
Predicting Ordinary Differential Equations with Transformers

Sören Becker 1 Michal Klein 2 * Alexander Neitz 3 † Giambattista Parascandolo 4 † Niki Kilbertus 1 5

Abstract
We develop a transformer-based sequence-to-
sequence model that recovers scalar ordinary dif-
ferential equations (ODEs) in symbolic form from
irregularly sampled and noisy observations of a
single solution trajectory. We demonstrate in ex-
tensive empirical evaluations that our model per-
forms better or on par with existing methods in
terms of accurate recovery across various settings.
Moreover, our method is efficiently scalable: after
one-time pretraining on a large set of ODEs, we
can infer the governing law of a new observed
solution in a few forward passes of the model.

1. Introduction
Researchers in the natural sciences increasingly turn to ma-
chine learning (ML) to aid the discovery of natural laws
from observational data alone, which is often abundantly
available, hoping to bypass expensive and cumbersome tar-
geted experimentation. While there may be fundamental
limitations to what can be extracted from observations alone,
recent successes of ML provide ample reason for excitement.
Partially fueled by these promises, interest in symbolic re-
gression (SR) has received renewed attention (La Cava et al.,
2021; Makke & Chawla, 2022). A symbolic representation
of a law has several advantages over black-box represen-
tations in that they are typically parsimonious and directly
interpretable as well as amenable to analytic analysis.

Numerous symbolic regression methods have been proposed
recently to infer functional relationships, i.e., to infer a func-
tion f symbolically given (noisy) examples (xi, f(xi))

n
i=1

(La Cava et al., 2021). Arguably, a more interesting—but

*Work done while at Helmholtz Center Munich.†Work
done while at Max Planck Institute for Intelligent Systems.
1Helmholtz AI, Helmholtz Center Munich, Munich, Germany.
2Apple, Paris, France. 3DeepMind, London, United King-
dom. 4OpenAI, San Francisco, United States. 5Technical
University of Munich, Germany. Correspondence to: Sören
Becker <soeren.becker@helmholtz-munich.de>, Niki Kilbertus
<niki.kilbertus@helmholtz-munich.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

also more challenging—task is to infer dynamical laws. We
represent a dynamical law as an ODE ẏ := dy/dt = f(y),
which is fully determined by f . In this setting, the goal is
to infer f from (noisy, irregular) samples (ti, yi)ni=1, where
y is a solution of the ODE (and yi denotes the observed
value for y(ti)). Compared to symbolic regression for func-
tional relationships, relatively little work exists on directly
inferring dynamical laws (see Section 2 for details). In prin-
ciple, any functional symbolic regression method may be
applied to (yi, ˆ̇yi)

n
i=1, where ˆ̇yi are estimated derivatives at

the observed time points ti, to obtain f . This naturally raises
the question whether methods tailored to directly inferring
dynamical laws yields better results.

In this work, we develop Neural Symbolic Ordinary
Differential Equation (NSODE), a transformer based
sequence-to-sequence model specifically tailored to infer-
ring dynamics directly in an end-to-end fashion from (ti, yi)
samples of a single solution trajectory. NSODE leverages
large scale pre-training for efficient inference at test time.
We first (randomly) generate a total of >3M scalar, au-
tonomous, non-linear, first-order ODEs, together with a total
of >63M numerical solutions from various (random) initial
conditions. All solutions are carefully checked for conver-
gence of the numerical integration. Code and data are pub-
licly available at https://github.com/soerenab/
nsode23.

NSODE, an encoder-decoder transformer, is then trained
in a supervised fashion to map observed trajectories, i.e.,
numeric sequences of the form (ti, yi)

n
i=1, directly to sym-

bolic equations as strings, e.g., "y**2+1.64*cos(y)",
which is the prediction for f . This example directly high-
lights the benefit of symbolic representations in that the
y2 and cos(y) terms tell us something about the fundamen-
tal dynamics of the observed system; the constant 1.64
will have semantic meaning in a given context. NSODE
combines and innovates on technical advances regarding
input representations and an efficiently optimizable loss for-
mulation. Our model outperforms most existing methods
and is more efficient at inference time than models with
competitive performance.

1

https://github.com/soerenab/nsode23
https://github.com/soerenab/nsode23

Predicting Ordinary Differential Equations with Transformers 2

Prior over ODEs

O
pe

ra
to
rs

Sy
m
bo

ls

ex
p

+
lo
g

co
s

si
n

y y

× ÷ po
w +

×

y

y 2.3

exp

cos

fix
ed

nu
m
be

ro
fo

pe
ra
to
rs

bi
na

riz
e

(IE
EE

-7
54

)

ODE solver

y*2.3+exp(cos(y))

scipy.integrate.odeint

sample initial values

sample

f(y)

ẏ = f(y, t)

y0 ~

0
1

1

0
1

0

1
1

1

1
0

1

0
0

0

1
0

0

0
0

1

1
1

1

0
1

0

1
1

0
<const>

Model inputs

Model target

y

t

t

y

n

0
1

1

0
1

0

1
1

1

1
0

1

0
0

0

1
0

0

0
0

1

1
1

1

0
1

0

1
1

0

t

y

64

n

64

Transformer
y*2.3+exp(cos(y))

y * 2.3 + expTarget

Outputs (shifted right)

y
×
+

exp
cos

...

...
...

...

4
5

3
2
1

...

Two-hot encoding
for numerical values

Cross-entropy loss
Next token prediction

Encoder + Decoder

Data generation
Training

bi
na

ry
un

ar
y

noise
irregularly
sampled

+

Figure 1: An overview illustration of the data generation (top) and training pipeline (bottom). In the lower right, blue bars
correspond to one-hot and two-hot target encodings whereas gray bars correspond to model predictions. Our dataset stores
solutions in numerical (non-binarized) form on the entire regular solution time grid.

2. Background and Related Work
Modeling dynamics and forecasting their behavior has a
long history in machine learning. While Neural Ordinary
Differential Equations (NODE) (Chen et al., 2018) (with a
large body of follow up work) are perhaps the most promi-
nent modern approach from the recent years, their inherent
black-box character complicates interpretability or scientific
understanding of the observed phenomena. Recent alter-
natives such as tractable dendritic RNNs (Brenner et al.,
2022) and Neural Operators (Kovachki et al., 2021; Li et al.,
2021) set out to facilitate scientific discovery by combin-
ing accurate predictions with improved interpretability. A
considerable advantage of these and similar approaches is
their scalability to high dimensional systems as well as their
relative robustness to noise, missing or irregularly sampled
data (Iakovlev et al., 2021) and challenging properties such
as multiscale dynamics (Vlachas et al., 2022) or chaos (Park
et al., 2022; Patel & Ott, 2022). The recent benchmark
study by Gilpin (2021) provides an excellent overview of
dynamics forecasting models including deep learning-based
blackbox approaches as well as symbolic models.

However, in this work we focus on models that explicitly
predict a mathematical expression in symbolic form because
of the advantages of their interpretable and parsimonious
representations. We now provide an overview of the most
prominent types of symbolic regression techniques. Our

overview also includes methods that have been primarily
designed to infer functional relationships only, i.e., that are
not specifically tailored to inferring dynamical laws.

Evolutionary algorithms. Traditionally, many approaches
to symbolic regression broadly fall into the category of
evolutionary algorithms such as genetic programming (GP)
(Koza, 1993). Genetic programming randomly evolves a
population of prospective mathematical expressions over
multiple iterations and mimics natural selection by keeping
only the best contenders across iterations, where superiority
is measured by user-defined fitness functions (Schmidt &
Lipson, 2009). Process-based modeling follows a similar
approach but includes domain knowledge-informed con-
straints on particular components of the system in order to re-
duce the search space to reasonable candidates (Todorovski
& Dzeroski, 1997; Bridewell et al., 2008; Simidjievski et al.,
2020). A large body of work examines and improves upon
all aspects of GP to overcome typical shortcomings such as
premature convergence, overly complex output expressions,
scalability (both in terms of time as well as memory), or
the difficulty of incorporating prior knowledge (Schmidt &
Lipson, 2010; Arnaldo et al., 2014; La Cava et al., 2016; Vir-
golin et al., 2017; La Cava et al., 2018; Virgolin et al., 2019;
Burlacu et al., 2020; de Franca & Aldeia, 2021; Tohme et al.,
2022; Mundhenk et al., 2021).

Regression (gradient-based methods). More recently,

2

Predicting Ordinary Differential Equations with Transformers 3

symbolic regression has been approached via machine learn-
ing methods which exploit gradient information to optimize
within the space of (finite) compositions of pre-defined basis
functions. Brunton et al. (2016) builds on sparse linear re-
gression to identify a linear combination of basis functions.
This approach has inspired a large body of follow-up work
generalizing the idea to partial observations (Bakarji et al.,
2022), parameterized functions (Lejarza & Baldea, 2022),
simultaneous discovery of coordinates (Champion et al.,
2019), coordinate transformations that linearize the dynam-
ics (Lusch et al., 2018), and partial differential equations
(Rudy et al., 2017) among others. Similarly, McConaghy
(2011) use path-wise regularized learning with ElasticNets
on a large body of pre-generated non-linear basis functions
for symbolic regression. These techniques often deploy
sparsity-promoting regularizers and train one or multiple
models for each set of observations. Once trained, the model
itself represents the predicted symbolic expression, which
can be read off the non-zero coefficients. This modeling
principle is also employed by many other approaches that
replace linear regression by neural networks with diverse
sets of activation functions, both for differential equations
(Long et al., 2019; Liu et al., 2020) and non-differential
algebraic equations (Sahoo et al., 2018).

Hybrid models. Supervised learning with gradient-based
optimization to directly output the symbolic expression (e.g.,
as a string) is challenged by the formulation of a differ-
entiable loss between the predicted symbolic expression
(string) and the observed data (numerical). Thus, prior
work on functional symbolic regression resorted to rein-
forcement learning (Petersen et al., 2021; Landajuela et al.,
2021) or combinations of neural networks and evolutionary
algorithms (Atkinson et al., 2019; Costa et al., 2021). A
hybrid approach combining gradient-free, human intuition-
guided heuristic search via genetic programming with neural
network-based optimization has been presented for non-
differential equations by Udrescu et al. (2020). This method
proceeds by a divide-and-conquer strategy in applying the
hand-tuned heuristics. It has recently been extended to dy-
namical systems by Weilbach et al. (2021).

Monte Carlo methods. Finally, Jin et al. (2019); Brence
et al. (2021) and extensions such as Gec et al. (2022) incor-
porate prior knowledge by flexibly specifying distributions
over the allowed function space. This also allows them to
perform Bayesian updates and ultimately equation discovery
via Monte Carlo sampling from the (posterior) distribution.

Sequence-to-sequence models. The closest works to ours
use pre-trained, attention-based sequence-to-sequence mod-
els for symbolic regression of functional relationships (Big-
gio et al., 2021; Valipour et al., 2021; Kamienny et al.,
2022; Vastl et al., 2022) or (discrete) recurrence relations
(D’Ascoli et al., 2022). They exploit the fact that symbolic

expressions for (multi-variate) scalar functions can be both
generated and evaluated on random inputs cheaply, resulting
in essentially unlimited labeled training data that allows for
gradient-based optimization using the cross-entropy loss on
the symbol level (instead of numerical proximity between
evaluations of the true and predicted functions). Our model
differs in a number of key innovations described in Sec-
tion 3.2 overcoming limitations of existing methods and
rendering it suitable for inferring dynamical laws directly.

3. Method
Many previous symbolic regression methods have been de-
scribed as “discovering natural laws”. However, most of
them learn fixed functional relationships from input-output
pairs, whereas we seek to actually infer the underlying dy-
namic law that governs the behavior of the observed solution
trajectory directly. One way to still apply functional SR to
dynamics is to approximate derivatives ˆ̇yi from the observed
data (yi)

n
i=1 and use (yi, ˆ̇y)

n
i=1 to infer f (as in ẏ = f(y)).

Since temporal derivatives are usually not measured directly,
this approach crucially depends on the derivative estimation,
typically via finite difference approximations. Even though
higher-order finite difference methods can be extended to
irregularly sampled and noisy observations, naturally the
question arises whether methods specifically tailored to in-
ferring dynamics directly may be superior. Qian et al. (2022)
have also recently identified alternative loss formulations
that bypass unobserved time derivatives as an open chal-
lenge in symbolic regression for dynamical systems. With
NSODE, we propose a solution to this challenge.

Problem setting. Given noisy observations {(ti, yi)}ni=1

of a trajectory y : [t1, tn] → R that is a solution of the scalar
ODE ẏ = f(y), we aim to recover the function f in sym-
bolic form. In this formulation, we explicitly assume that
the observed system actually evolves according to an ODE
in canonical form ẏ = f(y) such that f can be expressed in
closed form using the mathematical operators seen during
training (see Section 3.1 for details).

While solutions to the class of ODEs considered in this
work are known to have relatively simple limiting behaviors
(essentially either blowing up or reaching a constant equi-
librium), within finite time they still exhibit rich and varied
behavior. We show some examples in Appendix F.

3.1. Data Generation

Sampling symbolic expressions. To exploit large-scale
supervised pretraining, we randomly generate a dataset of
∼63M ODEs in symbolic form along with their numeri-
cal solutions for multiple randomly sampled initial values.
Since we assume ODEs to be in canonical form ẏ = f(y),
generating an ODE is equivalent to generating a symbolic

3

Predicting Ordinary Differential Equations with Transformers 4

expression f(y). We follow Lample & Charton (2019),
who sample such an expression f(y) as a unary-binary tree,
where each internal node corresponds to an operator and
each leaf node corresponds to a constant or variable. The
algorithm consists of two phases: (1) A unary-binary tree
is sampled uniformly from the distribution of unary-binary
trees with up to k ∈ N internal nodes, which crucially does
not overrepresent small trees corresponding to short expres-
sions. Here the maximum number of internal nodes K is a
hyperparameter of the algorithm. (2) The sampled tree is
“decorated”, that is, each binary internal node is assigned a
binary operator, each unary internal node is assigned a unary
operator, and each leaf is assigned a variable or constant.
Hence, we have to specify a distribution over the Nbin bi-
nary operators, a distribution over the Nuna unary operators,
a probability psym ∈ (0, 1) to decide between symbols and
constants for leaf nodes, as well as a distribution pc over
constants. For constants, in NSODE we further distinguish
explicitly between sampling an integer or non-integer value.
Together with K, these choices uniquely determine a dis-
tribution over equations f and are described in detail in
Appendix A. The top part of Figure 1 depicts an overview
of the data generation procedure.

The pre-order traversal of a sampled tree results in the sym-
bolic expression for f in prefix notation. After conversion
to the more common mathematical infix notation, we sim-
plify each expression using the computer algebra system
SymPy (Meurer et al., 2017), and filter out constant equa-
tions f(y) = c as well as expressions that contain operators
or symbols that were not in the support of the original dis-
tribution.1 We call the structure modulo the value of the
constants of such an expression (i.e., replacing all actual
constant values by a generic <const> token) a skeleton.

Many skeletons can be represented by different unary-binary
trees and hence many of the generated trees will be simpli-
fied to the same skeleton. To ensure diversity and to mitigate
potential dataset bias towards particular expressions, we dis-
card duplicates on the skeleton level. To further cheaply
increase the variability of ODEs we sample Nconst unique
sets of constants per skeleton. When sampling constants we
take care not to modify the canonical expression by adher-
ing to the rules listed in Appendix A.1. Our final dataset
contains linear and non-linear as well as homogeneous and
inhomogeneous ODEs and we provide summary statistics
about the distribution over equations in Appendix C. Be-
sides the number of internal nodes, a simple yet common
measure of complexity for each symbolic equation is the
overall count of symbols (e.g., y, or constants) as well as op-
erators. We follow previous works on symbolic regression
in using this complexity measure in our empirical evalua-
tion and refer to La Cava et al. (2021) for an overview of

1With the exception of a unary −, which we do not discard.

Table 1: Overview of our model architecture.

Encoder Decoder

layers 6 6
heads 16 16
embed. dim. 512 512
forward dim. 2048 2048
activation gelu gelu
vocab. size - 43
position enc. learned learned
parameters 23.3M 23.3M

proposed alternatives.

Computing numerical solutions. We obtain numerical
solutions for all generated initial value problems via SciPy’s
interface (Virtanen et al., 2020) to the LSODA software
package (Hindmarsh & Laboratory, 1982) with both relative
and absolute tolerances set to 10−9. LSODA consists of
a collection of ODE solvers and implements a strategy to
automatically choose an appropriate solver for the problem
at hand (e.g., recognizing stiff problems). We solve each
equation on a fixed time interval t ∈ [0, T] and store solu-
tions on a regular grid of Ngrid points. For each ODE, we
sample up to Niv initial values y(0) = y0 uniformly from
(ymin

0 , ymax
0).2 While LSODA attempts to select an appro-

priate solver, numerical solutions still cannot be trusted in
all cases. Therefore, we check the validity of solutions
via the following quality control check: we use 9th or-
der central finite differences to approximate the temporal
derivative of the solution trajectory (on the same equidistant
temporal grid as the proposed solution and without adding
noise), denoted by ẏfd, and filter out any solution for which
∥ẏfd − ẏ∥∞ > ϵ, where we use ϵ = 1.

3.2. Model Design Choices and Training

NSODE consists of an encoder-decoder transformer with
architecture choices listed in Table 1. A visual overview of
the training is depicted in Figure 1.

Representing input trajectories. A key difficulty in feed-
ing numerical observations (yi)ni=1 as input sequence to a
transformer is that their range may differ greatly both within
a single solution as well as across ODEs. For example,
the linear ODE ẏ = c · y for a constant c is solved by an
exponential y(t) = y0 exp(ct) for initial value y(0) = y0,
which may span many orders of magnitude on a fixed time
interval. To prevent numerical errors and vanishing or ex-
ploding gradients caused by the large range of values, we
assume each representable 64-bit float value is a token and

2Due to a timeout per ODE, fewer solutions may remain if the
solver fails for repeated initial value samples.

4

Predicting Ordinary Differential Equations with Transformers 5

use its IEEE-754 encoding as the token representation (Big-
gio et al., 2021). We thus convert all pairs (ti, yi) to their
IEEE-754 64 bit representations, channel them through a
linear layer, and then feed them to the encoder. The lin-
early transformed bit pattern hence replaces the explicit
embedding layer that commonly preceeds the encoder.

Representing symbolic expressions. The target sequence
(i.e., the string for the symbolic expression of f) is tokenized
on the (mathematical) symbol-level. For all operators and
variables we include separate unique tokens in the vocabu-
lary. These tokens are one-hot encoded and passed through
a learnable embedding layer before their embedded repre-
sentations are fed to the decoder.

Constants (as in fixed numerical values) play a special role
in sequence-to-sequence approaches to symbolic regression.
While the cross-entropy loss works well for discrete, one-hot
encoded operators and symbols (e.g. +,exp,sin,x,y),
one cannot directly add all possible constant values such
as 1.452 to the vocabulary as separate tokens. Naively
tokenizing on the digit level, i.e., representing real values lit-
erally as the sequence of characters (e.g., "1,.,4,5,2"),
not only significantly expands the length of target sequences
and thus the computational cost, but also requires a variable
number of prediction steps for every single constant. As a
workaround previous works on functional SR resort to one
of two strategies: (1) represent all constants with a special
<const> token and optimize their actual values in a sepa-
rate fine-tuning step. (2) round constants to a finite number
of possible values, which can then all be represented as
individual tokens.

The second optimization of strategy (1) comes at a sub-
stantial computational cost as constants have to be fit per
inferred expression. For efficiency and scalability, we would
like the sequence-to-sequence model propose a complete
equation, including values for the involved constants. Even
more detrimental to our problem setting, this approach does
not transfer to inferring ODEs: to optimize constants via a
regression loss, one would first have to solve the predicted
ODE ẏ = f̂(y) to obtain predicted {ŷi}ni=1 values that can
be compared to the set of observations {yi}ni=1. That is,
the objective function to be optimized when fine-tuning
constants involves solving an ODE. While differentiable
ODE solvers exist, optimizing constants per inferred ex-
pression this way is prohibitively expensive and typically
highly unstable. Even though strategy (2) avoids a separate
optimization step and can leverage clever encoding schemes
with improved token efficiency, it comes with an inherent
loss of precision.

Therefore, we propose the following representation of con-
stant values. Taking inspiration from Schrittwieser et al.
(2020), we encode constants in a two-hot fashion. We fix
a finite homogeneous grid on the real numbers x1 < x2 <

. . . < xm for some m ∈ N and add those values as tokens
to the vocabulary. The range of integers, the grid range
(x1, xm), and number of grid points m are hyperparame-
ters that can be tuned for performance. Our choices are
described in Appendix A.3. For any constant c in the tar-
get sequence we then find i ∈ {1, . . . ,m − 1} such that
xi ≤ c < xi+1 and encode c as a distribution supported
on xi, xi+1 with weights α, β such that αxi + βxi+1 = c.
That is, the target in the cross-entropy loss for a constant
token is not a strict one-hot encoding, but a distribution
supported on two (neighboring) vocabulary tokens result-
ing in a lossless encoding of continuous values in [x1, xm]
which does not require rounding. While this two-hot rep-
resentation can be used directly in the cross-entropy loss
function and thus greatly facilitates training, it can not be
passed directly through an embedding layer. For a generic
constant in the target sequence represented as αxi + βxi+1,
we thus instead provide the linear combination of the two
embeddings α embed(xi)+β embed(xi+1) as decoder
input.

Decoding constants. When decoding a predicted sequence,
we check at each prediction step whether the argmax of
the logits corresponds to one of the m constant tokens
{x1, . . . , xm}. If not, we proceed by conventional one-
hot decoding to obtain predicted operators and variables.
If instead the argmax corresponds to, for example, xi, we
also pick its largest-logit neighbor (xi−1 or xi+1; suppose
xi+1), renormalize their probabilities by applying a softmax
to all logits and use the resulting two probability estimates
as weights α, β. Constants are then ultimately decoded as
αxi + βxi+1. We depict our decoding scheme in Figure 1.

Sampling solutions. To infer a symbolic expression for
the governing ODE of a new observed solution trajectory
{(ti, yi)}ni=1, all the typical policies such as greedy, sam-
pling, or beam search are available. In our evaluation, we
leverage computationally cheap forward passes to perform
a beam search with 1536 beams. We provide details about
how NSODE is evaluated in Section 4.3.

Training. We train two versions of our model. NSODE
is trained on n = 256 time-points per trajectory, which are
sampled on an equidistant grid over the training interval
[0, T]. To increase the robustness of the model with respect
to noisy, potentially incomplete observations, we train a
second model, NSODE-eps, for which we add multiplica-
tive Gaussian noise centered on 1 with a standard deviation
of σ = 0.01 to the observed input trajectory. Furthermore
we do not feed the full solution trajectory generated as de-
scribed in Section 3.1 but keep only n = 128 time-points
which are selected uniformly at random from the interval
[0, T]. All details about model training such as hyperparam-
eter choices and the used hardware are in Appendix A.3.

5

Predicting Ordinary Differential Equations with Transformers 6

Table 2: Overview of baselines (f.d.: finite differences, ode: proposed for ODEs, MC: Monte Carlo, reg.: regression).

name type ode f.d. description reference

AFP GP no yes age-fitness Pareto optimization (Schmidt & Lipson, 2010)
FE-AFP GP no yes AFP with co-evolved fitness estimates (Schmidt & Lipson, 2010)

EHC GP no yes AFP with epigenetic hillclimbing (La Cava, 2016)
EPLEX GP no yes epsilon-lexicase selection (La Cava et al., 2016)

GPGOMEA GP no yes gene-pool optimal mixing (Virgolin et al., 2017)
FEAT GP no yes learned differentiable features (La Cava et al., 2018)
PySR GP no yes AutoML-Zero + simulated annealing + const. optim. (Cranmer, 2020)

SINDy reg yes yes sparse linear regression (Brunton et al., 2016)
FFX reg no yes pathwise regularized ElasticNet regression (McConaghy, 2011)
BSR MC no yes MCMC on linearly mixed tree-representations (Jin et al., 2019)

ProGED MC yes no MC on probabilistic context free grammars+const. optim. (Brence et al., 2021)

4. Experiments
4.1. Benchmark Datasets

We evaluate model performance and generalization on sev-
eral test sets, which are summarized in Figure 5.

• Classic: To validate our approach on existing bench-
marks, we turn to the functional symbolic regression
literature and simply interpret functions as ODEs. In
particular, we include all scalar functions listed in the
overview in (McDermott et al., 2012), which includes
equations from multiple established benchmarks (Kei-
jzer, 2003; Koza, 1993; 1994; Uy et al., 2011; Vladislavl-
eva et al., 2008). For example, we interpret the function
f(y) = y3 + y2 + y from Uy et al. (2011) as an au-
tonomous ODE ẏ(t) = f(y(t)) = y(t)3 + y(t)2 + y(t),
which we solve numerically for randomly sampled initial
values (as detailed in Section 3.1). This test set consists
of 26 distinct equations.

• Textbook: To assess how NSODE performs on “real prob-
lems”, we manually curated 12 non-linear ODEs from
Wikipedia, physics textbooks, and lecture notes from uni-
versity courses on ODEs. These equations are listed in
Table 7 in Appendix B. We note that they are all relatively
simple compared to the expressions in our generated train-
ing set, consisting mostly of low order polynomials, some
of which with one fractional exponent.

• Large: The Classic and Textbook datasets are relatively
small and simple in terms of the complexity and operator
diversity of the expressions (cf. Figure 5). Hence, we
generate a larger and more diverse dataset by resampling
equations from the training distribution described in Sec-
tion 3.1 and solving them for new initial conditions to
generate new, unseen trajectory. To further reduce bias
towards our training distribution, we employ rejection
sampling to ensure that no skeleton is included more than
once and that we include at most 10 equations per com-
plexity. The final dataset consists of 162 ODEs, which
is comparable in size to the datasets used in the recent

extensive functional SR benchmark study by La Cava et al.
(2021). We refrained from including even more equations,
because most SR methods require a separate optimiza-
tion per expression, quickly rendering the evaluation of
baselines computationally infeasible.

4.2. Baselines

We compare our method to 11 popular baselines choosing
strong contenders from different categories described in
Section 2. We provide a brief overview in Table 2 and de-
fer details on hyperparameter choices to Appendix D. All
baselines explicitly fit a separate regression function for
each individual observed trajectory. Moreover, except for
ProGED, which has a specific mode for ODE discovery, all
models use functional SR and require finite difference ap-
proximations for the derivatives as inputs. We use smoothed
finite differences as provided by the PySindy (de Silva et al.,
2020) implementation SmoothedFiniteDifference
with a smoothing window length of 15. Notebly, this imple-
mentation also provides methods to approximate temporal
derivatives under unevenly spaced sampling intervals. Be-
yond the baselines in Table 2, we attempted to compare to
AI Feynman (Udrescu et al., 2020; Weilbach et al., 2021),
deep symbolic regression (Petersen et al., 2021), multiple
regression genetic programming (Arnaldo et al., 2014), and
semantic backpropagation-based genetic programming (Vir-
golin et al., 2019). However, due to their large inference
time per equation we could not obtain sufficient results for a
reasonable comparison to other models. The relatively long
inference times of these methods are confirmed in La Cava
et al. (2021, Fig. 1), where they all average at above 2.5
hours per expression.

4.3. Metrics and Evaluation

Metrics. For performance evaluations we follow standard
procedures within the symbolic regression literature (see,
e.g., (La Cava et al., 2021)) and assess accuracy, expression
parsimony and inference time per equation. To compute

6

Predicting Ordinary Differential Equations with Transformers 7

3 2 1 0 1

ProGED
NSODE-eps

NSODE
PySR

EPLEX
GPGOMEA

SINDy
EHC

FE-AFP
AFP
FFX

FEAT
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(a) R2

0 10 20 30 40 50

ProGED
NSODE-eps

NSODE
PySR

EPLEX
GPGOMEA

SINDy
EHC

FE-AFP
AFP
FFX

FEAT
BSR

median ground truth complexity

(b) complexity

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
PySR

EPLEX
GPGOMEA

SINDy
EHC

FE-AFP
AFP
FFX

FEAT
BSR

(c) inference time (sec.)

Figure 2: Performance metrics on Classic. Median R2, complexity, and inference times on Classic with 192 irregularly
spaced points and different noise levels σ in the interpolation regime [0, T]. Rows in all plots are ordered according to best
R2 scores. In (a) the x-axis is restricted to the relevant interval [−3, 1]; missing performances (e.g., for BSR) fall below this
threshold.. The black dashed line in (b) denotes the median complexity across all samples in the testset.

3 2 1 0 1

ProGED
NSODE-eps

NSODE
FE-AFP

SINDy
GPGOMEA

AFP
PySR
EHC

EPLEX
FEAT

FFX
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(a) R2 on Classic

3 2 1 0 1

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EPLEX

EHC
FE-AFP

BSR
PySR
FEAT
AFP
FFX

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(b) R2 on Textbook

3 2 1 0 1

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EHC

PySR
AFP

FE-AFP
EPLEX

BSR
FFX

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(c) R2 on Large

Figure 3: Performance across testsets. Median R2 scores across predictions per model using 128 irregularly spaced time
points for different noise levels σ in the interpolation regime [0, T]. The x-axes are restricted to the relevant interval [−3, 1];
missing performances fall below this threshold.

accuracy metrics we first integrate the predicted ODE ex-
pression over the interval [0, T] using the same initial value
as in the ground truth trajectory. The integrated predicted
trajectory is then compared to the ground truth trajectory in
terms of the well-established coefficient of determination
(R2), the L1 and L∞ norm of their difference as well as
the average numpy.isclose as a possible alternative as
suggested by (Biggio et al., 2021)3. Expression parsimony
is measured in terms of equation complexity as introduced
in Section 3.1. In short, the complexity is the total number
of operators, variables, and constants in an expression.

Model selection. Many of the baseline methods as well as
NSODE predict a list of candidate ODE equations. To select
one final equation, we numerically integrate all predicted
candidates over the training interval [0, T] and select the
candidate with the best R2 score between the trajectory of
the predicted ODE and the actually observed trajectory.

Noise and irregular sampling. To assess resilience to

3For two arrays a and b we define the average is-
close as numpy.isclose(a, b).sum()/len(b) with
atol=1e-10 and rtol=0.05; a corresponds to predictions, b
corresponds to ground truth.

different signal-to-noise ratios we adopt the multiplicative
noise model introduced in d’Ascoli et al. (2022). This noise
model recognizes that zero-centered, fixed variance additive
noise fails to take into account the magnitude of yi and
may affect the signal-to-noise ratio too much or too little
depending on the scale of the observations. Instead we scale
the standard deviation of additive, zero-centered Gaussian
noise for yi by |yi|. This can equivalently be modeled as
multiplicative noise from a Gaussian distribution centered
on 1 where the choice of standard deviation σ determines
the signal-to-noise ratio with 1/σ. We evaluate performances
for σ ∈ {0.001, 0.005, 0.01, 0.015, 0.02}. We remark that
these noise levels go beyond the noise level used for training
NSODE-eps. Additionally, we imitate irregularly spaced
sampling intervals by uniformly randomly sub-sampling the
original solution trajectory to n ∈ {128, 192, 256} number
of time points within the training interval [0, T].

Extrapolation. One motivation for symbolic regression is
to find an expression that not only describes the observed
data well, but that can also be used for extrapolation. To as-
sess the extrapolation capabilities of the predicted equations,
we integrate the predicted ODEs on the adjacent interval
[T, Textra] and evaluate the accuracy metrics between the

7

Predicting Ordinary Differential Equations with Transformers 8

3 2 1 0 1

NSODE-eps
ProGED

PySR
EPLEX

NSODE
FEAT

FFX
EHC
AFP

GPGOMEA
BSR

SINDy
FE-AFP

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(a) R2 on Classic

3 2 1 0 1

ProGED
NSODE-eps

EPLEX
FE-AFP
NSODE

PySR
EHC

GPGOMEA
AFP

SINDy
BSR

FEAT
FFX

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(b) R2 on Textbook

3 2 1 0 1

NSODE-eps
PySR

ProGED
EHC

FE-AFP
EPLEX

AFP
NSODE

GPGOMEA
SINDy

FFX
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(c) R2 on Large

Figure 4: Extrapolation performance. Median R2 scores across predictions on different datasets with 128 randomly spaced
time points for different noise levels σ in the extrapolation regime [T, Textra]. The x-axes are restricted to the relevant
interval [−3, 1]; missing performances fall below this threshold.

dense, noise-free ground truth trajectory and the predicted
trajectory over this extrapolation interval.

5. Results
For a meaningful comparison, R2 scores are always reported
on the noiseless and equidistantly sampled trajectories after
solving the ground truth and predicted ODEs on [0, T] for
interpolation and on [T, Textra] for extrapolation, respec-
tively.

Interpolation performance. Figure 2 summarizes the
performance of all models for different noise levels in terms
of median accuracy (R2), complexity, and inference time
on Classic with n = 192 time points. Methods are ordered
by the best R2 across all noise levels for all three plots.
Our NSODE(-eps) and ProGED, the only other method not
relying on finite difference approximations, are substantially
more robust towards observation noise. NSODE-eps and
ProGED achieve essentially equal R2 values.

In terms of parsimony, several models predict expressions
of lower complexity than NSODE(-eps) and ProGED. How-
ever, the median complexities of NSODE(-eps) and ProGED
are in good agreement with the median complexity of the
ground truth expressions (see Figure 5 for full distributions).
Lower complexity is not necessarily better.

Finally, NSODE(-eps) is approximately one order of mag-
nitude faster than ProGED, faring in the upper-mid range
in terms of inference time overall. While inference time
is implementation and hardware dependent, we emphasize
the conceptual difference that with NSODE(-eps) a single
model can be used for all predictions, whereas all other
models need to be fit separately per equation.

These results qualitatively generalize across our datasets as
well as to different numbers of training points: Figure 3
shows that NSODE(-eps) again take 2nd and 3rd on Classic,
Textbook, and Large using n = 128 time points. Again,
NSODE-eps and ProGED perform similarly. Additional

results for all combinations of datasets and used time points
n, as well as evaluations of the alternative accuracy metrics
(L1, L∞ norm, average numpy.isclose) can be found
in Appendix E and corroborate this overall trend. We thus
answer our initial question in the affirmative: Models tai-
lored specifically to inferring dynamics are superior over
(even highly optimized) re-purposed functional SR methods.
NSODE-eps additionally scales efficiently.

Extrapolation. Results for all testsets for n = 128 time
points in the extrapolation regime are shown in Figure 4.
Even in this challenging setting, NSODE-eps performs com-
parably to ProGED on the small Classic and Textbook
testsets and is the only method producing reasonable results
on Large for noise levels up to σ = 0.01, which has been
used during training. Appendix E shows that these results
also generalize to n ∈ {192, 256}. While NSODE-eps
and ProGED again outperform other models, their accuracy
degrades on extrapolation tasks as the noise level increases.

Robustness. Figures 3 and 4 show that NSODE-eps is con-
siderably more robust to noisy observations than NSODE
and works well even for noise levels two times higher than
what has been used for training. It also generalizes well to
different numbers of (irregularly spaced) observations, and
even manages extrapolation beyond the observed time range
in a range of settings.

6. Limitations
Although NSODE comes with conceptual advantages over
classical symbolic regression approaches for the task of
ODE prediction, notably in that it does not require estimates
of temporal derivatives, the presented approach also comes
with a number of limitations. Perhaps most severely, we
restrict ourself to the arguably most simple class of dif-
ferential equations: explicit autonomous scalar first-order
ODEs. These equations serve as a good initial benchmark
but are limiting for applications in scientific discovery in
practice. This restriction represents a design choice for the

8

Predicting Ordinary Differential Equations with Transformers 9

scope of this paper and does not necessarily imply a fun-
damental limitation of the approach: On the one hand, the
model architecture can readily be extended to systems of
equations, on the other hand we want to emphasize that sys-
tems of equations showcase a much richer set of qualitative
behaviors, including oscillation and chaos, making model
extensions towards them potentially non-trivial. As such it
currently remains an open question and important challenge
for future work to explore the scalability of the presented
model paradigm for ODE prediction.

A second limitation of the presented model is that in its cur-
rent form it can not profit from multiple observations of the
same process. In other words, even if we have multiple ob-
served trajectories of the same process available, the model
can only be applied to each trajectory individually. Allow-
ing the model to profit from multiple observations appears
to be a promising step to further increase its robustness to
noise and irregularly sampled data.

7. Conclusion
We have developed NSODE, an efficiently scalable method
to infer ordinary differential equations ẏ = f(y) from a
single observed solution trajectory. NSODE follows the
successful paradigm of large-scale pretraining of attention-
based sequence-to-sequence models on essentially unlim-
ited amounts of simulated data, where the inputs are the
observed solution {(ti, yi)}ni=1 and the output is a symbolic
expression for f . Once trained, our method performs on
par or better than existing baselines and is an order of mag-
nitude faster than similarly accurate symbolic regression
techniques, which require a separate optimization for each
expression. NSODE is robust to different noise levels, the
number of irregularly spaced samples and recovers dynam-
ics that extrapolate beyond the observed time range. While
we have demonstrated the advantages of tailoring symbolic
regression techniques specifically to recovering dynamics,
interesting directions for future work include incorporating
domain knowledge, and extending the framework to par-
tial differential equations or high-dimensional systems of
coupled differential equations. Despite the huge potential
of automated dynamical law learning for scientific discov-
ery and hypothesis generation in the sciences, we caution
against blindly trusting model outputs to represent generaliz-
able real-world natural laws without rigorous experimental
validation.

8. Acknowledgements
SB is supported by the Helmholtz Association under the
joint research school “Munich School for Data Science
- MUDS”. This work was supported by the Helmholtz
Association’s Initiative and Networking Fund on the

HAICORE@FZJ partition.

References
Arnaldo, I., Krawiec, K., and O’Reilly, U.-M. Multiple

regression genetic programming. In Proceedings of the
2014 Annual Conference on Genetic and Evolutionary
Computation, pp. 879–886, 2014.

Atkinson, S., Subber, W., Wang, L., Khan, G., Hawi,
P., and Ghanem, R. Data-driven discovery of free-
form governing differential equations. arXiv preprint
arXiv:1910.05117, 2019.

Bakarji, J., Champion, K., Kutz, J. N., and Brunton, S. L.
Discovering governing equations from partial measure-
ments with deep delay autoencoders. arXiv preprint
arXiv:2201.05136, 2022.

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and
Parascandolo, G. Neural symbolic regression that
scales. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 936–945. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/biggio21a.html.

Brence, J., Todorovski, L., and Džeroski, S. Probabilis-
tic grammars for equation discovery. Knowledge-Based
Systems, 224:107077, 2021.

Brenner, M., Hess, F., Mikhaeil, J. M., Bereska, L. F., Mon-
fared, Z., Kuo, P.-C., and Durstewitz, D. Tractable den-
dritic rnns for reconstructing nonlinear dynamical sys-
tems. In International Conference on Machine Learning,
pp. 2292–2320. PMLR, 2022.

Bridewell, W., Langley, P., Todorovski, L., and Džeroski,
S. Inductive process modeling. Machine learning, 71(1):
1–32, 2008.

Brunton, S. L., Proctor, J. L., and Kutz, J. N. Discov-
ering governing equations from data by sparse iden-
tification of nonlinear dynamical systems. Proceed-
ings of the National Academy of Sciences, 113(15):
3932–3937, 2016. ISSN 0027-8424. doi: 10.1073/
pnas.1517384113. URL https://www.pnas.org/
content/113/15/3932.

Burlacu, B., Kronberger, G., and Kommenda, M. Operon
c++ an efficient genetic programming framework for sym-
bolic regression. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, pp.
1562–1570, 2020.

9

https://proceedings.mlr.press/v139/biggio21a.html
https://proceedings.mlr.press/v139/biggio21a.html
https://www.pnas.org/content/113/15/3932
https://www.pnas.org/content/113/15/3932

Predicting Ordinary Differential Equations with Transformers 10

Champion, K., Lusch, B., Kutz, J. N., and Brunton, S. L.
Data-driven discovery of coordinates and governing equa-
tions. Proceedings of the National Academy of Sciences,
116(45):22445–22451, 2019.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D.
Neural ordinary differential equations. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, pp. 6572–6583, 2018.

Costa, A., Dangovski, R., Dugan, O., Kim, S., Goyal, P.,
Soljačić, M., and Jacobson, J. Fast neural models for
symbolic regression at scale, 2021.

Cranmer, M. Pysr: Fast & parallelized symbolic regression
in python/julia, September 2020. URL http://doi.
org/10.5281/zenodo.4041459.

d’Ascoli, S., Kamienny, P.-A., Lample, G., and Charton, F.
Deep symbolic regression for recurrent sequences. arXiv
preprint arXiv:2201.04600, 2022.

D’Ascoli, S., Kamienny, P.-A., Lample, G., and Charton,
F. Deep symbolic regression for recurrence prediction.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S. (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp.
4520–4536. PMLR, 17–23 Jul 2022.

de Franca, F. O. and Aldeia, G. S. I. Interaction–
transformation evolutionary algorithm for symbolic re-
gression. Evolutionary computation, 29(3):367–390,
2021.

de Silva, B., Champion, K., Quade, M., Loiseau, J.-C., Kutz,
J. N., and Brunton, S. Pysindy: A python package for
the sparse identification of nonlinear dynamical systems
from data. Journal of Open Source Software, 5(49):1–4,
2020.

Gec, B., Omejc, N., Brence, J., Džeroski, S., and Todor-
ovski, L. Discovery of differential equations using prob-
abilistic grammars. In Discovery Science: 25th Inter-
national Conference, DS 2022, Montpellier, France, Oc-
tober 10–12, 2022, Proceedings, pp. 22–31. Springer,
2022.

Gilpin, W. Chaos as an interpretable benchmark for fore-
casting and data-driven modelling. In Thirty-fifth Confer-
ence on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021. URL https:
//openreview.net/forum?id=enYjtbjYJrf.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F.,

Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. Array programming with NumPy.
Nature, 2020.

Hindmarsh, A. and Laboratory, L. L. ODEPACK, a System-
atized Collection of ODE Solvers. Lawrence Livermore
National Laboratory, 1982. URL https://books.
google.de/books?id=9XWPmwEACAAJ.

Hunter, J. D. Matplotlib: A 2D graphics environment. Com-
puting in Science & Engineering, 2007.

Iakovlev, V., Heinonen, M., and Lähdesmäki, H. Learning
continuous-time {pde}s from sparse data with graph neu-
ral networks. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=aUX5Plaq7Oy.

Jin, Y., Fu, W., Kang, J., Guo, J., and Guo, J. Bayesian
symbolic regression. arXiv preprint arXiv:1910.08892,
2019.

Kamienny, P.-A., d’Ascoli, S., Lample, G., and Charton, F.
End-to-end symbolic regression with transformers. arXiv
preprint arXiv:2204.10532, 2022.

Keijzer, M. Improving symbolic regression with interval
arithmetic and linear scaling. In European Conference on
Genetic Programming, pp. 70–82. Springer, 2003.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bus-
sonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout,
J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing,
C., and Jupyter development team. Jupyter notebooks - a
publishing format for reproducible computational work-
flows. In Positioning and Power in Academic Publishing:
Players, Agents and Agendas, 2016.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021. doi: 10.48550/ARXIV.
2106.06898.

Koza, J. R. Genetic programming - on the programming
of computers by means of natural selection. Complex
adaptive systems. MIT Press, 1993. ISBN 978-0-262-
11170-6.

Koza, J. R. Genetic programming II: automatic discovery
of reusable programs. MIT press, 1994.

La Cava, W., Spector, L., and Danai, K. Epsilon-lexicase
selection for regression. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016, pp. 741–
748, 2016.

10

http://doi.org/10.5281/zenodo.4041459
http://doi.org/10.5281/zenodo.4041459
https://openreview.net/forum?id=enYjtbjYJrf
https://openreview.net/forum?id=enYjtbjYJrf
https://books.google.de/books?id=9XWPmwEACAAJ
https://books.google.de/books?id=9XWPmwEACAAJ
https://openreview.net/forum?id=aUX5Plaq7Oy
https://openreview.net/forum?id=aUX5Plaq7Oy

Predicting Ordinary Differential Equations with Transformers 11

La Cava, W., Singh, T. R., Taggart, J., Suri, S., and Moore,
J. H. Learning concise representations for regression by
evolving networks of trees. In International Conference
on Learning Representations, 2018.

La Cava, W., Orzechowski, P., Burlacu, B., de França, F. O.,
Virgolin, M., Jin, Y., Kommenda, M., and Moore, J. H.
Contemporary symbolic regression methods and their
relative performance. arXiv preprint arXiv:2107.14351,
2021.

La Cava, W. G. Automatic Development and Adaptation
of Concise Nonlinear Models for System Identification.
PhD thesis, University of Massachusetts Amherst, 2016.

Lample, G. and Charton, F. Deep learning for symbolic
mathematics. In International Conference on Learning
Representations, 2019.

Landajuela, M., Petersen, B. K., Kim, S., Santiago, C. P.,
Glatt, R., Mundhenk, N., Pettit, J. F., and Faissol, D.
Discovering symbolic policies with deep reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 5979–5989. PMLR, 2021.

Lejarza, F. and Baldea, M. Data-driven discovery of the gov-
erning equations of dynamical systems via moving hori-
zon optimization. Scientific Reports, 12(1):1–15, 2022.

Li, Z., Liu-Schiaffini, M., Kovachki, N., Liu, B., Azizzade-
nesheli, K., Bhattacharya, K., Stuart, A., and Anandku-
mar, A. Learning dissipative dynamics in chaotic systems,
2021.

Liu, J., Long, Z., Wang, R., Sun, J., and Dong, B. Rode-net:
learning ordinary differential equations with randomness
from data. arXiv preprint arXiv:2006.02377, 2020.

Long, Z., Lu, Y., and Dong, B. Pde-net 2.0: Learning pdes
from data with a numeric-symbolic hybrid deep network.
Journal of Computational Physics, 399:108925, 2019.

Lusch, B., Kutz, J. N., and Brunton, S. L. Deep learning
for universal linear embeddings of nonlinear dynamics.
Nature communications, 9(1):1–10, 2018.

Makke, N. and Chawla, S. Interpretable scientific discov-
ery with symbolic regression: A review. arXiv preprint
arXiv:2211.10873, 2022.

McConaghy, T. Ffx: Fast, scalable, deterministic symbolic
regression technology. In Genetic Programming Theory
and Practice IX, pp. 235–260. Springer, 2011.

McDermott, J., White, D. R., Luke, S., Manzoni, L., Castelli,
M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper,
R., De Jong, K., et al. Genetic programming needs better
benchmarks. In Proceedings of the 14th annual con-
ference on Genetic and evolutionary computation, pp.
791–798, 2012.

Meurer, A., Smith, C. P., Paprocki, M., Čertı́k, O., Kirpichev,
S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K.,
Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F.,
Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, v.,
Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and
Scopatz, A. Sympy: symbolic computing in python.
PeerJ Computer Science, 3, January 2017. ISSN 2376-
5992. doi: 10.7717/peerj-cs.103. URL https://doi.
org/10.7717/peerj-cs.103.

Mundhenk, T. N., Landajuela, M., Glatt, R., Santiago, C. P.,
Faissol, D. M., and Petersen, B. K. Symbolic regres-
sion via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053, 2021.

pandas development team, T. pandas-dev/pandas: Pan-
das, February 2020. URL https://doi.org/10.
5281/zenodo.3509134.

Park, Y., Gajamannage, K., Jayathilake, D. I., and Bollt,
E. M. Recurrent neural networks for dynamical systems:
Applications to ordinary differential equations, collec-
tive motion, and hydrological modeling. arXiv preprint
arXiv:2202.07022, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative
style, high-performance deep learning library. In NeurIPS,
2019.

Patel, D. and Ott, E. Using machine learning to anticipate
tipping points and extrapolate to post-tipping dynamics
of non-stationary dynamical systems. arXiv preprint
arXiv:2207.00521, 2022.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, É.
Scikit-learn: Machine learning in Python. JMLR, 2011.

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santi-
ago, C. P., Kim, S. K., and Kim, J. T. Deep symbolic
regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. In Proc. of the
International Conference on Learning Representations,
2021.

Qian, Z., Kacprzyk, K., and van der Schaar, M. D-code:
Discovering closed-form odes from observed trajectories.
In International Conference on Learning Representations,
2022.

11

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

Predicting Ordinary Differential Equations with Transformers 12

Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz, J. N.
Data-driven discovery of partial differential equations.
Science advances, 3(4):e1602614, 2017.

Sahoo, S., Lampert, C., and Martius, G. Learning equations
for extrapolation and control. In International Conference
on Machine Learning, pp. 4442–4450. PMLR, 2018.

Schmidt, M. and Lipson, H. Distilling free-form natural
laws from experimental data. science, 324(5923):81–85,
2009.

Schmidt, M. D. and Lipson, H. Age-fitness pareto opti-
mization. In Proceedings of the 12th annual conference
on Genetic and evolutionary computation, pp. 543–544,
2010.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Simidjievski, N., Todorovski, L., Kocijan, J., and Džeroski,
S. Equation discovery for nonlinear system identification.
IEEE Access, 8:29930–29943, 2020.

Todorovski, L. and Dzeroski, S. Declarative bias in equation
discovery. In Proceedings of the Fourteenth International
Conference on Machine Learning, pp. 376–384, 1997.

Tohme, T., Liu, D., and Youcef-Toumi, K. Gsr: A gen-
eralized symbolic regression approach. arXiv preprint
arXiv:2205.15569, 2022.

Udrescu, S.-M., Tan, A., Feng, J., Neto, O., Wu, T., and
Tegmark, M. Ai feynman 2.0: Pareto-optimal symbolic
regression exploiting graph modularity. arXiv preprint
arXiv:2006.10782, 2020.

Uy, N. Q., Hoai, N. X., O’Neill, M., McKay, R. I., and
Galván-López, E. Semantically-based crossover in ge-
netic programming: application to real-valued symbolic
regression. Genetic Programming and Evolvable Ma-
chines, 12(2):91–119, 2011.

Valipour, M., Panju, M., You, B., and Ghodsi, A. Sym-
bolicGPT: A Generative Transformer Model for Sym-
bolic Regression. In Preprint Arxiv, 2021. URL https:
//arxiv.org/abs/2106.14131.

van Rossum, G. and Drake, F. L. Python 3 Reference Man-
ual. CreateSpace, 2009.

Vastl, M., Kulhánek, J., Kubalı́k, J., Derner, E., and
Babuška, R. Symformer: End-to-end symbolic regres-
sion using transformer-based architecture. arXiv preprint
arXiv:2205.15764, 2022.

Virgolin, M., Alderliesten, T., Witteveen, C., and Bosman,
P. A. Scalable genetic programming by gene-pool opti-
mal mixing and input-space entropy-based building-block
learning. In Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1041–1048, 2017.

Virgolin, M., Alderliesten, T., and Bosman, P. A. Linear
scaling with and within semantic backpropagation-based
genetic programming for symbolic regression. In Pro-
ceedings of the genetic and evolutionary computation
conference, pp. 1084–1092, 2019.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Vlachas, P. R., Arampatzis, G., Uhler, C., and Koumout-
sakos, P. Multiscale simulations of complex systems
by learning their effective dynamics. Nature Machine
Intelligence, 4(4):359–366, 2022.

Vladislavleva, E. J., Smits, G. F., and Den Hertog, D. Order
of nonlinearity as a complexity measure for models gen-
erated by symbolic regression via pareto genetic program-
ming. IEEE Transactions on Evolutionary Computation,
13(2):333–349, 2008.

Waskom, M. L. seaborn: statistical data visualization. Jour-
nal of Open Source Software, 2021.

Weilbach, J., Gerwinn, S., Weilbach, C., and Kandemir, M.
Inferring the structure of ordinary differential equations.
arXiv preprint arXiv:2107.07345, 2021.

Wes McKinney. Data Structures for Statistical Computing in
Python. In Stéfan van der Walt and Jarrod Millman (eds.),
Proceedings of the 9th Python in Science Conference, pp.
56 – 61, 2010. doi: 10.25080/Majora-92bf1922-00a.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Transformers: State-of-the-
art natural language processing. In EMNLP, 2020.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,

12

https://arxiv.org/abs/2106.14131
https://arxiv.org/abs/2106.14131

Predicting Ordinary Differential Equations with Transformers 13

Yang, L., et al. Big bird: Transformers for longer se-
quences. Advances in Neural Information Processing
Systems, 33:17283–17297, 2020.

13

Predicting Ordinary Differential Equations with Transformers 14

A. Implementation Details
A.1. Rules to Resample Constants

As described in Section 3.1, we generate ODEs as unary-binary trees, convert them to infix notation and parse them into
a canonical form using sympy4. For each skeleton we then create up to 25 ODEs by sampling different values for the
constants. When resampling constants we want to ensure that we do not accidentally modify the skeleton as this would
additionally burden our model with resolving potential ambiguities in the grammar of ODE expressions. Furthermore, we
do not want to reintroduce duplicate samples on the skeleton level after carefully filtering them out previously. We therefore
introduce the following sampling rules for constants:

1. Do not sample constants of value 0.

2. When the original constant in the skeleton is negative, sample a negative constant, otherwise sample a positive constant.

3. Avoid base of 1 in power operations as 1x = 1.

4. Avoid exponent of 1 and -1 in power operations as x1 = x and x−1 = 1/x.

5. Avoid coefficients of value 1 and -1 as 1 · x = x and −1 · x = −x

6. Avoid divisions by 1 and -1 as x/1 = x and x/− 1 = −x

A.2. Data generation

As discussed in the main text, the choices of the maximum number of internal nodes per tree K, the choice and distribution
over Nbin binary operators, the choice and distribution over Nuna unary operators, the probability with which to decorate a
leaf with a symbol psym (versus a constant with 1− psym), and the distribution pc over constants uniquely determine the
training distribution over ODEs f . These choices can be viewed as flexible and semantically interpretable tuning knobs to
choose a prior over ODEs. For example, it may be known in a given context, that the system follows a “simple” law (small
K) and does not contain exponential rates of change (do not include exp in the unary operators), and so on. The choice of
the maximum number of operators per tree, how to sample the operators, and how to fill in the leaf nodes define the training
distribution, providing us with flexible and semantically meaningful tuning knobs to choose a prior over ODE systems for
our model. We summarize our choices in Tables 3 to 5, where U denotes the uniform distribution. Whenever a leaf node is
decorated with a constant, the distribution over constants is determined by first choosing with equal probability whether
to use an integer or a real value. In case of an integer, we sample it from pint, and in case of a real-valued constant we
sample it from preal shown in Table 3. Finally, when it comes to the numerical solutions of the sampled ODEs, we fixed the
parameters in Table 6 for our experiments.

We highlight that there is no such thing as “a natural distribution over equations” when it comes to ODEs. Hence, ad-hoc
choices have to be made in one way or another. However, it is important to note that neither our chosen range of integers
nor the range of real values for constants are in any way restrictive as they can be achieved by appropriate rescaling. In
particular, the model itself represents these constant values merely be non-numeric tokens and interpolates between those
anchor tokens (our two-hot encoding) to represent continuous values. Hence, the model is entirely agnostic to the actual
numerical range spanned by these fixed grid tokens, but the relative accuracy in recovering interpolated values will be
constant and thus scale with the absolute chosen range. Therefore, scaling pint and preal by essentially any power of 10 does
not affect our findings. Similarly, the chosen range of initial values (ymin

0 , ymax
0) is non-restrictive as one could simply scale

each observed trajectory to have its starting value lie within this range.

4While sympy greatly helps with parsing functions into a canonical form, we remark that this is a pragmatic, best effort approach.

Table 3: Parameter settings for the data generation.

parameter K Nbin Nuna psym pint preal

value 5 5 5 0.5 U({−10, . . . , 10} \ {0}) U((−10, 10))

14

Predicting Ordinary Differential Equations with Transformers 15

Table 4: Binary operators with their relative sampling frequencies

operator + − · ÷ pow

probability 0.2 0.2 0.2 0.2 0.2

Table 5: Unary operators with their relative sampling frequencies.

operator sin cos exp
√

log

probability 0.2 0.2 0.2 0.2 0.2

Table 6: Parameters for numerical solutions of sampled ODEs.

parameter Nconst Niv T Textra Ngrid (ymin
0 , ymax

0)

value 25 25 2 4 1024 (−5, 5)

A.3. Model

For our Transformer model we choose the implementation of BigBird (Zaheer et al., 2020) available in HuggingFace. The
model is trained on an internal academic compute cluster using 4 Nvidia A100 GPUs for 25 epochs after which we evaluate
the best model based on the validation loss. We choose a batchsize of 600 and use a linear learning rate warm-up over
10,000 optimization step after which we keep the learning rate constant at 10−4. For the fixed tokens that are used to decode
constants, we choose an equidistant grid −10 = x1 < x2 < . . . < xm = 10 with m = 21. This worked well empirically
and using fewer or more tokens did not seem to improve model performance substantially. We note that architecture and
hyperparameter choices correspond to ad-hoc decision and were not systematically optimized. We use the same choices in
all experiments.

While not relevant for our dataset as we check for convergence of the ODE solvers, we remark that the input-encoding
via IEEE-754 binary representations also graciously represents special values such as nan or inf without causing errors.
Those are thus valid inputs that may still provide useful training signal, e.g., “the solution of the ODE of interest goes to
inf quickly”.

B. Textbook equations dataset
Table 7 list the equations we collected from wikipedia, textbooks and lecture notes together with the initial values that we
solved them for. We can also see that almost all of these equations simplify to low-order polynomials.

15

Predicting Ordinary Differential Equations with Transformers 16

Table 7: Equations of the Textbook testset.

Name Equation f(x) simplified y0

autonomous Riccati 0.6 · y2 + 2 · y + 0.1 0.6 · y2 + 2 · y + 0.1 −0.2
autonomous Stuart-Landau −2.2/2 · y3 + 1.31 · y −1.1 · y3 + 1.31 · y 0.1
autonomous Bernoulli −1.3 · y + 2.1 · y2.2 −1.3 · y + 2.1 · y2.2 0.6
compound interest 0.1 · y 0.1 · y 4.9
Newton’s law of cooling −0.1 · (y − 3) 0.3− 0.1 · y 4.9
Logistic equation 0.23 · y · (1− y) 0.23 · (y − y2) 4.9
Logistic equation
with harvesting 0.23 · y · (1− 0.33 · y)− 0.5 0.23 · y − 0.76 · y2 − 0.5 3.5

Logistic equation
with harvesting 2 2 · y · (1− y/3)− 0.5 2 · y − 0.66 · y2 − 0.5 0.7

Solow-Swan
y0.5 · (0.9 · 8− (3 + 2.5)·
y1−0.5)

7.2 · y0.5 − 5.5 · y 0.1

Tank draining −
√
2 · 9.81 · (2/9)2 · √y −0.21 · y0.5 1

Draining water
through a funnel

−(0.52/4) ·
√
2 · 9.81·

(sin 1/ cos 1)2 · y−1.5 −0.67/y1.5 3

velocity of a body
thrown vertically upwards −9.81− 0.9 · y/8.2 −0.10 · y − 9.81 0.1

C. Dataset statistics
We provide an overview over the complexity distribution and the absolute frequency of all operators (after simplification)
for all datasets in Figure 5. We can see that our self-generated dataset covers by far the larges complexity whereas both
complexities and operator diversity are much lower for equations in the Classic and Textbook ODEs.

D. Baselines
We here describe more detail on the optimization of the baseline comparison models. Most models have a number of
hyperparameters which need to be optimized per equation. Unless specified below, we use the default hyperparameters values
and hyperparameter grid search settings specified in the implementation alongside the benchmark study by (La Cava et al.,
2021). Whenever supported by a model’s implementation we use GridSearchCV from scikit-learn (Pedregosa
et al., 2011) for hyperparameter optimization. For this optimization we split the observed trajectory into a training interval
[0, 1] and a validation interval [1, 2]. In order to obtain results in reasonable time, we set a runtime limit of 3 minutes per
hyperparameter optimization run.

AFP, EHC, EPLEX & FE AFP.
op list=[‘n’,‘v’,‘+’,‘-’,‘*’,‘/’,‘exp’,‘log’,‘2’,‘3’, ‘sqrt’,‘sin’,‘cos’]

FEAT.
functions= ‘+, -, *, /, ˆ2, ˆ3, sqrt, sin, cos, exp, log, ˆ’

PySR.
niterations=40
binary operators=[‘plus’, ‘sub’, ‘mult’, ‘pow’, ‘div’]
unary operators=[‘cos’, ‘exp’, ‘sin’, ‘neg’, ‘log’, ‘sqrt’]

ProGED.
sample size=64
task type = ‘differential’

SINDy. We use the implementation available in PySINDy (de Silva et al., 2020) and instantiate the basis functions with
polynomials up to degree 10 as well as all unary operators listed in Table 5. When fitting SINDy to data we often encountered
numerical issues especially when using high-degree polynomial or the exponential function. To attenuate such issues discard

16

Predicting Ordinary Differential Equations with Transformers 17

Training data

0 5 10 15 20 25 30
complexity

101

106

co
un

t

C
ad

d
co

s
di

v
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

106

107

108

109

co
un

t

Testset Large

0 5 10 15 20 25 30
complexity

0
2
4
6
8

10

co
un

t

C
ad

d
co

s
di

v
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

0

250

500

co
un

t

Testset Classic

0 5 10 15 20 25 30
complexity

0

5

10

co
un

t

C
ad

d
co

s
di

v
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

0

50

100

co
un

t

Testset Textbook

0 5 10 15 20 25 30
complexity

0.0

2.5

5.0

co
un

t

C
ad

d
co

s
di

v
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

0

20

40

co
un

t

Figure 5: Distribution of complexity and operators for all datasets.

the particular basis function that raised a numerical error and restart the fitting process. We remark that removing basis
functions and restarting the optimization is practically feasible for SINDy due to its extremely fast runtime. At the same
time, being a regression based model, SINDy can (in contrast to genetic programming based models) not easily recover
from a numerical issue caused by a particular basis function. We run a separate full grid search per (sample x noise level x
number of time points) over the following hyperparameters and respective values (these all include the default values):

• optimizer-threshold (np.logspace(-5, 0, 10)): Minimum magnitude for a coefficient in the weight vector to not
be zeroed out.

• optimizer-alpha ([0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2]): L2 regularizer on parameters.

• finite differences order ([2, 3, 5, 7, 9]): Order of finite difference approximation.

• maximum number of optimization iterations ([20, 100]): Maximum number of optimization steps.

Model selection. Most models provide a list of candidate solutions for each sample, e.g. the pareto-front (accuracy vs
complexity tradeoff) in genetic processing based methods. To obtain a single predicted equation per model we use the model
selection procedure outlined in 3.2.

17

Predicting Ordinary Differential Equations with Transformers 18

E. Detailed results
Here we provide detailed results on all experimental conditions across all datasets. We start with results on the interpolation
interval [0, T] in Appendix E.1 before showing results on the extrapolation interval [T, Textra] in Appendix E.1. To facilitate
navigation we provide an overview in Table 8.

Table 8: Result overview.

Dataset interval fig. number

Classic interpolation Figure 6
Textbook interpolation Figure 7
Large interpolation Figure 8
Classic extrapolation Figure 9
Textbook extrapolation Figure 10
Large extrapolation Figure 11

E.1. Interpolation results

Across all datasets, the direct comparison of results with n = 128 time-points vs n = 192 time-points vs n = 256
time-points reveals a gradual performance degradation of models relying on finite difference approximation with increasing
sparsity of the observed data both in terms of R2 (top rows in Figures 6 to 8). NSODE-eps and ProGED on the other hand
perform consistently well across these settings.

18

Predicting Ordinary Differential Equations with Transformers 19

3 2 1 0 1

ProGED
NSODE-eps

NSODE
FE-AFP

SINDy
GPGOMEA

AFP
PySR
EHC

EPLEX
FEAT

FFX
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(a) R2, n=128

3 2 1 0 1

ProGED
NSODE-eps

NSODE
PySR

EPLEX
GPGOMEA

SINDy
EHC

FE-AFP
AFP
FFX

FEAT
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(b) R2, n=192

3 2 1 0 1

ProGED
NSODE-eps

NSODE
PySR
EHC

GPGOMEA
SINDy

FE-AFP
AFP

EPLEX
FFX

FEAT
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(c) R2, n=256

0.0 0.1 0.2 0.3 0.4

ProGED
NSODE-eps

NSODE
FE-AFP

SINDy
GPGOMEA

AFP
PySR
EHC

EPLEX
FEAT

FFX
BSR

(d) L1, n=128

0.0 0.2 0.4 0.6

ProGED
NSODE-eps

NSODE
PySR

EPLEX
GPGOMEA

SINDy
EHC

FE-AFP
AFP
FFX

FEAT
BSR

(e) L1, n=192

0.0 0.1 0.2 0.3 0.4

ProGED
NSODE-eps

NSODE
PySR
EHC

GPGOMEA
SINDy

FE-AFP
AFP

EPLEX
FFX

FEAT
BSR

(f) L1, n=256

0.0 0.2 0.4 0.6 0.8

ProGED
NSODE-eps

NSODE
FE-AFP

SINDy
GPGOMEA

AFP
PySR
EHC

EPLEX
FEAT

FFX
BSR

(g) L∞, n=128

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ProGED
NSODE-eps

NSODE
PySR

EPLEX
GPGOMEA

SINDy
EHC

FE-AFP
AFP
FFX

FEAT
BSR

(h) L∞, n=192

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ProGED
NSODE-eps

NSODE
PySR
EHC

GPGOMEA
SINDy

FE-AFP
AFP

EPLEX
FFX

FEAT
BSR

(i) L∞, n=256

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
FE-AFP

SINDy
GPGOMEA

AFP
PySR
EHC

EPLEX
FEAT

FFX
BSR

(j) isclose/n, n=128

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
PySR

EPLEX
GPGOMEA

SINDy
EHC

FE-AFP
AFP
FFX

FEAT
BSR

(k) isclose/n, n=192

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
PySR
EHC

GPGOMEA
SINDy

FE-AFP
AFP

EPLEX
FFX

FEAT
BSR

(l) isclose/n, n=256

0 10 20 30 40 50

ProGED
NSODE-eps

NSODE
FE-AFP

SINDy
GPGOMEA

AFP
PySR
EHC

EPLEX
FEAT

FFX
BSR

median ground truth complexity

(m) complexity, n=128

0 10 20 30 40 50

ProGED
NSODE-eps

NSODE
PySR

EPLEX
GPGOMEA

SINDy
EHC

FE-AFP
AFP
FFX

FEAT
BSR

median ground truth complexity

(n) complexity, n=192

0 10 20 30 40 50

ProGED
NSODE-eps

NSODE
PySR
EHC

GPGOMEA
SINDy

FE-AFP
AFP

EPLEX
FFX

FEAT
BSR

median ground truth complexity

(o) complexity, n=256

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
FE-AFP

SINDy
GPGOMEA

AFP
PySR
EHC

EPLEX
FEAT

FFX
BSR

(p) inference time [sec], n=128

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
PySR

EPLEX
GPGOMEA

SINDy
EHC

FE-AFP
AFP
FFX

FEAT
BSR

(q) inference time [sec], n=192

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
PySR
EHC

GPGOMEA
SINDy

FE-AFP
AFP

EPLEX
FFX

FEAT
BSR

(r) inference time [sec], n=256

Figure 6: Interpolation. Median scores on Classic for n irregularly sampled time points across different noise levels σ.

19

Predicting Ordinary Differential Equations with Transformers 20

3 2 1 0 1

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EPLEX

EHC
FE-AFP

BSR
PySR
FEAT
AFP
FFX

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(a) R2, n=128

3 2 1 0 1

ProGED
NSODE-eps

NSODE
EPLEX
SINDy

GPGOMEA
EHC

FE-AFP
PySR

AFP
BSR
FFX

FEAT

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(b) R2, n=192

3 2 1 0 1

ProGED
NSODE-eps

NSODE
FE-AFP

GPGOMEA
SINDy

EPLEX
PySR
EHC
AFP
FFX

FEAT
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(c) R2, n=256

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EPLEX

EHC
FE-AFP

BSR
PySR
FEAT
AFP
FFX

(d) L1, n=128

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ProGED
NSODE-eps

NSODE
EPLEX
SINDy

GPGOMEA
EHC

FE-AFP
PySR

AFP
BSR
FFX

FEAT

(e) L1, n=192

0.0 0.2 0.4 0.6 0.8

ProGED
NSODE-eps

NSODE
FE-AFP

GPGOMEA
SINDy

EPLEX
PySR
EHC
AFP
FFX

FEAT
BSR

(f) L1, n=256

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EPLEX

EHC
FE-AFP

BSR
PySR
FEAT
AFP
FFX

(g) L∞, n=128

0.0 0.5 1.0 1.5 2.0

ProGED
NSODE-eps

NSODE
EPLEX
SINDy

GPGOMEA
EHC

FE-AFP
PySR

AFP
BSR
FFX

FEAT

(h) L∞, n=192

0.00 0.25 0.50 0.75 1.00 1.25 1.50

ProGED
NSODE-eps

NSODE
FE-AFP

GPGOMEA
SINDy

EPLEX
PySR
EHC
AFP
FFX

FEAT
BSR

(i) L∞, n=256

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EPLEX

EHC
FE-AFP

BSR
PySR
FEAT
AFP
FFX

(j) isclose/n, n=128

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
EPLEX
SINDy

GPGOMEA
EHC

FE-AFP
PySR

AFP
BSR
FFX

FEAT

(k) isclose/n, n=192

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
FE-AFP

GPGOMEA
SINDy

EPLEX
PySR
EHC
AFP
FFX

FEAT
BSR

(l) isclose/n, n=256

0 10 20 30 40 50 60

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EPLEX

EHC
FE-AFP

BSR
PySR
FEAT
AFP
FFX

median ground truth complexity

(m) complexity, n=128

0 20 40 60

ProGED
NSODE-eps

NSODE
EPLEX
SINDy

GPGOMEA
EHC

FE-AFP
PySR

AFP
BSR
FFX

FEAT

median ground truth complexity

(n) complexity, n=192

0 20 40 60 80

ProGED
NSODE-eps

NSODE
FE-AFP

GPGOMEA
SINDy

EPLEX
PySR
EHC
AFP
FFX

FEAT
BSR

median ground truth complexity

(o) complexity, n=256

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EPLEX

EHC
FE-AFP

BSR
PySR
FEAT
AFP
FFX

(p) inference time [sec], n=128

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
EPLEX
SINDy

GPGOMEA
EHC

FE-AFP
PySR

AFP
BSR
FFX

FEAT

(q) inference time [sec], n=192

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
FE-AFP

GPGOMEA
SINDy

EPLEX
PySR
EHC
AFP
FFX

FEAT
BSR

(r) inference time [sec], n=256

Figure 7: Interpolation. Median scores on Textbook for n irregularly sampled time points across different noise levels σ.

20

Predicting Ordinary Differential Equations with Transformers 21

3 2 1 0 1

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EHC

PySR
AFP

FE-AFP
EPLEX

BSR
FFX

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(a) R2, n=128

3 2 1 0 1

ProGED
NSODE-eps

NSODE
SINDy

EHC
GPGOMEA

PySR
EPLEX

FE-AFP
AFP
FFX
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(b) R2, n=192

3 2 1 0 1

ProGED
NSODE-eps

NSODE
SINDy
PySR

GPGOMEA
EHC
AFP

FE-AFP
EPLEX

FFX
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(c) R2, n=256

0.0 0.1 0.2 0.3 0.4 0.5

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EHC

PySR
AFP

FE-AFP
EPLEX

BSR
FFX

(d) L1, n=128

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ProGED
NSODE-eps

NSODE
SINDy

EHC
GPGOMEA

PySR
EPLEX

FE-AFP
AFP
FFX
BSR

(e) L1, n=192

0.0 0.1 0.2 0.3 0.4 0.5

ProGED
NSODE-eps

NSODE
SINDy
PySR

GPGOMEA
EHC
AFP

FE-AFP
EPLEX

FFX
BSR

(f) L1, n=256

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EHC

PySR
AFP

FE-AFP
EPLEX

BSR
FFX

(g) L∞, n=128

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
SINDy

EHC
GPGOMEA

PySR
EPLEX

FE-AFP
AFP
FFX
BSR

(h) L∞, n=192

0.0 0.2 0.4 0.6 0.8

ProGED
NSODE-eps

NSODE
SINDy
PySR

GPGOMEA
EHC
AFP

FE-AFP
EPLEX

FFX
BSR

(i) L∞, n=256

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EHC

PySR
AFP

FE-AFP
EPLEX

BSR
FFX

(j) isclose/n, n=128

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
SINDy

EHC
GPGOMEA

PySR
EPLEX

FE-AFP
AFP
FFX
BSR

(k) isclose/n, n=192

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

NSODE
SINDy
PySR

GPGOMEA
EHC
AFP

FE-AFP
EPLEX

FFX
BSR

(l) isclose/n, n=256

0 10 20 30 40 50

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EHC

PySR
AFP

FE-AFP
EPLEX

BSR
FFX

median ground truth complexity

(m) complexity, n=128

0 10 20 30 40 50

ProGED
NSODE-eps

NSODE
SINDy

EHC
GPGOMEA

PySR
EPLEX

FE-AFP
AFP
FFX
BSR

median ground truth complexity

(n) complexity, n=192

0 10 20 30 40 50

ProGED
NSODE-eps

NSODE
SINDy
PySR

GPGOMEA
EHC
AFP

FE-AFP
EPLEX

FFX
BSR

median ground truth complexity

(o) complexity, n=256

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
SINDy

GPGOMEA
EHC

PySR
AFP

FE-AFP
EPLEX

BSR
FFX

(p) inference time [sec], n=128

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
SINDy

EHC
GPGOMEA

PySR
EPLEX

FE-AFP
AFP
FFX
BSR

(q) inference time [sec], n=192

10
0

10
1

10
2

10
3

ProGED
NSODE-eps

NSODE
SINDy
PySR

GPGOMEA
EHC
AFP

FE-AFP
EPLEX

FFX
BSR

(r) inference time [sec], n=256

Figure 8: Interpolation. Median scores on Large for n irregularly sampled time points across different noise levels σ.

21

Predicting Ordinary Differential Equations with Transformers 22

E.2. Extrapolation results

Performance evaluation on the extrapolation interval [T, Textra].

3 2 1 0 1

NSODE-eps
ProGED
NSODE

GPGOMEA
PySR
FEAT

FFX
EHC

FE-AFP
AFP

EPLEX
SINDy

BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(a) R2, n=128

3 2 1 0 1

NSODE-eps
ProGED

PySR
EPLEX

NSODE
FEAT

FFX
EHC
AFP

GPGOMEA
BSR

SINDy
FE-AFP

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(b) R2, n=192

3 2 1 0 1

ProGED
NSODE-eps

EHC
PySR

EPLEX
NSODE

AFP
FEAT

FFX
FE-AFP

GPGOMEA
SINDy

BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(c) R2, n=256

0.00 0.05 0.10 0.15 0.20 0.25 0.30

NSODE-eps
ProGED
NSODE

GPGOMEA
PySR
FEAT

FFX
EHC

FE-AFP
AFP

EPLEX
SINDy

BSR

(d) L1, n=128

0.0 0.1 0.2 0.3 0.4 0.5 0.6

NSODE-eps
ProGED

PySR
EPLEX

NSODE
FEAT

FFX
EHC
AFP

GPGOMEA
BSR

SINDy
FE-AFP

(e) L1, n=192

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ProGED
NSODE-eps

EHC
PySR

EPLEX
NSODE

AFP
FEAT

FFX
FE-AFP

GPGOMEA
SINDy

BSR

(f) L1, n=256

0.0 0.2 0.4 0.6

NSODE-eps
ProGED
NSODE

GPGOMEA
PySR
FEAT

FFX
EHC

FE-AFP
AFP

EPLEX
SINDy

BSR

(g) L∞, n=128

0.0 0.5 1.0 1.5 2.0

NSODE-eps
ProGED

PySR
EPLEX

NSODE
FEAT

FFX
EHC
AFP

GPGOMEA
BSR

SINDy
FE-AFP

(h) L∞, n=192

0.0 0.2 0.4 0.6 0.8

ProGED
NSODE-eps

EHC
PySR

EPLEX
NSODE

AFP
FEAT

FFX
FE-AFP

GPGOMEA
SINDy

BSR

(i) L∞, n=256

0.0 0.2 0.4 0.6 0.8 1.0

NSODE-eps
ProGED
NSODE

GPGOMEA
PySR
FEAT

FFX
EHC

FE-AFP
AFP

EPLEX
SINDy

BSR

(j) isclose/n, n=128

0.0 0.2 0.4 0.6 0.8 1.0

NSODE-eps
ProGED

PySR
EPLEX

NSODE
FEAT

FFX
EHC
AFP

GPGOMEA
BSR

SINDy
FE-AFP

(k) isclose/n, n=192

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

EHC
PySR

EPLEX
NSODE

AFP
FEAT

FFX
FE-AFP

GPGOMEA
SINDy

BSR

(l) isclose/n, n=256

Figure 9: Extrapolation. Median scores on Classic for n irregularly sampled time points across different noise levels σ.

22

Predicting Ordinary Differential Equations with Transformers 23

3 2 1 0 1

ProGED
EPLEX

NSODE-eps
PySR
EHC

GPGOMEA
FE-AFP

AFP
NSODE

SINDy
BSR

FEAT
FFX

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(a) R2, n=128

3 2 1 0 1

ProGED
NSODE-eps

EPLEX
FE-AFP
NSODE

PySR
EHC

GPGOMEA
AFP

SINDy
BSR

FEAT
FFX

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(b) R2, n=192

3 2 1 0 1

ProGED
NSODE-eps

EPLEX
AFP

GPGOMEA
NSODE

PySR
FE-AFP

EHC
SINDy

BSR
FFX

FEAT

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(c) R2, n=256

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ProGED
EPLEX

NSODE-eps
PySR
EHC

GPGOMEA
FE-AFP

AFP
NSODE

SINDy
BSR

FEAT
FFX

(d) L1, n=128

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ProGED
NSODE-eps

EPLEX
FE-AFP
NSODE

PySR
EHC

GPGOMEA
AFP

SINDy
BSR

FEAT
FFX

(e) L1, n=192

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ProGED
NSODE-eps

EPLEX
AFP

GPGOMEA
NSODE

PySR
FE-AFP

EHC
SINDy

BSR
FFX

FEAT

(f) L1, n=256

0.00 0.25 0.50 0.75 1.00 1.25

ProGED
EPLEX

NSODE-eps
PySR
EHC

GPGOMEA
FE-AFP

AFP
NSODE

SINDy
BSR

FEAT
FFX

(g) L∞, n=128

0.0 0.5 1.0 1.5 2.0

ProGED
NSODE-eps

EPLEX
FE-AFP
NSODE

PySR
EHC

GPGOMEA
AFP

SINDy
BSR

FEAT
FFX

(h) L∞, n=192

0.0 0.2 0.4 0.6 0.8

ProGED
NSODE-eps

EPLEX
AFP

GPGOMEA
NSODE

PySR
FE-AFP

EHC
SINDy

BSR
FFX

FEAT

(i) L∞, n=256

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
EPLEX

NSODE-eps
PySR
EHC

GPGOMEA
FE-AFP

AFP
NSODE

SINDy
BSR

FEAT
FFX

(j) isclose/n, n=128

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

EPLEX
FE-AFP
NSODE

PySR
EHC

GPGOMEA
AFP

SINDy
BSR

FEAT
FFX

(k) isclose/n, n=192

0.0 0.2 0.4 0.6 0.8 1.0

ProGED
NSODE-eps

EPLEX
AFP

GPGOMEA
NSODE

PySR
FE-AFP

EHC
SINDy

BSR
FFX

FEAT

(l) isclose/n, n=256

Figure 10: Extrapolation. Median scores on Textbook for n irregularly sampled time points across different noise levels σ.

23

Predicting Ordinary Differential Equations with Transformers 24

3 2 1 0 1

NSODE-eps
ProGED

PySR
GPGOMEA

EHC
FE-AFP
NSODE

AFP
EPLEX
SINDy

FFX
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(a) R2, n=128

3 2 1 0 1

NSODE-eps
PySR

ProGED
EHC

FE-AFP
EPLEX

AFP
NSODE

GPGOMEA
SINDy

FFX
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(b) R2, n=192

3 2 1 0 1

NSODE-eps
ProGED

PySR
EPLEX

EHC
GPGOMEA

AFP
FE-AFP

SINDy
NSODE

FFX
BSR

= 0.001
= 0.005
= 0.01

= 0.015
= 0.02

(c) R2, n=256

0.0 0.1 0.2 0.3 0.4 0.5

NSODE-eps
ProGED

PySR
GPGOMEA

EHC
FE-AFP
NSODE

AFP
EPLEX
SINDy

FFX
BSR

(d) L1, n=128

0.0 0.1 0.2 0.3 0.4

NSODE-eps
PySR

ProGED
EHC

FE-AFP
EPLEX

AFP
NSODE

GPGOMEA
SINDy

FFX
BSR

(e) L1, n=192

0.0 0.1 0.2 0.3 0.4

NSODE-eps
ProGED

PySR
EPLEX

EHC
GPGOMEA

AFP
FE-AFP

SINDy
NSODE

FFX
BSR

(f) L1, n=256

0.0 0.2 0.4 0.6 0.8 1.0 1.2

NSODE-eps
ProGED

PySR
GPGOMEA

EHC
FE-AFP
NSODE

AFP
EPLEX
SINDy

FFX
BSR

(g) L∞, n=128

0.0 0.2 0.4 0.6 0.8 1.0

NSODE-eps
PySR

ProGED
EHC

FE-AFP
EPLEX

AFP
NSODE

GPGOMEA
SINDy

FFX
BSR

(h) L∞, n=192

0.0 0.2 0.4 0.6 0.8

NSODE-eps
ProGED

PySR
EPLEX

EHC
GPGOMEA

AFP
FE-AFP

SINDy
NSODE

FFX
BSR

(i) L∞, n=256

0.0 0.2 0.4 0.6 0.8 1.0

NSODE-eps
ProGED

PySR
GPGOMEA

EHC
FE-AFP
NSODE

AFP
EPLEX
SINDy

FFX
BSR

(j) isclose/n, n=128

0.0 0.2 0.4 0.6 0.8 1.0

NSODE-eps
PySR

ProGED
EHC

FE-AFP
EPLEX

AFP
NSODE

GPGOMEA
SINDy

FFX
BSR

(k) isclose/n, n=192

0.0 0.2 0.4 0.6 0.8 1.0

NSODE-eps
ProGED

PySR
EPLEX

EHC
GPGOMEA

AFP
FE-AFP

SINDy
NSODE

FFX
BSR

(l) isclose/n, n=256

Figure 11: Extrapolation. Median scores on Large for n irregularly sampled time points across different noise levels σ.

24

Predicting Ordinary Differential Equations with Transformers 25

F. Example trajectories
Below we provide a few selected trajectories alongside predictions obtained from NSODE-eps on dataset Large with noise
of σ = 0.01 and n = 192 sampled time points. There are a few aspects to note: firstly, despite being autonomous scalar
ODEs whose limit behavior is confined to convergence to an equilibrium or divergence, we can see that this function
class can still exhibit rich and highly non-linear behavior before reaching this limit. This is perhaps most pronounced in
Figure 12a and Figure 12c. Secondly, even though in our evaluation the two accuracy metrics R2 and average isclose
appear to be highly correlated we can see that they do not always capture the same phenomenon, compare e.g. in Figure 12b,
Figure 12d and Figure 12f.

0 1 2 3 4
t

0

1

2

3

4

5

y(
t)

observed data
y = f(y) = sin(sqrt(y) - sin(6.0*y))
y = f(y) = sin(sqrt(y) + cos(6.33*y))
R2

i = 0.987
isclosei = 1.000
R2

e = 0.996
isclosee = 1.000

(a)

0 1 2 3 4
t

0.0

0.5

1.0

1.5

2.0

y(
t)

observed data
y = f(y) = y/sin(1.32**(y**y) + 8.53)
y = f(y) = -y - 3.39*y*exp(-y**y)
R2

i = 0.998
isclosei = 0.352
R2

e = 0.995
isclosee = 0.127

(b)

0 1 2 3 4
t

0.0

2.5

5.0

7.5

10.0

12.5

y(
t)

observed data
y = f(y) = exp(exp(cos(y)))
y = f(y) = y**(-4.19) + exp(exp(cos(y)))
R2

i = 1.000
isclosei = 1.000
R2

e = 1.000
isclosee = 1.000

(c)

0 1 2 3 4
t

0.0

0.5

1.0

1.5

2.0

y(
t)

observed data
y = f(y) = -y**8.6*(y - 9.0)*(y + 0.927)
y = f(y) = y**(y**log(y) + 5.49)
R2

i = -1.374
isclosei = 1.000
R2

e = -1.263
isclosee = 0.922

(d)

0 1 2 3 4
t

300000

200000

100000

0

y(
t)

observed data
y = f(y) = 0.162*7.0**y*y + 2.78*y - 10.0
y = f(y) = 2.81*y + exp(y) - 9.27
R2

i = 1.000
isclosei = 1.000
R2

e = 0.994
isclosee = 0.721

(e)

0 1 2 3 4
t

0

5

10

15

20

25

30

y(
t)

observed data
y = f(y) = 8.0*y - 6.0*(1/y)**8.0*exp(1.07*y)
y = f(y) = 7.12*y - 0.415*(1/y)**8.81*exp(1.32*y)
R2

i = 0.891
isclosei = 0.029
R2

e = -33643628726365878333426630656.000
isclosee = 0.004

(f)

Figure 12: Different example trajectories and trajectories predicted by NSODE-eps with noise standard deviation of σ = 0.01
and n = 192 irregularly sampled points. Green and red area correspond to interpolation and extrapolation regimes.

G. Open Source Software acknowledgement
For this research project we heavily relied on available open source software packages which we list in Table 9.

Table 9: Overview of software packages we used in our work.

Name Reference

Python (van Rossum & Drake, 2009)
PyTorch (Paszke et al., 2019)
Numpy (Harris et al., 2020)
Pandas (pandas development team, 2020; Wes McKinney, 2010)
Jupyter (Kluyver et al., 2016)

Matplotlib (Hunter, 2007)
Scikit-learn (Pedregosa et al., 2011)

Seaborn (Waskom, 2021)
SciPy (Virtanen et al., 2020)

SymPy (Meurer et al., 2017)
HuggingFace (Wolf et al., 2020)

h5py https://www.h5py.org/

25

https://www.h5py.org/

