k+1) = RF (2x
(k+1/2) − z(k))

z(k+1) = z(k) + x(k+1) − x(k+1/2)

which converges for any α > 0 if Zer(F + G) ̸= ∅.

15

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

D. Some Properties of Kronecker product
In this section, we collect some Kronecker product results that are used in this paper.

Definition D.1. Let A ∈ Rp×q, B ∈ Rr×s be two matrices. Their Kronecker product A ⊗ B ∈ Rpr×qs is defined as
follows:

A⊗B =

 A11B . . . A1qB
...

...
Ap1B . . . ApqB

The following identities about Kronecker product hold:

• (A⊗B)⊤ = A⊤ ⊗B⊤ ∀A ∈ Rp×q, B ∈ Rr×s

• ∥A⊗B∥ = ∥A∥∥B∥ ∀A ∈ Rp×q, B ∈ Rr×s

• ∥A⊗B∥∞ = ∥A∥∞∥B∥∞ ∀A ∈ Rp×q, B ∈ Rr×s

• (A⊗B)vec(C) = vec(BCA⊤) ∀A ∈ Rs,r,B ∈ Rp×q,C ∈ Rq×r

• (A⊗B)⊗C = A⊗ (B ⊗C) ∀A ∈ Rm,n,B ∈ Rp×q,C ∈ Rr×s

• A⊗ (B +C) = A⊗B +A⊗C ∀A ∈ Rp×q,B,C ∈ Rr×s

• (A+B)⊗C = A⊗C +B ⊗C ∀A,B ∈ Rp×q,C ∈ Rr×s

• (A⊗B)(C ⊗D) = AC ⊗BD ∀A ∈ Rp×q,B ∈ Rr×s,C ∈ Rq×k,D ∈ Rs×l

Proposition D.2 (Theorem 4.2.12 in [27]). Let A ∈ Rn×n and B ∈ Rm×m. If we denote the eigenvalue sets of A
and B as Λ(A) = {λ1(A), . . . , λn(A)} and Λ(B) = {λ1(B), . . . , λm(B)}, then the eigenvalue set of A ⊗ B is
Λ(A⊗B) = {λi(A) · λj(B), i = 1, . . . , n, j = 1, . . . ,m}.

E. Technical Proofs
E.1. Lipschitz constant vs. Largest magnitude of eigenvalue

Let f(Z) = WZG + B be a linear map. With slightly abuse of notation, we still denote the vectorized version
of f as f which reads f(vec(Z)) = (G⊤ ⊗ W)vec(Z) + vec(B) (See Appendix D for properties of the Kronecker
product). The Lipschitz constant Lip∞(f) of the linear map f with respect to the ℓ∞ vector norm is exactly the ∞-norm
∥G⊗W ∥∞ = ∥G⊤∥∞∥W ∥∞. Recall the following general result about the matrix norm and the largest magnitude of
eigenvalue.

Theorem E.1 (Theorem 4 in Section 4.6 in [31]). The largest magnitude of eigenvalue λ1(A) of a matrix A satisfies

λ1(A) = inf
∥·∥M

∥A∥M

in which the infimum is taken over all subordinate matrix norms ∥ · ∥M including 2-norm and ∞-norm.

Meanwhile, note that one has ∥W ∥∞ = ∥ |W | ∥∞ by definition. Hence one has Lip∞(f) = ∥G⊤∥∞∥W ∥∞ ≥
λ1(G

⊤)λ1(|W |). Note that, when G is the normalized adjacency matrix of undirected graph Â, we have λ1(G
⊤) =

λ1(G) = 1 and hence we have Lip∞(f) ≥ λ1(|W |).

E.2. Proofs for Section 2

Proof of Proposition 2.1. First recall the operator splitting problem 3 in Section 1:

find 0 ∈ (F + G)(vec(Z)),

where
F(vec(Z)) = (I −G⊤ ⊗W)vec(Z)− vec(gB(X)) and G = ∂f,

16

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

here f is the indicator of the positive octant, i.e. f(x) = I{x ≥ 0} for which we have proxαf equals σ, the ReLU
activation function, for all α > 0. Note that, from the condition K = 1

2

(
G⊤ ⊗W +G ⊗W⊤) ⪯ (1 −m)I , one has

G⊤ ⊗W ⪯ (1−m)I and hence
I −G⊤ ⊗W ⪰ mI

which says F is m-strongly monotone for some m > 0. As the function F is a linear and hence continuous function
defined on the entire Rd×n, it is then automatically maximal monotone once it is monotone. Since f is a CCP function, its
subdifferential operator G = ∂f is maximal monotone. In particular, as the linear map F is single-valued, we can apply the
FB splitting scheme in Appendix C.2 as the following: for any α > 0, we have

0 ∈ (F + G)(vec(Z)) ⇔ vec(Z) = RG(I − αF)(vec(Z)).

⇔ vec(Z) = proxα
f

(
vec(Z)− α ·

(
vec(Z)−G⊤ ⊗W vec(Z)− vec(gB(X))

))
,

⇔ vec(Z) = σ
(
vec(Z)− α ·

(
vec(Z)−G⊤ ⊗W vec(Z)− vec(gB(X))

))
.

When α = 1 in the last above, we recover the MIGNN model Equation (2):

vec(Z) = σ(G⊤ ⊗W vec(Z) + vec(gB(X))

This shows the equivalence between finding a fixed point of MIGNN model Equation (2) and finding a zero of the operator
splitting problem Equation (3). Therefore, when K ⪯ (1−m)I , the linear map F is strongly monotone and Lipschitz, the
monotone splitting problem and hence the MIGNN model is well-sposed, see Appendix C.2.

E.3. Proofs for Section 3

Proof of Proposition 3.1. Since the normalized Laplacian L is symmetric, we have

K =
1

2

(
1

2
L⊤ ⊗W +

1

2
L⊗W⊤

)
=

1

2
L⊗

(
1

2

(
W +W⊤)) .

The property of Kronecker product (Theorem D.2) tells us that the eigenvalues of K are the products of the eigenvalues of
L and

(
1
2 (W +W⊤)

)
. Therefore, the MIGNN model satisfies the well-posedness condition in Proposition 2.1 once

λi

(
1

2
L

)
λj

(
1

2
(W +W⊤)

)
≤ 1−m

for all eigenvalues from 1
2L and

(
1
2 (W +W⊤)

)
. Notice that 1

2L is positive semi-definite and all its eigenvalues are within
[0, 1]. Therefore, W guarantees the well-posedness of MIGNN as long as all eigenvalues satisfy

λi

(
1

2
(W +W⊤)

)
≤ 1−m.

When W = (1−m)I−CC⊤+F −F⊤, we have 1
2 (W +W⊤) = (1−m)I−CC⊤. As CC⊤ is positive semi-definite,

all eigenvalues of 1
2 (W +W⊤) are no more than (1−m).

The following properties of the Cayley map are used in this paper.

Proposition E.2. Let S be a skew-symmetric matrix. Then its image under the Cayley map Cay(S) := (I − S)(I + S)−1

is an orthogonal matrix, and hence the magnitude of all its eigenvalues is 1.

Proof. To verify that the Cayley map is well-defined, it suffices to show that −1 is not an eigenvalue of S. This can be
derived from the general fact that each eigenvalue of any skew-symmetric matrix is purely imaginary. To see this, let λ be an
eigenvalue of S with corresponding eigenvector v where both λ and v possibly contain complex numbers. Let vH and SH

denote the conjugate transpose of the vector v and the matrix S respectively. We then have

vHSv = vH(λv) = λ|v|2C,

where | · |C denotes the Euclidean norm for a complex vector. At the same time, one has

vHSv = (SHv)Hv = (−Sv)Hv = −λ̄|v|2C,

17

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

where λ̄ denotes the complex conjugate of λ. Hence λ = −λ, that is λ is purely imaginary. This concludes the proof that
(I − S)(I + S)−1 is well-defined.

Note that (I−S)(I+S)−1
(
(I − S)(I + S)−1

)⊤
= (I−S)(I+S)−1(I+S)(I−S)−1 = I . Therefore, (I−S)(I+S)−1

is (real) orthogonal.

In the last part, we present a short proof that the magnitude of all eigenvalues of a (real) orthogonal matrix O equals 1. Let
λO be an eigenvalue of O and w is its eigenvector. Then we have

|λO||w|2C = (Ow)H(Ow) = wHOHOw = (Ow)H(Ow) = wHO⊤Ow = |w|2C.

Hence, |λO| = 1.

E.4. Proofs for Section 4

The following result about Kronecker product is adapted from [39] which we include here for completeness.

Proof of Equation (9) used in Section 4. Since G⊤ is symmetric, it admits an eigen-decomposition G⊤ = QG⊤ΛG⊤Q⊤
G⊤

where QG⊤ is orthogonal and hence satisfies Q−1
G⊤ = QG⊤ . As W is diagonalizable, it admits a eigen-decomposition

W = QWΛWQ−1
W . Then we can write

G⊤ ⊗W = [QG⊤ΛG⊤Q⊤
G⊤]⊗ [QWΛWQ−1

W]

= [QG⊤ ⊗QW][ΛG⊤ ⊗ΛW][Q⊤
G⊤ ⊗Q−1

W]

Let n = dim(G) and d = dim(W), we have

Ind = In ⊗ Id = [QG⊤InQ
⊤
G⊤]⊗ [QW ImQ−1

W] = [QG⊤ ⊗QW][In ⊗ Im][Q⊤
G⊤ ⊗Q−1

W]

Therefore, for some matrix B ∈ Rd×n,

V (vec(U)) =
1

1 + α

(
Ind −

α

1 + α
(G⊤ ⊗W)

)−1

(vec(U))

=
1

1 + α

(
Ind −

α

1 + α
(G⊤ ⊗W)

)−1

(vec(U))

1

1 + α

(
[QG⊤ ⊗QW]

[
Ind −

α

1 + α
ΛG⊤ ⊗ΛW

] [
Q⊤

G⊤ ⊗Q−1
W

])−1

(vec(U))

1

1 + α

(
[QG⊤ ⊗QW]

[
Ind −

α

1 + α
ΛG⊤ ⊗ΛW

]−1 [
Q⊤

G⊤ ⊗Q−1
W

])
(vec(U))

Note that
[
Ind − α

1+αΛG⊤ ⊗ΛW

]
is a diagonal matrix whose inverse is given by the diagonal matrix Diag(vec(H))

where the entires of H is given as Hij := 1/
(
1− α

1+α (ΛW)ii(ΛG⊤)jj

)
. Here the notation Diag(v) denotes the diagonal

matrix that has v as its diagonal for any vector v. From this we have,

V (vec(U)) =
1

1 + α

(
[QG⊤ ⊗QW] Diag(vec(H))

[
Q⊤

G⊤ ⊗Q−1
W

])
(vec(U))

=
1

1 + α
([QG⊤ ⊗QW] Diag(vec(H)) vec(Q−1

W UQG⊤)

=
1

1 + α
[QG⊤ ⊗QW] vec

(
H ⊙ [Q−1

W UQG⊤]
)

=
1

1 + α
vec
(
QW [H ⊙ [Q−1

W UQG⊤]]Q⊤
G⊤

)
where ⊙ denotes entry-wise multiplication.

18

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

F. MIGNN via Anderson-Accelerated Operator Splitting Schemes
In this section, we present the pseudocodes of Anderson-accelerated MIGNN operator splitting schemes discussed in
Section 4.

F.1. Pseudocode for MIGNN with operator splitting schemes

FB Splitting. The detail of the FB splitting scheme iteration function Equation (6) of solving MIGNN is presented in
Algorithm 1.

Algorithm 1 FB-forward-MIGNN
Z := 0; err := 1
while err > ϵ do

Z(+) := (1− α)Z + αWZG+ αgB(X)
Z(+) := proxαf (Z

(+))

err := ∥Z(+)−Z∥
∥Z(+)∥

Z := Z(+)

end while
return Z

PR splitting. The details of the PR splitting scheme encoded in the iteration function Equation (7) of solving MIGNN is
presented in Algorithm 2.

Algorithm 2 PR-forward-MIGNN
z,u = vec(U) := 0; err := 1; V := (I + α(I −G⊤ ⊗W))−1

while err > ϵ do
z(1/2) := proxαf (u)

u(1/2) := 2z(1/2) − u
z(+) := V (u(1/2) + α vec(gB(X)))
u(+) := 2z(+) − u(1/2)

err := ∥u(+)−u∥
∥u(+)∥

z,u := z(+),u(+)

end while
return proxαf (u)

F.2. More details on backward propagation

In the backward propagation, the following result from [57] allows us to convert the computing of the inverse Jacobian term
(I − J(G⊤ ⊗W))−⊤ to the (transpose of) matrix inverse term V = (I −G⊤ ⊗W))−1 which is already calculated in
the forward pass.

Proposition F.1 (Adapted from Theorem 3 in [57]). Let vec(Z∗) be the fixed point of the MIGNN model (2) and J is the
Jacobian σ of the non-linearity at the G⊤ ⊗W vec(Z∗) + vec(gB(X)). For any v ∈ Rn the solution u∗ of the equation

u∗ = (I − J(G⊤ ⊗W))−⊤v

is given by
u∗ = v + (G⊗W⊤)ũ∗

where ũ is a solution of the operator splitting problem 0 ∈ (F̃ + G̃)(ũ), with operators defined as

F̃ (ũ) =
(
I −G⊗W⊤) (ũ), G̃(ũ) = Dũ− v (18)

where D is the diagonal matrix defined by J = (I +D)−1 (where Dii = ∞ if Jii = 0).

19

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Note that, since the non-linearity σ is applied entry-wise, the Jacobian J is a diagonal matrix, and its diagonal entries
consist of the vectorization of the Jacobian ∂σ(WZG⊤)

∂Z |Z∗ . Therefore, the Jacobian J and hence D can be efficiently
computed. We provide the pseudo-codes of FB and PR splitting schemes for the backward propagation described in the
above proposition as Algorithm 3 and Algorithm 4 respectively and their Anderson-accelerated version can be found in
Algorithm 7 and Algorithm 8.
Remark F.2. It is worth noting that the non-linearity function σ commonly used in practical applications may not be
differentiable. However, versions of the generalized implicit function theorem [47; 13] exist, allowing us to apply the
implicit differentiation theorem in our setting. Please refer to Section 3 of [13] for further details.

FB backward propagation We now present the pseudo-code of FB splitting method (Algorithm 3) for the backward
propagation with the procedure described in Proposition F.1.

Algorithm 3 FB-backward-MIGNN

u = vec(U) := 0; err := 1; v := ∂ℓ
∂vec(Z∗)

while err > ϵ do
u(+) := (1− α)u+ α vec(W⊤UG⊤)

u
(+)
i :=

{
u
(+)
i +αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii = ∞
err := ∥u(+)−u∥

∥u(+)∥
u := u(+)

end while
Set U := vec−1(u)
return v + vec(W⊤UG⊤)

Let u(k) be the intermediate variable, the procedure of applying FB splitting on monotone splitting problem Equation (18)
can be summarized as finding the fixed-point u∗ of the following iteration function

u(k+1) := BFB
α (u(k)) = (I + αD)−1((1− α)u(k) + αW⊤v). (19)

PR backward propagation We now present the pseudo-code of PR splitting method (Algorithm 4) for the backward
propagation with the procedure described in Proposition F.1. Let y(k) be the intermediate variable, the procedure of applying

Algorithm 4 PR-backward-MIGNN

y := 0;u = vec(U) := 0; err := 1; v := ∂ℓ
∂vec(Z∗) ; V := (I + α(I −G⊤ ⊗W))−1

while err > ϵ do

u
(1/2)
i :=

{
yi+αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii = ∞
y(1/2) := 2u(1/2) − y
u(+) := V ⊤y(1/2)

y(+) := 2u(+) − y(1/2)

err := ∥y(+)−y∥
∥y(+)∥

y,u := y(+),u(+)

end while

Compute u where ui :=

{
yi+αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii := ∞
Set U := vec−1(u)
return v + vec(W⊤UG⊤)

PR splitting on Equation (18) can be summarized as first finding the fixed-point y∗ of the following iteration function

y(k+1) := BPR
α (y(k)) = 2V ⊤

(
2(I + αD)−1(y(k) + αv)− y(k)

)
− 2(I + αD)−1(y(k) + αv) + y(k) (20)

20

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

and then the final solution of the operator splitting problem is ũ = (I + αD)−1(y∗ + αv).

F.3. Anderson acceleration

We first introduce the general Anderson acceleration scheme. Let f : Rn → Rn be a function s.t. the Lipschitz constant
L(f) < 1. Therefore, the function f admits a unique fixed point and can be obtained through Picard iteration. Let
h(x) = f(x)−x be the residual function. Let x(0) be the initial guess, β ∈ (0, 1) be a relaxation parameter, and m > 1 be
an integer parameter. Then the Anderson acceleration update x(k) as

x(k+1) = (1− β)

m∑
i=0

γ
(k)
i x(k−m+i) + β

m∑
i=0

γ
(k)
i h

(
x(k−m+i)

)
(21)

where the coefficients γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
m

)⊤
are determined by a least-square problem as the following:

min
γ=(γ0,...,γm)⊤

∥∥∥∥∥
m∑
i

h(x(k−m+i))γi

∥∥∥∥∥ s.t.
m∑
i=0

γi = 1.

Note that, when β = 1, the trivial weight γ(k) = (0, . . . , 0, 1)⊤ recovers Picard iteration. Therefore, when the Picard
iteration converges, the Anderson acceleration also converges and typically faster.

In Algorithm 5, we present the FB MIGNN forward propagation with Anderson acceleration on the FB iteration function
FFB
α which is introduced in Section 4 and recalled here:

Z(k+1) := FFB
α (Z(k)) := proxαf

(
Z(k) − α ·

(
Z(k) −WZ(k)G− gB(X)

))
.

Algorithm 5 MIGNN-FB-Forward: FB MIGNN forward propagation

Input: initial point Z(0) := 0, FB damping parameter α, AA relaxation parameter β, max storage size m ≥ 1.
Compute F (0) = FPB

α (Z(0)),H(0) = F (0) −Z(0).
for k = 1, . . . ,K do

Set mk = min(m, k)
Compute F (k) = FPB

α

(
Z(k)

)
, H(k) = F (k) −Z(k)

Update H := (H(k−mk), . . . ,H(k))

Determine γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
mk

)⊤
that solves

min
γ=(γ0,...,γmk)

⊤
∥Hγ∥ s.t.

mk∑
i=0

γi = 1.

Set

Z(k+1) := β

mk∑
i=0

γ
(k)
i FPB

α (Z((k−mk)+i)) + (1− β)

mk∑
i=0

γ
(k)
i Z((k−mk)+i).

end for
return Z(k+1)

In Algorithm 6, we present the PR MIGNN forward propagation with Anderson acceleration on the PR iteration function
FPR
α which is introduced in Section 4 and recalled here:

u(k+1) := FPR
α (u(k)) = 2V

(
2 proxα

f (u
(k))− u(k) + α vec(gB(X))

)
− 2 proxα

f (u
(k)) + u(k), (22)

21

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Algorithm 6 MIGNN-PR-forward: PR MIGNN forward propagation

Input: initial point u(0) = vec(U (0)) := 0, PR damping parameter α, AA relaxation parameter β, max storage size
m ≥ 1.
Compute f (0) := FPR

α (u(0)),h(0) := f (0) − u(0).
for k = 1, . . . ,K do

Set mk := min(m, k)
Compute f (k) := FPR

α

(
u(k)

)
, h(k) := f (k) − u(k)

Update H := (h(k−mk), . . . ,h(k))

Determine γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
mk

)⊤
that solves

min
γ=(γ0,...,γmk)

⊤
∥Hγ∥ s.t.

mk∑
i=0

γi = 1.

Set

u(k+1) := β

mk∑
i=0

γ
(k)
i FPR

α (u((k−mk)+i)) + (1− β)

mk∑
i=0

γ
(k)
i u((k−mk)+i).

end for

Set U (k+1) := vec−1(u(k+1))
return proxαf (U

(k+1))

The FB iteration function for the backpropagation BFB
α is introduced in Appendix F.2 and recalled here:

u(k+1) := BFB
α (u(k)) = (I + αD)−1((1− α)u(k) + αW⊤v). (23)

We present the Anderson-accelerated FB MIGNN backward propagation as Algorithm 7.

Algorithm 7 MIGNN-FB-Backward: FB MIGNN backward propagation

Input: initial point u(0) := vec(U) := 0, v := ∂ℓ
∂vec(Z∗) , PR damping parameter α, AA relaxation parameter β, max

storage size m ≥ 1.
Compute f (0) := BFB

α (u(0)),h(0) := f (0) − u(0).
for k = 1, . . . ,K do

Set mk := min(m, k)
Compute f (k) := BFB

α

(
u(k)

)
, h(k) := f (k) − u(k)

Update H := (h(k−mk), . . . ,h(k))

Determine γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
mk

)⊤
that solves

min
γ=(γ0,...,γmk)

⊤
∥Hγ∥ s.t.

mk∑
i=0

γi = 1.

Set

u(k+1) := β

mk∑
i=0

γ
(k)
i BFB

α (u((k−mk)+i)) + (1− β)

mk∑
i=0

γ
(k)
i u((k−mk)+i).

end for

Set U (k+1) := vec−1(u(k+1))
return v + vec(W⊤U (k+1)G⊤)

The PR iteration function for the backpropagation BPR
α is introduced in Appendix F.2 and recalled here: let y(k) be the

22

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

intermediate variable,

y(k+1) := BPR
α (y(k)) = 2V ⊤

(
2(I + αD)−1(y(k) + αv)− y(k)

)
− 2(I + αD)−1(y(k) + αv) + y(k) (24)

and then the final solution of the operator splitting problem is ũ = (I + αD)−1(y∗ + αv). We now present the Anderson-
accelerated PR MIGNN backward propagation as Algorithm 8.

Algorithm 8 MIGNN-PR-Backward: PR MIGNN backward propagation

Input: initial point y(0) := 0, v := ∂ℓ
∂vec(Z∗) , PR damping parameter α, AA relaxation parameter β, max storage size

m ≥ 1.
Compute f (0) := BPR

α (y(0)),h(0) := f (0) − y(0).
for k = 1, . . . ,K do

Set mk := min(m, k)
Compute f (k) := BPR

α

(
y(k)

)
, h(k) := f (k) − y(k)

Update H := (h(k−mk), . . . ,h(k))

Determine γ(k) =
(
γ
(k)
0 , . . . , γ

(k)
mk

)⊤
that solves

min
γ=(γ0,...,γmk)

⊤
∥Hγ∥ s.t.

mk∑
i=0

γi = 1.

Set

y(k+1) := β

mk∑
i=0

γ
(k)
i BPR

α (y((k−mk)+i)) + (1− β)

mk∑
i=0

γ
(k)
i y((k−mk)+i).

end for

Compute u(k+1) where u
(k+1)
i :=

{
y
(k+1)
i +αvi

1+α(1+Dii)
if Dii < ∞

0 if Dii = ∞
Set U (k+1) := vec−1(u(k+1))
return v + vec(W⊤U (k+1)G⊤)

G. Effects of the Order of Neumann Series Expansion
In this section, we perform ablation studies on the effects of the order of the Neumann series for approximating matrix
(I + α(I − G⊤ ⊗ W))−1 in MIGNN-NK. We study the performance of MIGNN-NK for synthetic directed chain
classification, benchmark graph node classification, and graph classification.

G.1. Directed chain classification

Examining the Neumann series expansion for the synthetic chain classification task demonstrates the trade-off between
accuracy and time complexity. We train MIGNN-NK for three-class classification, where the order K ranges from 1 to 5 in
increments of 1. Fig. 9 plots the resulting test accuracy, number of iterations, and time elapsed for each training epoch.

We make three observations as the order of the Neumann series increases. First the accuracy increases with respect to the
order with diminishing returns. Second the number of iterations increases relative to the order up 3. Finally, the time elapsed
also increases with respect to the order up to 4 and 5 which are similar. These observations underscore the trade-off between
accuracy and time complexity as the order increases.

G.2. Graph classification

In this subsection, we apply MIGNN-NK to classify the MUTAG dataset, where K ranges from 1 to 5 incrementing by
1. Fig. 10 plots the test accuracy, the number of iterations, and the time elapsed for training one fold of the 10-fold cross
validation.

23

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

0 200 400 600 800 1000
Epoch

35.0

37.5

40.0

42.5
Ac

cu
ra

cy
(%

)

0 200 400 600 800 1000
Epoch

10

20

30

40

Ite

ra
tio

ns

0 200 400 600 800 1000
Epoch

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

N1 N2 N3 N4 N5

Figure 9. Comparison of Neumann expansion for accuracy, number of iterations, and elapsed time using three-class chain classifications
with chain length 140.

0 100 200 300 400 500
Epoch

60

70

80

90

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

20

25

30

Ite

ra
tio

ns

0 100 200 300 400 500
Epoch

0.4

0.6

0.8

1.0

Ti
m

e
El

la
ps

ed
 (s

) N1 N2 N3 N4 N5

Figure 10. Comparison of Neumann expansion for accuracy, number of iterations and elapsed time using the first fold of the MUTAG
graph data set.

Unlike the directed chains and node classification tasks, the graph classification does not show significant improvements
from higher-order Neumann expansion on this fold. Although the accuracy and iteration count remain similar among all
orders, the time elapsed still scales with the order.

H. More Discussion on When IGNNs Become Expressive for Learning LRD
In this section, we further confirm the interconnection between the accuracy of IGNN for classifying directed chains and the
eigenvalues of |W |. The accuracy and number of iterations of IGNN and the dynamics of the two leading eigenvalues are
plotted in Figs. 11 and 12, respectively, for the binary and three-class cases. These results confirm the phenomena we have
discussed in Sec. 1.

I. Details about datasets
Synthetic chains dataset. To evaluate the LRD learning ability of models, we construct synthetic chains dataset as in Gu
et al. [24]. Both binary classification and multiclass classification are considered. Let c be the number of classes, that is,
there are c types of chains. The label information is only encoded as a one-hot vector in the first c-dimensions of the node
feature of the starting nodes of each chain. With c classes, nc chains for each class, and l nodes in each chain, the chain
dataset has c× nc × l nodes in total.

Bioinformatics datasets. MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic nitro compounds. PTC
is a dataset of 344 chemical compounds that report carcinogenicity for male and female rats. COX2 is a dataset of 467
cyclooxygenase-2 (COX-2) inhibitors. PROTEINS is a dataset of 1113 secondary structure elements (SSEs). NCI1 is a
public dataset from the National Cancer Institute (NCI) and is a subset of balanced datasets of chemical compounds screened
for the ability to suppress or inhibit the growth of a panel of human tumor cell lines.

Amazon product co-purchasing network. This dataset contains 334863 nodes (representing goods), 925872 edges, and
58 label types. An edge is formed between two nodes if the represented goods have been purchased together [36].

Pore networks. The pore network is a simulated dataset that models fluid flow in porous media. Each porous network is
randomly generated inside a cubic domain of width 0.1m by Delaunay or Voronoi tessellation. The prediction of equilibrium
pressure in a pore network under physical diffusion is introduced as a GNN task in [43]. The GNN model prediction
accuracy is compared with the ground truth obtained by solving the diffusion equation directly; see Appendix C in [43] for
more details.

24

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

0 100 200 300 400 500
Epoch

60

80

100
Ac

cu
ra

cy
(%

)

0 100 200 300 400 500
Epoch

0.4

0.6

0.8

1.0

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

Chain Length
100

(a) (b) (c)

0 100 200 300 400 500
Epoch

60

80

100

Ac
cu

ra
cy

(%
)

Train Validate Test
0 100 200 300 400 500

Epoch

0.4

0.6

0.8

1.0

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

Chain Length
150

(d) (e) (f)

0 100 200 300 400 500
Epoch

48

50

52

54

56

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.2

0.4 1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

4

6

8

10

12

Ite

ra
tio

ns

Chain Length
200

(g) (h) (i)

0 100 200 300 400 500
Epoch

48

50

52

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.1

0.2

0.3
1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

4

6

8

10

Ite

ra
tio

ns

Chain Length
250

(j) (k) (l)

0 100 200 300 400 500
Epoch

48

50

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.0

0.1

0.2

0.3

0.4

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

2.5

5.0

7.5

10.0

12.5

Ite

ra
tio

ns

Chain Length
300

(m) (n) (o)
Figure 11. In the first column, the training, test, and validation accuracies of IGNN are depicted for several varying chain lengths. In
the second column, the corresponding top two eigenvalues are plotted. The third column depicts the number of Picard iterations for
each chain length. When IGNN becomes accurate for chain classification, the corresponding λ1(|W |) becomes close to 1 and requires
substantially more iterations for the Picard iteration to converge.

Citation dataset. Cora and Citeseer are large citation datasets that describe the presence of specific words in publications.
Pubmed is a large citation dataset that contains information about papers classified for studying one of the three diabetes.
The following table adapted from [21] describes the statistics of the three datasets.

25

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

0 100 200 300 400 500
Epoch

34

36

38

40

42
Ac

cu
ra

cy
(%

)

0 100 200 300 400 500
Epoch

0.1

0.2

0.3

0.4

0.5

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

8

10

12

Ite

ra
tio

ns

Chain Length
100

(a) (b) (c)

0 100 200 300 400 500
Epoch

40

60

80

100

Ac
cu

ra
cy

(%
)

Train Validate Test
0 100 200 300 400 500

Epoch

0.4

0.6

0.8

1.0

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

0

100

200

300

Ite

ra
tio

ns

Chain Length
120

(d) (e) (f)

0 100 200 300 400 500
Epoch

34

36

38

40

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

2.5

5.0

7.5

10.0

12.5

Ite

ra
tio

ns

Chain Length
140

(g) (h) (i)

0 100 200 300 400 500
Epoch

34

36

38

40

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.1

0.2

0.3

0.4
1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

6

8

10

Ite
ra

tio
ns

Chain Length
160

(j) (k) (l)

0 100 200 300 400 500
Epoch

32

34

36

38

Ac
cu

ra
cy

(%
)

0 100 200 300 400 500
Epoch

0.1

0.2

0.3

0.4

0.5

1(|W|)
2(|W|)

0 100 200 300 400 500
Epoch

4

6

8

10

Ite

ra
tio

ns

Chain Length
180

(m) (n) (o)
Figure 12. The first column shows the training, test, and validation accuracies of IGNN for several chain lengths of three classes. In the
second column, we plot the corresponding top two eigenvalues. In the third column, we plot the number of Picard iterations for each chain
length. As the maximum eigenvalue of the system approaches 1, IGNN becomes more accurate for chain classification at the cost of a
significantly increased number of training iterations.

Dataset Type Classes Features Nodes Edges Label rate Avg. SP
Cora Citation 7 2879 2810 7981 0.047 5.27

Citeseer Citation 6 3703 2110 3668 0.036 9.31
Pubmed Citation 3 500 19717 44324 0.003 6.34

Table 4. Dataset statistics. The shortest path length is denoted by Avg. SP.

26

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

J. Training procedure details
We provide a short description of the training procedure for each taks and report the tuned hyperparameters for each model.
The hyperparameters were selected using the Bayesian search feature of Weights&Bias [11] over a limited range of inputs.
The hyperparameters considered are detailed in Table 5.

Hyperparameter Options
lr {0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01}

weight decay {0, 5e-5, 3e-5, 1e-5, 5e-4, 3e-4, 1e-4}
dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

hidden features {16, 32, 64, 96, 128, 160, 256}
lambda max {0.9, 0.95, 0.99, 1.0}

alpha {0.5, 0.8, 0.9}
fp tol {1e-6, 3e-6}

Table 5. Hyperparameter tuning range for all tasks.

Synthetic chains dataset. The synthetic chains dataset is used for node classification with randomly generated training
(5%), validation (10%) and test (85%) portions. The training procedure uses the Adam optimizer to minimize the negative
log likelihood (NLL) loss between the model predictions and ground truth node labels. The model is trained for the full
duration of 2000 epochs, at which point the test accuracy is reported.

lr weight decay dropout hidden features lambda max alpha fp tol
IGNN 0.01 5e-4 0.5 16 0.99 - 3e-6

MIGNN-NK 0.01 5e-4 0 16 1.0 0.9 1e-6

Table 6. Hyperparameter selection for synthetic chains dataset.

Table 6 details the hyper parameters used for the various chain classification tasks. In particular, we use these hyperparameters
for Figures 1, 2, 3, 4, 11 and 12.

Citation dataset. The citations dataset is used for node classification with training, validation and test splits comprising
48%/32%/20% of the data respectively. We use the ten fixed data splits from Pei et al. [45], and use 10-fold cross validation
to evaluate the model performance. Each model is trained using the Adam optimizer to minimize the NLL loss between the
model predictions and ground truth node labels. The training will perform early stopping if the validation accuracy does not
improve after 100 epochs.

lr weight decay dropout hidden features lambda max alpha fp tol K

Cora
MIGNN-Mon 0.005 3e-5 0.8 128 1.0 0.5 3e-6 —
MIGNN-NK 0.007 5e-5 0.8 128 1.0 0.5 3e-6 12

Citeseer
MIGNN-Mon 0.005 3e-5 0.8 128 1.0 0.5 3e-6 —
MIGNN-NK 0.005 3e-5 0.8 128 1.0 0.5 3e-6 12

PubMed
MIGNN-Mon 0.005 3e-5 0.8 128 1.0 0.5 3e-6 —
MIGNN-NK 0.005 3e-5 0.8 128 1.0 0.5 3e-6 12

Table 7. Hyperparameter selection for Citations datasets.

Bioinformatics datasets. The bioinformatics dataset is used for graph classification with training and test splits comprising
90% and 10% of the data respectively. We use ten randomly generated data folds to perform 10 fold cross validation. The

27

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

training procedure uses the Adam optimizer to minimize the NLL loss between the model predictions and the ground truth
graph labels. On each fold, the model is trained for the full duration of 200 epochs.

lr weight decay dropout hidden features lambda max alpha fp tol

MUTAG
MIGNN-Mon 0.001 0 0.1 128 0.99 0.5 3e-6
MIGNN-N1 0.01 0 0.1 128 1.0 0.5 3e-6
MIGNN-N3 0.01 0 0.1 128 1.0 0.5 3e-6

PTC
MIGNN-Mon 0.001 0 0.4 128 0.99 0.5 3e-6
MIGNN-N1 0.001 0 0.4 128 1.0 0.5 3e-6
MIGNN-N3 0.001 0 0.4 128 1.0 0.5 3e-6

COX2
MIGNN-Mon 0.001 0 0.1 128 0.99 0.5 3e-6
MIGNN-N1 0.01 0 0.1 128 1.0 0.5 3e-6
MIGNN-N3 0.01 0 0.1 128 1.0 0.5 3e-6

Proteins
MIGNN-Mon 0.001 0 0.4 128 0.99 0.5 3e-6
MIGNN-N1 0.002 0 0.4 128 1.0 0.5 3e-6
MIGNN-N3 0.002 0 0.4 128 1.0 0.5 3e-6

NCI1
MIGNN-Mon 0.001 0 0 128 0.99 0.5 3e-6
MIGNN-N1 0.001 0 0 128 1.0 0.5 3e-6
MIGNN-N3 0.001 0 0 128 1.0 0.5 3e-6

Table 8. Hyperparameter selection for Bioinformatics datasets.

Amazon product co-purchasing network. The Amazon product co-purchasing dataset is used for node classification
with fixed training, validation and test splits provided by Gu et al. [24]. Notably the portions of the training data vary as
described in Section 5.2. The training procedure uses the Adam optimizer to minimize the BCEwithLogitLoss provided by
the Pytorch library. The model is trained for the full duration of 5000 epochs, at which point the F1-micro/F1-macro scores
on the test data are reported.

lr weight decay dropout hidden features lambda max alpha fp tol
MIGNN-N1 0.01 0 0 256 1.0 0.9 1e-6

Table 9. Hyperparameter selection for Amazon product co-purchasing dataset.

Pore networks. The pore networks are used for node classification where the data is generated on the fly following [43].
In particular, 32 training graphs are used for training in every forward epoch with a new training graph sampled every 32nd
epoch. The training procedure uses the Adam optimizer to minimize the mean squared error (MSE) between the model
predictions and the ground truth node pressures. The model is trained for the full duration of 1000 epochs, at which point
the MSE for each test graph is reported.

lr weight decay dropout hidden features lambda max alpha fp tol
MIGNN-Mon 0.001 0 0 16 1.0 0.9 1e-6
MIGNN-N1 0.001 0 0 16 1.0 0.9 1e-6
MIGNN-N3 0.001 0 0 16 1.0 0.9 1e-6

Table 10. Hyperparameter selection for pore network dataset.

28

