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Abstract
We consider an online learning problem with one-
sided feedback, in which the learner is able to ob-
serve the true label only for positively predicted
instances. On each round, k instances arrive and
receive classification outcomes according to a ran-
domized policy deployed by the learner, whose
goal is to maximize accuracy while deploying in-
dividually fair policies. We first present a novel
auditing scheme, capable of utilizing feedback
from dynamically-selected panels of multiple,
possibly inconsistent, auditors regarding fairness
violations. In particular, we show how our pro-
posed auditing scheme allows for algorithmically
exploring the resulting accuracy-fairness frontier,
with no need for additional feedback from audi-
tors. We then present an efficient reduction from
our problem of online learning with one-sided
feedback and a panel reporting fairness violations
to the contextual combinatorial semi-bandit prob-
lem (Cesa-Bianchi & Lugosi, 2009; György et al.,
2007), allowing us to leverage algorithms for con-
textual combinatorial semi-bandits to establish
multi-criteria no regret guarantees in our setting,
simultaneously for accuracy and fairness. Our re-
sults eliminate two potential sources of bias from
prior work: the “hidden outcomes” that are not
available to an algorithm operating in the full in-
formation setting, and human biases that might be
present in any single human auditor, but can be
mitigated by selecting a well-chosen panel.

1. Introduction
When making many high stakes decisions about people,
we receive only one-sided feedback—often we are only
able to observe the outcome for people for whom we make
a favorable decision. For example, we only observe the
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repayment history for applicants we approve for a loan—
not for those we deny. We only observe the success or lack
thereof for employees we hire, not for those that we pass on.
We only observe the college GPA for those applicants that
we admit to college, not to those we reject—and so on. In
all of these domains, fairness is a major concern in addition
to accuracy. Nevertheless, the majority of the literature on
fairness in machine learning does not account for this “one-
sided” feedback structure, operating either in a batch setting,
a full information online setting, or in a more standard bandit
learning setting. But when we make sequential decisions
with one-sided feedback, it is crucial to explicitely account
for the form of the feedback structure to avoid feedback
loops that may amplify and disguise historical bias.

The bulk of the literature in algorithmic fairness also asks
for fairness on a group or aggregate level. A standard tem-
plate for this approach is to select some statistical measure
of error (like false positive rate, false negative rates, or raw
error rates), a partition of the data into groups (often along
the lines of some “protected attribute”), and then to ask that
the statistical measure of error is approximately equalized
across the groups. Because these guarantees bind only over
averages over many people, they promise little to individu-
als, as initially pointed out by Dwork et al.’s “catalogue of
evils” (Dwork et al., 2012).

In an attempt to provide meaningful guarantees on an in-
dividual level, Dwork et al. (2012) introduced the notion
of individual fairness, which informally asks that “similar
individuals be treated similarly”. In their conception, this is
a Lipschitz constraint imposed on a randomized classifier,
and who is “similar” is defined by a task-specific similarity
metric. Pinning down such a metric is the major challenge
with using the framework of individual fairness. Gillen et al.
(2018) proposed that feedback could be elicited in an online
learning setting from a human auditor who “knows unfair-
ness when she sees it” (and implicitly makes judgements
according to a similarity metric), but cannot enunciate a met-
ric — she can only identify specific violations of the fairness
constraint. Recently, Bechavod et al. (2020) gave an algo-
rithm for operating in this setting—with full information—
that was competitive with the optimal fair model, while
being able to learn not to violate the notion of individual
fairness underlying the feedback of a single auditor.
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Our work extends that of Gillen et al. (2018); Bechavod et al.
(2020) in two key ways. First, we remove the assumption
of a single, consistent auditor: we assume we are given an
adaptively chosen panel of human auditors who may have
different conceptions of individual fairness and may be mak-
ing inconsistent judgements (we aim to be consistent with
plurality judgements of such a panel). Second, we dispense
with the need to operate in a full information setting, and
give oracle efficient algorithms that require only one-sided
feedback. We give simultaneous no-regret guarantees for
both classification error and fairness violation, with respect
to models that are individually fair in hindsight (i.e. given
the realization of the panels of fairness auditors who define
our conception of fairness). Together these improvements
eliminate two potential sources of bias from prior work: the
“hidden outcomes” that are not available to an algorithm
operating in the full information setting, and human biases
that might be present in any single human auditor, but can
be mitigated by selecting a well-chosen panel.

1.1. Overview of Results

Our contributions lie on a conceptual as well as a technical
level. We first present a novel auditing scheme based on dy-
namically selected panels of multiple, possibly inconsistent,
auditors, reporting fairness violations (Section 2.1). We
formulate our learning problem as an optimization problem
of a joint objective using a Lagrangian formulation (Section
2.2). We then present our online learning framework with
one-sided label feedback and additional fairness feedback
from panels (Section 2.3). Our main technical contributions
are given in Sections 3, 4. We first present an efficient re-
duction to the contextual combinatorial semi-bandit setting,
allowing us to upper bound the Lagrangian regret in our set-
ting (Section 3). We then establish an equivalence between
auditing by panels and auditing by “representative” audi-
tors, which is an important technical step in our analysis,
and then show how the Lagrangian regret guarantee can be
utilized to provide multi-criteria no regret guarantees, that
hold simultaneously for accuracy and fairness (Section 4).
Finally, we present an oracle-efficient algorithm for our set-
ting and analyze the resulting rates for accuracy and fairness
(Section 5).

1.2. Related Work

Our work is related to two strands of literature: learning
with one-sided feedback, and individual fairness in machine
learning. The problem of learning from positive-prediction-
only feedback first appeared in Helmbold et al. (2000), under
the name of “apple tasting”. Subsequently, Cesa-Bianchi
et al. (2006b) studied a generalization of the one-sided feed-
back setting, in which the feedback at each round is a func-
tion of the combined choice of two players. Follow-up work
by Antos et al. (2013) showed that it is possible to reduce

the online one-sided feedback setting to the better stud-
ied contextual bandit problem. Cesa-Bianchi et al. (2006a)
focuses on linear models, and propose an active learning
approach based on the predictions made by the deployed
predictor at each round, in the face of one-sided feedback.
Sculley (2007) focused on practical challenges in learning
with one-sided feedback in the context of spam filtering,
and suggested the utilization of methods from the active
learning literature to reduce the label complexity encoun-
tered in practice. Jiang et al. (2021) focuses on learning
with generalized linear models in an online one-sided feed-
back setting, and propose a data-driven adaptive approach
based on variance estimation techniques. De-Arteaga et al.
(2018) and Lakkaraju et al. (2017) propose techniques for
imputing missing labels using feedback from human experts.
Zeng et al. (2017) and Lakkaraju & Rudin (2017) propose
statistical techniques for assigning missing labels.

In the context of algorithmic fairness, Bechavod et al. (2019)
considers a stochastic online setting with one-sided feed-
back, in which the aim is to learn a binary classifier while
enforcing the statistical fairness condition of “equal oppor-
tunity” (Hardt et al., 2016). Coston et al. (2021) operate
in a batch setting with potentially missing labels due to
one-sided feedback in historical decisions, and attempt to
impute missing labels using statistical techniques. Ensign
et al. (2018) and Elzayn et al. (2019) focus on the tasks of
predictive policing and related resource allocation problems,
and give algorithms for these tasks under a censored feed-
back model. Kleinberg et al. (2017) explores techniques to
mitigate the problem of one-sided feedback in the context
of judicial bail decisions. Gupta & Kamble (2019) study
a time-dependent variant of individual fairness they term
“individual fairness in hindsight”. Yurochkin et al. (2020)
consider a variant of individual fairness which asks for in-
variance of the learned predictors with respect to “sensitive”
variables. Mukherjee et al. (2020) investigate ways to learn
the metric from data. Lahoti et al. (2019) focus on the task
of learning individually fair representations.

Dwork et al. (2012) introduced the notion of individual
fairness. In their formulation, a similarity metric is explic-
itly given, and they ask that predictors satisfy a Lipschitz
condition (with respect to this metric) that roughly trans-
lates into the condition that “similar individuals should have
similar distributions over outcomes”. Rothblum & Yona
(2018) give a statistical treatment of individual fairness in a
batch setting with examples drawn i.i.d. from some distribu-
tion, while assuming full access to a similarity metric, and
prove PAC-style generalization bounds for both accuracy
and individual fairness violations. Ilvento (2020) suggests
learning the similarity metric from human arbiters, using a
hybrid model of comparison queries and numerical distance
queries. Kim et al. (2018) study a group-based relaxation
of individual fairness, while relying on access to an auditor
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returning unbiased estimates of distances between pairs of
individuals. Jung et al. (2021) consider a batch setting, with
a fixed set of “stakeholders” which provide fairness feed-
back regarding pairs of individuals in a somewhat different
model of fairness, and give oracle-efficient algorithms and
generalization bounds.

The papers most related to ours are Gillen et al. (2018) and
Bechavod et al. (2020). Gillen et al. (2018) introduces the
idea of online learning with human auditor feedback as an
approach to individual fairness, but give algorithms that are
limited to a single auditor that makes decisions with respect
to a restrictive parametric form of fairness metrics in the full
information setting. Bechavod et al. (2020) generalize this
to a much more permisive definition of a human auditor, but
still operate in the full information setting and are limited to
single human auditors.

2. Preliminaries
We start by specifying the notation we will use for our
setting. We denote a feature space by X and a label space
by Y . Throughout this work, we focus on the case where
Y = {0, 1}. We denote by H a hypothesis class of binary
predictors h : X → Y , and assume that H contains a
constant hypothesis. For the purpose of achieving better
accuracy-fairness trade-offs, we allow the deployment of
randomized policies over the base class H, which we denote
by ∆H. As we will see later, in the context of individual
fairness, it will be crucial to be able to compete with the
best predictor in ∆H, rather than simply in H. We model
auditors as observing k-tuples of examples (the people who
are present at some round of the decision making process),
as well as our randomized prediction rule, and will form
objections by identifying a pair of examples for which they
believe our treatment was “unfair” if any such pair exists.
For an integer k ≥ 2, we denote by J : ∆H× X k → X 2

the domain of possible auditors. Next, we formalize the
notion of fairness we will aim to satisfy.

2.1. Individual Fairness and Auditing by Panels

Here we define the notion of individual fairness and auditing
that we use, following Dwork et al. (2012); Gillen et al.
(2018); Bechavod et al. (2020), and extending it to the notion
of a panel of auditors.

Definition 2.1 (α-fairness violation). Let α ≥ 0 and let
d : X × X → [0, 1].1 We say that a policy π ∈ ∆H

1d represents a function specifying the auditor’s judgement of
the “similarity” between individuals in a specific context. We do
not require that d be a metric: only that it be non-negative and
symmetric. It is important that we make as few assumptions as
possible when modeling human auditors, as in general, we cannot
expect this form of feedback to take specific parametric form, or
even be a metric.

has an α-fairness violation (or simply “α-violation”) on
(x, x′) ∈ X 2 with respect to d if

π(x)− π(x′) > d(x, x′) + α.2

where π(x) = Prh∼π[h(x) = 1].

A fairness auditor, parameterized by a distance function d,
given a policy π and a set of k individuals, will report any
single pair of the k individuals on which π represents an
α-violation if one exists.

Definition 2.2 (Auditor). Let α ≥ 0. We define a fairness
auditor jα ∈ J by, ∀π ∈ ∆H, x̄ ∈ X k,

jα (π, x̄) :=
(x̄s, x̄l) ∈ V j if V j := {(x̄s, x̄l) : s ̸= l ∈ [k],

π(x̄s)− π(x̄l) > dj(x̄s, x̄l) + α} ≠ ∅
(v, v) otherwise

,

where x̄ = (x̄1, . . . , x̄k), dj : X × X → [0, 1] is auditor
jα’s (implicit) distance function, and v ∈ X is some “de-
fault” context. When clear from context, we will abuse
notation, and simply use j to denote such an auditor.

Note that if there exist multiple pairs in x̄ on which an α-
violation exist, we only require the auditor to report one.
In case the auditor does not consider there to be any fair-
ness violations, we define its output to be a “default” value,
(v, v) ∈ X 2, to indicate that no violation was detected.

Thus far our formulation of fairness violations and auditors
follows the formulation in Bechavod et al. (2020). In the
following, we generalize the notion of fairness violations to
panels of multiple fairness auditors which extends beyond
the framework of Bechavod et al. (2020).

Definition 2.3 ((α, γ)-fairness violation). Let α ≥ 0, 0 ≤
γ ≤ 1, m ∈ N \ {0}. We say that a policy π ∈ ∆H has an
(α, γ)-fairness violation (or simply “(α, γ)-violation”) on
(x, x′) ∈ X 2 with respect to d1, . . . , dm : X 2 → [0, 1] if

1

m

m∑
i=1

1
[
π(x)− π(x′)− di(x, x′) > α

]
≥ γ.

Definition 2.3 specifies that a policy π has an (α, γ)-fairness
violation on a pair of examples when a γ fraction of the
auditors consider π to have an α-fairness violation on that
pair. By varying γ, we can interpolate between considering
there to be a violation when any single auditor determines

2Note, importantly, that the definition of a fairness violation not
only encodes the existence, but also the “direction” of the reported
fairness violation (which of the two individuals of the reported pair
received the higher prediction). As we will see in Section 3, this
will be important in our construction.
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that there is one at one extreme, to requiring unanimity
amongst the auditors at the other extreme.

We next define a panel to return a pair of individuals on
which the required majority of panelists agree that a fairness
violation has occurred, if one or more such pairs exists.3

Definition 2.4 (Panel). Let α ≥ 0, 0 ≤ γ ≤ 1, m ∈ N\{0}.
We define a fairness panel j̄α,γ by, ∀π ∈ ∆H, x̄ ∈ X k,

j̄α,γj1,...,jm(π, x̄) :=
(x̄s, x̄l) ∈ V j̄ if V j̄ := {(x̄s, x̄l) : s ̸= l ∈ [k]

∧∃i1, . . . , i⌈γm⌉ ∈ [m],

∀s ∈ [⌈γm⌉], (x̄s, x̄l) ∈ V jis } ≠ ∅
(v, v) otherwise

,

where x̄ := (x̄1, . . . , x̄k), dj : X × X → [0, 1] is auditor
j’s (implicit) distance function, and v ∈ X is some “default”
context. When clear from context, we will abuse notation
and simply denote such a panel by j̄.

Again, panels need only report a single (α, γ)-violation even
if many exist. In particular, our framework is also capable of
handling collections of disagreeing auditors, as cases where
the required majority of objections is not reached within a
panel with respect to any of the pairs naturally result in none
of the pairs being reported.

With our proposed auditing scheme, we wish to suggest a
platform that would be helpful in capturing and reflecting
society’s perceptions towards what should be considered
“fair” in a specific context. However, this must be done
carefully, as multiple studies have indicated the existence
of implicit biases affecting human judgements (see, e.g.,
Levinson et al. (2016); Rachlinski et al. (2009)). Mitigating
the effects of these biases, while allowing for the elicitation
of critical information regarding fairness judgements is a
key motivation for our proposed auditing scheme. To that
end, one might envision fairness-related judgements arriving
from a panel of multiple auditors of diverse backgrounds,
trainings, life experiences, etc.4

Remark 2.5 (On Exploring the Accuracy-Fairness Tradeoff
Frontier). As already noted, the γ parameter allows us to

3We are agnostic as to how the panel identifies this pair —
perhaps through an interactive, deliberative process. In particular,
panelists might internally need to discuss more than one pair that
they feel to be in violation. In particular, for γ > 1

m
, the auditors

might in the worst case need to each list all pairs that they find to
be in violation to establish that there is a pair of decisions that is
judged to be in violation by all of them.

4Additionally, our model advocates for dynamically-selected
panels instead of fixed ones, as having a fixed group of auditors
may risk leaving too much power in the hands of the same few
individuals over a long period of time. Finally, practically speaking,
it may also be infeasible for human auditors to review more than a
certain number of decisions in a certain period of time, a limitation
which may be circumvented by periodically changing the panel.

adjust the degree to which we require consensus amongst
panel members: we can interpolate all the way between
requiring full unanimity on all judgements of unfairness
(when γ = 1) to giving any single panel member effective
“veto power” (when γ ≤ 1/m). Note, however, that differ-
ent values of γ for the panel do not change the fundamental
auditing task for individual auditors: in all cases, each au-
ditor is only asked to report α-violations according to their
own judgement. Thus, using the same feedback from a
panel of auditors, we can algorithmically vary γ to explore
an entire frontier of fairness/accuracy tradeoffs.
Example 2.6. As a running example along this work, we
will consider a loan approval setting, in which a learner (for
instance, a government-backed financial institution) wishes
to learn and deploy lending policies that are, simultaneously,
highly performing and individually fair. In this example,
x ∈ X would represent features of a loan applicant, such
as repayment history, level of education, address, etc., and
y ∈ Y = {0, 1} represents whether the applicant is cred-
itworthy or not. π ∈ ∆H is a lending policy, mapping
incoming applicants to a score in [0, 1], based on which loan
decisions are made. In this context, a panel might consist
of ethicists and financial experts with familiarity with the
lending industry and the history of redlining (Rothstein,
2018). Following Definition 2.4, given a group of k loan
applicants and a deployed lending policy π, the panel would
inspect the assigned scores, and report back in case it finds
a pair of applicants which at least a γ fraction of the panel
members believe are similarly situated, but were treated
very differently by the policy.

2.2. Lagrangian Loss Formulation

We define the three types of losses we will use in our setting.

Definition 2.7 (Misclassification loss). We define the mis-
classification loss as, for all π ∈ ∆H, x̄ ∈ X k, ȳ ∈ {0, 1}k:

Error(π, x̄, ȳ) := E
h∼π

[ℓ0−1(h, x̄, ȳ)].

Where for all h ∈ H, ℓ0−1(h, x̄, ȳ) :=∑k
i=1 ℓ

0−1(h, (x̄i, ȳi)), and ∀i ∈ [k] : ℓ0−1(h, (x̄i, ȳi)) =
1[h(x̄i) ̸= ȳi].

We define the unfairness loss, to reflect the existence of one
or more fairness violations according to a panel’s judgement.

Definition 2.8 (Unfairness loss). Let α ≥ 0, 0 ≤ γ ≤ 1.
We define the unfairness loss as, for all π ∈ ∆H, x̄ ∈ X k,
j̄ = j̄α,γj1,...,jm : X k → X 2,

Unfairα,γ(π, x̄, j̄) :=

{
1 j̄(π, x̄) = (x̄s, x̄l) ∧ s ̸= l

0 otherwise
,

where x̄ := (x̄1, . . . , x̄k).
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Finally, the Lagrangian loss will be useful in our analysis.

Definition 2.9 (Lagrangian loss). Let C > 0, ρ =
(ρ1, ρ2) ∈ X 2. We define the (C, ρ)-Lagrangian loss as,
for all π ∈ ∆H, x̄ ∈ X k, ȳ ∈ {0, 1}k,

LC,ρ(π, x̄, ȳ) := Error(π, x̄, ȳ) + C ·
[
π(ρ1)− π(ρ2)

]
.

We will later instantiate the Lagrangian loss with (ρ1, ρ2)
being the panel’s reported pair (as in Definition 2.4). We
are now ready to formally define our learning environment,
which we do next.

2.3. Individually Fair Online Learning with One-Sided
Feedback

In this section, we formally define our learning environment.
The interaction proceeds in a sequential fashion, where on
each round, the learner first deploys a policy πt ∈ ∆H,
then the environment selects k individuals x̄t ∈ X k, and
their labels ȳt ∈ Yk, possibly in an adversarial fashion.
The learner is only shown x̄t. The environment then selects
a panel of auditors (jt,1, . . . , jt,m) ∈ Jm, possibly in an
adversarial fashion. The learner predicts x̄t according to
πt. The panel then reports whether a fairness violation was
found, according to the predictions made by πt. Finally, the
learner observes the true label only for positively-predicted
individuals in x̄t, and suffers two types of loss: a misclas-
sification loss (note that this loss may not be observable to
the learner due to the one-sided feedback) and an unfairness
loss. Our setting is summarized in Algorithm 1.

One-sided feedback Our one-sided feedback structure
(classically known as “apple tasting”) is fundamentally dif-
ferent from the standard bandit setting. In the bandit setting,
the feedback visible to the learner is the loss for the selected
action in each round. In our setting, feedback may or may
not be observable for a selected action: if we classify an indi-
vidual as positive, we observe feedback for our action—and
for the counterfactual action we could have taken (classify-
ing them as negative). On the other hand, if we classify an
individual as negative, we do not observe (but still suffer)
our classification error. Going back to our running example
- if we misclasify a creditworthy individual as not credit-
worthy, and deny them a loan, we never get to observe our
error (because we do not observe the counter-factual world
in which we gave them a loan that they had the opportunity
to repay). Nevertheless, this is a classification error, and one
that we account for in our objective.
Remark 2.10. There are several additional key motivations
behind the choice of the online, adversarial, setting we ex-
plore. First, we note that when considering a batch setting,
the collected data may already be “skewed”, to only include
individuals who were actually accepted by a past policy.
This, in turn, risks replicating biases of historical policies.

Additionally, when studying an online setting, note that in
many problem domains relevant to our work, arriving indi-
viduals may not necessarily adhere to standard statistical
assumptions, due to, for example: (i) strategic effects (indi-
viduals performing feature manipulations in anticipation of
a specific policy, or choosing whether to even apply based
on their perceived chances of receiving a positive outcome),
(ii) distribution shifts over time (e.g. the ability to repay a
loan may be affected by changes to the economy or recent
events), (iii) adaptivity to previous decisions (e.g. if an indi-
vidual receives a loan, that may affect the ability to repay
future loans by this individual or her vicinity in the future).

Algorithm 1 Individually Fair Online Learning with One-
Sided Feedback

Input: Number of rounds T , hypothesis class H
Learner initializes π1 ∈ ∆H;
for t = 1, . . . , T do

Environment selects individuals x̄t ∈ X k, and labels
ȳt ∈ Yk, learner only observes x̄t;
Environment selects panel of auditors
(jt,1, . . . , jt,m) ∈ Jm;
Learner draws ht ∼ πt, predicts ŷt,i = ht(x̄t,i) for
each i ∈ [k], observes ȳt,i iff ŷt,i = 1;
Panel reports its feedback ρt = j̄t,α,γj1,...,jm(πt, x̄t);

Learner suffers misclassification loss Error(ht, x̄t, ȳt)
(not necessarily observed by learner);
Learner suffers unfairness loss Unfair(πt, x̄t, j̄t);
Learner updates πt+1 ∈ ∆H;

end for

To measure performance, we will ask for algorithms that are
competitive with the best possible (fixed) policy in hindsight.
This is captured using the notion of regret, which we define
next for relevant loss functions.

Definition 2.11 (Error regret). We define the error regret of
an algorithm A against a comparator class U ⊆ ∆H to be

Regreterr(A, T, U) =

T∑
t=1

Error(πt, x̄t, ȳt)

− min
π∗∈U

T∑
t=1

Error(π∗, x̄t, ȳt).

Definition 2.12 (Unfairness regret). Let α ≥ 0, 0 ≤ γ ≤ 1.
We define the unfairness regret of an algorithm A against a
comparator class U ⊆ ∆H to be

Regretunfair,α,γ(A, T, U) =

T∑
t=1

Unfairα,γ(πt, x̄t, j̄t)− min
π∗∈U

T∑
t=1

Unfairα,γ(π∗, x̄t, j̄t).
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Finally, we define the Lagrangian regret, which will be
useful in our analysis.

Definition 2.13 (Lagrangian regret). Let C > 0, and
(ρt)Tt=1 be a sequence s.t. ∀t ∈ [T ] : ρt ∈ X 2. We define
the Lagrangian regret of an algorithm A against a compara-
tor class U ⊆ ∆H to be

RegretL,C,ρ1,...,ρT

(A, T, U) =

T∑
t=1

LC,ρt(πt, x̄t, ȳt)

− min
π∗∈U

T∑
t=1

LC,ρt(π∗, x̄t, ȳt).

In order to construct an algorithm that achieves no regret
simultaneously for accuracy and fairness, our approach will
be to reduce the setting of individually fair learning with one-
sided feedback (Algorithm 1) to the setting of contextual
combinatorial semi-bandit, which we will see next.

3. Reduction to Contextual Combinatorial
Semi-Bandit

In this section, we present our main technical result: a
reduction from individually fair online learning with one-
sided feedback (Algorithm 1) to the setting of (adversarial)
contextual combinatorial semi-bandit.

3.1. Contextual Combinatorial Semi-Bandit

We begin by formally describing the contextual combinato-
rial semi-bandit setting.5 The setting can be viewed as an
extension of the classical k-armed contextual bandit prob-
lem, to a case where k instances arrive every round, each
to be labelled as either 0 or 1. However, at each round,
the action set over these labellings is restricted only to a
subset At ⊆ {0, 1}k, where each action corresponds the
vector containing the predictions of a hypothesis h ∈ H on
the arriving contexts. Finally, the learner suffers loss that
is a linear function of all specific losses for each of the k
instances, and is restricted to only observe the coordinates
of the loss vector on instances predicted as 1. The setting is
summarized in Algorithm 2.

Definition 3.1 (Regret). In the setting of Algorithm 2, we
define the regret of an algorithm A against a comparator

5The combinatorial (full) bandit problem formulation is due to
Cesa-Bianchi & Lugosi (2009). We consider a contextual variant
of the problem. Our setting operates within a relaxation of the
feedback structure, known as “semi-bandit” (György et al., 2007).

Algorithm 2 Contextual Combinatorial Semi-Bandit
Parameters: Class of predictors H, number of rounds T ;
Learner deploys π1 ∈ ∆H;
for t = 1, . . . , T do

Environment selects loss vector ℓt ∈ [0, 1]k (without
revealing it to learner);
Environment selects contexts x̄t ∈ X k, and reveals
them to the learner;
Learner draws action at ∈ At ⊆ {0, 1}k according to
πt (where At = {ath = (h(x̄t,1), . . . , h(x̄t,k)) : ∀h ∈
H});
Learner suffers linear loss ⟨at, ℓt⟩;
Learner observes ℓt,i iff at,1 = 1;
Learner deploys πt+1;

end for

class U ⊆ ∆H to be

Regret(A, T, U) =

T∑
t=1

E
at∼πt

〈
at, ℓt

〉
− min

π∗∈U

T∑
t=1

E
a∗∼π∗

〈
at, ℓt

〉
.

3.2. Reduction

Our reduction consists of two major components: encoding
the fairness constraints, and translating one-sided feedback
to semi-bandit feedback. We start by extending the sample
set at round t, to encode C copies of each of the individuals
in the pair reported by the panel, where we append label of
0 to the first individual, and label of 1 to the second, in order
to “translate” unfairness into error. We next translate one-
sided feedback to semi-bandit feedback, by constructing the
first half of the loss vector ℓt, to return a loss of 0 or 1 for
positively-predicted instances (according to the, observable
true label), and the second half to return a loss of 1/2 for
negatively-predicted instances (regardless of the true label,
which is unobservable, since the prediction is negative). We
note that this transformation of the standard 0 − 1 loss is
regret-preserving, and the resulting losses are also linear
and non-negative (which will be important in our analysis,
as we will see in Section 5). Finally, the first half of the
action vector is constructed by simply invoking the selected
hypothesis by the learner, ht, on each of the contexts in the
augmented ¯̄xt, while the second half reflects the opposites
of the predictions made in the first half.

In describing the reduction, we use the following notations
(For integers k ≥ 2, C ≥ 1):

1. ∀a ∈ {ρt,1, ρt,2, 0, 1, 1/2} :
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ā :=

C times︷ ︸︸ ︷
(a, . . . , a), ¯̄a :=

k+2C times︷ ︸︸ ︷
(a, . . . , a) .

2. h(¯̄xt) := (h(¯̄xt,1), . . . , h(¯̄xt,2k+4C)).

The reduction is summarized in Algorithm 3.

Algorithm 3 Reduction to Contextual Combinatorial Semi-
Bandit

Input: Contexts x̄t ∈ X k, labels ȳt ∈ {0, 1}k, hypothe-
sis ht, pair ρt ∈ X 2, parameter C ∈ N

Define: ¯̄xt = (x̄t, ρ̄t,1, ρ̄t,2) ∈ X k+2C , ¯̄yt =
(ȳt, 0̄, 1̄) ∈ {0, 1}k+2C ;

Construct loss vector: ℓt = (¯̄1− ¯̄yt, ¯̄1/2) ∈ [0, 1]2k+4C ;

Construct action vector: at = (ht(¯̄xt), ¯̄1 − ht(¯̄xt)) ∈
{0, 1}2k+4C ;

Output: (ℓt, at);

We next prove that the reduction described in Algorithm
3 can be used to upper bound an algorithm’s Lagrangian
regret in the individually fair online learning with one-sided
feedback setting, within a multiplicative factor of 2 times
the dimension of the output of the reduction.

For the next theorem, we assume the existence of an algo-
rithm A for the contextual combinatorial semi-bandit setting
(summarized in Algorithm 2) whose expected regret (com-
pared to only fixed hypotheses in H), against any adaptively
and adversarially chosen sequence of loss functions ℓt and
contexts x̄t, is bounded by Regret(A, T,H) ≤ RA,T,H. We
next show how the regret guarantee of algorithm A can be
used to upper bound the Lagrangian regret in our setting.

Theorem 3.2. In the setting of individually fair online learn-
ing with one-sided feedback (Algorithm 1), running A while
using the sequence (at, ℓt)Tt=1 generated by the reduction
in Algorithm 3 (when invoked every round on x̄t, ȳt, ht, ρt,
and C), yields the following guarantee, for any V ⊆ ∆H,

T∑
t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈V

T∑
t=1

LC,ρt(π∗, x̄t, ȳt)

≤ 2(2k + 4C)RA,T,H.

Note that the guarantee of Theorem 3.2 holds when com-
peting not only against the best classifier in H, but rather
against the set of all possibly randomized policies ∆H,

4. Multi-Criteria No Regret Guarantees
In this section, we will show how the guarantees established
in Section 3 can be leveraged to establish multi-criteria no
regret guarantees, simultaneously for accuracy and fairness.

We begin by establishing an equivalence between auditing
by panels and auditing by instance-specific “representative”
auditors, which will be useful in our analysis.

Lemma 4.1. Let (x, x′) ∈ X 2, (j1, ..., jm) ∈ Jm. Then,
there exists an index s = sx,x′(j1, . . . , jm) ∈ [m] such that
the following are equivalent, for all π ∈ ∆H:

1. π has an (α, γ)-violation on (x, x′) with respect to
panel j̄α,γj1,...,jm .

2. π has an α-violation on (x, x′) w.r.t. auditor js.

The crucial aspect of this lemma is that the index
sx,x′(j1, . . . , jm) of the “pivotal” auditor is defined inde-
pendently of π. We refer the reader to Appendix C.1 for a
complete discussion, and in particular, to Figure 1 in Ap-
pendix C.1, for an illustration of Lemma 4.1.

Next, we will see how the guarantees established in Sec-
tion 3, along with the reduction to “representative” auditors
(Lemma 4.1), allow for providing simultaneous guarantees
for each of accuracy and fairness. We begin by defining the
comparator set as all policies in H that are, for every round
t ∈ [T ], (α, γ)-fair on the arriving individuals of the round
x̄t, with respect to the realized panel in that round j̄t. Note
that this set is only defined in hindsight.

Definition 4.2 ((α, γ)-fair policies). Let α ≥ 0, 0 ≤ γ ≤ 1,
m ∈ N \ {0}. We denote the set of all (α, γ)-fair policies
with respect to all the rounds in the run of the algorithm as

Qα,γ :=
{
π ∈ ∆H : ∀t ∈ [T ], j̄t,α,γjt,1,...,jt,m(π, x̄t) = (v, v)

}
.

Next, we show how the Lagrangian regret guarantee estab-
lished in Theorem 3.2 can be utilized to provide simultane-
ous guarantees for accuracy and fairness, when compared
with the most accurate policy in Qα−ϵ,γ . Note, in particu-
lar, that by setting Qα−ϵ,γ as the comparator set, we will
be able to upper bound the number of rounds in which an
(α, γ)-violation has occurred.

Lemma 4.3. For any ϵ ∈ [0, α],

Cϵ

T∑
t=1

Unfairα,γ(πt, x̄t, j̄t) + Regreterr(A, T,Qα−ϵ,γ)

≤
T∑

t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈Qα−ϵ,γ

T∑
t=1

LC,ρt(π∗, x̄t, ȳt).

High-level proof idea It is sufficient to prove that for
every π∗ ∈ Qα−ϵ,γ , if we set π∗ as the comparator (in-
stead of taking the minima for each the error regret and
the Lagrangian regret), the inequality holds. We will hence
fix such π∗ ∈ Qα−ϵ,γ , and using Definition 2.9, see that

7
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the sums of the Error terms in both sides of the inequal-
ity cancel out. We will then divide the analysis to two
cases: rounds on which no (α, γ)-violation was detected,
and rounds where such a violation was detected. For the
first type, the equality holds, since by definition of the panel,
ρt,1 = ρt,2. For the second type, the left hand side of the
equality is simply Cϵ. As for the right hand side, we first
use Lemma 4.1 to move from panels to carefully defined
“representative” single auditors, then argue that the right
hand side of the equality is at least Cϵ, since π∗ is guaran-
teed to have no (α− ϵ)-violations with respect to any of the
“representative” auditors of the panels in the interaction.

Remark 4.4. Note that while Lemma 4.3 is crucial in
our analysis, it does not directly give the desired guar-
antees for accuracy and fairness. The reason is that
Regreterr(A, T,Qα−ϵ,γ) can be negative. Hence, even a
sub-linear bound on the Lagrangian regret in the right hand
side of the inequality cannot be immediately translated to si-
multaneous sub-linear guarantees for accuracy and fairness.
For that, we will need an extra step to carefully interpolate
between the two forms of loss in the Lagrangian, which can
be found in the proof of Theorem 5.3 in Appendix D.2.

5. Oracle-Efficient Algorithm
In Sections 3 and 4, we have shown how it is possible to
translate the guarantees of an algorithm A for the contex-
tual combinatorial semi-bandit problem (as described in
Algorithm 2) to establish simultaneous guarantees for accu-
racy and fairness in our setting of individually fair online
learning with one-sided feedback (Algorithm 1). But our
work is not done. Note, in particular, that in order to invoke
our reduction (Algorithm 3), one must first query the panel
for fairness violations regarding the deployed policy. But
what if this policy is not kept explicitly by the algorithm
A? Generally speaking, the most straightforward way for
an algorithm to deploy a randomized policy is to explicitly
maintain a vector of weights representing the probability
of each classifier in the base class H. This is, for exam-
ple, what the multiplicative weights algorithm does. This
is very costly; it has running time that scales linearly with
|H|, which is typically at least exponential in the data di-
mension. On the other hand, oracle-efficient algorithms
generally refrain from explicitly maintaining the deployed
policy π ∈ ∆H, and instead implement a way to sample
from this (implicitly defined) probability distribution via an
efficient reduction to a batch learning problem.6

Hence, our efforts next are towards establishing our desired
accuracy and fairness guarantees efficiently. To this end,
we present an oracle-efficient algorithm for our setting - a

6In Appendix D.1 we also present a simpler, inefficient, algo-
rithm for the contextual combinatorial semi-bandit problem, due to
Bubeck et al. (2012), and analyze its resulting rates in our setting.

resampling-based variant of the Context-Semi-Bandit-FTPL
algorithm by Syrgkanis et al. (2016). In line with the above
discussion, Context-Semi-Bandit-FTPL does not explicitly
maintain the deployed policy at any point in its run, but
rather, on each round, samples a realization of this policy
and calculates the loss with respect to this realization. This
is useful, as given the specific implementation of the al-
gorithm, one can efficiently sample a realization h ∈ H
according to π ∈ ∆H even though π is not maintained
explicitly. However, in the case of a our joint Lagrangian
loss, evaluating the loss on single realizations could be prob-
lematic, as it may lead to overestimating the unfairness loss
(being a strictly sub-additive function). We elaborate on this
point in Lemma D.5 in Appendix D.

Hence, we next construct a variant where the process of
sampling the hypothesis on each round is repeated R times,
to form an accurate enough estimate of the implicit distri-
bution.7 Our construction, which we term Context-Semi-
Bandit-FTPL-With-Resampling, is formally defined in Al-
gorithm 4 and Algorithm 5 in Appendix D.2, and yields the
guarantees we present next. For the following theorem, it is
assumed that Context-Semi-Bandit-FTPL-With-Resampling
has access to a (pre-computed) separator set S of size s for
the class H, and an (offline) optimization oracle for H. The
optimization oracle assumption can be viewed equivalently
as assuming access to a weighted ERM oracle for H. We
next describe the separator set assumption.

Definition 5.1. We say S ⊆ X is a separator set for a
class H : X → {0, 1}, if for any two distinct hypotheses
h, h′ ∈ H, there exists x ∈ S such that h(x) ̸= h′(x).

Remark 5.2. Classes for which small separator sets are
known include conjunctions, disjunctions, parities, decision
lists, discretized linear classifiers. Please see more elaborate
discussions in Syrgkanis et al. (2016) and Neel et al. (2019).

The guarantees of Theorem 5.3 can be interpreted as follows:
accuracy-wise, the resulting algorithm is competitive with
the performance of the most accurate policy that is fair (i.e.
in Qα−ϵ,γ). Fairness-wise, the number of rounds in which
there exist (one or more) fairness violations, is sub-linear.

Theorem 5.3. In the setting of individually fair online learn-
ing with one-sided feedback (Algorithm 1), running Context-
Semi-Bandit-FTPL-With-Resampling for contextual combi-
natorial semi-bandit (Algorithm 5) as specified in Algorithm
4, with R = T , and using the sequence (ℓt, at)Tt=1 gener-
ated by the reduction in Algorithm 3 (when invoked on each
round using x̄t, ȳt, ĥt, ρ̂t, and C = T

4
45 ), yields, with prob-

ability 1 − δ, the following guarantees, for any ϵ ∈ [0, α],

7Resampling is required, as it is observed in general (see, e.g.
the discussion in Neu & Bartók (2013)), the specific weights the
implicit distribution maintained by Context-Semi-Bandit-FTPL
places on each of h ∈ H cannot be expressed in closed-form.
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simultaneously:

1. Accuracy: Regreterr(CSB-FTPL-WR, T,Qα−ϵ,γ)

≤ Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
.

2. Fairness:
T∑

t=1

Unfairα,γ(π̂t, x̄t, j̄t)

≤ Õ

(
1

ϵ
k

11
4 s

3
4T

41
45 log |H| 12

)
.

Remark 5.4. In particular, one could imagine that a potential
issue with such a resampling-based approach is that since we
lack access to the implicit, deployed, policy πt, we instead
define the Lagrangian loss incorporating reported fairness
violations based on the realized estimate π̂t of πt. In adver-
sarial online learning, however, revealing the random bits of
the learner to the adversary is generally not permitted. To
remedy this issue, In their algorithm for the full information,
single auditor, setting, Bechavod et al. (2020) suggested
restricting the power of the adversary. We show how this
issue can be circumvented without making such (or other)
assumptions in Appendix D.2.

6. Conclusion and Future Directions
In this work, we wished to study the ability to provide in-
dividual fairness guarantees, while attempting to minimize
surrounding assumptions as much as possible — regarding
the feedback structure, the data generation process, the avail-
ability of a fairness metric, the level of disagreement among
the auditors, and the specific form of the auditors’ prefer-
ences. Our work suggests a number of future directions.
First, it would be desirable to determine whether efficiently
achieving faster rates is possible. We note, however, that
our proposed algorithm is the first to establish simultaneous
guarantees for accuracy and fairness in the setting we study.
Second, Context-Semi-Bandit-FTPL-WR is oracle-efficient,
but is limited only to classes for which small separator sets
are known. We inherit this limitation from the contextual
bandit literature — it holds even without the additionally
encoded fairness constraints. Third, our resampling-based
variant of Context-Semi-Bandit-FTPL requires T additional
oracle calls at each iteration, to estimate the implicit dis-
tribution by the learner. Taken together, these limitations
suggest the following important open question: are there
faster, more efficient algorithms which can provide multi-
criteria accuracy and fairness guarantees of the sort we give
here using one-sided feedback with auditors? This ques-
tion is interesting also in less adversarial settings than we
consider here. For example, do things become easier if the
panel is selected i.i.d. from a distribution every round, rather
than being chosen by an adversary?
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A. Extended Related Work
In the context of individual fairness, Joseph et al. (2016; 2018) study a notion of individual fairness in a more traditional
contextual bandit setting, in which k individuals arrive at each round, and some subset of them are “selected”, which
yields observable reward to the learner. Their notion of individual fairness mandates that selection probability should be
monotone in the (true) label of an individual (and in particular individuals with the same true label should be selected with
the same probability). True labels cannot in general be ascertained, and as a result they only give positive results under
strong realizability assumptions.

An additional line of work which is relevant in the context of online learning with individual fairness constraints is the one
regarding online learning with long-term constraints (Mahdavi et al., 2012; Jenatton et al., 2016; Yu et al., 2017; Cao &
Liu, 2019; Yu & Neely, 2020). We refer the reader to a detailed discussion of similarities and differences in Bechavod et al.
(2020).

B. Omitted Details from Section 3
In order to prove Theorem 3.2, we first state and prove two lemmas, which express the Lagrangian regret in the setting
of Individually Fair Online Learning with One-Sided Feedback (Algorithm 1) in terms of the regret in the contextual
combinatorial semi-bandit setting (Algorithm 2). In what follows, we denote k′ = k + 2C.

Lemma B.1. For all π, π′ ∈ ∆H, x̄t ∈ X k, ȳt ∈ {0, 1}k,

LC,ρt(π, x̄t, ȳt)− LC,ρt(π′, x̄t, ȳt) =

k′∑
i=1

Error(π, ¯̄xt,i, ¯̄yt,i)−
k′∑
i=1

Error(π′, ¯̄xt,i, ¯̄yt,i).

Proof. Observe that

LC,ρt(π, x̄t, ȳt)− LC,ρt(π′, x̄t, ȳt)

= Error(π, x̄t, ȳt) + C ·
[
π(ρt,1)− π(ρt,2)

]
− Error(π′, x̄t, ȳt)− C ·

[
π′(ρt,1)− π′(ρt,2)

]
=

k∑
i=1

Error(π, ¯̄xt,i, ¯̄yt,i)− Error(π′, ¯̄xt,i, ¯̄yt,i) +

k+C∑
i=k+1

π(ρt,1)− π′(ρt,1) +

k+2C∑
i=k+C+1

1− π(ρt,2)− 1 + π′(ρt,2)

=

k∑
i=1

Error(π, ¯̄xt,i, ¯̄yt,i)− Error(π′, ¯̄xt,i, ¯̄yt,i) +

k+C∑
i=k+1

Error(π, ¯̄xt,i, ¯̄yt,i)− Error(π′, ¯̄xt,i, ¯̄yt,i)

+

k+2C∑
i=k+C+1

Error(π, ¯̄xt,i, ¯̄yt,i)− Error(π′, ¯̄xt,i, ¯̄yt,i)

=

k′∑
i=1

Error(π, ¯̄xt, ¯̄yt)−
k′∑
i=1

Error(π′, ¯̄xt, ¯̄yt).

Which proves the lemma.

Lemma B.2. For all π, π′ ∈ ∆H, ¯̄xt ∈ X k′
,¯̄yt ∈ Yk′

,

k′∑
i=1

Error(π, ¯̄xt, ¯̄yt)−
k′∑
i=1

Error(π′, ¯̄xt, ¯̄yt) = 2

[
E

h∼π

[
⟨ah, ℓt⟩

]
− E

h′∼π′

[
⟨ah

′
, ℓt⟩

]]
.
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Proof. Observe that

k′∑
i=1

Error(π, ¯̄xt, ¯̄yt)−
k′∑
i=1

Error(π′, ¯̄xt, ¯̄yt)

=

 k′∑
i=1

Error(π, ¯̄xt,i, ¯̄yt,i) + 1
[
¯̄yt,i = 0

]−

 k′∑
i=1

Error(π′, ¯̄xt,i, ¯̄yt,i) + 1
[
¯̄yt,i = 0

]
= 2

[〈(
π(¯̄xt,1), . . . , π(¯̄xt,k′

), 1− π(¯̄xt,1), . . . , 1− π(¯̄xt,k′
)
)
,
(
1− ¯̄yt,1, . . . , 1− ¯̄yt,k

′
, 1/2, . . . , 1/2

)〉
−
〈(

π′(¯̄xt,1), . . . , π′(¯̄xt,k′
), 1− π′(¯̄xt,1), . . . , 1− π′(¯̄xt,k)

)
,
(
1− ¯̄yt,1, . . . , 1− ¯̄yt,k

′
, 1/2, . . . , 1/2

)〉]
= 2

[
E

h∼π

[
⟨ah, ℓt⟩

]
− E

h′∼π′

[
⟨ah

′
, ℓt⟩

]]
.

Where the last transition stems from the linearity of Error(·, ¯̄xt, ¯̄yt). This concludes the proof.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. We can see that

T∑
t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈V

T∑
t=1

LC,ρt(π∗, x̄t, ȳt)

≤
T∑

t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈∆H

T∑
t=1

LC,ρt(π∗, x̄t, ȳt) (V ⊆ ∆H)

=

T∑
t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈H

T∑
t=1

LC,ρt(π∗, x̄t, ȳt) (Linearity of LC,ρt(·, x̄t, ȳt)

= 2

[
T∑

t=1

E
ht∼πt

[
⟨ah

t

, ℓt⟩
]
− min

π∗∈H

T∑
t=1

E
h∗∼π∗

[
⟨ah

∗
, ℓt⟩

]]
. (Lemma B.1+Lemma B.2)

= 2(2k + 4C)RA,T,H (∀t ∈ [T ] :
∣∣〈ℓt, at〉∣∣ ∈ [0, 2k + 4C]).

Which concludes the proof.

C. Omitted Details from Section 4
C.1. From Panels to “Representative” Auditors

Here, we give a reduction from auditing by panels to auditing by instance-specific single auditors. In particular, we prove
that the feedback given by any panel can be viewed as equivalent to the decisions of single, “representative”, auditors from
the panel, where the identity of the relevant auditor is determined only as a function of the specific pair (x, x′) in question.

We observe that when it comes to a single pair (x, x′), we can order auditors by their “strictness” on this pair, as measured
by d(x, x′). However it is not possible in general to order or compare the level of “strictness” of different auditors beyond a
single pair, as some may be stricter than others on some pairs, but have the opposite relation on others. For illustration,
consider the following example: let X = {x1, x2, x3},J = {j1, j2} and assume that dj

1

(x1, x2) > dj
2

(x1, x2), and
dj

1

(x2, x3) < dj
2

(x2, x3). In the context of this example, asking who is stricter or who is more lenient among the auditors,
in an absolute sense, is undefined.

However, as we restrict the attention to a single pair (x, x′), such a task becomes feasible. Namely, in spite of the fact that
we do not have access to auditors’ underlying distance measures (we only observe feedback regarding violations), we know
that there is an implicit ordering among the auditors’ level of strictness with respect to that specific pair. The idea is to
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dj
i

(x, x′)dj
s
x,x′ (j1,...,jm)

(x, x′)

Most Strict

0

“Representative” Most Lenient

1

α-violation w.r.t. auditor jsx,x′ (j1,...,jm) ⇔
α-violation w.r.t. each of the auditors in this interval

Figure 1. An illustration of an ordering of a panel of auditors (j1, . . . , jm) according to their (implicit) distances on (x, x′).
jsx,x′ (j1,...,jm) denotes the auditor who is in the ⌈γm⌉ position in this ordering, which can also be viewed as having the “swing
vote” with respect to deciding an (α, γ)-violation in this instance.

then utilize this (implicit) ordering to argue that a panel’s judgements with respect to this pair are in fact equivalent to the
judgements of a specific single auditor from the panel, which can be viewed as a “representative auditor”. We formalize the
argument in Lemma 4.1.

Lemma 4.1. Let (x, x′) ∈ X 2, (j1, ..., jm) ∈ Jm. Then, there exists an index s = sx,x′(j1, . . . , jm) ∈ [m] such that the
following are equivalent, for all π ∈ ∆H:

1. π has an (α, γ)-violation on (x, x′) with respect to panel j̄α,γj1,...,jm .

2. π has an α-violation on (x, x′) w.r.t. auditor js.

The crucial aspect of this lemma is that the index sx,x′(j1, . . . , jm) of the “pivotal” auditor is defined independently of π.
We refer the reader to Figure 1 for an illustration of Lemma 4.1.

Proof of Lemma 4.1. Fix (x, x′). Then, we can define an ordering of (j1, ..., jm) according to their (underlying) distances
on (x, x′),

dj
i1
(x, x′) ≤ · · · ≤ dj

im
(x, x′). (1)

Then, set
s := sx,x′(j1, ..., jm) = i⌈γm⌉. (2)

Note that s in eq. (2) is well-defined, since γ ≤ 1.

We also note that, using the ordering defined in eq. (1), for any r ∈ [m],

π(x)− π(x′) > dj
ir
(x, x′) + α =⇒ ∀r′ ≤ r : π(x)− π(x′) > dj

i
r′ (x, x′) + α. (3)

Hence, when considering a random variable indicating an (α, γ)-violation on (x, x′) with respect to panel j̄, we know that

1

[[
1

m

m∑
i=1

1

[
π(x)− π(x′)− dj

i

(x, x′) > α
]]

≥ γ

]

= 1

[[
1

m

s∑
l=1

1

[
π(x)− π(x′)− dj

il
(x, x′) > α

]]
≥ γ

]
(Eq. 2 and Eq. 3)

= 1

[
π(x)− π(x′)− dj

s

(x, x′) > α
]

(Eq. 2),

which is equivalent to indicating an α-violation on (x, x′) with respect to auditor js. This concludes the proof.
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C.2. Multi-Criteria No Regret Guarantees

Proof of Lemma 4.3. To prove the lemma, it is sufficient to prove that for every π∗ ∈ Qα−ϵ,γ ,

Cϵ

T∑
t=1

Unfairα,γ(πt, x̄t, j̄t) +

T∑
t=1

Error(πt, x̄t, ȳt)−
T∑

t=1

Error(π∗, x̄t, ȳt)

≤
T∑

t=1

LC,ρt(πt, x̄t, ȳt)−
T∑

t=1

LC,ρt(π∗, x̄t, ȳt).

Which, using Definition 2.9, is equivalent to proving that

Cϵ

T∑
t=1

Unfairα,γ(πt, x̄t, j̄t) ≤
T∑

t=1

C ·
[
πt(ρt,1)− πt(ρt,2)

]
−

T∑
t=1

C ·
[
π∗(ρt,1)− π∗(ρt,2)

]
.

We consider two cases:

1. For rounds t where the panel j̄t did not detect any (α, γ)-fairness violations, the left hand side of the inequality is 0,
and so is the right hand side, since ρt,1 = ρt,2.

2. For rounds t where the panel j̄t detected an (α, γ)-violation, the left hand side is equal to Cϵ, and the right hand side is
at least Cϵ, since, using Lemma 4.1 and Definition 4.2, we know that

πt(ρt,1)− πt(ρt,2) > dsρt,1,ρt,2 (j
t,1,...,jt,m)(ρt,1, ρt,2) + α (4)

And
−(π∗(ρt,1)− π∗(ρt,2)) ≥ ϵ− α− dsρt,1,ρt,2 (j

t,1,...,jt,m)(ρt,1, ρt,2) (5)

Hence, combining Equation 4 and Equation 5, we get

πt(ρt,1)− πt(ρt,2)− (π∗(ρt,1)− π∗(ρt,2))

≥ dsρt,1,ρt,2 (j
t,1,...,jt,m)(ρt,1, ρt,2) + α+ ϵ− α− dsρt,1,ρt,2 (j

t,1,...,jt,m)(ρt,1, ρt,2)

≥ ϵ.

The lemma hence follows.

D. Omitted Detailes from Section 5
In this section, we present two algorithms for the contextual combinatorial semi-bandit setting (Algorithm 2), and show
how they can be leveraged to establish accuracy and fairness guarantees in the setting of individually fair online learning
with one-sided feedback (Algorithm 1). In the following, we use the notation ∥ℓt∥∗ = maxa∈At |⟨ℓt, a⟩|, and use Õ to hide
logarithmic factors.

D.1. Exp2

We begin by presenting the Exp2 algorithm (Bubeck et al., 2012; Dani et al., 2007; Cesa-Bianchi & Lugosi, 2009) and
showing how it can be adapted to our setting.8 Exp2 is an adaptation of the classical exponential weights algorithm
(Littlestone & Warmuth, 1994; Auer et al., 1995; Vovk, 1990; Freund & Schapire, 1997; Cesa-Bianchi et al., 1997), which, in
order to cope with the semi-bandit nature of the online setting, leverages the linear structure of the loss functions in order to
share information regarding the observed feedback between all experts (hypotheses in H). Such information sharing is then
utilized in decreasing the variance in the formed loss estimators, resulting in a regret rate that depends only logarithmically
on |H|.

8The contextual combinatorial semi-bandit setting considered in this paper subsumes the standard contextual k-armed bandit setting.
To see this, consider the case where At = A = {at,i = (1[i = 1], . . . ,1[i = k]) : i ∈ [k]}. Naively applying the classical EXP4
algorithm for contextual bandits in the combinatorial semi-bandit setting would result in a regret bound of O(

√
|H|T ), whose square root

dependence on |H| we prefer to avoid.
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Theorem D.1 (via Bubeck et al. (2012)). The expected regret of Exp2 in the contextual combinatorial semi-bandit setting,
against any adaptively and adversarially chosen sequence of contexts and linear losses such that ∥ℓt∥∗ ≤ 1, is at most:

Regret(T ) ≤ O
(√

kT log |H|
)
.

Next, we show how, when leveraging our reduction as described in Section 3, Exp2 can be utilized to provide multi-criteria
guarantees, simultaneously for accuracy and fairness.

Theorem D.2. In the setting of individually fair online learning with one-sided feedback (Algorithm 1), running Exp2 for
contextual combinatorial semi-bandits (Algorithm 2) while using the sequence (at, ℓt)Tt=1 generated by the reduction in
Algorithm 3 (when invoked each round using x̄t, ȳt, ht, ρt, and C = T

1
5 ), yields the following guarantees, for any ϵ ∈ [0, α],

simultaneously:

1. Accuracy: Regreterr(Exp2, T,Qα−ϵ,γ) ≤ O
(
k

3
2T

4
5 log |H| 12

)
.

2. Fairness:
∑T

t=1 Unfairα,γ(πt, x̄t, j̄t) ≤ O
(

1
ϵk

3
2T

4
5 log |H| 12

)
.

Proof of Theorem D.2. Combining Theorems 3.2, D.1, we know that

T∑
t=1

LC,ρt(πt, x̄t, ȳt)− min
π∗∈Qα−ϵ,γ

T∑
t=1

LC,ρt(π∗, x̄t, ȳt) ≤ O
(
(2k + 4C)

3
2

√
T log |H|

)
.

Setting C = T
1
5 , and using Lemma 4.3, we get

Regreterr(Exp2, T,Qα−ϵ,γ) ≤ O
(
(2k + 4C)

3
2

√
T log |H|

)
− Cϵ

T∑
t=1

Unfairα,γ(πt, x̄t, j̄t)

≤ O
(
(2k + 4C)

3
2

√
T log |H|

)
≤ O

(
k

3
2T

4
5 log |H| 12

)
.

And,

T∑
t=1

Unfairα,γ(πt, x̄t, j̄t) ≤ 1

Cϵ

[
O
(
(2k + 4C)

3
2

√
T log |H|

)
− Regreterr(Exp2, T,Qα−ϵ,γ)

]
≤ 1

Cϵ

[
O
(
(2k + 4C)

3
2

√
T log |H|

)
+ kT

]
≤ O

(
1

ϵ
k

3
2T

4
5 log |H| 12

)
.

The guarantees of Theorem D.2 can be interpreted as follows: accuracy-wise, the resulting algorithm is competitive with the
performance of the most accurate policy that is fair (i.e. in Qα−ϵ,γ). Fairness-wise, the number of rounds in which there
exist (one or more) fairness violations, is sub-linear.

While presenting statistically optimal performance in terms of its dependence on the number of rounds and the cardinality of
the hypothesis class, Exp2 is in general computationally inefficient, with runtime and space requirements that are linear
in |H|, which is prohibitive for large hypothesis classes. We hence next propose an oracle-efficient algorithm, based on a
combinatorial semi-bandit variant of the classical Follow-The-Perturbed-Leader (FTPL) algorithm (Kalai & Vempala, 2005;
Hannan, 1957).
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D.2. Context-Semi-Bandit-FTPL

We next present an oracle-efficient algorithm, Context-Semi-Bandit-FTPL (Syrgkanis et al., 2016), and construct an variant
of it for the setting of individually fair online learning with one-sided feedback. Broadly speaking, FTPL-style algorithms’
approach is to solve “perturbed” optimization problems. Namely, at each round, the set of data samples observed so far is
augmented, using carefully drawn additional noisy samples. Then, the resulting “perturbed” optimization problem over
the augmented sample set is solved. In doing so, the procedure carefully combines the objectives of stability and error
minimization, in order to provide no regret guarantees.

In order to construct an efficient implementation of this approach in the setting of contextual combinatorial semi-bandit,
Context-Semi-Bandit-FTPL assumes access to two key components: an offline optimization oracle for the base class H,
and a small separator set for H. The optimization oracle assumption can be viewed equivalently as assuming access to a
weighted ERM oracle for H. We next describe the small separator set assumption.

Definition 5.1. We say S ⊆ X is a separator set for a class H : X → {0, 1}, if for any two distinct hypotheses h, h′ ∈ H,
there exists x ∈ S such that h(x) ̸= h′(x).

Remark 5.2. Classes for which small separator sets are known include conjunctions, disjunctions, parities, decision lists,
discretized linear classifiers. Please see more elaborate discussions in Syrgkanis et al. (2016) and Neel et al. (2019).

For the following theorem, it is assumed that Context-Semi-Bandit-FTPL has access to a (pre-computed) separator set S of
size s for the class H, and access to an (offline) optimization oracle for H.

Theorem D.3 (via Syrgkanis et al. (2016)). The expected regret of Context-Semi-Bandit-FTPL in the contextual combina-
torial semi-bandit setting, against any adaptively and adversarially chosen sequence of contexts and linear non-negative
losses such that ∥ℓt∥∗ ≤ 1, is at most:

Regret(T ) ≤ O
(
k

7
4 s

3
4T

2
3 log |H|

1
2

)
.

We note that Context-Semi-Bandit-FTPL does not, at any point, maintain its deployed distribution over the class H explicitly.
Instead, on each round, it “samples” a hypothesis according to such (implicit) distribution — where the process of perturbing
then solving described above can equivalently be seen as sampling a single hypothesis from such underlying distribution
over H.

Resampling-based variant For our purposes, however, we will have to adapt the implementation of Context-Semi-Bandit-
FTPL so that the process of sampling the hypothesis at each round is repeated, and we are able to form an accurate enough
empirical estimate of the implicit distribution. This is required for two reasons: first, as we wish to compete with the best
fair policy in ∆H, rather than only with the best fair classifier in H (we elaborate on this point in Lemma D.5). Second, as it
is observed in general (see, e.g. the discussion in Neu & Bartók (2013)), the specific weights this implicit distribution places
on each of h ∈ H cannot be expressed in closed-form.

We therefore next construct an adaptation we term Context-Semi-Bandit-FTPL-With-Resampling, which is based on
resampling the hypothesis R times and deploying the empirical estimate π̂t of the (implicit) underlying distribution πt. This
adaptation is summarized in Algorithm 4 and Algorithm 5 below, and yields the following guarantee.

Theorem 5.3. In the setting of individually fair online learning with one-sided feedback (Algorithm 1), running Context-
Semi-Bandit-FTPL-With-Resampling for contextual combinatorial semi-bandit (Algorithm 5) as specified in Algorithm
4, with R = T , and using the sequence (ℓt, at)Tt=1 generated by the reduction in Algorithm 3 (when invoked on each
round using x̄t, ȳt, ĥt, ρ̂t, and C = T

4
45 ), yields, with probability 1 − δ, the following guarantees, for any ϵ ∈ [0, α],

simultaneously:

1. Accuracy: Regreterr(CSB-FTPL-WR, T,Qα−ϵ,γ)

≤ Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
.

2. Fairness:
T∑

t=1

Unfairα,γ(π̂t, x̄t, j̄t)

≤ Õ

(
1

ϵ
k

11
4 s

3
4T

41
45 log |H| 12

)
.
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We next describe the adaptation of Context-Semi-Bandit-FTPL (Syrgkanis et al., 2016) to our setting. Context-Semi-
Bandit-FTPL relies on access to an optimization oracle for the corresponding (offline) problem. We elaborate on the exact
implementation of this oracle in our setting next.

Definition D.4 (Optimization oracle). Context-Semi-Bandit-FTPL assumes access to an oracle of the form

M((¯̄xt)Nt=1, (ℓ̂
t)Nt=1) = argmin

h∈H
L(h, (¯̄xt, ℓ̂t)),

where ℓ̂t denotes the loss estimates held by Context-Semi-Bandit-FTPL for round t, and L denotes the cumulative loss, over
linear loss functions of the form f t(a) = ⟨a, ℓ⟩, where ℓ is a non-negative vector. In our construction, this is equivalent to

argmin
h∈H

L(ht, (¯̄xt, ℓ̂t))

:= argmin
h∈H

N∑
t=1

〈
ath, ℓ̂

t
〉

(Definition of L)

= argmin
h∈H

N∑
t=1

k+2C∑
i=1

h(¯̄xt,i) · ℓ̂t,i + (1− h(¯̄xt,i)) · 1
2

(Algorithm 3)

= argmin
h∈H

N∑
t=1

k+2C∑
i=1

h(¯̄xt,i) · (ℓ̂t,i − 1

2
) (Subtraction of constant).

Context-Semi-Bandit-FTPL operates by, at each round, first sampling a set of “fake” samples zt, that is added to the history
of observed contexts and losses by the beginning of round t, denoted by Ht. The algorithm then invokes the optimization
oracle on the extended set zt ∪Ht, and deploys ht ∈ H that is returned by the oracle.

Equivalently, this process can be seen as the learner, at the beginning of each round t, (implicitly) deploying a distribution
over hypotheses from the base class H, denoted by πt, then sampling and deploying a single hypothesis ht ∼ πt. As it is
observed in general (see, e.g., Neu & Bartók (2013)), the specific weights this implicit distribution places on each of h ∈ H
on any given round cannot be expressed in closed-form. Instead, FTPL-based algorithms rely on having sampling access to
actions from the distribution in obtaining expected no regret guarantees.

For our purposes, however, such a method of assessing the loss on realized (single) hypotheses ht ∼ πt could be problematic,
since we rely on the panel j̄t reporting its feedback upon observing the actual distribution πt. Querying the panel instead
using realizations ht ∼ πt could lead to an over-estimation of the unfairness loss, as we demonstrate next.

Lemma D.5. There exist α, γ,m, k > 0, H : X → {0, 1}, x̄ ∈ X k, j̄ : X k → X 2, and π ∈ ∆H for which, simultaneously,

1. E
h∼π

[Unfairα,γ(h, x̄, j̄)] = 1.

2. Unfairα,γ(π, x̄, j̄) = 0.

Proof of Lemma D.5. We set α = 0.2, γ = 1 and k = 2. We define the context space to be X = {x, x′}, and the hypothesis
class as H = {h, h′}, where h(x) = h′(x′) = 1, and h(x′) = h′(x) = 0. We set m = 1, and the panel j̄α,γ , that hence
consists of a single auditor, to reflect the judgements of jα, where dj(x, x′) = 0.1. Finally, we define π ∈ ∆H to return h
with probability 0.5, and h′ with probability 0.5. We denote x̄ = (x, x′).

Next, note that

h(x)− h(x′) = 1 > 0.3 = dj(x, x′) + α,

h′(x′)− h′(x) = 1 > 0.3 = dj(x, x′) + α.

Hence,
E

h∼π
[Unfairα,γ(h, x̄, j̄)] = 0.5 · Unfairα,γ(h, x̄, j̄) + 0.5 · Unfairα,γ(h′, x̄, j̄) = 1.
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Algorithm 4 Utilization of Context-Semi-Bandit-FTPL
Parameters: Class of predictors H, number of rounds T , separator set S, parameters ω, L;
Initialize Context-Semi-Bandit-FTPL-With-Resampling(S, ω, L);
Learner deploys π1 ∈ ∆H according to Context-Semi-Bandit-FTPL-With-Resampling;
for t = 1, . . . , T do

Environment selects individuals x̄t ∈ X k, and labels ȳt ∈ Yk, learner only observes x̄t;
Environment selects panel of auditors (jt,1, . . . , jt,m) ∈ Jm (π̂t, ĥt) = Context-Semi-Bandit-FTPL-With-
Resampling(x̄t, ω, L);
Learner predicts ŷt,i = ht(x̄t,i) for each i ∈ [k], observes ȳt,i iff ŷt,i = 1;
Panel reports its feedback ρt = j̄t,α,γj1,...,jm(π̂t, x̄t);

(ℓt,at) = Reduction(x̄t, ȳt, ĥt, ρt, C);
Update Context-Semi-Bandit-FTPL-With-Resampling with (ℓt,at);
Learner suffers misclassification loss Error(ĥt, x̄t, ȳt) (not necessarily observed by learner);
Learner suffers unfairness loss Unfair(π̂t, x̄t, j̄t);
Learner deploys πt+1 ∈ ∆H according to Context-Semi-Bandit-FTPL-With-Resampling;

end for

On the other hand,
π(x)− π(x′) = π(x′)− π(x) = 0 < 0.3 = dj(x, x′) + α.

Hence,
Unfairα,γ(π, x̄, j̄) = 0.

Which proves the lemma.

We therefore adapt Context-Semi-Bandit-FTPL to our setting by adding a resampling process at each iteration of the
algorithm. Our approach is similar in spirit to the resampling-based approach in Bechavod et al. (2020) (which offer an
adaptation for the full information variant of the algorithm), however, unlike their suggested scheme, which requires further
restricting the power of the adversary to, at each round t, not depend on the policy πt deployed by the learner (instead, they
only allow dependence on the history of the interaction until round t− 2), the adaptation we next propose would not require
such a relaxation.

We next abstract out the implementation details of the original Context-Semi-Bandit-FTPL that remain unchanged (namely,
the addition of “fake” samples, and solving of the resulting optimization problem at the beginning of each round, and the
loss estimation process at the end of it), to focus on the adaptation.

Our adaptation will work as follows: the learner initializes Context-Semi-Bandit-FTPL-With-Resampling with a pre-
computed separator set S for H. Then, at each round t, the learner (implicitly) deploys πt according to Context-Semi-
Bandit-FTPL-With-Resampling. The environment then selects individuals x̄t and their labels ȳt, only revealing x̄t to the
learner. The environment proceeds to select a panel of auditors (jt,1, . . . , jt,m). The learner invokes Context-Semi-Bandit-
FTPL-With-Resampling and receives an estimated policy π̂t, and a realized predictor ĥt sampled from π̂t. The learner
then predicts the arriving individuals x̄t using ĥt, only observing feedback on positively labelled instances. The panel then
reports its feedback ρ̂t on (π̂t, x̄t). The learner invokes the reduction (Algorithm 3), using x̄t, ȳt, ĥt, ρ̂t, and C, and receives
(ℓt, at). The learner updates Context-Semi-Bandit-FTPL-With-Resampling with (ℓt, at) and lets it finish the loss estimation
process and deploy the policy for the next round. Finally, the learner suffers misclassification loss with respect to ĥt, and
unfairness loss with respect to π̂t. The interaction is summarized in Algorithm 4.

As for the resampling process we add to the original Context-Semi-Bandit-FTPL: at each round we define “sampling from
Dt” to refer to the process of first sampling the additional “fake” samples to be added, and then solving the resulting
optimization problem over the original and the “fake” samples, to produce a predictor ht,r. We repeat this process R times,
to produce an empirical distribution π̂t, and select a single predictor ĥt from it, which are reported to the learner. Once
receiving back (ℓt, at) from the learner, Context-Semi-Bandit-FTPL-With-Resampling proceeds to perform loss estimation,
as well as selecting the next policy, in a similar fashion to the original version of Context-Semi-Bandit-FTPL. This adaptation
is summarized in Algorithm 5.
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Algorithm 5 Context-Semi-Bandit-FTPL-With-Resampling(S, ω, L)
Parameters: Class of predictors H, number of rounds T , optimization oracle M , separator set S, parameters ω, L;
for t = 1, . . . , T do

for r = 1, . . . , R do
Sample predictor ht,r according to Dt;

end for
Set and report π̂t = U(ht,1, . . . , ht,R), ĥt ∼ π̂t;
Receive back (ℓt, at) from reduction;
Continue as original Context-Semi-Bandit-FTPL;

end for

We note that for the described adaptation, we will next prove accuracy and fairness guarantees for the sequence of estimated
policies, (π̂t)Tt=1, rather than for the underlying policies (πt)Tt=1. One potential issue with this approach is that the
Lagrangian loss at each round is defined using the panel’s reported pair ρt, which is assumed to be reported with respect to
πt. Here, we instead consider the Lagrangian loss using ρ̂t, which is based on the realized estimation π̂t. However, this
issue can be circumvented with the following observation: on each round, there are k2 options for selecting ρt, which are
simply all pairs in x̄t. We will prove next, that since resampling for π̂t is done after x̄t is fixed, with high probability, the
Lagrangian loss for each of πt and π̂t will take values that are close to each other, when defined using any possible pair
ρ̂t from x̄t. Hence, by allowing the adversary the power to specify ρ̂t after π̂t is realized, we do not lose too much. We
formalize this argument next.

Theorem D.6. In the setting of (adapted) individually fair online learning with one-sided feedback (Algorithm 4), running
Context-Semi-Bandit-FTPL-With-Resampling (Algorithm 5) with L = T

1
3 , and optimally selected ω, using the sequence

(at, ℓt)Tt=1 generated by the reduction in Algorithm 3 (when invoked every round with x̄t, ȳt, ĥt, ρ̂t, and C), yields, with
probability 1− δ, the following guarantee, for any U ⊆ ∆H,

T∑
t=1

LC,ρ̂t(π̂t, x̄t, ȳt)− min
π∗∈U

T∑
t=1

LC,ρ̂t(π∗, x̄t, ȳt) ≤ O
(
(2k + 4C)

11
4 s

3
4T

2
3 log |H|

1
2

)

+ 2(2k + 4C)T

√
log

(
2kT
δ

)
2R

.

In order to prove Theorem D.6, we will first prove the following lemma, regarding the difference of losses between the
underlying πt and the estimated π̂t.

Lemma D.7. With probability 1− δ (over the draw of (ht,1, . . . , ht,R)Tt=1), for any arbitrary sequence of reported pairs
(ρt)Tt=1 such that ∀t ∈ [T ], ρt ∈ (x̄t × x̄t) ∪ {(v, v)},

T∑
t=1

∣∣∣∣ E
ĥt∼π̂t

[
⟨aĥ

t

, ℓt⟩
]
− E

ht∼πt

[
⟨ah

t

, ℓt⟩
]∣∣∣∣ ≤ 2(2k + 4C)T

√
log

(
2kT
δ

)
2R

.

Proof. Using Chernoff bound, we can bound the difference in predictions between the underlying and the estimated
distributions over base classifiers, for each of the contexts in x̄t, for any round t:

∀t ∈ [T ], i ∈ [k] : Pr

∣∣π̂t(x̄t,i)− πt(x̄t,i)
∣∣ ≥

√
log

(
2kT
δ

)
2R

 ≤ δ

kT
.

Union bounding over all rounds, and each of the contexts in a round, we get that, with probability 1− δ,

∀t ∈ [T ], i ∈ [k] :
∣∣π̂t(x̄t,i)− πt(x̄t,i)

∣∣ ≤
√

log
(
2kT
δ

)
2R

.
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Hence, when considering pairs of individuals, and using triangle inequality, we know that with probability 1− δ,

∀t ∈ [T ], i, j ∈ [k] :
∣∣[π̂t(x̄t,i)− π̂t(x̄t,j)

]
−

[
πt(x̄t,i)− πt(x̄t,j)

]∣∣ ≤ 2

√
log

(
2kT
δ

)
2R

.

Hence, by construction of the losses and actions sequence (using the reduction in Algorithm 3 with x̄t, ȳt, ĥt, ρ̂t, and C),
with probability 1− δ,

∀t ∈ [T ], ρ̂t ∈
(
x̄t × x̄t

)
∪ {(v, v)} :

∣∣∣∣ E
ĥt∼π̂t

[
⟨aĥ

t

, ℓt⟩
]
− E

ht∼πt

[
⟨ah

t

, ℓt⟩
]∣∣∣∣ ≤ 2(2k + 4C)

√
log

(
2kT
δ

)
2R

.

Summing over rounds, with probability 1− δ, for any arbitrary sequence of reported pairs (ρt)Tt=1, such that ∀t ∈ [T ], ρt ∈
(x̄t × x̄t) ∪ {(v, v)}:

T∑
t=1

∣∣∣∣ E
ĥt∼π̂t

[
⟨aĥ

t

, ℓt⟩
]
− E

ht∼πt

[
⟨ah

t

, ℓt⟩
]∣∣∣∣ ≤ 2(2k + 4C)T

√
log

(
2kT
δ

)
2R

.

Which concludes the proof of the lemma.

We are now ready to prove the regret bound of Context-Semi-Bandit-FTPL-With-Resampling.

Proof of Theorem D.6. Using Theorems D.3 and 3.2 along with the fact that ∥ℓt∥∗ ≤ 2k + 4C, for any sequence (ρt)Tt=1

such that ∀t ∈ [T ], ρt ∈ (x̄t × x̄t) ∪ {(v, v)},

2

[
T∑

t=1

E
ht∼πt

[
⟨ah

t

, ℓt⟩
]
− min

π∗∈∆H

T∑
t=1

E
h∗∼π∗

[
⟨ah

∗
, ℓt⟩

]]
≤ O

(
(2k + 4C)

11
4 s

3
4T

2
3 log |H|

1
2

)
.

Using Lemma D.7 and the triangle inequality, we conclude that, with probability 1− δ,

T∑
t=1

LC,ρ̂t(π̂t, x̄t, ȳt)− min
π∗∈U

T∑
t=1

LC,ρ̂t(π∗, x̄t, ȳt) ≤ O
(
(2k + 4C)

11
4 s

3
4T

2
3 log |H|

1
2

)

+ 2(2k + 4C)T

√
log

(
2kT
δ

)
2R

.

We are now ready to prove Theorem 5.3

Proof of Theorem 5.3. Using Theorem D.6 with C = T
4
45 , R = T

38
45 , we know that, with probability 1− δ,

T∑
t=1

LC,ρ̄t(π̂t, x̄t, ȳt)− min
π∗∈Qα−ϵ,γ

T∑
t=1

LC,ρ̂t(π∗, x̄t, ȳt) ≤ Õ
(
k

11
4 s

3
4T

41
45 log |H|

1
2

)
.

Using Lemma 4.3, we get, with probability 1− δ,

Regreterr(CSB-FTPL-WR, T,Qα−ϵ,γ) ≤ Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
−

T∑
t=1

Unfairα,γ(π̂t, x̄t, j̄t)

≤ Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
.
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And,

T∑
t=1

Unfairα,γ(π̂t, x̄t, j̄t) ≤ 1

Cϵ

[
Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
− Regreterr(T )

]
≤ 1

Cϵ

[
Õ
(
k

11
4 s

3
4T

41
45 log |H| 12

)
+ kT

]
≤ Õ

(
1

ϵ
k

11
4 s

3
4T

41
45 log |H| 12

)
.

24


