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Abstract
Recently Chen and Poor initiated the study of
learning mixtures of linear dynamical systems.
While linear dynamical systems already have
wide-ranging applications in modeling time-series
data, using mixture models can lead to a better
fit or even a richer understanding of underlying
subpopulations represented in the data. In this
work we give a new approach to learning mix-
tures of linear dynamical systems that is based on
tensor decompositions. As a result, our algorithm
succeeds without strong separation conditions on
the components, and can be used to compete with
the Bayes optimal clustering of the trajectories.
Moreover our algorithm works in the challenging
partially-observed setting. Our starting point is
the simple but powerful observation that the clas-
sic Ho-Kalman algorithm is a relative of modern
tensor decomposition methods for learning latent
variable models. This gives us a playbook for
how to extend it to work with more complicated
generative models.

1. Introduction
In this work, we study the problem of learning mixtures of
linear dynamical systems from unlabelled trajectories. Each
system evolves according to the following rules:

xt+1 = Aixt +Biut + wt,

yt = Cixt +Diut + zt,
(1)

Here the ut’s are control inputs to the system, the
wt’s are the process noise and the zt’s are the obser-
vation noise. We observe the input-output sequence
(u1, y1), (u2, y2), · · · , (uT , yT ) and the goal is to learn the
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underlying system parameters. When there is only one
system, this is a classic problem in control theory called sys-
tem identification (Åström & Eykhoff, 1971; Ljung, 1998).
A long line of recent works have established finite sam-
ple guarantees, often times from a single long trajectory,
in increasingly more general settings (Hardt et al., 2018;
Faradonbeh et al., 2018; Hazan et al., 2018; Simchowitz
et al., 2018b; Oymak & Ozay, 2019; Tsiamis & Pappas,
2019; Sarkar et al., 2019; Simchowitz et al., 2019; Bakshi
et al., 2023).

But what about mixture models? Instead of one long trajec-
tory, we observe many short trajectories. The main compli-
cation is that they are unlabelled — we don’t know which
system generated which trajectories. This problem has many
potential applications. For example, the microbiome is a
community of microorganisms that live in a host. They play
a key role in human health and are affected by our environ-
ment in complex ways. In scientific studies, the composition
of the microbiome is monitored over extended periods of
time and researchers model its behavior using dynamical
systems to discover new biological insights (Gonze et al.,
2018). But when these dynamics are heterogenous across
a population, it is natural to use a mixture model instead.
More generally, there are wide-ranging applications of dy-
namical systems in biology and engineering and in many
of these settings using a mixture model can lead to a bet-
ter fit, or even a richer understanding of any underlying
subpopulations represented in the data.

However there is not much in the way of theoretical guaran-
tees. In an important recent work, Chen and Poor gave the
first efficient algorithms for learning mixtures of linear dy-
namical systems (Chen & Poor, 2022). This work received
an ICML 2022 Outstanding Paper award. They employed
a two-stage approach where they use coarse estimates to
cluster the trajectories and then, based on their clustering,
further refine their estimates. Essentially, they use the sta-
tionary covariances to find subspaces according to which
the trajectories from the systems are well-separated.

In this work, we give a new approach for learning mixtures
of linear dynamical systems that is based on tensor decom-
positions. Our algorithm (Theorem 7.1) achieves essentially
optimal guarantees in many respects:
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(1) Chen & Poor (2022) require a number of strong and
difficult to interpret technical conditions on the param-
eters. In contrast, we give an efficient algorithm for
clustering that succeeds whenever clustering is possi-
ble (Theorem 7.5). In particular, whenever the systems
have negligible statistical overlap as distributions, we
will be able to find a clustering that misclassifies only
a negligible fraction of the trajectories.

(2) A priori it could be possible to learn the parameters
of the mixture even when clustering is information-
theoretically impossible. There is still useful informa-
tion about the parameters that can be gleaned from the
moments of the distribution. Indeed our algorithm suc-
ceeds under a condition we call joint nondegeneracy
(Definition 3.4) which is a natural generalization of
(individual) observability and controllability, both of
which are standard assumptions in control theory and
known to be necessary (Bakshi et al., 2023). These
conditions hold even when the systems in the mix-
ture model are almost entirely overlapping as distri-
butions, rather than almost entirely disjoint and clus-
terable. Thus our algorithm brings results on learning
mixtures of linear dynamical systems, which have com-
plex time-varying behavior, in line with the strongest
known guarantees for learning Gaussian mixture mod-
els (Kalai et al., 2010; Belkin & Sinha, 2010; Moitra
& Valiant, 2010).

(3) Chen & Poor (2022) work in the fully-observed setting
— i.e.

xt+1 = Aixt +Biut + wt

where we directly observe the sequence of inputs and
states of the system (u1, x1), (u2, x2), · · · , (uT , xT ).
In contrast, our algorithms work in the more challeng-
ing partially-observed setting where we only get indi-
rect measurements yt of the hidden state. Even with
just one system, this renders the maximum likelihood
estimator a nonconvex optimization problem rather
than a simpler linear regression problem. We also
show that our algorithm succeeds with optimally short
trajectories.

Finally, our algorithms are based on a surprisingly undis-
covered connection. The classic approach going back to the
1960’s for solving system identification is to estimate the
Markov parameters

[CB,CAB, · · · , CA2sB]

and use the Ho-Kalman algorithm (HO & Kálmán, 1966).
It turns out, the Ho-Kalman algorithm sets up a general-
ized eigenvalue problem, which just so happens to be the
workhorse behind algorithms for low rank tensor decom-
positions. In recent years, tensor methods have become a

mainstay in theoretical machine learning, particularly for
learning mixture models (Mossel & Roch, 2005; Hsu &
Kakade, 2013; Anandkumar et al., 2014). We leverage this
connection along with modern tensor methods to teach the
classic Ho-Kalman algorithm new tricks, namely we de-
sign a generalization of Ho-Kalman that can handle mixture
models.

2. Technical Overview
Recall, a linear dynamical system L follows the Markov
process described in Equation (1), where A,B,C,D are
matrices with dimensions n× n, n× p, m× n and m× p
respectively. The random variables wt and zt are typically
modeled as standard normal corresponding to process and
measurement noise. In the most general setting, {yt, ut}t∈[l]

is the dataset from which we wish to infer the system pa-
rameters A,B,C, and D. Note that it is only possible to
recover the system parameters under an equivalence class
of similarity transforms. A standard recipe for this task is
the algorithm of Ho-Kalman which succeeds at recovering
Â such that there exists a similarity transform U satisfying∥∥∥A− UÂU−1

∥∥∥ = 0 with analogous guarantees for B̂, Ĉ,

and D̂ in infinite samples.

The crux of the Ho-Kalman algorithm is to first estimate
”Markov parameters” of the form CAiB for varying values
of i ∈ Z+. The Markov parameters are arranged in a
corresponding Hankel matrix and an Eigendecomposition
style procedure is applied to the Hankel matrix to recover
the system parameters (see Algorithm 3). The key is to
estimate Markov parameters which is difficult when the data
{yt, ut}t∈[l] is drawn from a mixture of linear dynamical
systems defined next.

Definition 2.1 (Mixture of LDS’s). A mixture of linear dy-
namical systems is represented asM = w1L1 + . . . wkLk,
where w1, . . . , wk are positive real numbers summing to
1 and L1((A1, B1, C1, D1), . . . ,Lk(Ak, Bk, Ck, Dk) are
each individual linear dynamical systems with the same
dimensions (i.e. the same m,n, p). The trajectories we ob-
serve are sampled according to the following process. First
an index i ∈ [k] is drawn according to the mixing weights
w1, . . . , wk and then a trajectory of length l, denoted by
{(u1, y1), . . . (uℓ, yℓ)} is drawn from the corresponding dy-
namical system Li.

We obtain as input, N trajectories, each denoted by
{(uj

1, y
j
1), . . . , (u

j
ℓ , y

j
ℓ )}, for j ∈ [N ]. Our goal is to learn

the parameters of the mixture, i.e. the individual linear
dynamical systems and their mixing weights, given polyno-
mially many samples from the mixture. In this setting, if
the trajectory length l is large enough for the system param-
eters to be learned from a single trajectory then it would be
possible to learn each dynamical system L separately (Bak-

2



Learning a Mixture of LDS’s

shi et al., 2023). The question is whether we can learn the
Markov parameters when l is small. Our general strategy
is as follows. For a particular Markov parameter CAiB
we compute a carefully chosen 6-th order tensor that can
be estimated from the control inputs (ut’s) and observation
(yt’s). In particular, for a fixed t, given N trajectories, we
construct:

T̂i =

1

N

∑
j∈[N ]

yjt+3i+2 ⊗ uj
t+2i+2 ⊗ yjt+2i+1 ⊗ uj

t+i+1 ⊗ yjt+i ⊗ uj
i .

We show that T̂i is an unbiased estimator of a tensor whose
components are the Markov parameters (see Lemma 5.4):

T̂i ∼
∑
j∈[k]

wj

(
CjA

i
jBj

)
⊗
(
CjA

i
jBj

)
⊗
(
CjA

i
jBj

)
(2)

Brushing aside issues of sample complexity, we can assume
we have access to the tensor in Eqn (2). Ideally, we would
just like to read off the components of this tensor and obtain
the Markov parameters.

However, provably recovering the components requires this
tensor to be non-degenerate. To this end, we flatten the
tensor along its first and second, third and fourth, and fifth
and sixth modes to obtain a 3-rd order tensor, whose compo-
nents are the Markov paramters of the j-th LDS, flattened
to a vector. In particular, we have

T̃i =
∑
j∈[k]

wjv
(
CjA

i
jBj

)
⊗ v

(
CjA

i
jBj

)
⊗ v

(
CjA

i
jBj

)
,

where v
(
CjA

i
jBj

)
simply flattens the matrix CjA

i
jBj . The

crux of our analysis is to show that the Joint Non-degeneracy
condition (see Definition 3.4) implies that components of
the 3-rd order tensor are (robustly) linearly independent
(Lemma A.4).

Once we have established linear independence, we can
run Jennrich’s tensor decomposition algorithm (Algo-
rithm 4) on T̃i to obtain the components wjv

(
CjA

i
jBj

)
⊗

v
(
CjA

i
jBj

)
⊗ v

(
CjA

i
jBj

)
. Assuming we know the mix-

ing weights, we can just read off the first mode of this tensor,
and construct the Markov parameter matrix. Once we have
the Markov parameters, we can run (robust) Ho-Kalman
(Algorithm 3) to recover the Aj , Bj , Cj’s.

However, in the setting where the mixing weights are un-
known, we cannot hope simply read off the Markov param-
eter matrix from the component above. Instead, we can
obtain the vectors ṽj = w

1/3
j v

(
CjA

i
jBj

)
, for all j ∈ [k],

by simply reading the first mode and dividing out by the
Frobenius norm of the second and third mode. We set up
a regression problem where we solve for the coefficients

c1, . . . ck as follows:

min
c1,c2,...,ck

∥∥∥∥∥∥
∑
ℓ∈[k]

cℓṽℓ −
∑
j∈[k]

wjCjA
i
jBj

∥∥∥∥∥∥
2

2

, (3)

where we can estimate
∑

j∈[k] wjCjA
i
jBj up to arbitrary

polynomial accuracy using the input samples. We show that
the solution to this regression problem results in cℓ’s that are
non-negative and cℓ ∼ w

2/3
ℓ for all ℓ ∈ [k], which suffices

to learn the mixing weights (see Theorem 7.3 for details).
We describe our complete algorithm in Section 6 and the
analysis of each sub-routine in Section 7. Given space
constraints, we defer all technical proofs to the Appendix.

3. Formal Setup and Assumptions
Our input is a set of N length ℓ trajectories generated ac-
cording to a mixtureM, as defined in Model 2.1. Our goal
is to learn the parameters of the mixture, i.e. the individual
linear dynamical systems and their mixing weights, given
polynomially many samples such trajectories.

For simplicity, throughout this paper, we will consider when
all of the noise distributions are isotropic Gaussians i.e.
D0 = N(0, In),Du = N(0, Ip),Dw = N(0, In),Dz =
N(0, Im) although our results generalize to more general
noise distributions as long as they have sufficiently many
bounded moments. Throughout this paper, for a matrix A
we will use A⊤ to denote its transpose and A† to denote its
pseudo-inverse. We use ∥A∥ to denote its operator norm
and ∥A∥F to denote its Frobenius norm.

3.1. Assumptions for Learnability

We begin with standard definitions of the observability and
controllability matrix of a single LDS.
Definition 3.1 (Observability Matrix). For an LDS
L(A,B,C,D) and an integer s, define the matrix OL,s ∈
R

sm×n as

OL,s =
[
C⊤ (CA)

⊤
. . .
(
CAs−1

)⊤]⊤ .

A LDS is observable if for some s, the matrix Os is full-
rank. Similarly, we need to ensure that the control input
is not degenerate, and only acts in a subspace that is not
spanned by A. This is made precise by considering the
controllability matrix:
Definition 3.2 (Controllability Matrix). For an LDS
L(A,B,C,D) and an integer s, define the matrix QL,s ∈
R

n×sp as

QL,s =
[
B AB . . . As−1B

]
A LDS is controllable if the controllability matrix is full-
rank. These two assumptions are necessary for the LDS
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to be learnable and in fact it is necessary to make a quanti-
tatively robust assumption of this form (see (Bakshi et al.,
2023)). In other words, we need a bound on the condition
number of the observability and controllability matrices.

In addition to the assumptions required to learn a single lin-
ear dynamical system, we will require addition assumptions
on the interaction of the LDS’s to obtain learning algorithms
for the mixture (as otherwise there could be degeneracies
such as two components being almost the same which would
make it information-theoretically impossible to learn).

3.1.1. JOINT NONDEGENERACY

We introduce a joint nondegeneracy condition that prevents
certain degeneracies arising from the interaction between
the components of the mixture e.g. if the components are
too close to each other.
Definition 3.3 (Markov Parameters). Given a linear dy-
namical system, L (A,B,C,D), and an integer T ⩾ 1, the
Markov Parameter matrix GL,T ∈ Rm×(T+1)p is defined
as the following block matrix:

GL,T =
[
D CB CAB . . . CAT−1B

]
.

Definition 3.4 (Joint Non-degeneracy). For a mixture of
LDS M = w1L1 + · · · + wkLk where each individual
LDS is given by Li = L(Ai, Bi, Ci, Di) (with the same
dimension parameters m,n, p), we sayM is (γ, s)-jointly
nondegenerate if for any real numbers c1, . . . , ck with c21 +
· · ·+ c2k = 1, we have

∥c1GL1,s + · · ·+ ckGLk,s∥F ⩾ γ .

We now state precisely the entire set of assumptions about
the mixtureM that we require.
Definition 3.5 (Well Behaved Mixture of LDS). We say
a mixture of LDSM = w1L1 + · · · + wkLk where each
Li = L(Ai, Bi, Ci, Di) is well-behaved if the following
assumptions hold

• Non-trivial Mixing Weights: for some wmin > 0, we
have wi ⩾ wmin for all i ∈ [k].

• Non-trivial Individual Controllers and Measure-
ments: for all i ∈ [k], ∥Bi∥, ∥Ci∥ ⩾ 1

• Individual Boundedness: for some parameter κ,

∥Ai∥, ∥Bi∥, ∥Ci∥, ∥Di∥ ⩽ κ for all i ∈ [k].

• Individual Observability and Controllability: for
some integer s and parameter κ, for all i ∈ [k] the
matrix OLi,s has full column rank, the matrix QLi,s

has full row rank and

σmax(O2s)/σmin(Os) ⩽ κ,

σmax(Q2s)/σmin(Qs) ⩽ κ.

• Joint Nondegeneracy: The mixture M is (γ, s)
jointly nondegenerate for some parameter γ > 0.

The assumptions on the individual components mirror those
in (Bakshi et al., 2023) where a more detailed discussion
and justification can be found.

4. Related Work
There is a long history of work on identifying/learning lin-
ear dynamical systems from measurements (Ding, 2013;
Zhang, 2011; Spinelli et al., 2005; Simchowitz et al., 2019;
2018a; Sarkar & Rakhlin, 2019; Faradonbeh et al., 2017;
Shah et al., 2012; Hardt et al., 2018; Hazan et al., 2018;
2017). See (Galrinho, 2016) for a more extensive list of
references. These works focus on learning a the parameters
of a linear dynamical system from a single long trajectory.
There has also been extensive empirical work on mixtures of
time series and trajectories which have been successfully ap-
plied in a variety of domains such as neuroscience, biology,
economics, automobile design and many others (Bulteel
et al., 2016; Mezer et al., 2009; Li, 2000; Kalliovirta et al.,
2016; Hallac et al., 2017).

Our setup can be viewed as a generalization of the more
classical problem of learning mixtures of linear regressions
which has been extensively studied theoretically (Chen et al.,
2013; Yi et al., 2013; Li & Liang, 2018; Chen et al., 2019;
Kwon et al., 2020; Diamandis et al., 2021). The fact that
we receive many short trajectories parallels meta-learning
framework in (Kong et al., 2020b;a). However, the sys-
tem dynamics in our setting (which are not present in stan-
dard mixed linear regression) make our problem signifi-
cantly more challenging. It also has connections to super-
resolution (Candès & Fernandez-Granda, 2014; Moitra,
2015; Chen & Moitra, 2021) where tensor methods have
also been employed (Huang & Kakade, 2015). Finally, our
model is similar to the well-studied switched linear dynami-
cal system model (see (Fox et al., 2008; Mudrik et al., 2022)
and references therein).

5. Moment Statistics of Linear Dynamical
Systems

We begin with some basic properties of a single linear dy-
namical system L = L(A,B,C,D).
Fact 5.1 (Algebraic Identities for LDS’s). Let
L (A,B,C,D) be a Linear Dynamical System. Then, for
any t ∈ N,

yt =

t∑
i=1

(
CAi−1But−i + CAi−1wt−i

)
+ CAtx0 +Dut + zt .
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Fact 5.2 (Cross-Covariance of Control and Observation).
For any t, k ∈ N, and any 0 ⩽ j ⩽ k, given observations
yt and control inputs ut from a linear dynamical system
L(A,B,C,D) such that E

[
utu

⊤
t

]
= I and the ut’s are

independent, we have E
[
yt+ju

⊤
t

]
= D, if j = 0, and

E
[
yt+ju

⊤
t

]
= CAj−1B, otherwise.

In light of the above, we make the following definition.

Definition 5.3 (System Parameters). For an LDS
L(A,B,C,D) and an integer j ⩾ 0, we define the matrix
XL,j = D if j = 0 and XL,j = CAj−1B if j > 0.

Next, we show that the sixth moment tensor we consider,
restricted to a single LDS, is a indeed a tensor of the system
parameters.

Lemma 5.4 (Sixth-moment Statistics). Given a linear dy-
namical system L(A,B,C,D) and integers t, k1, k2, k3 ⩾
0, let t1 = t+ k1, t2 = t1 + k2 and t3 = t2 + k3. Then, we
have

E [yt3+2 ⊗ ut2+2 ⊗ yt2+1 ⊗ ut1+1 ⊗ yt1 ⊗ ut]

= XL,k3
⊗XL,k2

⊗XL,k1
,

where XL,j is defined in Definition 5.3.

We defer the proof to the Appendix.

Now consider a mixture of LDSM = w1L1 + · · ·+wkLk

where Li = L(Ai, Bi, Ci, Di). Using Lemma 5.4, we have
an expression for the sixth moments of the mixture.

Corollary 5.5. For a mixture of LDSM = w1L1 + · · ·+
wkLk and for t, k1, k2, k3 ⩾ 0, let t1 = t+k1, t2 = t1+k2
and t3 = t2 + k3. Then,

E
M

[yt3+2 ⊗ ut2+2 ⊗ yt2+1 ⊗ ut1+1 ⊗ yt1 ⊗ ut]

=

k∑
i=1

wiXLi,k3
⊗XLi,k2

⊗XLi,k1
.

Proof. This follows directly from Lemma 5.4.

6. Algorithm
In this section, we describe our algorithm for learning a
mixture of Linear Dynamical Systems. At a high level, our
algorithm uses multiple trajectories to obtain an estimate of
the tensor

ΠM =
∑
i∈[k]

wiGLi,2s ⊗GLi,2s ⊗GLi,2s .

where

GLi,s =
[
Di CiBi CiAiBi . . . CiA

s−1
i Bi

]
.

Algorithm 1 Learning a Mixture of LDS’s

Input: N sample trajectories of length l from a mixture
of LDS M =

∑
i∈[k] wiL (Ai, Bi, Ci, Di) denoted{

(yi1, . . . , y
i
l)
}
i∈[N ]

, the corresponding control inputs{
(ui

1, . . . , u
i
l)
}
i∈[N ]

, parameter s ∈ N for individual
observability and controllability and joint nondegeneracy,
Accuracy parameter 0 < ε < 1 and allowable failure
probability 0 < δ < 1.

Operation:

1. Run Algorithm 2 on the input samples and let{
G̃i

}
i∈[k]

be the matrices returned

2. For 0 ⩽ k1 ⩽ 2s, compute estimate R̂k1 of
EM [yk1+1 ⊗ u1] as

R̂k1
=

1

N

N∑
i=1

yik1+1 ⊗ ui
1 .

3. Construct estimate R̂M of RM by stacking together
estimates R̂0, R̂1, . . . , R̂2s−1

4. Solve for weights w̃1, . . . , w̃k that minimize

∥w̃1G̃1 + · · ·+ w̃kG̃k −RM∥F

5. Set Ĝi = G̃i/
√
w̃i

6. Set ŵi = w̃i
3/2 for all i ∈ [k]

7. Run Algorithm 3 on Ĝi for each i ∈ [k] to recover
parameters

{
Âi, B̂i, Ĉi, D̂i

}
i∈[k]

Output: The set of parameter estimates{
ŵi, Âi, B̂i, Ĉi, D̂i

}
i∈[k]

Recall that GLi,2s has blocks that are of the form XLi,s′ for
s′ ⩽ 2s and thus it follows from Corollary 5.5 that we can
construct a unbiased estimates of the individual blocks

Ts1,s2,s3 =
∑
i∈[k]

wiXLi,s ⊗XLi,s2 ⊗XLi,k1

of this tensor from the observations and control input. Piec-
ing together the individual blocks lets us construct an esti-
mate of ΠM. Since we have access to multiple independent
trajectories, we can show that the variance is bounded and
we indeed have access to a tensor close to ΠM.

We then run the classical Jennrich’s tensor decomposition
algorithm on the tensor ΠM to recover the factors GLi,2s.
The key is that the joint nondegeneracy assumption im-
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plies that vectors obtained by flattening GL1,2s, . . . , GLk,2s

are (robustly) linear independent. Therefore, Jennrich’s
algorithm indeed recovers the factors GL1,2s, . . . , GLk,2s.
These are exactly the Markov parameters of the individ-
ual components and we can then invoke a robust variant of
Ho-Kalman (Oymak & Ozay, 2019) to recover the corre-
sponding parameters.

Due to some minor technical complications from the un-
known mixing weights, it will also be useful to define

RM =
∑
i∈[k]

wiGLi,2s

which we can also estimate empirically by estimating each
block

Rs1 = EM[yk1+1 ⊗ u1] =
∑
i∈[k]

wiXLi,s1

separately.

Required Trajectory Length: Our algorithm requires
trajectories of length ∼ 6s where s is the observabil-
ity/controllability parameter. Note that trajectories of length
s are necessary as otherwise the parameters for even a sin-
gle system are not uniquely recoverable so our required
trajectory length is minimal up to this factor of 6.

7. Analysis
In this section, we provide the analysis of the algorithms we
presented in Section 6. The main theorem we obtain is as
follows:

Theorem 7.1 (Learning a Mixture of LDS’s). Given 0 <
ϵ, δ < 1, an integer s, and

N = poly (m,n, p, s, κ, 1/wmin, 1/γ, 1/ε, 1/δ)

observations
{
(yi1, . . . , y

i
ℓ)
}
i∈[N ]

, and the corresponding

control inputs
{
(ui

1, . . . , u
i
ℓ)
}
i∈[N ]

of trajectory length
ℓ ⩾ 6(s + 1) , from a mixture of linear dynamical sys-
tem M =

∑
i∈[k] wiL (Ai, Bi, Ci, Di), satisfying the as-

sumptions in Section 3, Algorithm 1 outputs estimates{
Âi, B̂i, Ĉi, D̂i

}
i∈[k]

such that with probability at least

1 − δ, there is a permutation π on [k] such that for each
i ∈ [k], there exists a similarity transform Ui satisfying

max
( ∥∥∥Aπ(i) − U−1

i ÂiUi

∥∥∥ ,∥∥∥Cπ(i) − ĈiUi

∥∥∥ ,∥∥∥Bπ(i) − U−1
i B̂i

∥∥∥ ,∥∥∥Dπ(i) − D̂i

∥∥∥ , |wπ(i) − ŵi|
)
⩽ ε.

Further, Algorithm 1 runs in
poly (m,n, p, s, κ, 1/wmin, 1/γ, 1/ε, 1/δ) time.

Algorithm 2 Learn Individual Markov Parameters

Input: N sample trajectories of length l from a mixture
of LDSM =

∑
i∈[k] wiL (Ai, Bi, Ci, Di), denoted by{

(yi1, . . . y
i
ℓ)
}
i∈[N ]

, the corresponding control inputs, de-

noted
{
(ui

1, . . . , u
i
ℓ)
}
i∈[N ]

, parameter s ∈ N for indi-
vidual observability and controllability and joint non-
degeneracy, accuracy parameter ε and allowable failure
probability δ.

Operation:

1. For 0 ⩽ k1 ⩽ 2s, 0 ⩽ k2 ⩽ 2s, 0 ⩽ k3 ⩽ 2s,

(a) Compute empirical estimate T̂k1,k2,k3 as fol-
lows:

T̂k1,k2,k3
=

1

N

∑
i∈[n]

yik1+k2+k3+3 ⊗ ui
k1+k2+3

⊗yik1+k2+2 ⊗ ui
k1+2 ⊗ yik1+1 ⊗ ui

1

2. Construct estimate Π̂M for ΠM by piecing together
the blocks T̂k1,k2,k3

appropriately

3. Flatten pairs of dimensions of Π̂M so that it is a
order-3 tensor with dimensions (2s+1)mp× (2s+
1)mp× (2s+ 1)mp

4. Run Jennrich’s algorithm (Algorithm 4) to obtain
the following decomposition

Π̂M = T̂1 + · · ·+ T̂k

5. For each T̂i, compute the Frobenius norm of each
slice in its second and third dimensions to obtain a
vector v̂i ∈ R(2s+1)mp

6. Construct G̃i by rearranging the vector v̂i/∥v̂i∥2/3
back into an m × (2s + 1)p matrix (undoing the
flattening operation)

Output: Matrices G̃1, . . . , G̃k

We proceed by analyzing each sub-routine separately. In
particular, Algorithm 1 proceeds by first taking the input
samples and running Algorithm 2 to learn the individual
sets of Markov parameters up to some scaling by the mixing
weights. Formally,

Theorem 7.2 (Recovering the Markov Parameters). Given
ε, δ > 0 and

N ⩾ poly(m,n, p, s, κ, 1/wmin, 1/γ, 1/ε, 1/δ)

trajectories from a mixture of LDS’s, M =∑
i∈[k] wiL (Ai, Bi, Ci, Di), Algorithm 2 outputs a

6
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Algorithm 3 Parameter Recovery via Ho-Kalman (Oymak
& Ozay, 2019)

Input: Parameter s, Markov parameter matrix estimate Ĝ =
[X̂0, . . . , X̂2s]

Operation: 1. Set D̂ = X̂0

2. Form the Hankel matrix Ĥ ∈ Rms×p(s+1) from Ĝ
as

Ĥ =


X̂1 X̂2 . . . X̂s+1

X̂2 X̂3 . . . X̂s+2

...
...

. . .
...

X̂s X̂s+1 . . . X̂2s


3. Ĥ− ∈ Rms×ps ← first ps columns of Ĥ

4. L̂ ∈ Rms×ps ← rank n approximation of Ĥ− ob-
tained via SVD

5. U,Σ, V = SV D(L̂)

6. Ô ∈ Rms×n ← UΣ1/2

7. Q̂ ∈ Rn×ps ← Σ1/2V ⊤

8. Ĉ ← first m rows of Ô

9. B̂ ← first p column of Q̂

10. Ĥ+ ∈ Rms×ps ← last ps column of Ĥ

11. Â← Ô†Ĥ+Q̂†

Output: Â ∈ Rn×n, B̂ ∈ Rn×p, Ĉ ∈ Rm×n, D̂ ∈ Rm×p

set of matrices G̃1, G̃2, . . . G̃k such that with probability
1− δ, there is a permutation π on [k] such that

∥G̃π(i) − w
1/3
i GLi,2s∥F ⩽ ε

for all i ∈ [k]. Further, Algorithm 2 runs in poly(N) time.

Next, we argue about the mixing weights w̃1, . . . , w̃k com-
puted in the regression step in Algorithm 1.

Theorem 7.3 (Recovering the Mixing Weights). Assume
that the matrices G̃i computed in Algorithm 1 satisfy Theo-
rem 7.2. Then, with 1 − δ probability, the mixing weights
w̃1, . . . , w̃k computed in Algorithm 1 satisfy

|w̃π(i) − w
2/3
i | ⩽ ε · poly(κ,m, n, s, p, 1/γ, 1/wmin)

for all i ∈ [k].

Proof. Recall by Fact 5.2 and Definition 5.3 that E[R̂M] =
RM. Also by the same argument as in the proof of
Lemma A.3, the empirical estimate concentrates with high
probability since the observations and control inputs are

jointly Gaussian with bounded covariance. Thus, with 1− δ
probability, we have ∥RM − R̂M∥F ⩽ ε. Recalling the
definition of RM and applying Theorem 7.2, we must have
that

∥R̂M − w
2/3
i G̃π(i)∥F ⩽ ε(k + 1) .

Now consider any other set of choices for w̃π(i). We must
have that

∥
k∑

i=1

(w
2/3
i − w̃π(i))G̃π(i)∥F ⩽ 2(k + 1)ε .

On the other hand we can write∥∥∥∥∥
k∑

i=1

(w
2/3
i − w̃π(i))G̃π(i)

∥∥∥∥∥
F

⩾

∥∥∥∥∥
k∑

i=1

(w
2/3
i − w̃π(i))w

1/3
i GLi,2s

∥∥∥∥∥
F

− ε

k∑
i=1

|w2/3
i − w̃π(i)| .

Now for any coefficients c1, . . . , ck, we have

∥c1GL1,2s + · · ·+ ckGLk,2s∥F ⩾
γ(|c1|+ · · ·+ |ck|)√

k

where we used the joint nondegeneracy assumption. Thus,∥∥∥∥∥
k∑

i=1

(w
2/3
i − w̃π(i))G̃π(i)

∥∥∥∥∥
F

⩾
γw

1/3
min

∑k
i=1 |w

2/3
i − w̃π(i)|√

k
− ε

k∑
i=1

|w2/3
i − w̃π(i)|

⩾

(
γw

1/3
min√
k
− ε

)
max

i
(|w2/3

i − w̃π(i)|) .

Combining this with the previous inequality gives the de-
sired bound.

As a corollary to the above two theorems, the estimates
Ĝi computed in Algorithm 1 are actually good estimates
for the true individual Markov parameters GLi,2s. Now,
running a stable variant of Ho-Kalman (Oymak & Ozay,
2019) on the individual block Henkel matrices suffices to
obtain estimates Âi, B̂i, Ĉi, D̂i. Formally,

Theorem 7.4 (Stable Ho-Kalman, (Oymak & Ozay, 2019)).
For observability and controllability matrices that are rank
n, the Ho-Kalman algorithm applied to Ĝ produces esti-
mates Â, B̂, and Ĉ such that there exists similarity trans-
form T ∈ Rn×n such that

max{∥C − ĈT∥F , ∥B − T−1B̂∥F } ⩽ 5

√
n∥G− Ĝ∥

7
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and

∥A− T−1ÂT∥F ⩽

√
n∥G− Ĝ∥∥H∥

σ
3/2
min(H

−)

and ∥∥∥D − D̂
∥∥∥
F
⩽
√
n
∥∥∥G− Ĝ

∥∥∥
where in the above

G = [D,CB,CAB, ..., CA2s−1B]

and H is the Hankel matrix constructed with the true pa-
rameters G.

Putting together the above theorems, we can prove our main
result.

Proof of Theorem 7.1. The proof follows from simply com-
bining the theorems above (rescaling ε appropriately by a
polynomial in the other parameters). Note that for each
i ∈ [k], the Hankel matrix Hi with the true parameters,
constructed in the Ho-Kalman algorithm satisfies ∥Hi∥ ⩽
σmax(OLi,s)σmax(QLi,s) ⩽ poly(κ, s). We also have
σmin(H

−
i ) ⩾ σmin(OLi,s)σmin(QLi,s) ⩾ 1/poly(κ)

(see Claim A.1 and Claim A.2). Thus, we can indeed apply
Theorem 7.4. It is clear that the running time is a fixed
polynomial in the number of samples N , once

N ⩾ poly (m,n, p, s, κ, 1/wmin, 1/ε, 1/γ, 1/δ) .

We are also able to show that our parameter learning algo-
rithm actually allows us to do nearly Bayes-optimal clus-
tering in the fully observed case i.e. when Ci = I for all
i ∈ [k] 1.

Theorem 7.5 (Bayes-Optimal Clustering). Let M =
w1L1 + · · · + wkLk be a mixture of LDS where each
Li = L(Ai, Bi, Ci, Di) with Ci = I and assume that the
mixture M satisfies the assumptions in Section 3. Then
given

N = poly (m,n, p, s, κ, 1/wmin, 1/γ, 1/δ)

sample trajectories from this mixture, there is an algo-
rithm that runs in poly(N) time and has the follow-
ing guarantees with probability 1 − δ. There is a fixed
permutation π on [k] such that given any trajectory
(u1, . . . , ul, y1, . . . , yl) with l ⩽ O(s) and ∥ui∥, ∥yi∥ ⩽

1We believe that our clustering result naturally generalizes to
the partially observed setting as long as assume that all of the
Li = L(Ai, Bi, Ci, Di) are written in their balanced realization
(see (Oymak & Ozay, 2019) for a formal definition) which is just a
canonical choice of the similarity transformation Ui that is allowed
to act on Ai, Bi, Ci

poly(m,n, p, s, κ, 1/wmin, 1/γ, 1/δ) it computes a poste-
rior distribution (p1, . . . , pk) on [k] (with p1+· · ·+pk = 1)
such that (pπ(1), . . . , pπ(k)) is δ-close in TV distance to the
posterior distribution on L1, . . . ,Lk from which the trajec-
tory (u1, . . . , ul, y1, . . . , yl) was drawn.

Remark 7.6. Note that the condition that ∥ui∥, ∥yi∥ ⩽
poly(m,n, p, s, κ, 1/wmin, 1/γ, 1/δ) is satisfied with ex-
ponentially small failure probability for a random trajectory
from any of the components since l ⩽ O(s). The trajecto-
ries used in the learning algorithm have length O(s) so in
particular, we can nearly-optimally cluster those.
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A. Appendix
Here we include proofs of the intermediate results that were omitted in the main body. We begin with the following two
claims from (Bakshi et al., 2023) that give us bounds on the singular values of OLi,s, QLi,s, A

s.
Claim A.1 (Claim 5.15 in (Bakshi et al., 2023)). Consider a well-behaved mixture of LDS (Definition 3.5) M =
w1L1 + · · ·+ wkLk where each Li = L(Ai, Bi, Ci, Di). Then for all i, σmin(OLi,s) ⩽

√
sκ and σmin(QLi,s) ⩽

√
sκ.

Claim A.2 (Claim 5.16 in (Bakshi et al., 2023)). Consider a well-behaved mixture of LDS (Definition 3.5) M =
w1L1 + · · ·+ wkLk where each Li = L(Ai, Bi, Ci, Di). Then for any integer t > 0,

∥At
i∥F ⩽ (

√
nκ)t/s .

A.1. Proof of Fact 5.2

Proof. Invoking the algebraic identity from Fact 5.1, consider the case where j ̸= 0.

E
[
yt+ju

⊤
t

]
= E

[(
t+j∑
i=1

(
CAi−1But+j−i + CAi−1wt+j−i

)
+ CAt+jx0 +Dut+j + zt+j

)
u⊤
t

]

=

j−1∑
i=1

CAi−1B E
[
ut+j−iu

⊤
t

]
︸ ︷︷ ︸

(4).(1)

+CAj−1B E
[
utu

⊤
t

]
+

t+j∑
i=j+1

CAi−1B E
[
ut+j−iu

⊤
t

]
︸ ︷︷ ︸

(4).(2)

+

t+j∑
i=1

CAi−1 E
[
wt+j−iu

⊤
t

]
+ CAt+j E

[
x0u

⊤
t

]
+DE

[
ut+ju

⊤
t

]
+ E

[
zt+ju

⊤
t

]
︸ ︷︷ ︸

(4).(3)

= CAj−1B

(4)

where the last inequality follows from observing that by independence of ut’s, wt’s , zt’s and x0, the terms (4).(1), (4).(2)
and (4).(3) are 0. Similarly, when j = 0, the only non-zero term is E

[
Dutu

⊤
t

]
= D and the claim follows.

A.2. Proof of Lemma 5.4

Proof. First, for simplicity consider the case where k1 = k2 = k3 = 0. Then,

E [yt+2 ⊗ ut+2 ⊗ yt+1 ⊗ ut+1 ⊗ yt ⊗ ut] = E [Dut+2 ⊗ ut+2 ⊗Dut+1 ⊗ ut+1 ⊗Dut ⊗ ut]

=

(
DE

[
ut+2u

⊤
t+2

])
⊗
(
DE

[
ut+1u

⊤
t+1

])
⊗
(
DE

[
utu

⊤
t

])
= D ⊗D ⊗D,

(5)

where the second equality follows from ut+2, ut+1 and ut being independent random variables. Next, consider the case
where k3 = 0 and k2, k1 > 0. Observe, yt+k1+k2+2 ⊗ ut+k1+k2+2 has only one non-zero term in expectation. Therefore,
we can split the sum as follows:

E [yt+k1+k2+2 ⊗ ut+k1+k2+2 ⊗ yt+k1+k2+1 ⊗ ut+k1+1 ⊗ yt+k1 ⊗ ut]

= E [D (ut+k1+k2+2 ⊗ ut+k1+k2+2)⊗ (yt+k1+k2+1 ⊗ ut+k1+1)⊗ (yt+k1
⊗ ut)]

= D

(
E [ut+k1+k2+2 ⊗ ut+k1+k2+2]

)
⊗ E [(yt+k1+k2+1 ⊗ ut+k1+1)⊗ (yt+k1 ⊗ ut)]︸ ︷︷ ︸

(6).(1)

(6)

where the second equality follows from observing that ut+k1+k2+2 is independent of all the terms appearing in the expansion
of yt+k1+k2+1 and yt+k1 , and the random variables ut+k1+k2+2 and ut+k1 .
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Now, we focus on simplifying term (6).(1). Let ζt = CAtx0 +Dut + zt. Observe that E [wt ⊗ ut′ ] = E [CAtx0 ⊗ ut] =

E [zt ⊗ ut] = 0, for all t, t′, and E [ut1 ⊗ ut2 ⊗ ut3 ⊗ ut4 ] = 0 for all t1 > t2 > t3 > t4. Further, any permutation of
t1, t2, t3 and t4 is also 0. Plugging in the definition from Fact 5.1, we have

E
[
yt+k1+k2+1 ⊗ ut+k1+1 ⊗ yt+k1 ⊗ ut

]
= E

[(
t+k1+k2+1∑

i=1

(
CAi−1But+k1+k2+1−i + CAi−1wt+k1+k2+1−i

)
+ ζt+k1+k2+1

)
⊗ ut+k1+1

⊗

(
t+k1∑
i=1

(
CAi−1But+k1−i + CAi−1wt+k1−i

)
+ ζt+k1

)
⊗ ut

]

= E

[(
t+k1+k2+1∑

i=k2

(
CAi−1But+k1+k2+1−i

))
⊗ ut+k1+1

⊗

(
t+k1∑
i=1

(
CAi−1But+k1−i + CAi−1wt+k1−i

))
⊗ ut

]

= E

[ (
CAk2−1But+k1+1

)
⊗ ut+k1+1

]
︸ ︷︷ ︸

(7).(1)

⊗E

[(
t+k1∑
i=1

(
CAi−1But+k1−i + CAi−1wt+k1−i

))
⊗ ut

]
︸ ︷︷ ︸

(7).(2)

+ E

[(
t+k1+k2+1∑

i=k2+1

(
CAi−1But+k1+k2+1−i

))
⊗ ut+k1+1 ⊗ yt+k1

⊗ ut

]
︸ ︷︷ ︸

(7).(3)

(7)

where the second equality follows from observing that E [wt+k1k2+1−i ⊗ ut+k1+1 ⊗ wt+k1−j ⊗ ut] = 0 for all i ∈
[1, t + k1 + k2 + 1] and j ∈ [1, t + k1]. Similarly, E [ζt+k1+k2+1 ⊗ ut+k1+1 ⊗ yt+k1

⊗ ut] = 0. Further, for all
i ∈ [1, k2 − 1], E [ut+k1+k2+1−i ⊗ ut+k1+1 ⊗ yt ⊗ ut] = 0. The third equality follows from observing that ut+k1+1 is
independent of yt ⊗ ut. Next, observe

(7).(1) = CAk2−1B, (8)

since E [ut+k1+1 ⊗ ut+k1+1] = I . Using a similar argument, we observe that all the terms in (7).(2) are zero in expectation
apart from the one corresponding to CAk1−1B. Therefore,

(7).(2) = CAk1−1B. (9)

Next, recall that E [ut] = 0 for all t, and since ut+k1+1 is independent of all ut′ where t′ < t+ k1 + 1,

(7).(3) = 0. (10)

Similarly, when k1 = 0, (7).(1) = D and when k2 = 0, (7).(2) = D.

Therefore, combining equations (8),(9) and (10), and plugging them back into equation (6), we have

E [yt+k1+k2+2 ⊗ ut+k1+k2+2 ⊗ yt+k1+k2+1 ⊗ ut+k1+1 ⊗ yt+k1
⊗ ut] = D ⊗XL,k2

⊗XL,k1 (11)

It remains to consider the case where k3 > 0. We can now simply repeat the above argument and observe that instead of pick-
ing up the term Dut+k1+k2+k3+2 from the expansion of yt+k1+k2+k3+2, we now pick up the term CAk3−1But+k1+k2+k3+2.
This concludes the proof.

A.3. Proof of Theorem 7.2

We first show that the empirical 6-th moment tensor is close to the true tensor in Frobenius norm.

12
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Lemma A.3 (Empirical Concentration of the 6-th Moment). Given ε, δ > 0 and N ⩾ N0 length 6s trajectories from a
mixture of linear dynamical systemsM =

∑
i∈[k] wiL(Ai, Bi, Ci, Di), if

N0 ⩾ poly(m,n, p, s, κ, 1/wmin, 1/γ, 1/ε, 1/δ),

with probability at least 1− δ Algorithm 2 outputs a tensor Π̂M such that∥∥∥Π̂M −ΠM

∥∥∥
F
⩽ ε,

where ΠM =
∑

i∈[k] wiGLi,2s ⊗GLi,2s ⊗GLi,2s.

Proof. Note that the joint distribution of (ui
1, . . . , u

i
l, y

i
1, . . . , y

i
l) is Gaussian. Furthermore, the covariance of this Gaussian

has entries bounded by poly(m,n, p, s, κ). Thus, by standard concentration inequalities, the empirical sixth moment tensor
concentrates around its mean with high probability. Since ΠM, Π̂M are obtained by taking a linear transformation of the
sixth moment tensor and the coefficients of this transformation are also bounded by poly(m,n, p, s, κ), we are done.

Next, we show that running Jennrich’s algorithm on an appropriate flattening of the tensor P̂M recovers an estimate of the
Markov parameters of each individual component of the mixture.

Lemma A.4 (Markov Parameters via Tensor Decomposition). Given ε, δ > 0 and N ⩾ N0 length 6s trajectories from a
mixture of linear dynamical systemsM =

∑
i∈[k] wiL(Ai, Bi, Ci, Di), if

N0 ⩾ poly(m,n, p, s, κ, 1/wmin, 1/γ, 1/ε, 1/δ),

with probability at least 1− δ, Jennrich’s algorithm (Algorithm 4) outputs tensors T̂1, T̂2, . . . , T̂k such that there is some
permutation π on [k] such that for all i ∈ [k],∥∥∥T̂π(i) − wi · v(GLi,2s)⊗ v(GLi,2s)⊗ v(GLi,2s)

∥∥∥
F
⩽ ε,

where v(GLi,2s) denotes flattening the matrix GLi,2s into a mp(2s+ 1)-dimensional vector.

Proof. Let K be the matrix whose columns are v(GLi,2s). By the joint nondegeneracy assumption, σk(K) ⩾ γ . On the
other hand, we know that

∥K∥F ⩽ poly(k,m, p, n, s, κ)

so we can apply Theorem A.5 and Lemma A.3 (with ε rescaled appropriately by a polynomial in the other parameters) to
get the desired bound.

Now we can complete the proof of Theorem 7.2.

Proof of Theorem 7.2. Lemma A.4 implies that

∥v̂i − wi · v(GLi,2s)∥v(GLi,2s∥2∥ ⩽ ε .

This also implies that ∣∣∥v̂i∥ − wi∥v(GLi,2s∥3
∣∣ ⩽ ε .

Also note that we must have
1 ⩽ ∥v(GLi,2s)∥ ⩽ poly(k,m, n, p, s, κ) .

Thus
∥v̂i/∥v̂i∥2/3 − w

1/3
i v(GLi,2s)∥ ⩽ ε · poly(k,m, n, p, s, κ) .

We now get the desired bound by simply rescaling the setting of ε in Lemma A.4 by a polynomial in the other parameters.

13
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Algorithm 4 Jennrich’s Algorithm

Input: Tensor T ′ ∈ Rn×n×n where
T ′ = T + E

for some rank-r tensor T and error E
Operation:

1. Choose unit vectors a, b ∈ Rn uniformly at random

2. Let T (a), T (b) be n× n matrices defined as

T
(a)
ij = T ′

i,j,· · a

T
(b)
ij = T ′

i,j,· · b

3. Let T (a)
r , T

(b)
r be obtained by taking the top r principal components of T (a), T (b) respectively.

4. Compute the eigendecompositions of U = T
(a)
r (T

(b)
r )† and V =

(
(T

(a)
r )†T

(b)
r

)⊤
5. Let u1, . . . , ur, v1, . . . , vr be the eigenvectors computed in the previous step.

6. Permute the vi so that for each pair (ui, vi), the corresponding eigenvalues are (approximately) reciprocals.

7. Solve the following for the vectors wi

argmin∥T ′ −
r∑

i=1

ui ⊗ vi ⊗ wi∥22

Output: the rank-1 components {ui ⊗ vi ⊗ wi}ri=1

A.4. Jennrich’s Algorithm

Jennrich’s Algorithm is an algorithm for decomposing a tensor, say T =
∑r

i=1(xi ⊗ yi ⊗ zi), into its rank-1 components
that works when the fibers of the rank 1 components i.e. x1, . . . , xr are linearly independent (and similar for y1, . . . , yr and
z1, . . . , zr).

Moitra (Moitra, 2018) gives a complete analysis of JENNRICH’S ALGORITHM. The result that we need is that as the error E
goes to 0 at an inverse-polynomial rate, JENNRICH’S ALGORITHM recovers the individual rank-1 components to within any
desired inverse-polynomial accuracy.

Theorem A.5 ((Moitra, 2018)). Let

T =

r∑
i=1

σi(xi ⊗ yi ⊗ zi)

where the xi, yi, zi are unit vectors and σ1 ⩾ . . . ⩾ σr > 0. Assume that the smallest singular value of the matrix with
columns given by x1, . . . , xr is at least c and similar for the yi and zi. Then for any constant d, there exists a polynomial P
such that if

∥E∥2 ⩽
σ1

P (n, 1
c ,

σ1

σr
)

then with 1− 1
(10n)d

probability, there is a permutation π such that the outputs of JENNRICH’S ALGORITHM satisfy

∥σπ(i)(xπ(i) ⊗ yπ(i) ⊗ zπ(i))− ui ⊗ vi ⊗ wi∥2 ⩽ σ1

(
σrc

10σ1n

)d

for all 1 ⩽ i ⩽ r.

Remark A.6. Note that the extra factors of σ1 in the theorem above are simply to deal with the scaling of the tensor T .
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A.5. Bayes Optimal Clustering

In this section, we prove that our parameter learning algorithm actually allows us to do nearly Bayes-optimal clustering in
the fully observed case i.e. when Ci = I for all i ∈ [k]

Proof of Theorem 7.5. We apply Theorem 7.1 with ε set as a sufficiently small inverse polynomial in the other parameters.
Because Ci = I , we can eliminate the similarity transformations Ui and also without loss of generality the permutation π on
[k] is the identity so we have

max
i∈[k]

(
∥Ai − Âi∥, ∥Bi − B̂i∥, ∥Ci − Ĉi∥, ∥Di − D̂i∥, |wi − ŵi|

)
⩽ ε .

Now fix a choice of i ∈ [k]. Define Pi to be the probability that (u1, . . . ul, y1, . . . , yl) is sampled from the LDS
L(Ai, Bi, Ci, Di) and let P̂i be the probability that it is sampled from the LDS L̂i = L(Âi, B̂i, Ĉi, D̂i). We can explicitly
compute P̂i from Âi, B̂i, Ĉi, D̂i using regression. Now we will bound the ratio Pi/P̂i and prove that it is close to 1. We
can write Pi as an integral over all possibilities for x1, . . . , xl. Now the likelihood of (u1, . . . ul, y1, . . . , yl, x1, . . . , xl) is
simply

C exp

(
−1

2

(
l−1∑
t=1

∥xt+1 −Aixt −Biut∥2 +
l∑

t=1

∥yt − Cixt −Diut∥2 +
l∑

t=1

∥ut∥2
))

where C is an appropriate normalizing constant obtained from the standard normal. The formula is the same for P̂i except
with Ai, Bi, Ci, Di replaced with Âi, B̂i, Ĉi, D̂i. As long as

∥x1∥, . . . , ∥xl∥ ⩽ poly(m,n, p, s, κ, 1/wmin, 1/γ, 1/δ)

then the ratio between the two likelihoods is in the interval [1 −
√
ε, 1 +

√
ε] as long as ε was chosen sufficiently small

initially. However, the above happens with exponentially small failure probability for both Li and L̂i so we actually have

1− 2
√
ε ⩽
P̂i

Pi
⩽ 1 + 2

√
ε .

Combining the above over all i ∈ [k] immediately implies the desired statement about the posterior distribution.
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