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Abstract
We study the problem of differentially private
(DP) stochastic convex optimization (SCO) un-
der the notion of user-level differential privacy. In
this problem, there are n users, each contributing
m > 1 samples to the input dataset of the private
SCO algorithm, and the notion of indistinguisha-
bility embedded in DP is w.r.t. replacing the entire
local dataset of any given user.

Under smoothness conditions of the loss, we es-
tablish the optimal rates for user-level DP-SCO
in both the central and local models of DP. In par-
ticular, we show, roughly, that the optimal rate is

1√
nm

+
√
d

εn
√
m

in the central setting and is
√
d

ε
√
nm

in the local setting, where d is the dimensionality
of the problem and ε is the privacy parameter. Our
algorithms combine new user-level DP mean es-
timation techniques with carefully designed first-
order stochastic optimization methods. For the
central DP setting, our optimal rate improves over
the rate attained for the same setting in Levy et al.
(2021) by

√
d factor. One of the main ingredients

that enabled such an improvement is a novel ap-
plication of the generalization properties of DP
in the context of multi-pass stochastic gradient
methods.

1. Introduction
Differential privacy (DP) (Dwork et al., 2006) has become
the gold standard for rigorous privacy protection in machine
learning. Given the fundamental importance of stochas-
tic convex optimization (SCO) in machine learning, many
works studied stochastic optimization algorithms under the
constraint of differential privacy, a problem referred to as
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differentially private SCO (DP-SCO) (Bassily et al., 2019;
Feldman et al., 2020; Bassily et al., 2021b; Asi et al., 2021;
Kulkarni et al., 2021; Bassily et al., 2021a; Song et al., 2021;
Arora et al., 2022).

However, most of the existing works on DP-SCO study a
basic setting, where there are n individuals (users) and each
user contributes a single data point to the input dataset of
the algorithm, and hence the privacy guarantee of the pro-
posed algorithms is item-level DP. A more general setting
of substantial practical importance is when each user con-
tributes a local dataset of m data points to the input dataset,
where m > 1. In such scenarios, item-level DP does not
provide sufficient privacy protection for each user. Instead,
user-level DP would offer a more meaningful and stronger
privacy protection in these scenarios. In user-level DP, the
output of the differentially private (DP) algorithm needs to
be insensitive to replacing the entire local dataset of any user.
Under item-level DP, optimal rates for DP-SCO (optimal ex-
cess population risk bounds) are known in the central model
of DP (Bassily et al., 2014) and the local model (Duchi et al.,
2013) (see the first row of Table 1).

A fundamental question is: what are the optimal rates for
DP-SCO under user-level DP? In particular, can we attain
better rates for user-level DP than those rates implied di-
rectly from the optimal algorithms for item-level DP? That
is, can we devise new algorithms that exploit the fact that
each user contributes multiple samples to the input dataset?
Note that a naive baseline would be using the existing algo-
rithms designed for item-level DP while only modifying the
notion of privacy to user-level DP. However, this yields rates
that are essentially the same as in the case where m = 1
(Levy et al., 2021). Related to this question, the work of
Levy et al. (2021) gives an upper bound on the DP-SCO
rate in the central model of DP when the loss function is suf-
ficiently smooth. Under the Lipschitz condition, their rate
scales as ≈ 1√

nm
+ d

εn
√
m

in the worst case. Although their
bound shows an improvement in terms of the dependence
on m compared to the naive baseline mentioned above, it is
worse than such naive baseline in terms of its dependence
on d, particularly by a factor of

√
d. The picture in the local

model is even less clear as there are no known DP-SCO
rates better than what can be implied via the naive approach.
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Model Central DP Local DP

Item-level Θ

(
1√
mn

+

√
d log(1/δ)

nmε

)
(Bassily et al., 2019) Θ

(√
d

nmε2

)
(Duchi et al., 2013)

User-level Θ̃

(
1√
mn

+

√
d log(1/δ)

n
√
mε

)
† (Theorem 3.1) Θ̃

(√
d

nmε2

)
† (Theorem 3.2)

Table 1. Comparison of the excess population risks for SCO with R = L = 1 in different privacy models. n : number of users; m :
number of samples per user; d :dimension of the problem. Results marked by † require additional conditions on the smoothness or
parameter ranges.

Our contributions: In this work, we give an answer to
the fundamental question above in the smooth setting of DP-
SCO. In particular, under reasonable smoothness conditions
on the loss function, we prove optimal rates for DP-SCO
with user-level DP in both the central and local models of
DP. Our rates are stated in the second row of Table 1.

Our overarching approach is based on combining new tech-
niques for user-level DP mean estimation with carefully
chosen first-order (gradient-based) optimization methods.
In particular, our approach entails devising two DP versions
of a stochastic gradient oracle: one for the central model
of DP and another for the local model. Those instantia-
tions are based on techniques of DP mean estimation that
take advantage of the multiple samples at each user to pro-
vide a more accurate DP estimate of the gradient of the
population loss, whose variance scales roughly as O

(
1
m

)
,

hence, effectively reducing the Lipschitz constant of the loss
by a factor of ≈ 1√

m
(after appropriate recentering of the

gradient estimates).

One of the main contributions of our work lies in how we
attain the optimal rate in the central model that does not
suffer from the extra

√
d factor in the rate of Levy et al.

(2021). We provide a novel application of the generalization
and concentration properties of DP (Dwork et al., 2015;
Bassily et al., 2016; Feldman & Steinke, 2018) in the context
of multi-pass stochastic gradient methods. When each user
has multiple i.i.d. samples, the average local gradient at
each user will be concentrated around the true population
gradient and hence recent advances on private estimation of
concentrated random variables can be used. However, for
private multi-pass algorithms, each iterate is a function of
previous estimates based on the users’ data, which breaks
the independence structure of local gradients. The work
of Levy et al. (2021) uses uniform concentration of the
gradients to get around this problem, but this leads to an
extra factor of

√
d in the attained rate. In this work, we

show that the generalization properties of DP can be used
effectively to ensure concentration of the local gradient
estimates across all users and all iterations of the algorithm
without essentially any extra cost in the rate. See Section 3.1
for a detailed discussion of the technique.

We also deviate from Levy et al. (2021) in terms of the
gradient-based algorithm. Apart from our construction of
the underlying DP stochastic gradient oracle described ear-
lier, our algorithm is quite simple and has a similar outline
to the noisy mini-batch stochastic gradient descent (SGD)
algorithm of Bassily et al. (2019).

In the local DP setting, we propose new variance-reduced
local DP gradient estimator in the high-dimensional case
for concentrated random variables, which is crucial for ob-
taining the optimal rate. Moreover, apart from this, our
private optimization algorithm for the local model is still
different from the optimal local DP-SCO algorithm with
item-level DP (Duchi et al., 2013). It turns out that using the
standard one-pass noisy SGD algorithm requires a relatively
strong assumption on the smoothness of the loss to yield the
optimal rate for user-level LDP, even after we replace the
noisy gradients with our variance-reduced local DP gradi-
ent estimator. To attain the optimal rate in this case with a
milder smoothness condition, we give a new private algo-
rithm based on accelerated mini-batch SGD (Cotter et al.,
2011).

Finally, our results entail a condition on the total number of
users n. We prove a lower bound showing that this condition
is necessary.

2. Preliminaries
Stochastic convex optimization (SCO). Let ℓ(·, z) be a
loss function which is convex in its first argument. Let P
be a distribution over Z . For all θ ∈ Θ, define F (θ) =
EZ∼P [ℓ(θ, Z)] . Given i.i.d samples from P , the goal is to
find θ̂ with small excess risk, F (θ̂) −minθ∈Θ F (θ) ≤ α.
In this paper, we use ∇ℓ(·, z) to refer to the gradient with
respect the first argument. We put additional assumptions
on the loss function and parameter space:

• Lipschitzness: We assume ∀z ∈ Z , ℓ(θ, z) is L-
lipschitz in its first argument, i.e., ∀z ∈ Z, θ ∈ Θ,

∥∇ℓ(θ, z)∥2 ≤ L.

• Bounded parameter range: We assume Θ = {θ ∈
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Rd | ∥θ∥2 ≤ R}.
• Smoothness: ℓ(·, ·) is said to be β-smooth if ∀z ∈ Z ,
θ1, θ2 ∈ Θ

∥∇ℓ(θ1, z)−∇ℓ(θ2, z)∥ ≤ β∥θ1 − θ2∥.

Differential privacy at user-level. We consider the set-
ting where the samples are contributed by multiple users
and each user contributes more than one samples. More
specifically, there are n users and each user observes m i.i.d
samples from P . We denote the ith user’s samples as Zi =
(Zi,1, Zi,2, . . . , Zi,m). When m = 1, we use Zi to denote
the ith user’s single sample. The dataset consisting of all
user’s samples are denoted as S = Zn:=(Z1, Z2, . . . , Zn).

We will consider differential privacy (DP) both in the central
and local model, based on the following indistinguishability
notion.

Definition 2.1 (Indistinguishability). For ε > 0 and δ ∈
(0, 1), two distributions P and Q supported on O are called
(ε, δ)-indistinguishable (denoted as P ∼(ε,δ) Q ) if for all
event O in the probability space,

e−ε(P (O)− δ) ≤ Q(O) ≤ eεP (O) + δ.

Note that when ε = 0, the notion is equiv-
alent to dTV(P,Q) ≤ δ, where dTV(P,Q) =
supO∈O |P (O)−Q(O)| is the total variantion distance be-
tween P and Q.

Next we give the definitions of central differential privacy
(DP) and local differential privacy (LDP).

Definition 2.2 (Differential privacy). An algorithm A is
said to be (ε, δ)-differentially private (DP) if for any two
datasets S, S′ differing on at most one user’s contribution,
i.e.,

∑n
i=1 1{Zi ̸= Z ′

i} ≤ 1, we have

A(S) ∼(ε,δ) A(S′).

When m > 1, the definition is referred to as user-level DP.
When m = 1, the definition is the same as the canonical
item-level DP.

Definition 2.3 (Local differential privacy). An randomizer
R is said to be (ε, δ)-LDP if for all z, z′ ∈ Zm, we have

R(z) ∼(ε,δ) R(z′).

An algorithm A is said to be (ε, δ)-LDP if for all i, A can
only access Zi through an (ε, δ)-LDP randomizer.

The following properties of DP will be useful in the analysis.

Theorem 2.4 (Advanced composition (Dwork et al., 2014)).
If ∀i ∈ [k],Ai is (ε, δ)-DP, ∀δ′ ∈ (0, 1), their (adap-
tive) composition (A1,A2, . . . ,Ak) is (ε

√
2k log(1/δ′) +

kε(eε − 1), δ′ + kδ)-DP.

Theorem 2.5 (Amplification by subsampling (Balle et al.,
2018)). For ε < 1 and δ ∈ (0, 1), let A : Zk → Θ be
a (ε, δ)-private algorithm. For n > k and a dataset S ⊂
Zn, let Swor be a size k dataset obtained from randomly
sample without replacement from S. Then A′ obtained from
A′(S) = A(Swor) is ((e− 1) knε,

k
nδ)-DP.

Throughout the paper, we often need to deal with concen-
trated random variables, defined below.

Definition 2.6. A sequence of n random vectors Xn =
(X1, . . . , Xn), where Xi ∈ Rd, ∀i ∈ [n], is said to be
(τ, γ)-concentrated if with probability 1 − γ, there exists
x ∈ Rd such that

∀i ∈ [n], ∥Xi − x∥2 ≤ τ.

One example of such concentrated random variables is the
subgaussian random variables. A d-dimensional random
variable X ∼ P is said to be σ-subgaussian if for any
v ∈ Rd with ∥v∥2 = 1, we have ∀t > 0,

Pr (|v ·X| ≥ t) ≤ 2e−
t2

2σ2 .

If can be verified that when Xn ∼i.i.d P for a σ-
subgaussian distribution P , we have ∀γ > 0, Xn is
(σ
√

2 log(2n/γ), γ)-concentrated.

Additional notations. We use Bd
2(x,R) to denote the d-

dimensional ℓ2 ball of radius R centered around x. When
x = 0⃗, we drop x and simply use Bd

2(R). For a convex set
Ω, ΠΩ is used to denote the ℓ2-projection onto Ω, i.e.,

ΠΩ(x):= min
x′∈Ω

∥x− x′∥2.

For Xn ∈ Rd×n, we use

µ(Xn):=
1

n

n∑
i=1

Xi

to denote its mean.

3. Our results and techniques.
SCO under central DP. There has been a rich literature
on private SCO in under item-level (m = 1) central DP
recently (Bassily et al., 2019; Feldman et al., 2020; Bassily
et al., 2021b; Asi et al., 2021; Kulkarni et al., 2021; Bassily
et al., 2021a; Song et al., 2021; Arora et al., 2022). It has
been shown that for ε = O(1), there exists an (ε, δ)-DP
algorithm A with expected excess risk of

Õ

(
RL√
n
+

RL
√

d log(1/δ)

nε

)
. (1)
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Moreover, the rate is shown to be tight. Levy et al. (2021)
study SCO under user-level privacy and it is shown that
under certain smoothness conditions, the following excess
risk can be obtained

Õ

(
RL√
nm

+
Rdmin{L, σ}

n
√
mε

)
,

where σ is the subgaussian parameter of ∇ℓ(θ, Z) when
Z ∼ P . The result shows that each user contributing more
samples can indeed help in certain cases. Although the
dependence on σ is shown to be tight in certain cases, σ can
be as large as L in the worst case. In this case, when m < d,
the privacy rate is worse than the baseline of (1), which can
be achieved by each user ignoring m−1 additional samples.
Hence it is not clear whether more samples can help when
m is small.

In this paper, we prove the following theorem, which shows
that under certain smoothness conditions, collecting more
samples from each user can provably improve the excess
risk under Lipschitz assumption.

Theorem 3.1. For ε ∈ (0, 1), δ ∈ (0, d
4n5/2

√
mε2

),

when n >
√
d/ε,m < max{

√
d, nε2/

√
d} and β =

Õ( 2LR min{n3/2ε2

d
√
m

, nε√
md

}), there exists an (ε, δ) user-level
private algorithm A with

E
[
F (A(Zn))−min

θ∈Θ
F (θ)

]
= Õ

(
RL√
nm

+
RL

√
d√

mnε

)
.

Moreover, given the lower bound in Levy et al. (2021) the
rate is tight up to logarithmic factors (see (2) in Section 5
for log factors).

Parameter requirements. As shown in Levy et al. (2021,
Theorem 9), under fixed n and ε, the optimality gap won’t
approach zero even when m = ∞. This implies that the rate
in Theorem 3.1 won’t hold for arbitrarily large m. Whether
the requirement on m and β can be relaxed is an interesting
direction to explore.

SCO under LDP. Under local DP constraint, due to the
more stringent privacy notion, at item-level (m = 1), the
optimal rate for the excess risk is shown to be (Duchi et al.,
2013)

Θ

(
RL

√
d

nε2

)
.

The result under user-level LDP is less explored in previous
work to the best of our knowledge. Our next result shows
that under the local setting, collecting more samples from
each user can provably improve the performance under the
same privacy level.

Theorem 3.2. For ε = O(1) and δ < ε,m < d/ε2, when

β < Lε3

R

√
n3

md3 and n ≥ d/ε2 (or n > md/ε2 when β is
unbounded), there exists an (ε, δ) user-level LDP algorithm
A with

E
[
F (A(Zn))−min

θ∈Θ
F (θ)

]
= Õ

(
RL

√
d

nmε2

)
,

Moreover, the rate is tight up to logarithmic factors.

Interestingly, in contrast to the result in the central case, the
risk decreases at the same rate for m and n. This shows
that to achieve similar excess risk, less users are needed if
we are allowed to collect multiple samples from each user.
Moreover, this doesn’t come at the cost of leaking more
information about each user since the user-level privacy
parameter is fixed.

When the function is not smooth, Theorem 3.2 has an addi-
tional requirement that n > md/ε2 in the nonsmooth case
and n > d/ε2 in the smooth case. In Theorem 3.3, we show
that this requirement is mild when m is small in the sense
that n > d/ε2 is required to get any non-trivial optimiza-
tion guarantee for any m. Whether the requirement can be
removed when d/ε2 < n < md/ε2 in the nonsmooth case
is an interesting future direction to explore.

Theorem 3.3. ∀m > 0 and ε user-level LDP algorithm A,
when n = o(d/ε2), there exists a distribution P such that

E
[
F (A(Zn))−min

θ∈Θ
F (θ)

]
= Ω(RL).

Private mean estimation. Our LDP optimization algorithm
relies on private mean estimation of concentrated random
variables in the high-dimensional setting. The problem has
been well-studied in the central setting (Smith, 2011; Karwa
& Vadhan, 2017; Cai et al., 2019; Kamath et al., 2019;
Biswas et al., 2020; Levy et al., 2021). For the local setting,
we propose an computationally efficient extension of the
algorithm in (Gaboardi et al., 2019) to the high-dimensional
setting. The result is stated in Theorem 4.3.

The independent work of Girgis et al. (2022) also provides a
similar result for private mean estimation, which is used to
solve the task of user-level LDP empirical risk minization
(ERM). While related, ERM and SCO are fundamentally
different problems that have been investigated separately in
the private optimization literature (e.g., Bassily et al. (2014;
2019)). The optimal rates for DP-ERM don’t imply optimal
rates for DP-SCO in general.

3.1. Our technique: concentration via DP

Similar to Levy et al. (2021), our algorithm is based on
the gradient-base optimization algorithms and the challenge
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comes from privately estimating the gradient at each iterate.
When each user has multiple i.i.d samples, the averaged
local gradient at each user will be concentrated around the
true population gradient and hence recent advances on pri-
vate estimation of concentrated random variables can be
used. However, for private optimization algorithms, the
queried parameter at each iteration is a function of previ-
ous estimates based on the users’ data, which breaks the
independence structure of the local gradients. Levy et al.
(2021) resorts to uniform concentration of the gradients, and
this leads to an extra factor of

√
d in the private risk. In

this work, we resolve this issue by carefully exploiting the
generalization property of differential privacy for concen-
trated random variables in the adaptive estimation setting,
as shown below.

Theorem 3.4. Let Zn = (Z1, . . . , Zn) ∈ Z̄n be a sequence
of samples drawn from a distribution P over a user’s data
universe Z̄ . Let f : Θ × Z̄ → Rd and P be such that
∀θ ∈ Θ,

Pr (∥f(θ, Z)− f(θ, P )]∥ > τ) ≤ γ,

where f(θ, P ):=EZ∼P [f(θ, Z)]. Let A : Z̄n → Θ be
an (ε, δ)-differentially private algorithm and θZn :=A(Zn).
Then, the sequence

f⃗(θZn , Zn):=(f(θZn , Z1), f(θZn , Z2), . . . , f(θZn , Zn))

is (τ, γ′)-concentrated, where γ′ = n
(
e2εγ + δ

)
.

When θ is independent of Zn, union bound would imply that
f⃗(θ, Zn) is (τ, nγ)-concentrated. The theorem shows that
when θZn is a function of the dataset Zn, the concentration
of function queries to the dataset still holds with a slightly
worse property as long as θZn is differentially private. Note
that here the vector f⃗(θZn , Zn) involves n quantities and
a naive application of group privacy would incur a multi-
plicative term of enε. We get around this by using the fact
that ∀i ∈ [n], θZn can be viewed as a private randomization
of Zi and ∀θ, f(θ, Zi) is concentrated itself. Hence we can
apply the generalization property of DP on each entry and
use union bound to argue about the concentration of the
sequence. We present its proof in Section 3.2.

Our algorithm for the central DP case builds on this and use
algorithms for private estimation of concentrated random
variables obtained from adaptive but private queries. This
is important to achieve the desired rate for iterative opti-
mization methods. We then carefully choose the number
of rounds and learning rate to balance optimization loss,
privacy loss, and generalization error, which we detail in
Section 5.

3.2. Proof of Theorem 3.4

By the union bound and the definition of (τ, γ)-
concentration, it would be enough if we prove that ∀i ∈ [n],

Pr (∥f(θZn , Zi)− f(θZn , P )∥ ≥ τ) ≤ e2εγ + δ.

Our first observation is that ∀i ∈ [n],θZn is an (ε, δ)-
DP randomization of Zi. By the following lemma from
Feldman et al. (2022), we know it is close to a (2ε, 0)-
randomization of Zi.

Lemma 3.5. Let A be an (ε, δ) randomization of Z, then
there exists an (2ε, 0)-DP algorithm A′ such that

dTV(A(Z),A′(Z)) ≤ δ.

Let A′ be the algorithm defined in Lemma 3.5 and
θ′
Zn :=A′(Zn). We know that there exists a coupling be-

tween θ′
Zn and θZn such that

Pr
(
θ′
Zn ̸= θZn

)
≤ δ.

Hence it would be enough to prove that

Pr
(
∥f(θ′

Zn , Zi)− f(θ′
Zn , P )∥ ≥ τ

)
≤ e2εγ.

Note that

Pr
(
∥f(θ′

Zn , Zi)− f(θ′
Zn , P )∥2 ≥ τ

)
=
∑

θ
Pr
(
θ′
Zn = θ

)
·

Pr
(
∥f(θ, Zi | θ′

Zn = θ)− f(θ, P )∥2 ≥ τ
)

≤ max
θ

Pr
(
∥f(θ, Zi | θ′

Zn = θ)− f(θ, P )∥2 ≥ τ
)
.

Since θ′
Zn is 2ε-DP, we have ∀z and θ,

Pr
(
Zi = z | θ′

Zn = θ
)

Pr (Zi = z)
=

Pr
(
θ′
Zn = θ | Zi = z

)
Pr
(
θ′
Zn = θ

) ≤ e2ε.

Hence we have ∀θ ∈ Θ,

Pr
(
∥f(θ, Zi | θ′

Zn = θ)− f(θ, P )∥2 ≥ τ
)

=
∑

z
Pr
(
Zi = z | θ′

Zn = θ
)
·

Pr (∥f(θ, z)− f(θ, P )∥2 ≥ τ)

≤ e2ε
∑

z
Pr (Zi = z) Pr (∥f(θ, z)− f(θ, P )∥2 ≥ τ)

≤ e2ε Pr (∥f(θ, Zi) = θ)− f(θ, P )∥2 ≥ τ)

≤ e2εγ,

where the last inequality follows from the concentration
assumption of f(θ, Zi). This completes the proof.
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4. User-level private mean estimation
In this section, we will describe the mean estimation prim-
itives for concentrated random variables. We start by de-
scribing a meta-algorithm that can be instantialized to give
mean estimation algorithms under central DP and local DP,
respectively. At a high level, the algorithm starts by pri-
vately computing a crude estimate of the mean which is
close to most of the data points (within radius C). Then
it truncates each sample and computes the noisy mean of
the truncated samples. The details of the algorithm are
described in Algorithm 1.

Algorithm 1 Truncated mean estimation
Input: Xk = (X1, X2, . . . Xk) ∈ Bd

2(R); σ : noise level;
C : truncation radius. CrudeMean: a private crude
mean estimator.

1: Compute a crude estimate of the mean using Crude-
Mean up to radius C.

µ̃ = CrudeMean(Xk, C).

2: Compute the noisy truncated mean

µ̂ =
1

k

k∑
i=1

(
ΠBd

2 (µ̂,C)(Xi) +N (0, σ2
Id)
)

3: Return: µ̂.

4.1. Mean estimation under central DP

Under central DP, Levy et al. (2021) study mean estimation
of concentrated random variables. We will use the following
result from Levy et al. (2021).

Theorem 4.1 (Theorem 2 (Levy et al., 2021)). For
ε ∈ (0, 1) and δ ∈ (0, 1/n), there exists a private
mean estimator A, which is an instantiation of Algo-
rithm 1 such that if Xk is (τ, γ)-concentrated and k =

Ω
(√

d log(1/δ) log(dRn/(τ/γ))/ε
)

, we have

A(Xk) ∼(0,2γ)
1

k

k∑
i=1

Xi +N (0, σ2
Id),

with σ2 = O
(

τ2 log(dn/γ) log(1/δ)
k2ε2

)
.

The statement shows that if the data is concentrated, the
private estimator can be close to a Gaussian perturbation of
the empirical mean with noise level scaling quadratically
with the concentration radius τ (up to log factors) instead of
quadratically with the worst-case bound of R. For complete-
ness, we give a description of algorithm in Appendix B.

4.2. Mean estimation under local DP

Next we consider mean estimation of concentrated random
variables under local DP. The algorithm will also be an
instantiation of Algorithm 1. First, we describe the crude
mean estimator we will use for the first step. The algorithm
can be viewed as a high-dimensional extension of Gaboardi
et al. (2019), which focuses on the one-dimensional case.

Algorithm 2 LDP Range - scalar
Input: Xk = (X1, X2, . . . Xk) ∈ [−R,R]; ε : privacy

level; concentration radius τ .
1: Divide [−R,R] into t = R/τ nonoverlapping intervals

of width 2τ , denoted as I1, I2, . . . , It.
2: ∀i ∈ [k], let Yi be a t-dimensional vector with ∀j ∈ [t],

Yi(j) =

{
1{Xi ∈ Ij} with prob eε/2

eε/2+1
,

1− 1{Xi ∈ Ij} with prob 1
eε/2+1

.

3: Let Ȳ =
∑k

i=1 Yi.
4: Output: the middle point of Ij∗ where

j∗ = argmax
j∈[t]

Ȳ (j).

Algorithm 3 LDP Range - High Dim
Input: Xk = (X1, X2, . . . Xk) ∈ Bd

2(R); ε : privacy
level.

1: Apply a random rotation matrix R = HdD on each Xi

to get
X ′

i = RXi.

where Hd is a d-dimensional Hadamard matrix and D
is a diagonal matrix with Rademacher entries (+1 or
−1 with equal probability).

2: Divide k users into d non-overlapping groups
G1, . . . , Gd with equal size.

3: For j ∈ [d], compute

µ̃′(j) = LDPRange1D({X ′
t}t∈Gj

, ε).

4: Let µ̃′ = (µ̃′(1), µ̃′(2), . . . , µ̃′(d)). Return

µ̃ = R−1µ̃′.

The algorithm is described in Algorithm 3 and the perfor-
mance is stated in Lemma 4.2. The one-dimensional version
of the algorithm is stated in Algorithm 2.

In the high dimensional case, we apply a random rotation on
the data and estimate the range on each dimension separately.
The algorithm is stated in Algorithm 3 and the guarantee is
stated in Lemma 4.2.

6
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Lemma 4.2. There exists an (ε, δ)-LDP algorithm µ̃ such
that when k ≥ 4d log(

√
d3R/(τγ))/ε2 and Xk is (τ, γ)-

concentrated, we have with probability at least 1− 2γ,

∥µ̃(Xk)− µ(Xk)∥ = O
(
τ
√
log(dk/γ)

)
.

With the guarantee of Algorithm 3, we are ready to state the
guarantee for LDP mean estimation.

Theorem 4.3. For ε ∈ (0, 1) and δ ∈ (0, 1
k ), let A be the

Algorithm 1 with following instantiation: i) Use Algorithm 3
with ε′ = ε/2 as CrudeMean; ii) C = τ

√
log(dn/γ); iii)

σ =
C
√

8 log(1.25/δ)

ε . Then A is (ε, δ)-LDP. When Xk is
(τ, γ)-concentrated and n ≥ 4d log(

√
d3R/(τγ))/ε2, we

have

A(Xk) ∼(0,2γ)
1

k

k∑
i=1

Xi +N (0,
σ2

k
Id).

We leave the proof of Lemma 4.2 and Theorem 4.3 to Ap-
pendix B.

5. User-level DP-SCO with Central DP
Here we describe our central DP algorithm, detailed in
Algorithm 4, and prove the guarantee stated in Theorem 3.1.

Proof of Theorem 3.1: The privacy guarantee of the
algorithm holds since by Theorem 2.5, the algorithm in
each round satisfies ( ε√

2T log(2/δ)
, δ
2T )-DP, and choosing

δ′ = δ/2, k = T in Theorem 2.4 leads to final privacy
guarantee.

To prove the utility guarantee, we show that with high prob-
ability, in each round, the gradient estimate ∇̃F (θt) is the
same as a stochastic gradient oracle, stated below.

Lemma 5.1. Let (θ0, . . . , θT ) be the parameter trajec-
tory of Algorithm 4, denoted by A. Let (θ′0, . . . , θ

′
T ) be

the parameter trajectory of A′ where ∀t ∈ [T ], θ′t+1 ∼
ΠΘ

(
θ′t − η∇̃F ′(θ′t)

)
, where

∇̃F ′(θ′t) ∼
1

B

∑
i∈[B]

gi(θ
′
t) +N (0, σ2

Id),

with σ2 = O
(

L2 log2(n/γ) log(n/δ)
mB2

)
. When ε ∈ (0, 1), δ ∈

(0, d
4n5/2

√
mε2

), the trajectories satisfy

(θ0, . . . , θT ) ∼(0,γ) (θ
′
0, . . . , θ

′
T )

with γ = 1/
√
mn.

Then the proof follows similar as other SCO algorithms
based on stochastic gradient oracles (e.g., (Bassily et al.,

Algorithm 4 User-level private noisy SGD
Input: n users, each with m i.i.d.samples from P . Privacy

parameter ε, δ. Lipschitz parameter L, parameter set Θ
with radius R.
MDP: private mean estimation algorithm in Theo-
rem 4.1.

1: Initialize θ0 = 0⃗.
2: Take T = n2ε2

c2n,δd
with cn,δ = Θ(log n log(1/δ))

η = R
L

(
d
√
m

n3/2ε2
+

cn,δ

√
md

nε

)
, ε0 = 1,δ0 = nδ

2TB , B =
nε

(e−1)
√

2T log(2/δ)
.

3: for t = 0, 1, 2, . . . , T − 1 do
4: Choose a random subset St of users with size B

without replacement.
5: Compute the average gradient at each user at θt, ∀i ∈

St,

gi(θt) =
1

m

m∑
j=1

∇ℓ(θt, Zi,j).

6: Compute a noisy version of the average gradients
using M and get

∇̃F (θt) = MDP({gi(θt)}i∈St
, ε0, δ0).

7: Update the parameter with

θt+1 = ΠΘ

(
θt − η∇̃F (θt)

)
.

8: end for
9: Return: θ̄T = 1

T

∑T
t=1 θt.

2019)). We first prove Theorem 3.1 based on Lemma 5.1,
and then give the proof of Lemma 5.1.

By Lemma 5.1, we have A(Zn) ∼(0,γ) A′(Zn), and hence

E
[
F (A(Zn))−min

θ∈Θ
F (θ)

]
≤ E

[
F (A′(Zn))−min

θ∈Θ
F (θ)

]
+ γRL

≤ E
[
F (A′(Zn))−min

θ∈Θ
F (θ)

]
+

RL√
nm

.

Hence it would be enough to prove

E
[
F (A′(Zn))−min

θ∈Θ
F (θ)

]
= Õ

(
RL√
nm

+
RL

√
d√

mnε

)
.

Let F̂ (θ) =
∑

i∈[n]

∑
j∈[m] ℓ(θ, Zi,j). Let ∇̃F ′(θt) be the

gradient estimate of A′ as defined in Lemma 5.1, we have

7
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E
[
∇̃F ′(θt)

]
= ∇F̂ (θ), and

E
[
∥∇̃F ′(θt)−∇F̂ (θ)∥22

]
≤ L2

B
+ dσ2.

Hence by standard analysis of stochastic gradient descent
for smooth functions (e.g., (Bubeck, 2014)), we have

E
[
F̂ (A′(Zn))−min

θ∈Θ
F̂ (θ)

]
≤ βR2

T
+
R2

ηT
+
η

2

(
L2

B
+dσ2

)
.

Next we bound the generalization error. The generalization
analysis follows similarly as the stability-based analysis in
Bassily et al. (2019, Lemma 2.2 and 3.4). When η ≤ 2/β
(this holds for the parameter range stated in Theorem 4.1),
the generalization error can be shown to be upper bounded
by L2 Tη

nm . Hence we have

E
[
F (A′(Zn))− F̂ (A′(Zn))

]
≤ L2 Tη

nm
.

Combining the above two inequalities, we have

E
[
F (A′(Zn))−min

θ∈Θ
F (θ)

]
≤ E

[
F (A′(Zn))−min

θ∈Θ
F̂ (θ)

]
≤ E

[
F̂ (A′(Zn))−min

θ∈Θ
F̂ (θ)

]
+

E
[
F (A′(Zn))− F̂ (A′(Zn))

]
≤ βR2

T
+

R2

ηT
+

η

2

(
L2

B
+ dσ2

)
+ L2 Tη

nm
.

Plugging in the values of the parameters in Algorithm 4 and
Lemma 5.1, we get when β ≤ 2L

R min{n3/2ε2

d
√
m

, nε
cn,δ

√
md

}

E
[
F (A′(Zn))−min

θ∈Θ
F (θ)

]
=O

(
RL√
nm

+cn,δ ·
RL

√
d√

mnε

)
,

(2)
where cn,δ is as defined in Algorithm 4.

Proof of Lemma 5.1: By union bound, it would be enough
to show that for all t ∈ [T ], we have

∇̃F (θt) ∼(0,γ/T ) ∇̃F ′(θt).

Note that ∀i, gi(θ) is L/
√
m-subgaussian. And

hence ∀S ⊂ [n] and |S| = B, {gi(θ)}i∈St
is

(L
√
2 log(8eTn/γ)/m, γ/(4eT ))-concentrated. Since θt

is (ε, δ)-private with respect to St, by Theorem 3.4, we
have {gi(θt)}i∈St

is (L
√

2 log(8eTn/γ)/m, γ′) concen-
trated with γ′ = eεγ/(4eT )+ δ ≤ γ/2T, where we use the
fact that in the required parameter range, δ ≤ γ/4T .

Moreover, B = nε

(e−1)
√

2T log(2/δ)
= Ω̃(

√
d/ε0). Hence by

Theorem 4.1, we obtain the desired bound in Lemma 5.1.

6. User-level DP-SCO with Local DP
Here we describe the details of our LDP algorithm in Algo-
rithm 5 and prove the guarantee stated in Theorem 3.2. The
proof of Theorem 3.3 will be in Appendix A.

Algorithm 5 also relies on private mean estimation prim-
itives (under the more strigent LDP setting) to obtain the
a gradient estimate at each round. However, compared
to Algorithm 4, there are two main differences: (1) Non-
overlapping batches of users are used in each round and
the number of gradient queries is nm, linear in the total
number of samples; (2) The gradient update rule is based on
accelerated gradient methods instead of SGD (Cotter et al.,
2011). This leads to a faster convergence rate and a smaller
smoothness parameter is required.

Algorithm 5 User-level LDP SCO
Input: n users, each with m i.i.d.samples from P . Privacy

parameter ε. Lipschitz parameter L, parameter set Θ
with radius R.
MLDP: private mean estimation algorithm in Theo-
rem 4.3.

1: Initialize θ0 = 0⃗. and θag = θ0.
2: Take T = nε2/d, and {ηt, γt}t∈[T ] as in Lemma 6.1.
3: for t = 0, 1, 2, . . . , T − 1 do
4: Compute θmd

t = γ−1
t θt + (1− γ−1

t )θagt .
5: Choose a fresh batch St of n0 = ⌊n/T ⌋ users.
6: Compute the average gradient at each user at θt, ∀i ∈

St,

gi(θ
md
t ) =

1

m

m∑
j=1

∇ℓ(θmd
t , Zi,j).

7: Compute a noisy version of the average gradients
using MLDP and get

∇̃F (θmd
t ) = MLDP

(
{gi(θmd

t )}i∈St
, ε, δ

)
.

8: Update θt+1 = θmd
t − ηt∇̃F (θmd

t ).
9: Compute θagt+1 = γ−1

t θt+1 + (1− γ−1
t )θagt .

10: end for
11: Return: θagT .

Proof of Theorem 3.2: The privacy guarantee follows
from the privacy guarantee of MLDP and the fact that the
batches are not overlapping.

To prove the utility guarantee, similar to the proof of The-
orem 3.1, we first show that the parameter trajectory is
close to the parameter trajectory where the gradient esti-
mate at each round is replaced by an unbiased stochastic

8
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gradient oracle. More precisely, let (θag1 , θag2 , . . . , θagT ) be
the parameter trajector of Algorithm 5 (denoted by A), and
(θ

′ag
1 , θ

′ag
2 , . . . , θ

′ag
T ) be the parameter trajectory of an al-

gorithm A′ which replaces the gradient estimate ∇̃F (θmd
t )

by

∇̃F ′(θmd
t ) ∼ 1

n0

∑
i∈St

gi(θ
md
t ) +N (0, σ2

Id),

with σ2 = Õ( L2

n0mε2 ). By union bound and Theorem 4.3,
we have

(θ
′ag
1 , . . . , θ

′ag
T ) ∼(0,γ) (θ

ag
1 , . . . , θagT ),

with γ =
√

d
mnε2 . Hence we have

E [F (θagT )] ≤ E
[
F (θ

′ag
T )

]
+RL

√
d

mnε2
.

Next we bound E
[
F (θ

′ag
T )

]
. Note that since St’s are dis-

joint. We have E
[
∇̃F ′(θmd

t )
]
= ∇F (θmd

t ), and

E
[
∥∇̃F ′(θmd

t )−∇F (θmd
t )∥22

]
≤ L2

n0
+ dσ2

= Õ

(
dL2

n0mε2

)
,

where we use m < d/ε2. To move forward, we need the
following guarantee for accelerated gradient method.

Lemma 6.1 ((Cotter et al., 2011; Lan, 2012)). Suppose
each ∇̃F (θ) is an unbiased stochastic oracle to ∇F (θ)
with variance ν2. If F (θ) is β-smooth, there exists settings
of {ηt, γt}t∈[T ] such that

F (θ
′ag
T )−min

θ∈Θ
F (θ) = Õ

(
β
R2

T 2
+

Rν√
T

)
.

Plugging in the value of ν2, T = nε2/d and n0 = ⌊n/T ⌋,
we get

F (θagT )− F (θ∗) = O

(
β
d2R2

n2ε4
+RL

√
d

mnε2

)
.

When β = Õ

(
Lε3

R

√
n3

md3

)
, we get the desired rate in

Theorem 3.2.

Discussion on the smoothness condition. When the
smoothness assumption doesn’t hold, using Moreau en-
velope smoothing method (Nesterov, 2005; Bassily et al.,
2019), there exists a smoothed version of f , denoted by

fβ , which is β-smooth and 2L-Lipschitz for all θ ∈ Θ and
∀z, f(θ, z) ≤ fβ(θ, z) ≤ f(θ, z) + L2

2β . Moreover, the gra-
dient of fβ can be computed from f . Hence we can instead
optimize fβm with

βm =
L2

RL
√

d
mnε2

=
L

R

√
mnε2

d

and this won’t affect the optimality result up to constants.

When n > dm
ε2 , we have βm ≤ Lε3

R

√
n3

md3 , and hence the
guarantee of Algorithm 5 discussed above can be used.
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A. Proof of Theorem 3.3
We will focus on the case when m = ∞, i.e., each user can draw as many local samples as possible. A lower bound for
m = ∞ would naturally imply the same lower bound for any finite m as well.

Similar to (Bassily et al., 2014; Levy et al., 2021), consider the following class of linear function where

ℓ(θ, Z) = −θTZ.

Without loss of generality, we assume R = L = 1 and prove a lower bound of Ω(1). Otherwise we can scale the domain of
Z and θ by L and R respectively. Let P be drawn from the following class of point mass distributions. Let v ∈ {±1}d and
Pv is such that

Pv(z) =

{
1 if z = v√

d

0 o.w.

Note that this distribution is deterministic. Hence observing m = ∞ samples is equivalent to observing one sample. We
will assum each user observes one sample from Pv in the rest of the proof. Then we have

Fv(θ):=EZ∼Pv [ℓ(θ, Z)] = −θT v√
d
.

Then it can be verified that under Pv , the loss is minimized when θv = v√
d

. Moreover, for any θ ∈ Θ,

F (θ)− F (θv) =
(θv − θ)T v√

d
= 1− θT v√

d
≥ 1

2
∥θ − θv∥22.

Hence it would be enough to show that for any user-level private algorithm A, there exists a v such that

E
[
∥A(Zn)− θv∥22

]
= Ω(1).

We proceed by using proof by contradiction. Suppose there exists an algorithm A such that ∀v ∈ {±1}d,

E
[
∥A(Zn)− θv∥22

]
≤ 1

200
. (3)

We allow the LDP protocol to be sequentially interactive in our proof. More specifically, consider the following process

• Draw V uniformly at random from {+1,−1}d.
• n users each observe one sample from PV , denoted by (Z1, . . . Zn).
• n users come in sequence and the ith user observes Y i−1:=(Y1, . . . , Yi−1) and sends message Yi, which is a private

randomization of
Yi = RY i−1

(Zi).

• The server observed Y n and makes an inference.

The next lemma shows that any algorithm with small error for the mean estimation, we must be able to extract enough
information about Z from the messages Y n.

Lemma A.1. Suppose there exists A such that Equation (3) holds, we must have

I(V ;Y n) = Ω(d).

Proof. Let V̂ = argmaxv′{∥A(Zn)− θ′v∥22}. If (3) holds, we have

E
[
dham(V, V̂ )

]
= dE

[
∥θV − θV ′∥22

]
≤ 2dE

[
∥θV −A(Zn)∥22

]
≤ d

100
.

11
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Hence we have

Pr

(
dham(V, V̂ ) ≥ d

50

)
≤ 1

2
.

By Fano’s inequality (e.g.,, the distance-based variant in (Duchi & Wainwright, 2013) (Corollary 1)), we have

Pr

(
dham(V, V̂ ) ≥ d

100

)
> 1− log 2 + I(V ;Y n)

d/200
.

Combining the above equations completes the proof.

Next we prove a contradiction when n = o(d/ε2). By chain rule of mutual information, we have

I(V ;Y n) =

n∑
i=1

I(V ;Yi | Y i−1)

=

n∑
i=1

EY i−1

[
I(V ;RY i−1

◦ Zi | Y i−1)
]

≤
n∑

i=1

EY i−1

[
max

R:ε−LDP
I(V ;R ◦ Zi | Y i−1)

]

=

n∑
i=1

EY i−1

[
max

R:ε−LDP
I(V ;R ◦ Zi | Y i−1)

]

=

n∑
i=1

EY i−1

[
max

R:ε−LDP
EV |Y i−1

[
KL(R ◦ P (Zi | V )||R ◦ P (Zi | Y i−1))

]]

It has been shown in (Duchi et al., 2013) (Theorem 1) that for any ε-LDP R and distributions P1, P2, we have

KL(R ◦ P1||R ◦ P2) = O
(
ε2
)
.

Combining the above, we get:
I(Z;Y n) = O

(
nε2
)
.

With Lemma A.1, we get for any algorithm such that Equation (3) holds, we must have

n = Ω

(
d

ε2

)
.

B. Details of the mean estimation algorithms in Section 4
B.1. User-level private mean estimation algorithm in Levy et al. (2021).

The algorithm follows a similar procedure as Algorithm 1 and the crude mean estimator is also based on the combination
of random rotation and one-dimensional estimation as stated in Algorithm 3 except for that it works in the central model.
Hence here we only state the one-dimensional range estimation algorithm in Algorithm 6.

B.2. User-level LDP mean estimation

The proof of Lemma 4.2 and Theorem 4.3 relies on the guarantees of Algorithm 2, which is the one-dimensional version of
Algorithm 3. The guarantees of Algorithm 2 are stated in the following lemma:

Lemma B.1. Algorithm 2 is an (ε, 0)-LDP algorithm. Let µ̃(Xk) denote its output. When Xk is (τ, γ/2)-concentrated and
k > 4 log(R/(τγ))/ε2, we have with probability at least 1− γ,

|µ̃(Xk)− µ(Xk)| ≤ 4τ.

12



User-level Private Convex Optimization with Optimal Rates

Algorithm 6 PrivateRange(Xn, ε, τ, B): Private Range Estimation (Feldman & Steinke, 2017)
Input: Xn := (X1, X2, ..., Xn) ∈ [−B,B]n, τ : concentration radius, privacy parameter ε > 0.

1: Divide the interval [−B,B] into l = B/τ disjoint bins, each with width 2τ 1. Let T be the set of middle points of
intervals.

2: ∀i ∈ [n], let X ′
i = minx∈T |Xi − x| be the point in T closest to Xi.

3: ∀x ∈ T , define cost function

c(x) = max{|{i ∈ [n] | X ′
i < x}|, |{i ∈ [n] | X ′

i > x}|}.

4: Sample x ∈ T based on the following distribution:

Pr (µ̂ = x) =
e−εc(x)/2∑

x′∈T e−εc(x′)/2
.

5: Return R = [µ̂− 2τ, µ̂+ 2τ ].

Proof. First, the privacy guarantee is straightforward and follows from the privacy guarantee of the randomized response
mechanism of LDP (Warner, 1965; Kairouz et al., 2016). Particularly, fix any i ∈ [k] and consider any pair Xi, X

′
i ∈ [−R,R].

Let Yi and Y ′
i be the corresponding randomized versions of Xi and X ′

i , respectively, as generated by step 2. Note that for
any b ∈ {0, 1}t,

P[Yi = b]

P[Y ′
i = b]

∈ [e−ε, eε].

Next, we prove the accuracy guarantee. Suppose Xk is (τ, γ/2)-concentrated. For each i ∈ [k] and each j ∈ [t], let bi(j) ≜
1{Xi ∈ Ij}. Note that by the concentration property of Xk, there exists j′ ∈ [t−1] such that

∑k
i=1 (bi(j

′) + bi(j
′ + 1)) =

k (and hence,
∑k

i=1 bi(j) = 0 for all j ∈ [t] \ {j′, j′ + 1}). Fix any j ∈ [t]. Note that (Y1(j), . . . , Yk(j)) is a sequence of
independent Bernoulli random variables with means cε (b1(j), . . . , bk(j)), where cε = eε/2−1

eε/2+1
≈ ε. Thus, by Chernoff’s

bound together with the union bound over j ∈ [t], with probability at least 1−γ, the following conditions are simultaneously
satisfied:

k∑
i=1

(Yi(j
′) + Yi(j

′ + 1)) ≥ cεk −
√

k log(t/γ),

k∑
i=1

Yi(j) <
√
k log(t/γ), ∀j ∈ [t] \ {j′, j′ + 1}.

Now, since k > 4 log(t/γ)
ε2 then the lower bound in the first event above k −

√
k log(t/γ) is greater than the upper

bound in the second event
√
k log(t/γ). Thus, with probability at least 1 − γ, we must have j∗ ∈ {j′, j′ + 1}, where

j∗ = argmaxj∈[t]

∑k
i=1 Yi(j) is the index obtained in the final step of the algorithm. Letting µ̃(Xk) be the mid-point of

Ij∗ (which is the output of the algorithm), we must then have |µ̃(Xk)− µ(Xk)| ≤ |Ij′ |+ |Ij′+1| = 4τ .

Given Lemma B.1, we now give a proof for Lemma 4.2.

Proof of Lemma 4.2: Since Xk is (τ, γ/2)-concentrated, by definition, there exists x0 such that with probability at least
1− γ/2, we have

max
i∈[k]

∥Xi − x0∥2 ≤ τ.

Under this event, the random rotation step (Step 1) in Algorithm 3 guarantees that X ′
i are concentrated along each direction.

More specifically, in Levy et al. (2021, Lemma 2), we have that with probability at least 1− γ/4

max
i∈[k]

∥X ′
i −Rx0∥∞ ≤

10maxi∈[k]∥Xi − x0∥2
√
log(4kd/γ)

√
d

.

13
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Hence by union bound, with probability at least 1− 3/4γ, we have

max
i∈[k]

∥X ′
i −Rx0∥∞ ≤

10τ
√
log(4kd/γ)√

d
,

We denote the right hand side bound as τ ′. Applying the guarantee of Lemma B.1 with τ = τ ′ and γ = γ/(4d) on each
dimension, we get by union bound, when k ≥ 4d log(

√
d3R/(τγ))/ε2, we have with probability 1− γ/4,

∥µ̃− µ(Xk)∥∞ ≤ 4max
i∈[k]

∥X ′
i −Rx0∥∞.

Hence, by union bound, we have with probability at least 1− γ,

∥µ̃− µ(Xk)∥∞ = O
(
τ
√

log(kd/γ)
)

Proof of Theorem 4.3 The privacy guarantee follows from the privacy guarantee of Gaussian mechanism. And the utility
guarantee follows from that by union bound, with probability at least 1− 2γ,

max
i∈[k]

∥Xi − µ̃(Xk)∥ ≤ max
i∈[k]

∥Xi − µ(Xk)∥+ ∥µ̃(Xk)− µ(Xk)∥ ≤ O
(
τ
√
log(dn/γ)

)
.

Note that when the above is true, the averaged clipped mean is the same as the actual mean.
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