
Continuously Parameterized Mixture Models

Christopher M. Bender 1 Yifeng Shi 1 Marc Niethammer 1 Junier B. Oliva 1

Abstract

Mixture models are universal approximators of
smooth densities but are difficult to utilize in com-
plicated datasets due to restrictions on typically
available modes and challenges with initialiations.
We show that by continuously parameterizing a
mixture of factor analyzers using a learned ordi-
nary differential equation, we can improve the
fit of mixture models over direct methods. Once
trained, the mixture components can be extracted
and the neural ODE can be discarded, leaving us
with an effective, but low-resource model. We
additionally explore the use of a training curricu-
lum from an easy-to-model latent space extracted
from a normalizing flow to the more complex in-
put space and show that the smooth curriculum
helps to stabilize and improve results with and
without the continuous parameterization. Finally,
we introduce a hierarchical version of the model
to enable more flexible, robust classification and
clustering, and show substantial improvements
against traditional parameterizations of GMMs.

1. Introduction
Mixture models have long served as reliable tools for both
modeling (density estimation) and summarizing (cluster
analysis) datasets. Through their probabilistic nature, mix-
ture models provide an estimate of the underlying data dis-
tribution; through a parsimonious collection of components,
mixture models succinctly summarize the major patterns
found in a dataset. Gaussian mixture models (GMMs),
which provide a universal approximation for smooth den-
sities (Goodfellow et al., 2015), have been effectively de-
ployed for modeling and clustering in a wide range of appli-
cations (Böhning et al., 2007; Gao et al., 2010; Jiao et al.,
2020).

1Department of Computer Science, The University of North
Carolina, Chapel Hill, North Carolina, USA. Correspondence to:
Christopher M. Bender <bender@cs.unc.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

There are two major challenges in applying GMMs to com-
plicated, high dimensional data. First, the partitions (modes)
that we wish to characterize in data are rarely spherical
or simple enough in nature to be faithfully captured with
Gaussian components. As an alternative, one may consider
more complicated components (Holzmann et al., 2006),
however, this worsens identifiability issues and yields par-
titions that do not adequately summarize populations of
interest in the data (Böhning et al., 2007). Second, mixture
models converge to local minima and thus their optimization
is extremely sensitive to initialization. Some approaches pro-
pose to initialize via local fitting methods such as k-means
(Richardson & Weiss, 2018). However, the distance met-
rics, for example Euclidean distance, implied in those local
fitting methods is rarely appropriate in high dimensions,
imposing initial partitioning that is arduous to escape.

We propose to offset the first difficult by taking a mixture of
mixtures in a hierarchical approach by considering a mixture
of distinct dynamical systems. In effect, we propose to learn
to evolve the components of one partition (see Fig. 1(a)) in a
fashion that results in an infinite mixture model in the limit.
This alleviates the burden of learning a large number of sep-
arate modes through a shared generator of components in
an approach that is akin to hypernetworks (Ha et al., 2016).
We can then combine multiple partitions to cover the entire
support (see Fig. 1(b)). Specifically, each partition is itself
defined by multiple components that are spanned through
smooth dynamics to represent complex, multi-modal distri-
butions. We sample discrete components from this continu-
ous parameterization during inference to construct a cheap,
lightweight model that dramatically reduces the computa-
tional cost, maintains improved performance over typical
mixture methods, and simplifies model interpretation.

We alleviate the second difficulty by creating a learned cur-
riculum (Bengio et al., 2009) over the data. We construct the
curriculum by transforming the data into a standard Gaus-
sian through a normalizing flow (Chen et al., 2019b; Dinh
et al., 2017; Grathwohl et al., 2019; Kingma & Dhariwal,
2018) and slowly annealing back to the original space. This
removes the difficulty with initialization since the distribu-
tion early in the training process is known. As we advance
through the curriculum, the model only requires minor per-
turbations from its previous state. We find that this process
results in considerably improved performance regardless of

1

Continuously Parameterized Mixture Models

the mixture parameterization.

Main Contributions We propose a parameterization of
Gaussian mixture models through the output of a neural
ordinary differential equation (NODE). This formulation
induces a smoothly-varying trajectory through the data, in
essence, learning a probabilistic sheath across the data man-
ifold. Once trained, the components of the GMM can be
extracted and the NODE discarded, rendering storage and
inference notably cheaper than most other modern methods.
We include a hierarchical component to the model by consid-
ering multiple trajectory starting points to allow us to utilize
simple Bayesian methods for clustering or classification. Fi-
nally, we demonstrate a curriculum-based training method
to significantly improve model performance. Code can be
found at https://github.com/lupalab/cpmm.

2. Background
2.1. Gaussian Mixture Models

Traditional (finite) mixture models model the presence of
sub-populations within a dataset through a convex com-
bination of distinct components of a chosen distribution.
Gaussian mixture models (GMMs), the most common class
of mixture models, restrain the set of chosen distributions
that constitutes the mixture to the Gaussian family:

p(x) =

K∑
k=1

πk N (x;µk,Σk) , (1)

where x ∈ RM is the input data, π is the component weight,
µ ∈ RM is the mean, Σ ∈ RM×M is the covariance matrix,
and K is the number of components in the mixture. Despite
the seemingly stringent simplification GMMs make, they
encompass a broad set of distributions. In effect, they are
universal approximators to any smooth probability distribu-
tion given enough mixture components (Goodfellow et al.,
2015). This offers us an insight when deploying GMMs
for data modeling: the more complex the data distribution
is, the more components the GMM would likely require to
yield a reasonable approximation. Motivated by this insight,
analogous to defining an integral as an infinite sum, we
take the limit K → ∞ in Eq. 1 to arrive at the following
continuous representation

p(x) = (2π)−M/2×∫ 1

0
π(s) |Σ(s)|−0.5

exp
(
− (x−µ(s))

T
Σ

−1
(s) (x−µ(s)) /2

)
ds

(2)
where the set of parameters, {πk, µk,Σk}k, for the finite
GMMs become the set of functions, {π(s), µ(s),Σ(s)},
that is parametrized by the variable s whose meaning de-
pends on the specific context of the problem. Eq. 1 can then
be reversely seen as a discretized formulation of Eq. 2.

2.1.1. MIXTURE OF FACTOR ANALYZERS

General GMMs require O(M2) parameters for each compo-
nent. To reduce this parameter cost, we utilize a Mixture of
Factor Analyzers (Ghahramani & Hinton, 1996; Richardson
& Weiss, 2018) which parameterizes the covariance matrix
of each component as the sum of a diagonal matrix, D, and
the inner product of a low-rank matrix, A ∈ RM×R, with
itself where R ≪ M , such that Σ = D+AAT . This brings
the number of parameters down to O(MR) and allows for
O(MR2) cost to estimate the determinant and inverse per
component.

2.2. Neural Ordinary Differential Equations

Built upon the observation that a residual network (He et al.,
2016) can be seen as an Euler discretization for solving
an ODE, Chen et al. (Chen et al., 2018) introduced neural
ODEs (NODEs), a class of continuous-depth neural net-
works that parameterize the class of ODEs that aim to solve
the initial value problem:

dh(t)

dt
= f (h(t), t; θ) , h(t0) = ht0 , (3)

with known initial value ht0 . Instead of being restricted
to the Euler discretization, Neural ODEs are able to incor-
porate any black-box ODE solver in a memory efficient
manner to compute

h(ti+1) = h(ti) +

∫ ti+1

ti

f (h(t), t; θ) dt . (4)

In practice, for tabular data, we set the architecture of f to
be a multilayer perceptron with an explicit dependence on
t and use either tanh or sin as the activation function. We
find that when using sin, the ODE seems to be less prone to
becoming stiff (Blanchard et al., 2006) and hence is easier
to numerically integrate. When using image data, we utilize
a convolutional neural network with the same activation
functions. In practice, we found that, in conjunction with
gradient check pointing, our models required only 1-2 GB
of GPU RAM to train.

3. Methods
In this section we discuss how we utilize neural ordinary dif-
ferential equations (NODE) to parameterize mixture models
over continuous indices and how to improve the training pro-
cess by instituting a curriculum to guide the model from an
easy-to-learn space to the true data space. The NODE allows
for a hyper-network (Ha et al., 2016) type approach, which
shares weights of a network to output parameters over mul-
tiple components, and whose limit is an infinite GMM. We
then extend a continuously parameterized mixture model by
allowing for multiple trajectories in a hierarchical structure
that allows us to perform clustering or classification.

2

https://github.com/lupalab/cpmm

Continuously Parameterized Mixture Models

(a) Evolution of a single continuous mixture model. (b) Evolution of several continuous mixtures. Color
schemes represent different mixtures.

Figure 1. We illustrate how a continuously parameterized mixture model can evolve components to model the data distribution (samples in
blue). Each ellipse corresponds to equal likelihood contours for a different component. Colors across components implicitly indicates the
arrow of pseudotime. (a) A single trajectory through the space provides a smooth probabilistic model. (b) A hierarchy of three different
partitions allows for different manifolds and enables flexible clustering or classification.

3.1. Continuously Parameterized Mixture Models

Inspired by the universal approximator properties of Eq. 2,
where the parameters of each component depend on the
latent variable, s, we chose to parameterize the MFA via
a neural network. We begin by constructing a joint state
across the MFA parameters. When the data is tabular, this
amounts to flattening each parameter and concatenating
them together:

h(t) =
[
µ(t), Ā(t), log(d)(t), log(π)(t)

]
(5)

where the bar over A indicates the matrix has been flattened,
d is the diagonal portion of D, and log is applied element-
wise. We choose to use a shared state across parameters
rather than a separate ODE for each parameter so that the
model can better coordinate and share relevant information.
We learn the log of d and π instead of the parameters directly
to ensure that the covariance is positive definite and that
the weights are non-negative. As a result, h ∈ RJ where
J = (R + 2)M + 1. In most cases, we set the value of
π to a constant and exclude it from the state to encourage
contiguous modes.

There are two ways to proceed. If our goal was to best
match Eq. 2, we would construct the NODE based on the
joint state and solve the system of ODEs that includes the

continuous mixture

dh(t)

dt
= f(h(t), t; θ)

dp(x)

dt
= (2π)−M/2 |Σ(t)|−0.5 ×

exp
(
− (x−µ(t))

T
Σ

−1
(t) (x−µ(t)) /2

)
π(t)

where we evaluate each component in accordance with Eq. 2
on the instantaneous value of t within the ODE solver and
set p(x) = 0 at t = 0 and take the integral over the range
of t without producing intermediate values. Unfortunately,
while this formulation is a better match to the continuous
mixture model, integrating p(x) is numerically unstable and
often causes f to become stiff (Blanchard et al., 2006) or
for the integrator to underflow, see Appendix for additional
details. Additionally, this form would require that we keep
the NODE once training is complete and resolve it for every
new example encountered.

We instead choose to solve for the joint state directly
and return the parameters at a (possibly variable) num-
ber of pseudotimes. That is, for a (uniformly drawn)
set of pseudotimes, {tj}Gj=1, we model the density as
p(x) =

∑G
j=1 π(tj)N

(
x; µ(tj), A(tj)A(tj)

T +D(tj)
)
,

where π(tj), µ(tj), A(tj), D(tj) are the respective continu-
ously indexed parameters and

∑
j π(tj) = 1. This approach

is essentially doing numerical integration to approximate
Eq. 2, which is feasible given the 1d integral. This leaves
us with a mixture model whose parameters are derived from

3

Continuously Parameterized Mixture Models

a continuous process. We will refer to this model as a con-
tinuously parameterized mixture model (CPMM). Figure 1
illustrates a dataset overlayed with the components extracted
from a CPMM.

We have specifically chosen f so that the ODE is not au-
tonomous (Blanchard et al., 2006). From a practical per-
spective, this means that our models are capable of learning
loops and cycles. However, to further increase the flexibility
of the model, we additionally augment the joint state

h(t) =
[
µ(t), Ā(t), log(d)(t), α(t)

]
(6)

where α ∈ RL and we have excluded log(π) from the
state. α is not directly used in evaluating any portion of
the mixture but instead provides an unconstrained pathway
that the network can use to pass information along. Without
the augmented state, the network must encode information
relevant to future times into the parameters of the current
time, overloading those parameters and notably decreasing
performance. We generally choose L to be 2-4× larger than
J , so h ∈ R5J .

In this form, the NODE does not depend on the evaluation
data point, x, directly and can be solved independently.
In fact, the NODE can be evaluated with only the initial
value and the parameter times. We can therefore consider
that our model is a type of hypernetwork (Ha et al., 2016).
We train the model by evaluating/solving the hypernetwork
against the learnable initial state and then evaluating the
likelihood for each example in the batch. The initialization
and hypernetwork dynamics are then updated to maximize
the likelihood of the batch. During evaluation, we solve
the hypernetwork once and cache the parameters (for a
uniformly drawn set of pseudotimes {tj}Gj=1) against future
executions. This places the total computational cost for
inference at O(KMR).

When the input data is an image, we construct the joint (aug-
mented) state by keeping the parameters in the image shape
for the NODE and concatenating over channels. We then
flatten the data and parameters to calculate the likelihood.
This means that the unaugmented portion of the channel
dimension is increased by a factor of R+ 2 relative to the
image channel count (when π is held fixed).

3.2. Hierarchical Mixture of Factor Analyzers

To facilitate clustering and classification, we extend the
mixture of factor analyzers (MFAs) in a hierarchical manner.
More specifically, we model the data with a mixture of MFAs

p(x) =

C∑
c=1

ηc p(x |c)

=
∑C

c=1 ηc
∑G

j=1

(
πc(tj)N

(
x; µc(tj), Ac(tj)Ac(tj)

T +Dc(tj)
))

,

(7)

where C denotes the number of MFAs and, therefore the
number of clusters/classes,

∑
c ηc = 1, and {tj}Gj=1 is a set

of pseudotimes. We construct the mixture of the C MFAs by
providing C different initial values to the NODE. Alterna-
tively, we could learn a separate NODE and initial state for
each MFA. This should allow for greater flexibility in each
trajectory. However, we generally find that the improvement
is not appreciable while the increase in compute is signifi-
cant. Sharing the ODE means that the trajectories will learn
from one another and share certain dynamic characteristics.

The hierarchical mixture allows the model to learn disparate
data partitions without requiring that a single trajectory
transition through low probability regions. Additionally, we
can utilize Bayes rule to estimate p(y = c|x) from Eq. 7 to
perform clustering or classification.

3.3. Curriculum Through Spaces

Unfortunately, training large mixture models in high di-
mensions often gets stuck in local minima and is extremely
sensitive to initialization. Direct mixtures (mixtures with
disconnected parameters) are often initialized via a combi-
nation of kmeans and local fitting prior to gradient descent
(Richardson & Weiss, 2018). However, for CPMMs, the
parameters are the product of a learnable process and cannot
be directly initialized. As a heuristic, one may initialize the
ODE initial value based on kmeans or labeled examples,
however this only provides a limited signal and one must
resolve how to initialize other parameters such as A or log d.

In order to circumvent this difficulty, we borrow ideas from
curriculum learning (Bengio et al., 2009). We begin by
defining a continuously indexible map, ∀v ∈ [0, 1], Mv :
RM 7→ RM such that M0(x) = x, and Mv progressively
maps to a smoother, simpler space as v increases. We pro-
pose to leverage M to construct a curriculum for learning
the CPMM. Intuitively, we may begin training on the sim-
plest space induced by M1 and slowly progress to training
on our target input space M0. That is, for a sequence
1 = v1 > . . . > vT = 0, we progressively train on respec-
tive datasets Dt = {Mt(xi)}Ni=1. An accessible choice is
to define Mv as a continuous normalizing flow (Grathwohl
et al., 2019), Mv = uv , where

uv(x) =

∫ v

0

g(us(x), s;ϕ)ds,

log puv
(uv(x)) = logN (u1(x); 0, I) +

∫ 1

v

tr
(
∂g

∂s

)
ds,

(8)
u0(x) ≡ x and uv(x) is defined by a learnable function, g,
which is trained via MLE so that u1(x) ∼ N (0, I).

We construct the curriculum for the CPMM by first training
the CPMM on u1. Since the data is (ideally) a standard
Gaussian in this space, it is trivial to learn a good CPMM

4

Continuously Parameterized Mixture Models

Figure 2. Evenly distributed transitions through different spaces. The data begins in a latent space as a standard Gaussian (top left) and
ends in the true space (bottom right).

and the initialization of the CPMM parameters can be cre-
ated as perturbations from the standard Gaussian. We then
marginally perturb the space by taking a small step in v
towards the input, e.g., we train the CPMM on u1−ϵ where,
for sufficiently small ϵ, pu1−ϵ

(u1−ϵ) ≈ pu1
(u1). We repeat

this process of perturbing the space and then updating the
CPMM until we have arrived back at the input space. Figure
2 shows this smooth transition on a two-dimensional dataset
as the map transitions between the latent space, through sev-
eral intermediate spaces, before arriving back at the input
space.

One interpretation of this curriculum is that we learn the ini-
tialization for one space based on training over a marginally
simpler version of the data. This interpretation applies to
both the parameters of the NODE hypernetwork and the
initial values of each trajectory. Without this slow update
procedure, even with a good initial value, the CPMM can
be hard to train since the initial trajectories can point in the
wrong directions and the model can struggle to shift the
probability mass appropriately.

An important distinction between our use of a curriculum
and the typical form of curriculum learning is that we do
not want to remember earlier “tasks.” Doing so would mean
that the CPMM would still capture the intermediate spaces
between the Gaussian noise and the input space. Since
these spaces are only used as a guide and have no intrinsic
meaning, maintaining them has no direct value.

4. Related Work
Mixture Models Mixture models can be applied to solve
an array of ML problems, e.g., clustering and density es-

timation (Hastie et al., 2001), and are widely deployed in
modern ML methods. Viroli et al. (Viroli & McLachlan,
2019) model the variables at each layer of a deep network
with a Gaussian mixture model (GMM), leading to a set
of nested mixtures of linear models. Izmailov et al. (Iz-
mailov et al., 2020) use a GMM as the base distribution
in conjunction with normalizing flows for semi-supervised
learning. Richardson et al. (Richardson & Weiss, 2018)
demonstrate that GMMs better capture the statistical modes
of the data distribution than generative adversarial models
(GANs), while Eghbal-zadeh et al. (Eghbal-zadeh et al.,
2019) incorporate a GMM into the discriminator of a GAN
to encourage the generator to exploit different modes in the
data.

Tractable Likelihood Models Normalizing flows and au-
toregressive models are two common types of extremely
effective tractable likelihood estimators. Normalizing flows
(NF) learn invertible transformations to a latent space where
the data has a known, prechosen, distribution, typically the
standard normal. There exist considerable variations be-
tween models based on the families of invertible functions
allowed (Chen et al., 2019b; Dinh et al., 2017; Grathwohl
et al., 2019; Kingma & Dhariwal, 2018). Autoregressive
(AR) models (Oliva et al., 2018; Papamakarios et al., 2017;
van den Oord et al., 2016) exploit the probabilistic chain
rule and learn a distribution for each dimension conditioned
on the previous features. Despite their impressive perfor-
mance as likelihood estimators and as generative methods,
these models are surprisingly brittle. In particular, they
show higher likelihoods for completely different datasets
than the ones they were trained on which prevents them
from being utilized for outlier detection (Hendrycks et al.,

5

Continuously Parameterized Mixture Models

2019; Nalisnick et al., 2019).

Deep Clustering Several approaches to apply deep net-
works for clustering have been proposed in the past few
years (Caron et al., 2018; Xie et al., 2016), centering around
the concept that the input space in which traditional clus-
tering algorithms operate is of importance. There have also
been works on incorporating traditional clustering methods,
such as spectral clustering or hierarchical clustering, directly
into deep networks (Chen et al., 2019a; Law et al., 2017;
Shaham et al., 2018). Mukherjee et al. (Mukherjee et al.,
2019) extend GANs for clustering by using a combination
of discrete and continuous latent variables.

Mixture Models + Deep Nets for Clustering Since mix-
ture models are the traditional models of choice for cluster-
ing tasks, arming them further with the recent development
in deep learning is only natural. Zhang et al. (Zhang et al.,
2017) directly deployed a mixture of autoencoders with the
assumption that different clusters are effectively different
local data manifolds, and thus could be parametrized and
learned by autoencoders. In the same vein, Pires et al. (Pires
& Figueiredo, 2020) model the data using a mixture of
normalizing flows, where the mixture weights are com-
puted through optimizing the variational lower bound. Jiang
et al. (Jiang et al., 2017) use a GMM as the prior distribution
for the latent code in a variational auto-encoder (VAE), thus
allowing for clustering of the input data in the latent space.

Non-parametric Bayesian Mixture Models Non-
parametric Bayesian models (Müller & Quintana, 2004)
assume the number of parameters of the underlying model
grows with the number of data samples. In the case of the
underlying model being a non-parametric Bayesian mixture
model, this indicates that for every new data sample, the
model can either group it with the already-discovered
mixture components or initiate a new mixture component
for that data sample, increasing the number of mixture
components deployed and hence the number of parameters
utilized (Görür & Rasmussen, 2010). This is accomplished
by using a Dirichlet process for the prior distribution of the
parameters of non-parametric Bayesian mixture models
(Gelfand et al., 2005). Despite effectively deploying an
infinite number of mixture components during the training
stage, the number of components eventually learned is
determined by the finite data samples available, resulting in
a learned finite mixture distribution at test time.

Sum-Product Networks Sum-product networks (SPN)
(Peharz et al., 2020a;b; Poon & Domingos, 2011) are a
class of probabilistic circuits (Darwiche, 2003) that produce
a tractable likelihood estimate akin to normalizing flows
and autoregressive methods. SPNs are constructed as a di-
rected acyclic graph composed of alternating “sum” and

Figure 3. Two synthetic datasets designed to assess the limitations
of the CPMM.

“product” operations over the evaluation of (typically) one-
dimensional densities at each leaf node. Learning is often
performed through the EM algorithm by updating the pa-
rameters of each leaf distribution and the weights at each
sum node. This structure allows SPNs to cheaply evaluate a
variety of statistical quantities (e.g., marginals) without ap-
proximation. When leaf densities are Normal distributions,
the SPN can be expressed as a GMM with many components
(Jaini et al., 2018).

5. Experiments
We construct our models in PyTorch (Paszke et al., 2019)
and train using PyTorch Lightning (Falcon, 2019). We used
Adam (Kingma & Ba, 2015) as the optimizer in all cases.
Unless otherwise stated, we extract 25 components per tra-
jectory for each hierarchical CPMM. Curriculum models
were constructed using simple CNFs from FFJORD (Grath-
wohl et al., 2019). Since the execution of a CNF is com-
putationally expensive, we extracted the smoothly varying
datasets (see Sec. 3.3), Dt, immediately after training and
saved them to disk. In general, we choose to use 51 total
spaces (including the latent space, u1, and the input space,
x) and allocate one epoch per space. We then fine-tune on
the input space. All models trained directly in the input
space utilize standard data augmentations (see Appendix for
further details). Models trained with the curriculum are ini-
tialized randomly; other models are initialized via kmeans
or a combination of kmeans and fitting a local Factor An-
alyzer as in (Richardson & Weiss, 2018). When training
a hierarchical model, we often find it helpful to include
entropy regularizations across trajectories.

5.1. Synthetic Data

We demonstrate the effectiveness and weaknesses of CPMM
on two toy datasets. The first dataset consists of two con-

6

Continuously Parameterized Mixture Models

Figure 4. Means from a hierarchical CPMM trained on MNIST with a curriculum. Each trajectory is evaluated at evenly spaced
pseudotimes between zero and one and displayed from left to right. Despite the 3/8 and 4/9 confusion, the model does an excellent job of
learning smoothly-varying transitions. The initial component (far left cases) are never the most likely component and could be discarded.

centric, broken circles. The radii of both circles are chosen
to differ by 10% and have similar thicknesses. The second
dataset consists of a noisy five-armed spiral that begins near
the origin before curving outward. This dataset is intention-
ally constructed with “outliers” (points between the arms
without a clear cluster identity) to assess how the CPMM
will handle examples “far” from the manifold. Both CP-
MMs are trained using a curriculum.

Figure 3 contains true data points in the top row and samples
drawn from the CPMM on the bottom row. Since the model
is trained unsupervised, we use different colors between
true labels and cluster labels (e.g., between the top and
bottom row). We see that the CPMM does a reasonable
job of capturing the general manifolds of both datasets.
However, the model seems to struggle with the end points
of the trajectory and the samples are less precise than during
the other portions of the trajectory. We observe this trend
on all datasets: the CPMM often struggles with endpoints,
typically the early pseudotimes. In the spiral data, we see
that the model has attempted to capture the outliers, though
they have larger spread than the true outliers and it attributes
them all to the same cluster.

5.2. Images

To process image datasets, we first rescale the input pixels
to be between zero and one and then apply an element-
wise logit transform, a standard preprocessing technique
(e.g., (Grathwohl et al., 2019)). We perform these trans-
formations so that the “input” data has support over R.
These transformations are applied before we train any model
and the corresponding log detJacobian is accounted for

when estimating bits per dimension as in a normalizing flow.

We test training CPMMs on MNIST (Deng, 2012) and
Fashion-MNIST (Xiao et al., 2017) and compare to two
different GMM baselines along with several standard like-
lihood models and clustering models. CPMM NODEs are
constructed using CNNs with a depth of 3, a hidden channel
width of 64, and utilize sin activations. We additionally
augment the state space by a factor of four and explicitly
condition the ODEs on pseudotime by concatenating it as
an extra channel. To avoid degeneracies, we soft-clip log d
so that the minimum value cannot be less than -6.

We consider two baseline GMMs for comparison. In the first
model, we choose the total number of components equal
to the number of clusters (e.g., 10). This simple procedure
allows for easy cluster assignments; each component corre-
sponds to exactly one cluster. In the second case, we train a
GMM with 250 components since this corresponds exactly
to the number of components extracted across trajectories
when using a CPMM. However, attributing components
to clusters is less obvious in this case. We choose to use
spectral clustering (Filippone et al., 2008) over components
based on the Fréchet distance over Gaussians (Dowson &
Landau, 1982). Specifically, we attribute examples to com-
ponents and components to clusters based on a spectral
clustering model that constructs an affinity matrix through
the Fréchet distance. Both models are initialized and trained
as discussed in Sec. 5.

Table 1 summarizes the results for the different mixture
models in juxtaposition to standard baselines (Agarap &
Azcarraga, 2020; Ding et al., 2019; Mahon & Lukasiewicz,
2021; Peharz et al., 2020a). The matched GMM models

7

Continuously Parameterized Mixture Models

Table 1. Bits per dimension (BPD) and clustering accuracy (Acc.).

MNIST Fashion-MNIST
BPD Acc. BPD Acc.

Matched GMM 6.61 61.75 6.58 55.00
GMM w/ S.Clust. 5.21 48.91 5.71 48.52
EiNet (Matched) 2.19 - 4.18 -
EiNet (Large) 1.95 - 3.98 -
GMM w/ Curr. 2.61 64.47 4.35 58.41
CPMM 2.21 80.07 3.91 65.01

Teacher 1.04 - 2.85 -
FFJORD 1.01 - 2.75 -
VADE - 94.5 - 57.8
SPC - 99.21 - 67.94
DLS - 97.6 - 69.3

(one component per cluster) achieves surprisingly high clus-
tering accuracies but subpar BPD. Unsurprisingly, intro-
ducing more components (GMM w/ S.Clust.) improves
the BPD. However, spectral clustering across components
is only marginally successful and the clustering accuracy
drops relative to the baseline GMM. We additionally train
two EiNets (Peharz et al., 2020a), a type of SPN. The first
EiNet (Matched) is constrained to have the same total num-
ber of parameters (not components) as the the CPMM. The
second EiNet (Large) utilizes an order of magnitude more
parameters. Finally, we train a standard GMM with 250
components that additionally utilizes the curriculum. The
CPMM trained with the curriculum enjoys significantly im-
proved BPD and clustering accuracy relative to the GMM
baselines, better performance compared to the matched
EiNet and standard GMM with the curriculum, and sim-
ilar performance against the large EiNet. (See Appendix for
additional ablation experiments.) Our results indicate that
our proposed methodology closes the considerable gap be-
tween mixture models and modern neural baselines (listed
in the bottom of Table 1). An especially notable case is
the Fashion MNIST clustering accuracy, where the CPMM
results in comparable-to-better than the standard baselines.
Thus, CPMM allows one to retain the interpretability and
inference speed of mixture models with improvements in
modeling performance over tradition mixture approaches.

Interpretability Figure 4 shows the trajectories learned
by a CPMM where we have manually ordered the clusters.
The figure shows smooth transitions along the trajectory for
all digits, in general transitioning from fatter, curvier digits
to slimmer, straight digits. The early pseudotimes (far left)
are never the most likely component and could be excluded
for a slight increase in the BPD. We have not done so here
for the sake of transparency and to avoid arbitrary post-hoc
operations. This particular model does an excellent job
of isolating different digits into different trajectories with

the exception of some 3/8 and 4/9 confusion that results
in a clustering accuracy of 80%. This confusion is under-
standable given the similarities in the digit pairs but more
importantly, this analysis highlights the interpretability of
our model. That is, it is simple to resolve the model’s con-
fusion from the trajectories since CPMM directly operates
over input features. In contrast to more opaque clustering
models, a quick visual inspection reveals CPMM’s partion-
ing of the space. Similar results and discussion can be found
for Fashion-MNIST in the Appendix.

OOD Detection Finally, we test the CPMM’s ability to
distinguish between different datasets based on likelihood.
This is a known shortcoming of neural likelihood models
(Hendrycks et al., 2019; Nalisnick et al., 2019) where the net-
works unfortunately predict that simpler datasets are more
likely than the data the model was trained on; e.g., MNIST
instances yield a higher likelihood than Fashion-MNIST
instances for models trained on Fashion-MNIST. This sur-
prising result limits the applicability of modern likelihood
models for detecting out-of-distribution (OOD) and anoma-
lous instances, despite their intuitive capabilities. Table 3
(appendix) illustrates the performance of our model against
a CNF for out-of-distribution recognition when trained on
a distinct inlier distribution. Results are given as areas un-
der the receiver operating characteristic and precision/recall
curves as a percent. Higher is better. Although both models
perform nearly perfectly when MNIST is in-distribution
and Fashion-MNIST is out-of-distribution, the CPMM per-
forms quite well on the reverse problem where the CNF fails
miserably. Notwithstanding a gap in the likelihood that is
obtainable with CPMM as compared to CNF (Table 1), this
experiment illustrates an advantage to directly modeling the
input data through a mixture of components.

6. Conclusions
We have proposed a hierarchical method to parameterize
a continuum of mixture models from neural ODEs to cre-
ate a rich, multi-modal density over disparate partitions,
essentially constructing a mixture of mixtures where the
outer mixture encompasses different data regions and the
inner mixture can be arbitrarily complex. We have inno-
vated a curriculum that alleviates many of the difficulties
associated with initialization via an annealing process from
a prescribed latent space towards the true, nuanced data
space. Since the initial distribution is known, it is trivial to
initialize a model that is well-matched. Finally, we sample
a finite number of components from the dynamic NODE to
achieve an effective, light-weight model that significantly
outperforms mixtures with a similar number of components,
indicating that the combination of the curriculum and dy-
namic system allows for a more efficient use of the available
components than traditional methods.

8

Continuously Parameterized Mixture Models

Acknowledgements
This research was partly funded by NSF grant IIS2133595
and by NIH 1R01AA02687901A1.

References
Agarap, A. F. and Azcarraga, A. P. Improving k-means

clustering performance with disentangled internal rep-
resentations. 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, 2020.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML
’09, pp. 41–48, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605585161.
doi: 10.1145/1553374.1553380. URL https://doi.
org/10.1145/1553374.1553380.

Blanchard, P., Devaney, R., and Hall, G. Differen-
tial Equations. Thomson Brooks/Cole, 2006. ISBN
9780495012658. URL https://books.google.
com/books?id=mwxX2pv9UvYC.

Böhning, D., Seidel, W., Alfò, M., Garel, B., Patilea, V., and
Walther, G. Advances in mixture models. Comput. Stat.
Data Anal., 51:5205–5210, 2007.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. Deep
clustering for unsupervised learning of visual features. In
ECCV, 2018.

Chen, C., Li, G., Xu, R., Chen, T., Wang, M., and Lin, L.
Clusternet: Deep hierarchical cluster network with rig-
orously rotation-invariant representation for point cloud
analysis. 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 4989–4997,
2019a.

Chen, R. T. Q., Behrmann, J., Duvenaud, D. K., and
Jacobsen, J.-H. Residual flows for invertible gen-
erative modeling. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc., 2019b. URL https://proceedings.
neurips.cc/paper/2019/file/
5d0d5594d24f0f955548f0fc0ff83d10-Paper.
pdf.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. In NeurIPS,
2018.

Darwiche, A. A differential approach to inference in
bayesian networks. 50(3), 2003. ISSN 0004-5411. doi:

10.1145/765568.765570. URL https://doi.org/
10.1145/765568.765570.

Deng, L. The MNIST database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Ding, F., Luo, F., and Yang, Y. Double cycle-consistent gen-
erative adversarial network for unsupervised conditional
generation, 2019. URL https://arxiv.org/abs/
1911.05210.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density es-
timation using real NVP. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.
net/forum?id=HkpbnH9lx.

Dowson, D. and Landau, B. The fréchet distance between
multivariate normal distributions. Journal of multivariate
analysis, 12(3):450–455, 1982.

Eghbal-zadeh, H., Zellinger, W., and Widmer, G. Mixture
density generative adversarial networks. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5813–5822, 2019.

Falcon, WA, e. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning,
3, 2019.

Filippone, M., Camastra, F., Masulli, F., and Rovetta, S.
A survey of kernel and spectral methods for cluster-
ing. Pattern Recognition, 41(1):176–190, 2008. ISSN
0031-3203. doi: https://doi.org/10.1016/j.patcog.2007.05.
018. URL https://www.sciencedirect.com/
science/article/pii/S0031320307002580.

Gao, M. M., Tai-hua, C., and xiang Gao, X. Application of
gaussian mixture model genetic algorithm in data stream
clustering analysis. 2010 IEEE International Conference
on Intelligent Computing and Intelligent Systems, 3:786–
790, 2010.

Gelfand, A. E., Kottas, A., and MacEachern, S. N. Bayesian
nonparametric spatial modeling with dirichlet process
mixing. Journal of the American Statistical Asso-
ciation, 100(471):1021–1035, 2005. doi: 10.1198/
016214504000002078. URL https://doi.org/10.
1198/016214504000002078.

Ghahramani, Z. and Hinton, G. E. The EM algorithm for
mixtures of factor analyzers. 1996.

Goodfellow, I. J., Bengio, Y., and Courville, A. C. Deep
learning. Nature, 521:436–444, 2015.

9

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://books.google.com/books?id=mwxX2pv9UvYC
https://books.google.com/books?id=mwxX2pv9UvYC
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://doi.org/10.1145/765568.765570
https://doi.org/10.1145/765568.765570
https://arxiv.org/abs/1911.05210
https://arxiv.org/abs/1911.05210
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://www.sciencedirect.com/science/article/pii/S0031320307002580
https://www.sciencedirect.com/science/article/pii/S0031320307002580
https://doi.org/10.1198/016214504000002078
https://doi.org/10.1198/016214504000002078

Continuously Parameterized Mixture Models

Görür, D. and Rasmussen, C. E. Dirichlet process gaussian
mixture models: Choice of the base distribution. Journal
of Computer Science and Technology, 25:653–664, 2010.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., and Du-
venaud, D. Scalable reversible generative models with
free-form continuous dynamics. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJxgknCcK7.

Ha, D., Dai, A., and Le, Q. V. Hypernetworks, 2016. URL
https://arxiv.org/abs/1609.09106.

Hastie, T., Tibshirani, R., and Friedman, J. The elements of
statistical learning. 2001.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Hendrycks, D., Mazeika, M., and Dietterich, T. Deep
anomaly detection with outlier exposure. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=HyxCxhRcY7.

Holzmann, H., Munk, A., and Gneiting, T. Identifiability of
finite mixtures of elliptical distributions. Scandinavian
Journal of Statistics, 33, 2006.

Izmailov, P., Kirichenko, P., Finzi, M., and Wilson, A.
Semi-supervised learning with normalizing flows. ArXiv,
abs/1912.13025, 2020.

Jaini, P., Poupart, P., and Yu, Y. Deep homogeneous
mixture models: Representation, separation, and
approximation. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.
pdf.

Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H. Varia-
tional deep embedding: An unsupervised and generative
approach to clustering. In IJCAI, 2017.

Jiao, L., Denoeux, T., Liu, Z., and Pan, Q. Egmm: an eviden-
tial version of the gaussian mixture model for clustering.
ArXiv, abs/2010.01333, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, pp. 10236–10245, 2018.

Law, M. T., Urtasun, R., and Zemel, R. S. Deep spectral
clustering learning. In ICML, 2017.

Mahon, L. and Lukasiewicz, T. Selective pseudo-label
clustering. In Edelkamp, S., Möller, R., and Rueckert, E.
(eds.), KI 2021: Advances in Artificial Intelligence, pp.
158–178, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-87626-5.

Mukherjee, S., Asnani, H., Lin, E., and Kannan, S. Clus-
tergan : Latent space clustering in generative adversarial
networks. ArXiv, abs/1809.03627, 2019.

Müller, P. and Quintana, F. A. Nonparametric Bayesian
Data Analysis. Statistical Science, 19(1):95 – 110, 2004.
doi: 10.1214/088342304000000017. URL https://
doi.org/10.1214/088342304000000017.

Nalisnick, E., Matsukawa, A., Teh, Y. W., and Lakshmi-
narayanan, B. Detecting out-of-distribution inputs to
deep generative models using typicality. arXiv preprint
arXiv:1906.02994, 2019.

Oliva, J., Dubey, A., Zaheer, M., Poczos, B., Salakhutdinov,
R., Xing, E., and Schneider, J. Transformation autoregres-
sive networks. In International Conference on Machine
Learning, pp. 3898–3907, 2018.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
6c1da886822c67822bcf3679d04369fa-Paper.
pdf.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning
library. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019.
URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

10

https://openreview.net/forum?id=rJxgknCcK7
https://openreview.net/forum?id=rJxgknCcK7
https://arxiv.org/abs/1609.09106
https://openreview.net/forum?id=HyxCxhRcY7
https://openreview.net/forum?id=HyxCxhRcY7
https://proceedings.neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c5f5c23be1b71adb51ea9dc8e9d444a8-Paper.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1214/088342304000000017
https://doi.org/10.1214/088342304000000017
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Continuously Parameterized Mixture Models

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A.,
Trapp, M., Van Den Broeck, G., Kersting, K., and Ghahra-
mani, Z. Einsum networks: Fast and scalable learning of
tractable probabilistic circuits. In III, H. D. and Singh, A.
(eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 7563–7574. PMLR, 13–
18 Jul 2020a. URL https://proceedings.mlr.
press/v119/peharz20a.html.

Peharz, R., Vergari, A., Stelzner, K., Molina, A.,
Shao, X., Trapp, M., Kersting, K., and Ghahra-
mani, Z. Random sum-product networks: A sim-
ple and effective approach to probabilistic deep learn-
ing. In Adams, R. P. and Gogate, V. (eds.), Pro-
ceedings of The 35th Uncertainty in Artificial Intelli-
gence Conference, volume 115 of Proceedings of Ma-
chine Learning Research, pp. 334–344. PMLR, 22–
25 Jul 2020b. URL https://proceedings.mlr.
press/v115/peharz20a.html.

Pires, G. G. P. F. and Figueiredo, M. A. T. Variational
mixture of normalizing flows. ArXiv, abs/2009.00585,
2020.

Poon, H. and Domingos, P. Sum-product networks: A new
deep architecture. In 2011 IEEE International Conference
on Computer Vision Workshops (ICCV Workshops), pp.
689–690, 2011. doi: 10.1109/ICCVW.2011.6130310.

Richardson, E. and Weiss, Y. On gans and gmms. In
NeurIPS, 2018.

Shaham, U., Stanton, K., Li, H., Nadler, B., Basri, R., and
Kluger, Y. Spectralnet: Spectral clustering using deep
neural networks. ArXiv, abs/1801.01587, 2018.

van den Oord, A., Kalchbrenner, N., Espeholt, L.,
kavukcuoglu, k., Vinyals, O., and Graves, A. Condi-
tional image generation with pixelcnn decoders. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.
neurips.cc/paper/2016/file/
b1301141feffabac455e1f90a7de2054-Paper.
pdf.

Viroli, C. and McLachlan, G. Deep gaussian mixture models.
Statistics and Computing, 29:43–51, 2019.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Xie, J., Girshick, R. B., and Farhadi, A. Unsupervised deep
embedding for clustering analysis. In ICML, 2016.

Zhang, D., Sun, Y., Eriksson, B., and Balzano, L. Deep
unsupervised clustering using mixture of autoencoders.
ArXiv, abs/1712.07788, 2017.

11

https://proceedings.mlr.press/v119/peharz20a.html
https://proceedings.mlr.press/v119/peharz20a.html
https://proceedings.mlr.press/v115/peharz20a.html
https://proceedings.mlr.press/v115/peharz20a.html
https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf

Continuously Parameterized Mixture Models

A. Numerical Integration
The typical strategy to train a likelihood model is to opti-
mize based on the predicted log-likelihood and not on the
likelihood directly. In fact, when training a Gaussian mix-
ture model, we typically calculate the log-likelihood of each
component separately prior to utilizing the numerically-
stable log

∑
exp operator instead of performing the exp,

followed by the
∑

, followed by the log. This joint version
stably handles difficulties resulting from over- or under-flow
when the log-likelihood of any single component is very
(large) small.

When attempting to evaluate the log-likelihood for a contin-
uum of components we should utilize a similar log

∫
exp:

logp(x) =
−M

2
log(2π) + log

∫ 1

0

exp

(
− log |Σ(s)| /2

− (x−µ(s))
T
Σ

−1
(s) (x−µ(s)) /2 + log π(s)

)
ds.

Unfortunately, none of the available black-box integrators
match this form. This requires that we utilize a naive im-
plementation of the log

∫
exp operator. In practice, we find

this sufficient to train the model for several epochs without
issue but the ODE becomes increasingly stiff before ulti-
mately underflowing and “NaNing” out. A better strategy
to estimate a continuous mixture model will require a new
black-box integrator which we consider an excellent avenue
for future work.

B. Augmentations
For all image datasets we added uniform random noise be-
tween zero and one prior to rescaling, e.g., a pixel with an
8bit value of 34 would then be distributed uniformly be-
tween 34 and 35. For color images, we additionally perform
standard random translations and horizontal flips. For tabu-
lar data, we add Gaussian noise to each feature such that the
standard deviation of the noise is 1-10% of the spread of the
data itself, e.g., we normalize each feature to be zero mean
and unit standard deviation, add Gaussian noise scaled by
0.01 to 0.1 and unnormalize that data.

When training with the curriculum (see Sec. 3.3), we uti-
lize similar augmentations prior to transforming into the
various spaces such that the augmentation is shared across
spaces. When training the CPMM student, we then add a
small mount of Gaussian noise (standard deviation of 0.01)
regardless of the space, including when fine-tuning on the
input space.

C. MNIST Ablations
We experiment with different types of initializations and
modifications of the CPMM on MNIST. In particular, we

test random initializations and kmeans-based initializations.
We also explore restricting the diagonal portion of the covari-
ance within each MFA to be constant (though still learnable
and still with the low rank updates, A) and attempt to utilize
a separate ODE for each cluster.

Table 2. MNIST Ablation
Init. Diagonal BPD Acc.

Random Constant 7.67 48.83
kmeans Constant 7.56 64.93
kmeans Variable 4.49 46.42

kmeans* Constant 7.55 71.22

Table 2 contains some representative runs attempting to train
the CPMM without guidance from the teacher. We find that
training the models with a variable diagonal often results in
the model degenerating and failing to train. In fact, training
with a variable diagonal and a random initialization tends to
fail after a few epochs and is therefore excluded from the
table. Utilizing a kmeans initialization produces moderately
good BPD (better than standard GMM training methods)
but slightly worsened accuracies. Restricting the model to
use a constant diagonal greatly stabilizes training and can
produce reasonably good clustering accuracies. However,
this strong assumption on the covariance results in very
poor BPD. This is not surprising, as the model must raise
the variance of pixels that would normally be very small
(background pixels) to sufficiently capture the spread else-
where. Finally, the bottom row in Table 2 contains results
using a kmeans initialization with a constant diagonal but
utilizes a separate ODE for each trajectory. This added flex-
ibility results in virtually no improvement to the BPD but
does provide a noticeable increase in accuracy. We find that
training separate ODEs per cluster results in a significant
increase to run time.

The results in Table 2 were chosen as representative values
across many different runs. In general, it is possible to trade
accuracy for BPD in any given row by adjust other hyperpa-
rameters or seeds. Utilizing the curriculum learning process
helps to stabilize training and allows us to simultaneously
improve the generative and discriminative portions of the
model.

D. Fashion MNIST Results
Figure 5 contains the trajectories from a curriculum-based
CPMM trained on Fashion-MNIST. Similar to MNIST, the
trajectories show smooth variations between means. Many
of the trajectories contain visible evolutions from start to fin-
ish, i.e., bags begin without handles but end with handles
or shoes evolve from boots to stilletos. However, some of
the fine detail is missing from the trajectories, in particular
for the shirts, pullovers, and coats classes.

12

Continuously Parameterized Mixture Models

Figure 5. Means from a hierarchical CPMM trained on Fashion-MNIST with a space-based curriculum. Each trajectory is evaluated at
evenly spaced pseudotimes between zero and one and displayed from left to right. The initial component (far left cases) are never the
most likely component and could be discarded.

As in MNIST, we can clearly see why the model achieves
65.74% clustering accuracy. The shirts, pullovers,
and coats classes all produce very similar trajecto-
ries. Similarly, the sandals, sneakers, and ankle
boots classes see considerable overlap. Abstractly, this in-
formation can be extracted from any clustering model based
on the confusion matrix. But, thanks to the interpretability
of the mixture models, the decision process and resulting
confusion is clear.

E. Out-of-Distribution Performance

Table 3. OOD Detection via Likelihood Thresholding

CPMM FFJORD
In Out AUROC AUPR AUROC AUPR.

MNIST Fashion 99.95 99.95 99.95 99.95
Fashion MNIST 93.38 93.28 8.98 31.65

13

