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Abstract

The sheer size of modern neural networks makes
model serving a serious computational challenge.
A popular class of compression techniques over-
comes this challenge by pruning or sparsifying
the weights of pretrained networks. While use-
ful, these techniques often face serious tradeoffs
between computational requirements and com-
pression quality. In this work, we propose a novel
optimization-based pruning framework that con-
siders the combined effect of pruning (and updat-
ing) multiple weights subject to a sparsity con-
straint. Our approach, CHITA, extends the clas-
sical Optimal Brain Surgeon framework and re-
sults in significant improvements in speed, mem-
ory, and performance over existing optimization-
based approaches for network pruning. CHITA’s
main workhorse performs combinatorial optimiza-
tion updates on a memory-friendly representation
of local quadratic approximation(s) of the loss
function. On a standard benchmark of pretrained
models and datasets, CHITA leads to superior
sparsity-accuracy tradeoffs than competing meth-
ods. For example, for MLPNet with only 2% of
the weights retained, our approach improves the
accuracy by 63% relative to the state of the art.
Furthermore, when used in conjunction with fine-
tuning SGD steps, our method achieves significant
accuracy gains over state-of-the-art approaches.
Our code is publicly available at: https://
github.com/mazumder-lab/CHITA.
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1. Introduction
Modern neural networks tend to use a large number of pa-
rameters (Devlin et al., 2018; He et al., 2016), which leads
to high computational costs during inference. A widely used
approach to mitigate inference costs is to prune or sparsify
pre-trained networks by removing parameters (Blalock et al.,
2020). The goal is to obtain a network with significantly
fewer parameters and minimal loss in performance. This
makes model storage and deployment cheaper and easier,
especially in resource-constrained environments.

Generally speaking, there are two main approaches for neu-
ral net pruning: (i) magnitude-based and (ii) impact-based.
Magnitude-based heuristic methods (e.g., Hanson & Pratt,
1988; Mozer & Smolensky, 1989; Gordon et al., 2020) use
the absolute value of weight to determine its importance
and whether or not it should be pruned. Since magnitude
alone may not be a perfect proxy for weight relevance, al-
ternatives have been proposed. To this end, impact-based
pruning methods (e.g. LeCun et al., 1989; Hassibi & Stork,
1992; Singh & Alistarh, 2020) remove weights based on
how much their removal would impact the loss function,
often using second-order information on the loss function.
Both of these approaches, however, may fall short of con-
sidering the joint effect of removing (and updating) multiple
weights simultaneously. The recent method CBS (Combi-
natorial Brain Surgeon) (Yu et al., 2022) is an optimization-
based approach that considers the joint effect of multiple
weights. The authors show that CBS leads to a boost in the
performance of the pruned models. However, CBS can be
computationally expensive: it makes use of a local model
based on the second-order (Hessian) information of the loss
function, which can be prohibitively expensive in terms of
runtime and/or memory (e.g., CBS takes hours to prune a
network with 4.2 million parameters).

In this work, we propose CHITA (Combinatorial Hessian-
free Iterative Thresholding Algorithm), an efficient
optimization-based framework for network pruning at scale.
Our approach follows earlier works that consider a local
quadratic approximation of the loss function based on the
second-order Hessian information. Different from earlier
work however, we make use of a simple yet important obser-
vation with which we can avoid computing and storing the
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Hessian matrix to solve the optimization problem (hence
the name “Hessian-free” in CHITA)—this allows us to ad-
dress large networks rather efficiently. Specifically, we
propose an equivalent reformulation of the problem as an
ℓ0-constrained sparse linear regression problem with a data
matrix A ∈ Rn×p, where p is the number of trainable param-
eters in the original model and n ≲ 103 (usually, p≫ n) is
the number of the sub-samples used in approximating the
Hessian. Compared to state-of-the-art approaches that con-
sider a dense p×p matrix approximation of the Hessian, our
approach leads to a significant reduction in memory usage
(up to 103 times for p = 106) without any approximation.

Furthermore, we propose a novel approach to minimize our
ℓ0 regression reformulation, leveraging active set strategies,
better stepsize selection, and various methods to acceler-
ate convergence on the selected support. Our proposed
approach builds upon vanilla Iterative Hard Thresholding
methods (IHT, Blumensath & Davies, 2009) commonly used
in the sparse learning literature, and significantly improves
it. For instance, our framework can prune a network with
4.2M parameters to 80% sparsity (i.e., 0.84M nonzero pa-
rameters) in less than a minute and using less than 20GB of
RAM 1.

Since the local quadratic model approximates the loss func-
tion only in a small neighborhood of the current solu-
tion (Singh & Alistarh, 2020), we also explore a multi-stage
algorithm that updates the local quadratic model during
pruning (but without retraining) and solves a more con-
strained problem in each stage, going from dense weights to
sparse ones. Our experiments show that the resulting pruned
models have a notably better accuracy compared to that of
our single-stage algorithm and other pruning approaches.
Furthermore, when used in the gradual pruning setting (Gale
et al., 2019; Singh & Alistarh, 2020; Blalock et al., 2020)
where re-training between pruning steps is performed, our
pruning framework results in notable performance gains
compared to state-of-the-art unstructured pruning methods.

Contributions Our contributions can be summarized as
follows:

• We propose CHITA, a discrete optimization based frame-
work for network pruning based on local quadratic ap-
proximation(s) of the loss function. We propose an ℓ0-
constrained sparse regression reformulation that avoids
the pitfalls of storing a large dense Hessian, resulting in a
significant reduction in memory usage (we work with an
n× p matrix instead of a p× p one, with often n≪ p).

• A key workhorse of CHITA is a novel IHT-based algo-
rithm to obtain good solutions to the sparse regression
formulation. Exploiting problem structure, we propose

1For reference, CBS and Woodfisher would run out of memory
in similar circumstances.

methods to accelerate convergence and improve pruning
performance, such as a new and efficient stepsize selec-
tion scheme and rapidly updating weights on the support.
This leads to up to 1000x runtime improvement compared
to existing network pruning algorithms.

• We show performance improvements across various mod-
els and datasets. In particular, CHITA results in a 98%
sparse (i.e., 98% of weights in dense model are set to
zero) MLPNet with 90% test accuracy (3% reduction in
test accuracy compared to the dense model), which is
a significant improvement over the previously reported
best accuracy (55%) by CBS. As an application of our
framework, we use it for gradual pruning and observe
notable performance gains against state-of-the-art gradual
pruning approaches.

2. Problem Setup and Related Work
In this section we present the general setup with connections
to related work—this lays the foundation for our proposed
methods discussed in Section 3.

2.1. Problem Setup

Consider a neural network with an empirical loss function
L(w) = 1

N

∑N
i=1 ℓi(w), where w ∈ Rp is the vector of

trainable parameters, N is the number of data points (sam-
ples), and ℓi(w) is a twice-differentiable function on the i-th
sample. Given a pre-trained weight vector w̄ ∈ Rp, our goal
is to set some parameters to zero and possibly update other
weights while maintaining the original model’s performance
(e.g., accuracy) as much as possible. In mathematical terms,
given a pre-trained weight w̄ and a target level of sparsity
τ ∈ (0, 1), we aim to construct a new weight vector w ∈ Rp

that satisfies:

• The loss function evaluated at w is as close as possible to
the loss before pruning: that is, L(w) ≈ L(w̄).

• The number of nonzero weights at w respects the sparsity
budget2: that is, ∥w∥0 ≤ (1− τ)p.

Following earlier work LeCun et al. (1989); Hassibi &
Stork (1992); Singh & Alistarh (2020), we start with a local
quadratic approximation of L around the pre-trained weight
w̄:

L(w) = L(w̄) +∇L(w̄)⊤(w − w̄)+

1

2
(w − w̄)⊤∇2L(w̄)(w − w̄) +O(∥w − w̄∥3). (1)

With certain choices of gradient and Hessian approximations
g ≈ ∇L(w̄), H ≈ ∇2L(w̄), and ignoring higher-order

2Here ℓ0 norm ∥w∥0 denotes the number of nonzero in the
vector w.
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terms, the loss L can be locally approximated by:

Q0(w) := L(w̄)+g⊤(w−w̄)+1

2
(w−w̄)⊤H(w−w̄). (2)

Pruning the local approximation Q0(w) of the network can
be naturally formulated as an optimization problem to mini-
mize Q0(w) subject to a cardinality constraint, i.e.,

min
w

Q0(w) s.t. ∥w∥0 ≤ k. (3)

For large networks, solving Problem (3) directly (e.g., us-
ing iterative optimization methods) is computationally chal-
lenging due to the sheer size of the p × p matrix H . In
Section 3.1, we present a Hessian-free reformulation of
Problem (3), which plays an important role in our scalable
optimization approach.

2.2. Related Work

Impact-based pruning dates back to the work of LeCun et al.
(1989) where the OBD (Optimal Brain Damage) framework
is proposed. This approach, along with subsequent ones
(Hassibi & Stork, 1992; Singh & Alistarh, 2020; Yu et al.,
2022) make use of the local approximation given in (2). It
is usually assumed (but not in our work) that w̄ is a local
optimum of the loss function, and therefore g = 0 and
L(w) ≈ L(w̄)+ 1

2 (w− w̄)⊤H(w− w̄). Using this approxi-
mation and also a diagonal Hessian H , OBD (Optimal Brain
Damage, LeCun et al. (1989)) searches for a single weight i
to prune with minimal change in the loss function. If the i-th
weight is pruned (wi = 0, wj = w̄j∀j ̸= i), then the loss

function increases by δLi =
w̄2

i

2∇2L(w̄) ii
. This represents a

score for each weight, and is used to prune weights in de-
creasing order of their score. OBS (Optimal Brain Surgeon,
Hassibi & Stork (1992)) extends this algorithm by relaxing
the assumption of the Hessian being diagonal, and using the
optimality conditions to update the un-pruned weights. The
authors also propose using the empirical Fisher information
matrix, as an efficient approximation to the Hessian matrix.
Layerwise OBS (Dong et al., 2017) proposes to overcome
the computational challenge of computing the full (inverse)
Hessian needed in OBS by pruning each layer independently.
Singh & Alistarh (2020) use block-diagonal approximations
of the Hessian matrix, which they approximate by the em-
pirical Fisher information matrix on a small subset of the
training data (n≪ N ):

∇2L(w̄) ≈ H =
1

n

n∑
i=1

∇ℓi(w̄)∇ℓi(w̄)⊤. (4)

While these approaches explore different ways to make
the Hessian computationally tractable, they all rely on the
OBD/OBS framework of pruning a single weight, and do not
to consider possible interactions that can arise when pruning

multiple weights. To this end, Yu et al. (2022) propose
CBS (Combinatorial Brain Surgeon) which is an algorithm
to approximately solve (3). While CBS shows impressive
improvements in the accuracy of the pruned model over
prior work, it appears to operate with the full dense p× p
Hessian H . This limits scalability both in compute time and
memory utilization, as p is often in the order of millions and
more.

2.2.1. CHOICES OF GRADIENT APPROXIMATION g

As mentioned earlier, most previous work assumes that
the pre-trained weights w̄ is a local optimum of the loss
function L, and thus take the gradient g = 0. However,
the gradient of the loss function of a pre-trained neural
network may not be zero in practice due to early stopping
(or approximate optimization) (Yao et al., 2007). Thus, the
WoodTaylor approach (Singh & Alistarh, 2020) proposes to
approximate the gradient by the stochastic gradient, using
the same samples for estimating the Hessian. Namely,

g =
1

n

n∑
i=1

∇ℓi(w̄). (5)

2.2.2. ONE-SHOT AND GRADUAL PRUNING

Generally speaking, one-shot pruning methods (LeCun
et al., 1989; Singh & Alistarh, 2020; Yu et al., 2022) can
be followed by a few fine-tuning and re-training steps to re-
cover some of the accuracy lost when pruning. Furthermore,
recent work has shown that pruning and re-training in a
gradual fashion (hence the name, gradual pruning) can lead
to big accuracy gains (Han et al., 2015; Gale et al., 2019;
Zhu & Gupta, 2018). The work of Singh & Alistarh (2020)
further shows that gradual pruning, when used with well-
performing one-shot pruning algorithms, can outperform
state-of-the-art unstructured pruning methods. In this paper,
we focus on the one-shot pruning problem and show how
our pruning framework outperforms other one-shot pruning
methods (see Section 4.1). We then show that, if applied
in the gradual pruning setting, our pruning algorithm out-
performs existing approaches (see Section 4.2), establishing
new state-of-the-art on MobileNetV1 and ResNet50.

3. Our Proposed Framework: CHITA
In this section, we present our algorithmic framework
CHITA (Combinatorial Hessian-free Iterative Thresholding
Algorithm) for pruning a network to a specific sparsity
level. We formulate sparse network pruning by consid-
ering ℓ0-regression problem(s) and propose scalable algo-
rithms. For example, we can address networks with size
p ≈ 106, n ≈ 103, k ≈ 105 in less than one minute and us-
ing less than 20GB of memory. Our basic single-stage algo-
rithm is an improved and scalable variant of IHT to solve (3).
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In Section 3.3, we propose a sequential version of the single-
step method that we call the multi-stage framework—this
sequentially refines the local quadratic approximation and
optimizes it (under sparsity constraints). The multi-stage
version results in further performance boosts over the single-
stage version as shown in Section 4.

3.1. An ℓ0-regression formulation

Our formulation is based on a simple but important obser-
vation that the Hessian approximation in (4) has a low-rank
structure:

H =
1

n

n∑
i=1

∇ℓi(w̄)∇ℓi(w̄)⊤ =
1

n
A⊤A ∈ Rp×p, (6)

where A = [∇ℓ1(w̄), . . . ,∇ℓn(w̄)]⊤ ∈ Rn×p has rank at
most n with 103 ≥ n≪ p, and is hence low-rank.

Using the outer-product expression in display (6) and the
gradient expression (5), we note that problem (3) can be
equivalently written as the following cardinality constrained
least squares problem (in Hessian-free form):

min
w

1

2
∥b−Aw∥2 s.t. ∥w∥0 ≤ k, (7)

where b := Aw̄− e ∈ Rn and e is a vector of ones. Further-
more, to improve solution quality (see discussion below),
we include a ridge-like regularizer of the form ∥w − w̄∥2 to
the objective in (7). This leads to the following problem:

min
w

Q(w) :=
1

2
∥b−Aw∥2 + nλ

2
∥w − w̄∥2

s.t. ∥w∥0 ≤ k,
(8)

where λ ≥ 0 is a parameter controlling the strength of the
ridge-like regularizer that controls the proximity of w to
the pre-trained weight vector w̄ (See below for additional
discussion). Note that our algorithm actually applies to the
general form of optimization Problem (8) with a general b
and A. We can recover special instances discussed earlier
with particular choices of the problem parameters. We note
that the regression formulation (8) does not require us to
compute or store the full Hessian matrix H ∈ Rp×p. As
discussed in Section 3.2, we only need to operate on the
low-rank matrix A throughout our algorithm—this results
in substantial gains in terms of both memory consumption
and runtime.

3.1.1. RIDGE TERM AND CHOICES OF λ

We observe empirically that the success of our final pruned
model depends heavily on the accuracy of the quadratic ap-
proximation of the loss function. Since this approximation
is local, it is essential to ensure that the weights w during the
pruning process are sufficiently close to the initial weights

w̄. One way3 to achieve this is by including a squared ℓ2
penalty, also known as the ridge, on the difference w − w̄.
This regularizer controlling the proximity of w to w̄ does
not appear to have been explicitly considered in previous
works (Hassibi & Stork, 1992; Singh & Alistarh, 2020;
Yu et al., 2022) on pruning using local quadratic approxi-
mations. While not used explicitly, this ridge regularizer
appears to be used implicitly: this is achieved by adding
a small diagonal λ0I to the Fisher matrix with the goal of
obtaining an invertible Fisher matrix. The usefulness of the
regularization term λ is further explored in Appendix B.2.1.
We observe that a well-chosen ridge term can help improve
the test accuracy on MLPNet by 3%.

3.1.2. RELATION TO PRIOR WORK ON ℓ0-REGRESSION
PROBLEMS

There is a substantial literature on algorithms for solving
ℓ0-regularized linear regression problems—see for exam-
ple (Tillmann et al., 2021) for a recent overview on this
topic. We provide a brief overview of related work, but it is
worth noting that its applicability in the context of network
pruning appears to be new. Sparse network pruning presents
several interesting challenges, and in particular, the problem-
scale we consider here makes our work different from earlier
works in ℓ0-sparse linear regression. As mentioned earlier,
our algorithm is motivated by the well-known iterative hard
thresholding method Blumensath & Davies (2009). The IHT
algorithm involves projecting the weights onto the feasible
set after each gradient step. Bertsimas & Van Parys (2020);
Hazimeh et al. (2022) proposed algorithms to solve sparse
regression problems to optimality via branch-and-bound.
Beck & Eldar (2013) explore coordinate descent-type algo-
rithms that update one/two coordinates at a time. Hazimeh
& Mazumder (2020) propose efficient algorithms based on
coordinate descent and local combinatorial optimization
that applies to the unconstrained ℓ0ℓ2-penalized regression
problem. We refer the reader to Hazimeh et al. (2022); Bert-
simas et al. (2016) and the review paper (Tillmann et al.,
2021) for a more comprehensive discussion of related work.

In summary, earlier methods for ℓ0-regularized linear regres-
sion are quite effective at discovering high-quality solutions
to Problem (7) for small to medium-sized problems and
require k to be sufficiently small for efficiency. However,
these methods are not well-suited for tackling large network
pruning problems (e.g, p ∼ 106 and k ∼ 105) due to slow
convergence or expensive per-iteration cost. To address
this issue, we propose novel approaches for scalability in
Section 3.2. Additionally, we emphasize that Problem (8)
arises from a local approximation of the true loss L around
w̄. Therefore, achieving a high-quality solution for Prob-

3Another way is to introduce a multi-stage procedure, as ex-
plained in Section 3.3.
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lem (8) alone does not guarantee a pruned network with
high accuracy. To this end, we study a multi-stage extension
(see Section 3.3) that requires solving several problems of
the form (8).

3.2. Our proposed algorithm for Problem (8)

We present the core ideas of our proposed algorithm for
Problem (8), and discuss additional details in Appendix A.

Our optimization framework relies on the IHT algo-
rithm (Blumensath & Davies, 2009; Bertsimas et al., 2016)
that optimizes (8) by simultaneously updating the support
and the weights. By leveraging the low-rank structure, we
can avoid the computational burden of computing the full
Hessian matrix, thus reducing computational cost.

The basic version of the IHT algorithm can be slow for prob-
lems with a million weights, such as the ones we consider
in this work. To improve the computational performance of
our algorithm we propose a new line search scheme. Addi-
tionally, we use use an active set strategy and schemes to
update the weights on the nonzero weights upon support sta-
bilization. Taken together, we obtain notable improvements
in computational efficiency and solution quality over tradi-
tional IHT, making it a viable option for network pruning
problems at scale.

3.2.1. A STRUCTURE-AWARE IHT UPDATE

The IHT algorithm operates by taking a gradient step of
size τ from the current iteration, then projects it onto the
set of points with a fixed number ofnonzero coordinates
through hard thresholding. Specifically, for any vector x,
let Ik(x) denote the indices of k components of x that have
the largest absolute value. The hard thresholding operator
Pk(x) is defined as yi = xi if i ∈ Ik(x), and yi = 0 if
i /∈ Ik(x); where yi is the i-th coordinate of Pk(x). IHT
applied to problem (8) leads to the following update:

wt+1 = HT(wt, k, τs) := Pk

(
wt − τs∇Q(wt)

)
(9)

= Pk

(
wt − τs(A⊤(Ab− wt) + nλ(wt − w̄))

)
,

where τs > 0 is a suitable stepsize. The computation of
HT(wt, k, τs) involves only matrix-vector multiplications
with A (or A⊤) and a vector, which has a total computation
cost of O(np). This is a significant reduction compared to
the O(p2) cost while using the full Hessian matrix as Singh
& Alistarh (2020); Yu et al. (2022) do.

Active set strategy. In an effort to further facilitate the
efficiency of the IHT method, we propose using an active
set strategy, which has been proven successful in various
optimization contexts—see for example, the works No-
cedal & Wright (1999); Friedman et al. (2010); Hazimeh &
Mazumder (2020). Loosely speaking, this strategy works by
restricting the IHT updates to an active set (i.e., a relatively

small subset of variables) and occasionally augmenting the
active set with variables that violate certain optimality con-
ditions. By implementing this strategy, the iteration com-
plexity of the algorithm can be reduced to O(nk) in practice,
resulting in an improvement, when k is smaller than p. The
algorithm details can be found in Appendix A.3.

3.2.2. DETERMINING A GOOD STEPSIZE

Choosing an appropriate stepsize τs is crucial for fast con-
vergence of the IHT algorithm. To ensure convergence to
a stationary solution, a common choice is to use a constant
stepsize of τs = 1/L (Bertsimas et al., 2016; Hazimeh
& Mazumder, 2020), where L is the Lipschitz constant
of the gradient of the objective function. This approach,
while reliable, can lead to conservative updates and slow
convergence—refer to Appendix A.1 for details. An alter-
native method for determining the stepsize is to use a back-
tracking line search, as proposed in Beck & Teboulle (2009).
The method involves starting with a relatively large estimate
of the stepsize and iteratively shrinking the step size until
a sufficient decrease of the objective function is observed.
However, this approach requires multiple evaluations of the
objective function, which can be computationally expensive.

Our novel scheme. We propose a novel line search method
for determining the stepsize to improve the convergence
speed of IHT. Specifically, we develop a method that (ap-
proximately) finds the stepsize that leads to the maximum
decrease in the objective, i.e., we attempt to solve

min
τs≥0

g(τs) := Q
(
Pk

(
wt − τs∇Q(wt)

))
. (10)

For general objective functions, solving the line search prob-
lem (as in (10)) is challenging. However, in our problem,
we observe and exploit an important structure: g(τs) is a
piecewise quadratic function with respect to τs. Thus, the
optimal stepsize on each piece can be computed exactly,
avoiding redundant computations (associated with finding
a good stepsize) and resulting in more aggressive updates.
In Appendix A.1, we present an algorithm that finds a good
stepsize by exploiting this structure. Compared to standard
line search, our algorithm is more efficient, as it requires
fewer evaluations of the objective function and yields a
stepsize that results in a steeper descent.

3.2.3. ADDITIONAL TECHNIQUES FOR SCALABILITY

While the IHT algorithm can be quite effective in identifying
the appropriate support, its progress slows down consider-
ably once the support is identified (Blumensath, 2012), re-
sulting in slow convergence. To accelerate the algorithm, we
propose two techniques that refine thenonzero coefficients
on the identified support by solving sub-problems: (i) Co-
ordinate Descent (CD, Bertsekas, 1997; Nesterov, 2012)
that updates each nonzero coordinate (with others fixed)
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as per a cyclic rule; (ii) Back-solve based on Woodbury
formula (Max, 1950) that calculates the optimal solution
exactly on a restricted set of size k. We found both (i),
(ii) to be useful for improving the accuracy of the pruned
network. Further details on the methods (i), (ii) are in Ap-
pendix A.2 and A.4.

Our single-stage algorithm CHITA glues together the dif-
ferent pieces discussed above into a coherent algorithm. It
takes as input a low-rank matrix A, the initial weight w̄
and the ℓ0-constraint k; and returns a pruned weight w that
serves as a good solution to Problem (8).

3.3. A multi-stage procedure

Our single-stage methods discussed in Section 3.2 lead to
high-quality solutions for Problem (8). Compared to ex-
isting methods, for a given sparsity level, our algorithms
deliver a better objective value for Problem (8)—for ex-
ample, see Figure 2(b). However, we note that the final
performance (e.g., accuracy) of the pruned network depends
heavily on the quality of the local quadratic approximation.
This is particularly true when targeting high levels of spar-
sity (i.e., zeroing out many weights), as the local objective
function used in (8) may not accurately approximate the
true loss function L globally. To this end, we propose a
multi-stage procedure named CHITA++ that improves the
approximation quality by iteratively updating and solving
local quadratic models. We use a scheduler to gradually
increase the sparsity constraint and take a small step to-
wards higher sparsity in each stage to ensure the validity of
the local quadratic approximation. Our multi-stage proce-
dure leverages the efficiency of the single-stage approaches
and can lead to pruned networks with improved accuracy
by utilizing more accurate approximations of the true loss
function. For example, our experiments show that the multi-
stage procedure can prune ResNet20 to 90% sparsity in just
a few minutes and increases test accuracy from 15% to 79%
compared to the single-stage method. Algorithm 1 presents
more details on CHITA++.

It is worth pointing out that our multi-stage algorithm is dif-
ferent from the gradual pruning approach described in Han
et al. (2015). While both methods involve pruning steps,
the gradual pruning approach also includes fine-tuning steps
in which SGD is applied to further optimize the parame-
ters for better results. However, these fine-tuning steps can
be computationally expensive, usually taking days to run.
In contrast, our proposed multi-stage method is a one-shot
pruning method and only requires constructing and solv-
ing Problem (8) several times, resulting in an efficient and
accurate solution. This solution can then be further fine-
tuned using SGD or we can plug it into the gradual pruning
framework, something we explore in Section 4.2.

Algorithm 1 CHITA++: a multi-stage pruning procedure
Require: Pre-trained weights w̄, a target sparsity level τ ,

number of stages f .
1: Initialization: Construct a increasing sequence of spar-

sity parameters τ1, τ2, . . . , τf = τ ; and set w0 = w̄
2: for t = 1, 2, . . . , f do
3: At current solution wt−1, calculate the gradient based

on a batch of n data points and construct the matrix
A given in (4).

4: Obtain a solution wt to problem (8) by invoking
CHITA(A, w̄, k) with w̄ = wt−1 and number of
nonzeros k = ⌊(1− τt)p⌋.

5: end for

4. Experimental Results
We compare our proposed framework with existing ap-
proaches, for both one-shot and gradual pruning. Our
code is publicly available at: https://github.com/
mazumder-lab/CHITA

4.1. One shot pruning

We start by comparing the performance of our methods:
CHITA (single-stage) and CHITA++ (multi-stage) with sev-
eral existing state-of-the-art one-shot pruning techniques
on various pre-trained networks. We use the same exper-
imental setup as in recent work (Yu et al., 2022; Singh
& Alistarh, 2020). The existing pruning methods we con-
sider include MP (Magnitude Pruning, Mozer & Smolen-
sky, 1989), WF (WoodFisher, Singh & Alistarh, 2020),
CBS (Combinatorial Brain Surgeon, Yu et al., 2022) and
M-FAC (Matrix-Free Approximate Curvature, Frantar et al.,
2021). The pre-trained networks we use are MLPNet
(30K parameters) trained on MNIST (LeCun et al., 1998),
ResNet20 (He et al., 2016, 200k parameters) trained on
CIFAR10 (Krizhevsky et al., 2009), and MobileNet (4.2M
parameters) and ResNet50 (He et al., 2016, 22M parame-
ters) trained on ImageNet (Deng et al., 2009). For further
details on the choice of the Hessian approximation, we re-
fer the reader to Appendix A.5. Detailed information on
the experimental setup and reproducibility can be found in
Appendix B.1.1.

4.1.1. RUNTIME COMPARISON

Recent works that use the empirical Fisher information ma-
trix for pruning purposes (Singh & Alistarh, 2020; Yu et al.,
2022) show that using more samples for Hessian and gra-
dient approximation results in better accuracy. Our exper-
iments also support this conclusion. However, most prior
approaches become computationally prohibitive as sample
size n increases. As an example, the Woodfisher and CBS
algorithms require hours to prune a MobileNet when n is set

6

https://github.com/mazumder-lab/CHITA
https://github.com/mazumder-lab/CHITA


Fast as CHITA: Neural Network Pruning with Combinatorial Optimization

0 5k 10k 15k 20k

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

CHITA, ResNet20 CHITA, MLPNet

M-FAC, ResNet20 M-FAC, MLPNet

Fisher sample size (n)

R
u

n
t
im

e
 (

in
 s

e
c
o
n

d
s
)

Figure 1: Runtime comparison between our single-stage ap-
proaches and M-FAC (the fastest among the competitive methods)
while pruning MLPNet and ResNet20 to 90% sparsity level (90%
of the entries are zero). Note that Woodfisher and CBS are at least
1000 times slower than M-FAC. The error bar represents the stan-
dard error over four runs. CHITA here uses IHT to find a support
and performs a back-solve on the found support.

to 1000, and their processing time increases at least linearly
with n. In contrast, our method has been designed with
efficiency in mind, and we have compared it to M-FAC, a
well-optimized version of Woodfisher that is at least 1000
times faster. The results, as depicted in Figure 1, demon-
strate a marked improvement in speed for our algorithm,
with up to 20 times faster performance.

Network Sparsity MP WF CBS CHITA CHITA++

MLPNet
on MNIST
(93.97%)

0.5 93.93 94.02 93.96 93.97 (±0.03) 95.97 (±0.05)
0.6 93.78 93.82 93.96 93.94 (±0.02) 95.93 (±0.04)
0.7 93.62 93.77 93.98 93.80 (±0.01) 95.89 (±0.06)
0.8 92.89 93.57 93.90 93.59 (±0.03) 95.80 (±0.03)
0.9 90.30 91.69 93.14 92.46 (±0.04) 95.55 (±0.03)

0.95 83.64 85.54 88.92 88.09 (±0.24) 94.70 (±0.06)
0.98 32.25 38.26 55.45 46.25 (±0.85) 90.73 (±0.11)

ResNet20
on CIFAR10

(91.36%)

0.3 90.77 91.37 91.35 91.37 (±0.04) 91.25 (±0.08)
0.4 89.98 91.15 91.21 91.19 (±0.05) 91.20 (±0.05)
0.5 88.44 90.23 90.58 90.60 (±0.07) 91.04 (±0.09)
0.6 85.24 87.96 88.88 89.22 (±0.19) 90.78 (±0.12)
0.7 78.79 81.05 81.84 84.12 (±0.38) 90.38 (±0.10)
0.8 54.01 62.63 51.28 57.90 (±1.04) 88.72 (±0.17)
0.9 11.79 11.49 13.68 15.60 (±1.79) 79.32 (±1.19)

MobileNetV1
on ImageNet

(71.95%)

0.3 71.60 71.88 71.88 71.87 (±0.01) 71.86 (±0.02)
0.4 69.16 71.15 71.45 71.50 (±0.02) 71.61 (±0.02)
0.5 62.61 68.91 70.21 70.42 (±0.02) 70.99 (±0.04)
0.6 41.94 60.90 66.37 67.30 (±0.03) 69.54 (±0.01)
0.7 6.78 29.36 55.11 59.40 (±0.09) 66.42 (±0.03)
0.8 0.11 0.24 16.38 29.78 (±0.18) 47.45 (±0.25)

Table 1: The pruning performance (model accuracy) of various
methods on MLPNet, ResNet20, MobileNetV1. As to the perfor-
mance of MP, WF, and CBS, we adopt the results reported in Yu
et al. (2022). We take five runs for our single-stage (CHITA) and
multi-stage (CHITA++) approaches and report the mean and stan-
dard error (in the brackets). The best accuracy values (significant)
are highlighted in bold. Here sparsity denotes the fraction of zero
weights in convolutional and dense layers.

4.1.2. ACCURACY OF THE PRUNED MODELS

Comparison against state-of-the-art. Table 1 compares
the test accuracy of MLPNet, ResNet20 and MobileNetV1
pruned to different sparsity levels. Our single-stage method
achieves comparable results to other state-of-the-art ap-
proaches with much less time and memory consumption.
The multi-stage method (CHITA++) outperforms other
methods by a large margin, especially with a high sparsity
rate (that is, with more aggressive pruning).

One-shot pruning on ResNet50. We further compare our
approach to competing methods on ResNet50, an even larger
network where some pruning algorithms, like CBS, do not
scale. In Figure 2, we evaluate the performance of our
algorithm in comparison to M-FAC and Magnitude Pruning
(MP) using two metrics: test accuracy and the final objective
value of the ℓ0-constrained problem (8). As both M-FAC
and our algorithm aim to minimize this objective, it can be
used to judge the efficacy of our model in solving problem
(8). As seen in the figure, our approach achieves a lower
objective value, and in this case, it also results in a better
test accuracy for the final pruned network.
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(a) Test accuracy for one-shot pruning on ResNet50.
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(b) The objective value in (8) for pruning ResNet50.

Figure 2: One-shot pruning on ResNet50 (Dense accuracy is
77.01%). The error bars are over four runs. For a fair comparison,
both CHITA and M-FAC use the same hyperparameters and the
same training samples for Hessian and gradient approximation.
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Sparsity schedule in multi-stage procedure. We study
the effect of the sparsity schedule that is, the choice of the
sparsity parameters τ1 ≤ τ2 ≤ · · · ≤ τf = τ in Algorithm 1
on the performance of CHITA++. We compare test accuracy
of three different schedules: (i) exponential mesh, (ii) linear
mesh, and (iii) constant mesh. For these schedules, f
is set to be 15. For the first two meshes, τ1 and τ15 are
fixed as 0.2 and 0.9, respectively. As shown in Figure 3,
the exponential mesh computes τ2, . . . , τ14 by drawing an
exponential function, while the linear mesh adopts linear
interpolation (with τ1 and τ15 as endpoints) to determine
τ2, . . . , τ14 and the constant mesh has τ1 = τ2 = · · · = τ15.

Figure 4 plots the test accuracy of the three schedules over
the number of stages. We observe that the linear mesh out-
performs the exponential mesh in the first few iterations, but
its performance drops dramatically in the last two iterations.
It appears that in high sparsity levels, even a slight increase
in the sparsity rate leads to a large drop in accuracy. Taking
small “stepsizes” in high sparsity levels allows the exponen-
tial mesh to fine-tune the weights in the last several stages
and achieve good performance.
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Figure 3: Three different sparsity schedules: exponential, linear,
and constant schedules.
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Figure 4: Comparison of test accuracy using CHITA++ with 15
stages, pruning a ResNet20 model to a 90% sparsity rate, under
different sparsity schedules. Text around the point indicates the
current sparsity level of the point.

Additional ablation studies. We perform additional ab-
lation studies to further evaluate the performance of our
method. These studies mainly focus on the effect of the
ridge term (in Appendix B.2.1), and the effect of the first-
order term (in Appendix B.2.2).

4.2. Performance of gradual pruning

To compare our one-shot pruning algorithms against more
unstructured pruning methods, we use CHITA results into
a gradual pruning procedure (Gale et al., 2019). We follow
the approach in Singh & Alistarh (2020). Specifically, we
alternate between pruning steps where a sparse weight is
computed and fine-tuning steps on the current support via
Stochastic Gradient Descent (SGD). To obtain consistent
results, we start from the same pre-trained weights used in
Kusupati et al. (2020), and re-train for 100 epochs using
SGD during fine-tuning steps, similarly to Kusupati et al.
(2020); Singh & Alistarh (2020). We compare our approach
against Incremental (Zhu & Gupta, 2018), STR (Kusu-
pati et al., 2020), Global Magnitude (Singh & Alistarh,
2020), WoodFisher (Singh & Alistarh, 2020), GMP (Gale
et al., 2019), Variational Dropout (Molchanov et al., 2017),
RIGL (Evci et al., 2020), SNFS (Dettmers & Zettlemoyer,
2020) and DNW (Wortsman et al., 2019). Further details on
training procedure can be found in Appendix B.1.2.

Sparsity Pruned Relative Drop (%) Remaining
Method (%) Accuracy Pruned−Dense

Dense # of params

Incremental 74.11 67.70 -4.11 1.09 M
STR 75.28 68.35 -5.07 1.04 M

Global Magnitude 75.28 69.90 -2.92 1.04 M
WoodFisher 75.28 70.09 -2.65 1.04 M
CHITA 75.28 71.11 -1.23 1.04 M

Incremental 89.03 61.80 -12.46 0.46 M
STR 89.01 62.10 -13.75 0.46 M

Global Magnitude 89.00 63.02 -12.47 0.46 M
WoodFisher 89.00 63.87 -11.29 0.46 M
CHITA 89.00 67.68 -6.00 0.46 M

Table 2: Results of gradually pruning MobilenetV1 in 75% and
89% sparsity regimes, comparing CHITA to other baselines (Dense
accuracy: 72.00%). We also include the relative drop in accuracy to
account for different methods starting from different dense weights.
CHITA numbers are averaged across two runs. Numbers for other
baselines are taken from Singh & Alistarh (2020).

MobileNetV1. We start by pruning MobileNetV1 (4.2M
parameters). As Table 2 demonstrates, CHITA delivers
significantly more accurate pruned models than previous
state-of-the-art approaches at sparsity levels 75% and 89%.
In particular, when pruning to a sparsity of 89%, there is
only a 6% accuracy loss compared to the previous best result
of 11.29%.

ResNet50. Similarly to MobileNetV1, CHITA improves
test accuracy at sparsity levels 90%, 95%, and 98% com-
pared to all other baselines, as Table 3 shows. This im-

8



Fast as CHITA: Neural Network Pruning with Combinatorial Optimization

provement becomes more noticeable as we increase the
target sparsity, with CHITA producing a pruned model with
67.18% accuracy compared to 65.66%, the second-best per-
formance, and previous state-of-the-art.

Sparsity Pruned Relative Drop (%) Remaining
Method (%) Accuracy Pruned−Dense

Dense # of params

GMP + LS 90.00 73.91 -3.62 2.56 M
Variational Dropout 90.27 73.84 -3.72 2.49 M

RIGL + ERK 90.00 73.00 -4.94 2.56 M
SNFS + LS 90.00 72.90 -5.32 2.56 M

STR 90.23 74.31 -3.51 2.49 M
Global Magnitude 90.00 75.20 -2.42 2.56 M

DNW 90.00 74.00 -4.52 2.56 M
WoodFisher 90.00 75.21 -2.34 2.56 M
CHITA 90.00 75.36 -2.14 2.56 M

GMP 95.00 70.59 -7.95 1.28 M
Variational Dropout 94.92 69.41 -9.49 1.30 M
Variational Dropout 94.94 71.81 -6.36 1.30 M

RIGL + ERK 95.00 70.00 -8.85 1.28 M
DNW 95.00 68.30 -11.31 1.28 M
STR 94.80 70.97 -7.84 1.33 M
STR 95.03 70.40 -8.58 1.27 M

Global Magnitude 95.00 71.79 -6.78 1.28 M
WoodFisher 95.00 72.12 -6.35 1.28 M
CHITA 95.00 73.13 -5.03 1.28 M

GMP + LS 98.00 57.90 -24.50 0.51 M
Variational Dropout 98.57 64.52 -15.87 0.36 M

DNW 98.00 58.20 -24.42 0.51 M
STR 98.05 61.46 -20.19 0.50 M
STR 97.78 62.84 -18.40 0.57 M

Global Magnitude 98.00 64.28 -16.53 0.51 M
WoodFisher 98.00 65.55 -14.88 0.51 M
CHITA 98.00 67.19 -12.75 0.51M

Table 3: Results of gradually pruning a ResNet50 network in
the 90%, 95%, and 98% sparsity regimes, comparing CHITA to
other state-of-the-art methods (Dense accuracy: 77.01%). We
also include the relative drop in accuracy to account for different
methods starting from different dense weights. CHITA numbers
are averaged across two runs. Numbers for other baselines are
taken from Singh & Alistarh (2020).

5. Conclusion
In this work we have presented an efficient network pruning
framework CHITA , which is based on a novel, Hessian-
free ℓ0-constrained regression formulation and combina-
torial optimization techniques. Our single-stage methods
demonstrate comparable results to existing methods while
achieving a significant improvement in runtime and reduc-
ing memory usage. Furthermore, by building upon the
single-stage methods, our multi-stage approach is capable
of achieving even further improvements in model accuracy.
Additionally, we have demonstrated that incorporating our
pruning methods into existing gradual pruning frameworks
results in sparse networks with state-of-the-art accuracy.
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A. Algorithmic details
A.1. IHT with aggressive stepsize

Challenges of stepsize choice Choosing an appropriate stepsize τs is crucial to achieving a faster convergence rate. In
theory, setting τs as the constant 1/L in (9) is a common choice in the literature to ensure the convergence to a stationary
solution (Bertsimas et al., 2016; Hazimeh & Mazumder, 2020), where L is the Lipschitz constant of the gradient of Q(w).
i.e., ∥∇Q(α) − ∇Q(β)∥ ≤ L∥α − β∥ for all α, β ∈ Rp. Since Q is a quadratic objective, this quantity L is given by
L = nλ + ∥A∥22, where ∥A∥2 is the maximum singular value of A. This quantity could be substantial when p is large,
leading to very conservative updates, sometimes negligible. Moreover, the computation of L itself may involve a few power
iterations or a randomized SVD algorithm, which could be as costly as several IHT updates. An alternative method for
determining the stepsize is to use a backtracking line search, as proposed in Beck & Teboulle (2009). The method involves
starting with a relatively large estimate of the stepsize and iteratively shrinking the step size until a sufficient decrease of the
objective function is observed. However, this method requires multiple evaluations of the quadratic objective, which can be
computationally expensive.

Our novel scheme We propose a new line search strategy to efficiently determine an aggressive stepsize to address the
issue of slow updates in the IHT algorithm. Note that the problem of finding the best stepsize can be written as the following
one-dimensional problem

min
τs≥0

g(τs) := Q
(
Pk

(
wt − τs∇Q(wt)

))
. (11)

Since Pk is a piecewise function, g(τs) is a univariate piecewise quadratic function which is generally non-convex,
as illustrated in Figure 5. Our key observation is that the first breaking point of g(τs) and the optimal stepsize on
the first piece can be computed easily. More specifically, denote by τsc the first breaking point of g(τs). Namely,
τsc is the largest value of τ ′ such that the hard thresholding based on τs ∈ [0, τ ′] does not change the support, i.e.
Ik(wt) = Ik(wt − τs∇Q(wt)), ∀τs ∈ [0, τ ′]. Let us denote S := supp(w). In the case where |S| = k, τsc can be
computed in closed form using

τsc = min
i∈S

{
|wt

i |
max{maxj /∈S |[∇Q(wt)]j | − [∇Q(wt)]isign(wt

i [∇Q(wt)]i), 0+}

}
. (12)

As previously established, over the interval τs ∈ [0, τsc ], the function g(τs) = Q (wt − τs∇Q(wt)) is a quadratic function.
Let us denote by τsm the optimal value of τs that minimizes g(τs) within the interval [0, τsc ]. It is straightforward to see
that τsm can be computed in closed form with the same computational cost as a single evaluation of the quadratic objective
function.

If τsm < τ sc , then the optimal value of τs lies within the first quadratic piece. Practically, we have found that in this case
τsm is often also the global minimum of g(τs). Therefore, we can confidently take the stepsize as τs = τsm. Otherwise if
τsm = τsc , then we know that g(τs) is monotonically decreasing on the interval [0, τsc ]. This implies that g(τs) would likely
continue to decrease as τs becomes larger than τsc . As a result, we perform a line search by incrementally increasing the
value of τs by a factor of γ > 1 starting from τsc to approximate the stepsize that results in the steepest descent. The above
procedure is summarized in Algorithm 2.

Our proposed scheme offers a significant improvement in efficiency compared to standard backtracking line search by
eliminating redundant steps on the quadratic piece of g(τs) over [0, τsc ]. Additionally, our method directly computes the
optimal stepsize on the first piece, which in many cases, results in a greater reduction in the objective function when
compared to the standard backtracking line search.

Finally, we note that during line search, it is always possible to find the piece of the quadratic function to which the current
stepsize τs belongs, say [τsl , τ

s
u], and calculate the optimal stepsize over that piece with small extra costs to further improve

the line search. But we find it unnecessary in practice as the line search procedure usually terminates in a few steps.

A.2. Cyclic coordinate descent

Although IHT does well in identifying and updating the support, we observe that it makes slow progress in decreasing the
objective in experiments. To address this issue, we use cyclic coordinate descent (CD, Bertsekas, 1997; Nesterov, 2012)
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Figure 5: An example of g(τs) for n = 100, p = 200 and k = 10. The black triangle denotes the first breaking point of g(τs), with its
x-coordinate represented by τs

c .

Algorithm 2 A novel scheme to determine the stepsize τs

Require: wt, k, γ > 1
1: Compute τsc as the first breaking point of g(τs) in closed form. {Time complexity O(p)}
2: Compute

τsm = argmin
τs∈[0,τs

c ]

g(τs) := Q
(
Pk

(
wt − τs∇Q(wt)

))
(13)

as the optimal stepsize on the first piece of g(τs) in closed form. {Time complexity O(nk)}
3: if τsm < τsc then
4: τs ← τsm.
5: else
6: gbest ← g(τsc ), and τs ← τsc .
7: while gbest > g(γτs) do
8: gbest ← g(γτs), and τs ← γτs.
9: end while

10: end if

with full minimization in every nonzero coordinate to refine the solution on the support. CD-type methods are widely used
for solving huge-scale optimization problems in statistical learning, especially those problems with sparsity structure, due to
their inexpensive iteration updates and capability of exploiting problem structure, such as Lasso (Friedman et al., 2010) and
L0L2-penalized regression (Hazimeh & Mazumder, 2020).

Our cyclic CD updates each nonzero coordinate (with others fixed) as per a cyclic rule, and skips any coordinate with zero
value to avoid violating the ℓ0 constraint. With a feasible initialization wt and a coordinate i in the support of wt, wt+1

i is
obtained by optimizing the i-th coordinate (with others fixed) through:

wt+1
i = CDUpdate(wt, i) := argmin

w∈R
Q
(
wt

1, . . . , w
t
i−1, w, w

t
i+1, . . . , w

t
p

)
. (14)

Calculating CDUpdate(wt, i) requires the minimization of a univariate quadratic function with time cost O(n).

Cyclic CD enjoys a fast convergence rate (Bertsekas, 1997; Nesterov, 2012). However, the quality of the resulting solution
is limited and depends heavily on the initial solution, as CD cannot modify the support of a solution. In practice, we adopt a
hybrid updating rule that combines IHT and cyclic CD for better performance in terms of both quality and efficiency. In
each iteration, we perform several rounds of IHT updates and then apply cyclic CD to refine the solution on the support.
This approach is summarized in Algorithm 3.
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Algorithm 3 IHT with CD: IHT-CD(w0, k, tHT, tCD)

Require: w0, k, tHT, tCD
1: for t = 0, 1, . . . do
2: w ← wt

3: for t′ = 1, . . . , tHT do
4: Compute stepsize τs using Algorithm 2.
5: w ← HT(w, k, τs) {Time complexity O(np)}
6: end for
7: for t′ = 1, . . . , tCD do
8: for i ∈ supp(w) do
9: w ← CDUpdate(w, i) {Time complexity O(n)}

10: end for
11: end for
12: wt+1 ← w
13: end for

A.3. Active set updates

The active set strategy is a popular approach that has been shown to be effective in reducing complexity in various
contexts (Nocedal & Wright, 1999; Friedman et al., 2010; Hazimeh & Mazumder, 2020). In our problem setting, the active
set strategy works by starting with an initial active set (of length equal to a multiple of the required number of nonzeros k,
e.g., 2k) that is selected based on the magnitude of the initial solution. In each iteration, we restrict the updates of Algorithm
3 to the current active set A. After convergence, we perform IHT updates on the full vector to find a better solution w
with supp(w) ̸⊆ A. The algorithm terminates if such w does not exist; otherwise, we update A ← A ∪ supp(w), and
the process is repeated. Algorithm 4 gives a detailed illustration of the active set method, with Algorithm 3 as the inner
solver (potentially the inner solver can be replaced with any other solver, such as Algorithm 5 in the next section). In our
experiments, this strategy works well on medium-sized problems (p ∼ 105) and sparse problems (k ≪ p).

Algorithm 4 Active set with IHT: CHITA-CD(w0, k, tHT, tCD,A0)

Require: w0, k, tHT, tCD, and an initial active set A0

1: for t = 0, 1, . . . do
2: wt+1/2|At ← IHT-CD(wt|At , k, tHT, tCD) restricted on At

3: Find τs via line search such that wt+1 ← HT(wt+1/2, k, τs) satisfies
(i) Q(wt+1) < Q(wt+1/2) (ii) supp(wt+1) ̸⊆ At

4: if such τs does not exist then
5: break
6: else
7: At+1 ← At ∪ supp(wt+1)
8: end if
9: end for

A.4. Backsolve via Woodbury formula

As the dimensionality of the problem increases, CHITA-CD becomes increasingly computationally expensive. To address
this issue, we propose a backsolve approach that further reduces the complexity while maintaining a slightly suboptimal
solution. The backsolve approach calculates the optimal solution exactly on a restricted set. We first apply IHT updates a few
times to obtain an initial feasible solution w, and then restrict the problem to the set S := supp(w). Under the restriction,
problem (8) reduces to a quadratic problem without ℓ0 constraint and its minimizer reads

w∗
S = (nλIk +A⊤

SAS)
−1(nλw̄S +A⊤

S b), (15)

where AS ∈ Rn×k denotes a submatrix of A with columns only in S. By exploiting the low-rank structure of A⊤
SAS and

utilizing Woodbury formula (Max, 1950), (15) can be computed in O(n2k) operations. Specifically, one can compute (15)
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using matrix-vector multiplications involving only AS (or its transpose) and one matrix-matrix multiplication via

w∗
S = (nλ)−1[Ik −A⊤

S (nλIk +ASA
⊤
S )

−1AS ] · (nλw̄S +A⊤
S b)

= w̄S + (nλ)−1A⊤
S b− (nλ)−1A⊤

S (nλIk +ASA
⊤
S )

−1AS(nλw̄S +A⊤
S b). (16)

The backsolve method is stated in Algorithm 5.

Algorithm 5 Backsolve: CHITA-BSO(w0, k, tHT)

Require: w0, k, tHT.
1: Construct an initial active set A0

2: w ← CHITA-CD(w0, k, tHT, 0,A0)
3: S ← supp(w)
4: wS ← (nλIk +A⊤

SAS)
−1(nλw̄S +A⊤

S bS), using (16) {Time complexity O(n2k)}

We note that prior works (Singh & Alistarh, 2020; Yu et al., 2022; Hassibi & Stork, 1992) also use the formula, but they do
not exploit the problem structure to reduce the runtime and memory consumption.

A.5. Stratified block-wise approximation

We describe in this subsection a block approximation strategy whereby we only consider limited-size blocks on the diagonal
of the Hessian matrix and ignore off-diagonal parts. Given a disjoint partition {Bi}ci=1 of {1, 2, . . . , p} and assume blocks
of size B1 ×B1, . . . , Bc ×Bc along the diagonal, problem (8) can then be decomposed into the following subproblems
(1 ≤ i ≤ c)

min
w∈R|Bi|

1

2
∥bi −ABiw∥2 +

nλ

2
∥w − w̄Bi∥2, s.t. ∥w∥0 ≤ ki, (17)

where bi = ABiw̄Bi − e and
∑c

i=1 ki = k determines the sparsity in each block. The difference in the selection of {ki}ci=1

will greatly affect the quality of the solution. We observe in experiments that the best selection strategy is to first apply
magnitude pruning (or other efficient heuristics) to get a feasible solution w, and then set ki = | supp(w)∩Bi|, ∀1 ≤ i ≤ c.
Algorithm 6 states the block-wise approximation algorithm, with Algorithm 5 as the inner solver for each subproblem.

In our experiment, we adopt the same strategy to employ the block-wise approximation as in the prior work (Yu et al., 2022;
Singh & Alistarh, 2020). We regard the set of variables that corresponds to a single layer in the network as a block and then
subdivide these blocks uniformly such that the size of each block does not exceed a given parameter Bsize = 104.

We clarify that the introduction of block-wise approximation is for the sake of solution quality (accuracy of pruned network)
rather than algorithmic efficiency. This differs from previous works (Singh & Alistarh, 2020; Yu et al., 2022). In fact,
solving (17) for i = 1, . . . , c requires operations of the same order as solving (8) directly. On the other side, we observe in
our experiments that adopting block-wise approximation will dramatically increase the network MobileNet’s accuracy (from
0.2% to near 30%, given a sparsity level of 0.8).

Algorithm 6 CHIAT-BSO with block approximation
Require: w0, k, tHT, a disjoint partition {Bi}ci=1 of {1, 2, . . . , p}.

1: Obtain a feasible solution via magnitude pruning w ← Pk(w
0).

2: for i = 1, 2, . . . , c do
3: Determine sparsity level ki = | supp(w) ∩Bi|
4: wBi ← CHITA-BSO(wBi , ki, tHT)
5: end for
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B. Experiment details
B.1. Experimental setup

B.1.1. ONE-SHOT PRUNING EXPERIMENTS

All experiments were carried on a computing cluster. Experiments for MLPNet and ResNet20 were run on an Intel Xeon
Platinum 8260 machine with 20 CPUs; experiments for MobileNetV1 and ResNet50 were run on an Intel Xeon Gold 6248
machine with 40 CPUs and one GPU.

Algorithmic setting We utilize the CHITA algorithm with active set strategy and coordinate descent as acceleration
techniques, as outlined in Algorithm 4, to prune MLPNet and ResNet20 networks. Additionally, we use Algorithm 4 as
the inner solver of our proposed multi-stage approach, CHITA++, for these networks. As to MobileNetV1 and ResNet50,
we utilize CHITA-BSO with block approximation (Algorithm 6) for solving single-stage problems. We employ the exact
block-wise approximation strategy as applied in previous work (Yu et al., 2022; Singh & Alistarh, 2020), see Section A.5 for
details. We also use Algorithm 6 as the inner solver of our proposed multi-stage procedure CHITA++ for these networks. In
our experiments, we set the number of stages in CHITA++ to 15 for MLPNet and ResNet20 and 100 for MobileNetV1.
CHITA++ results on MobileNetV1 are averaged over 4 runs.

Hyper-parameters For each network and each sparsity level, we run our proposed methods CHITA (single-stage) and
CHITA++ (multi-stage) with ridge value λ ranging from [10−5, 103] and the number of IHT iterations (if Algorithm 4 is
applied) ranging from [5, 500]. In single-stage settings, we consider solving problem (8) with/without the first-order term.
We report in Table 1 the best model accuracy over all possible hyper-parameter combinations.

Hyper-parameters for ResNet50 experiments To obtain consistent results, we run CHITA and M-FAC with the same
set of hyperparameters (λ = 10−5, n = 500, Bsize = 104) and on the same training samples for Hessian and gradient
approximation. We performed a sensitivity analysis with different block sizes Bsize and found similar results — suggesting
that the results are robust to the choice of Bsize.

Fisher sample size and mini-batch size In practice, we replace each∇ℓi(w̄) used in Hessian and gradient approximation
by the average gradient of a mini-batch of size m. We display in Table 4 the Fisher sample size n and the mini-batch size m
(also called fisher batch size) used for gradient evaluation. Note that WoodFisher, CBS, and CHITA utilize the same amount
of data samples and the same batch size for MLPNet, ResNet20, and ResNet50; while for MobileNetV1, CHITA performs
gradient evaluations on 16,000 training samples, which is much less compared to WF and CBS as they require 960,000
samples.

Model MLPNet ResNet20 MobileNetV1 ResNet50

sample batch sample batch sample batch sample batch

CHITA 1000 1 1000 1 1000 16 500 16
WF & CBS 1000 1 1000 1 400 2400 - -

M-FAC - - - - - - 500 16

Table 4: Comparisons of the Fisher sample size n and the mini-batch size m used in Hessian and gradient approximation on MLPNet,
ResNet20, MobileNetV1 and ResNet50.

B.1.2. GRADUAL PRUNING

All experiments were carried on a computing cluster. Experiments for MobileNetV1 were run on an Intel Xeon Platinum
6248 machine with 30 CPUs and 2 GPUs; experiments for ResNet50 were run on five Intel Xeon Platinum 6248 machines
with 200 CPUs and 10 GPUs.

Details on the pruning step In all our gradual pruning experiments, we begin by pruning the networks to a sparsity
level of 50% and proceed with six additional pruning steps to reach the target sparsity. We follow the polynomial schedule
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Figure 6: Learning rate schedule used in our gradual pruning experiments on MobileNetV1, with a target sparsity level of 0.89. Text
around a point indicates the sparsity of the network at the current epoch.

introduced by Zhu & Gupta (2018) as the pruning schedule and use the CHITA-BSO algorithm with block approximation
(Algorithm 6) as the pruning method. The block size is set to Bsize = 2000 for MobileNetV1 and Bsize = 500 for
ResNet50.

Details on the fine-tuning process We incorporate SGD with a momentum of 0.9 for 12 epochs between pruning steps.
Once the networks have been pruned to the target sparsity, we continue to fine-tune the networks for an additional 28 epochs
using SGD with a momentum of 0.9 (total of 100 epochs). We utilize distributed training and set the batch size to 256 per
GPU during the SGD training process.

We implement a cosine-based learning rate schedule similar to the one used in the STR method (Kusupati et al., 2020).
Specifically, the learning rate for each epoch e between two pruning steps that occur at epochs e1 and e2 is defined as:

0.00001 + 0.5× (0.1− 0.00001)×
(
1 + cos

(
π
e− e1
e2 − e1

))
(18)

Figure 6 illustrates how such a learning rate schedule decays between pruning steps.

B.2. Implementation details and ablation studies

B.2.1. EFFECT OF THE RIDGE TERM
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Figure 7: Effect of the ridge term on the test accuracy and pruned weights of MLPNet.

In this section, we study the effect of the ridge term on the performance of our algorithm, specifically focusing on the test
accuracy over the course of the algorithm. As depicted in Figure 7(a), when no ridge term is applied, the test accuracy
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increases initially but then experiences a sharp decline as the algorithm progresses. The underlying cause is revealed in
Figure 7(b), which illustrates that without the ridge term, the distance between the original weight w̄ and the pruned weight
w keeps increasing as the algorithm progresses. As this distance increases, the local quadratic model used in (8) becomes
less accurate, leading to poor test performance.

One solution to this problem would be to employ early stopping to prevent the distance from growing too large. However,
determining the optimal stopping point can be challenging. Practically, we instead add the ridge term nλ

2 ∥w − w̄∥2 to the
objective function, effectively regularizing the model and maintaining its accuracy. As shown in Figure 7(c), utilizing a
well-tuned ridge term results in an increase of approximately 3% on MLPNet.

B.2.2. EFFECT OF THE FIRST-ORDER TERM
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Figure 8: Effect of using a scaled first-order term on pruning MLPNet with our proposed multi-stage solver CHITA++ to a sparsity level
of 0.95. All results are averaged over 5 runs.

Mini-batches are used for gradient evaluations in practice instead of evaluating gradient ∇ℓi(w̄)ni=1 on n training samples.
This means that each ∇ℓi(w̄) is replaced by the average gradient of a mini-batch of size m. In this scenario, the empirical
Fisher matrix H is not an accurate representation of the true Hessian matrix. However, it still provides a reasonable
approximation but with a scaling factor (Thomas et al., 2020; Singh & Alistarh, 2020).

In scale-independent applications, e.g., minimizing L(w) ≈ L(w̄) + 1
2 (w − w̄)⊤H(w − w̄) as considered in Singh &

Alistarh (2020) and Yu et al. (2022), the empirical Fisher matrix H still effectively approximates the true Hessian. However,
this approximation is no longer accurate in our framework, which includes a first-order term. This is supported by the results
shown in Figure 8(a), where our framework with a correctly scaled term (α = 1/m) demonstrates significantly improved
performance compared to one without a scaling factor (α = 1), especially when the fisher batch size m is much greater than
one.

To address this issue, we propose a local quadratic approximation with a scaled first-order term that reads

Q(w) = L(w̄) + αg⊤(w − w̄) +
1

2
(w − w̄)⊤H(w − w̄). (19)

Our proposed ℓ0-constrained framework (8) can be generalized to solving this problem by setting y = Aw̄ − αe, where e is
a vector of ones. We propose an accurate estimation of α as

α =
Trace(H)

Trace(∇2L(w̄))
. (20)

However, the computation cost of Trace(∇2L(w̄)) is not negligible, even using accelerated methods as proposed in Yao
et al. (2020). Through experimentation, as shown in Figure 8(b), we have discovered that the estimated value of α as given
by (20) is relatively close to 1/m. Therefore, we have chosen to use 1/m as a heuristic scaling factor in our experiments, as
it provides a good approximation while reducing the computational cost.

In Figure 8(c), we further illustrate the benefits of using large mini-batches and a scaled first-order term. As the fisher
batch size m increases, we can construct more precise local quadratic approximations through better estimation of H and g,
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resulting in improved test accuracy. Additionally, when m is greater than 1, using a correctly scaled first-order term provides
an additional performance boost.
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