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Abstract

In symbolic regression, the goal is to find an ana-
lytical expression that accurately fits experimental
data with the minimal use of mathematical sym-
bols such as operators, variables, and constants.
However, the combinatorial space of possible ex-
pressions can make it challenging for traditional
evolutionary algorithms to find the correct expres-
sion in a reasonable amount of time. To address
this issue, Neural Symbolic Regression (NSR) al-
gorithms have been developed that can quickly
identify patterns in the data and generate analyti-
cal expressions. However, these methods, in their
current form, lack the capability to incorporate
user-defined prior knowledge, which is often re-
quired in natural sciences and engineering fields.
To overcome this limitation, we propose a novel
neural symbolic regression method, named Neural
Symbolic Regression with Hypothesis (NSRwH)
that enables the explicit incorporation of assump-
tions about the expected structure of the ground-
truth expression into the prediction process. Our
experiments demonstrate that the proposed condi-
tioned deep learning model outperforms its uncon-
ditioned counterparts in terms of accuracy while
also providing control over the predicted expres-
sion structure.

1. Introduction

Symbolic Regression (SR) is a method that searches over
the space of analytical expressions £ to find the best fit
for experimental data by balancing the need to minimize
expression complexity with maximizing accuracy. Unlike
over-parametrized methods such as decision trees and neu-
ral networks, SR produces human-readable expressions that
can provide valuable insights in fields such as material sci-
ence (Wang et al., 2019; Kabliman et al., 2021; Ma et al.,
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2022) and fundamental physics (Schmidt and Lipson, 2009;
Vaddireddy et al., 2020; Sun et al., 2022; Cranmer et al.,
2020; Hernandez et al., 2019; Udrescu and Tegmark, 2020).
The goal of SR is to gain a deeper understanding of the un-
derlying mechanisms of physical systems rather than trying
to fit the data exactly, which can be affected by measurement
errors. SR accomplishes this by converting input numerical
data into compact and low-complexity representations in
the form of symbolic mathematical expressions.
Researchers in natural sciences frequently rely on prior
knowledge and analogies to comprehend novel systems and
predict their behavior. When studying specific physical phe-
nomena, scientists might anticipate particular constants or
symmetries to appear in the mathematical laws describing
the data. For instance, in astrophysics, the gravitational
constant has a significant impact on determining the scale of
interactions between celestial bodies, while in fluid dynam-
ics, the Reynolds number denotes the relative significance
of inertial and viscous forces. Thus, it is crucial to prioritize
expressions that contain such constants while employing
symbolic regression techniques, as they conform better to
the physics laws governing the data. Access to a part of
the underlying ground-truth system equation is also a com-
mon assumption made in the system identification literature
where the physical laws are known up to a few parameters
(Brunton et al., 2016; Kaheman et al., 2020). In our work,
we will refer to the assumptions made by the SR practitioner
about the underlying symbolic expression as hypotheses.
These hypotheses may be incomplete or partially incorrect
and can be used in any form to restrict the search space. If a
hypothesis is true, we will name it privileged information.

Related work and background

Genetic Programming. Searching for a satisfactory ana-
lytical expression is a hard optimization problem, tradition-
ally tackled using genetic programming (GP) algorithms.
These methods work by i) defining a class of programs,
represented in SR as tree structures where nodes are unary
(e.g. cos,exp) or binary operators (e.g. add,mul) and
leaves are variables and constants (e.g. =, 3.14) and ii)
evolving a population of analytical expressions through se-
lection, mutation, and crossovers. Being a greedy search
approach, GP algorithms are prone to falling into local min-
ima, and extensive exploration leads to relatively large run
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times. In practice with time constraints, such as the 24
hours-limit in (La Cava et al., 2021), the most accurate GP
methods provide expressions with overly large complex-
ity thus preventing the derivation of meaningful physical
insights; on the Feynman datasets (Udrescu and Tegmark,
2020), whose expressions have averaged complexity 20 as
defined in (La Cava et al., 2021), the current state-of-the-art
(Burlacu et al., 2020) predicts expressions with averaged
complexity 100. Up to our knowledge, injection of prior
information in GP methods can only be accomplished by
filtering during selection, e.g. using properties like function
positivity or convexity (Kronberger et al., 2022; Haider et al.,
2022). This strategy is inherently greedy and can result in
the selection of suboptimal expressions due to early conver-
gence to local minima. Other forms of high-level prior infor-
mation available to the user, e.g. complexity of the expected
expression, can hardly be incorporated into GP algorithms.
Recently (Mundhenk et al., 2021), a combination of neural
networks and genetic programming (GP) has been proposed
to improve the performance of symbolic regression. The
neural network is used to generate the initial population for a
GP algorithm, resulting in a hybrid approach that combines
the strengths of both methods. This combination allows
for the ability to learn patterns and explore a large solu-
tion space, resulting in remarkable performances. However,
these systems are not easily controllable, meaning that it
can be difficult for the user to constrain the predictions to
conform to high-level properties that are known from prior
knowledge of the problem.

Al-Feynman. Recent studies (Udrescu and Tegmark,
2020; Udrescu et al., 2020) have investigated the idea of
constraining the search to expressions that exhibit particular
properties, such as compositionality, additivity, and gener-
alized symmetry. By utilizing these properties, the task of
SR becomes significantly less complex as it leverages the
modular nature of the resulting expression trees. However,
these approaches necessitate fitting a new neural network
for every new input dataset and then examining the trained
network to identify the desired properties, leading to an
inevitably time-consuming process.

Neural Symbolic Regression. Inspired by recent ad-
vances in language models, a line of work named Neural
Symbolic Regression (NSR), tackles SR as a natural lan-
guage processing task (Biggio et al., 2020; 2021; Valipour
et al., 2021; d’Ascoli et al., 2022; Kamienny et al., 2022;
Vastl et al., 2022; Li et al., 2022; Becker et al., 2022). NSR
consists of two primary steps: firstly, large synthetic datasets
are generated by 1) sampling expressions from a prior dis-
tribution py(€) where 6 is a parametrization induced by
an off-the-shelf expression generator (Lample and Charton,
2019), ii) evaluating these expressions on a set of points
x € R? where d is the feature dimension, e.g. sampled

from a uniform distribution. Secondly, a generative model
94(E|D), practically a Transformer (Vaswani et al., 2017)
parametrized by weights ¢, that is conditioned on input
points D = (x,y), is trained on the task of next-token
prediction with target the Polish notation of the expres-
sion. NSR predicts expressions that share properties of their
implicitly biased synthetic generator py(E). Control over
the shape of the predicted expressions, e.g complexity or
sub-expression terms, boils down to a sound design of the
generator and the pipeline introduced in (Lample and Char-
ton, 2019) allows only limited degrees of freedom such as
operators, variables, constants probability, and tree depth.

Similarly to querying a text-to-image generative model
(Ramesh et al., 2022; Saharia et al., 2022) with a prompt, the
SR practitioner might want to restrict the class of predicted
expressions to be in a subclass A(E) C € by using privileged
information. Examples of h(€) can be the class of expres-
sions with low complexity, or that include a specific sub-

expression like e~V wi+ag, However, a trained NSR model
94(E|D) can only be adapted to h(E) in one of two ways:
1) by using rejection sampling, which is time-inefficient and
does not guarantee to find candidate expressions with the
expected inductive biases, or ii) by designing a new gener-
ator with the desired properties and fine-tuning the model
on the new dataset, which is a tedious and time-consuming
task.

Contributions

In this work, we propose a new method called Neural Sym-
bolic Regression with Hypotheses (NSRwH) to address the
aforementioned limitations of NSR algorithms. NSRwH
efficiently restricts the class of predicted expressions of
NSR models during inference, if provided privileged infor-
mation Dpi, with a simple modification to both the model
architecture and the training data generation: with the train-
ing set of expressions from py (), we produce descriptions
Dp1, e.g. appearing operators or complexity, and feed this
meta-data into the Transformer model as an extra input, i.e.
9o(S|D, Dpr). During training, we use a masking strategy
to avoid our model considering sub-classes of expressions
when no privileged information is provided. We show that
our model exhibits the following desirable characteristics:

1. In a similar vein to the recent literature on expression
derivation and integration (Lample and Charton, 2019)
and mathematical understanding capabilities of Trans-
formers (Charton, 2022), our results demonstrate that
Transformer models can succeed in capturing complex,
high-level symbolic expression properties, such as com-
plexity and symmetry.

2. The proposed model is able to output expressions that
closely align with user-determined privileged informa-
tion and/or hypotheses on the sought-for expression
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when it is conditioned on such information. This makes
the model effectively controllable as its output reflects
the user’s expectations of specific high-level properties.
This stands in contrast to previous work in the NSR and
GP literature, where steering symbolic regressors toward
specific properties required either retraining from scratch
or using inefficient post hoc greedy search routines.

3. The injection of privileged information provides signif-
icant improvements in terms of recovery rate. Such an
improvement is, as expected, proportional to the amount
of conditioning signal provided to the model. This ef-
fect is even more apparent in the case where numerical
data are corrupted by noise and in the small data regime,
where standard NSR approaches witness a more marked
performance deterioration.

4. We empirically demonstrate that incorporating condition-
ing hypotheses not only enhances the controllability of
NSRwH but also improves its exploration capabilities,
in contrast to standard NSR approaches that rely solely
on increasing the beam size. In particular, we show
that injecting a large number of hypotheses randomly
chosen from a large pool of candidates results in better
exploration performance compared to a standard NSR
approach operating with a large beam size.

In essence, our approach provides an additional degree
of freedom to standard NSR algorithms by allowing
the user to quickly steer the prediction of the model
in the direction of their prior knowledge at inference
time. This is accomplished by leveraging established
techniques from language modeling and prompt engi-
neering. The paper is structured as follows: in Section 2,
we describe our data generation pipeline and the model
architecture; in Section 3 we detail our experimental
setup and report our empirical results and in Section 4
we discuss promising future directions and the current
limitations of our approach. Code is available at https:
//github.com/SymposiumOrganization/
ControllableNeuralSymbolicRegression.

2. Method

2.1. Notation and framework

A symbolic regressor is an algorithm that takes as input
a dataset D of n features-value pairs (xi, ;) ~ R? x R,
where d is the feature dimension, and returns a symbolic
expression e ~ & such that V(x;,y;) € D, e(x;) = ¢; =~ y;.
NSR is a class of SR algorithms that learns a distribution
model g4(€ | D), parametrized by a neural network with
weights ¢, over symbolic expressions conditioned on an
input dataset D. In this work, we introduce NSRwH, a new
subclass of neural symbolic regressors, that allows for condi-

tioning their predictions with user-specified prior knowledge
about the output expression. More concretely, given a set of
privileged information Dpr, NSRwH approaches are trained
to model the conditional distribution g4(€ | D, Dpy). An
illustration of the proposed approach is shown in Fig. 1.

2.2. Dataset generation

In our framework, a synthetic training sample is defined
as a tuple (e, D, Dpy) where each element is produced as
explained below.

Generating e and D. As in other NSR works (Biggio
et al., 2021; Kamienny et al., 2022; Valipour et al., 2021),
we sample analytical expressions e from £ using the strat-
egy introduced by Lample and Charton (2019): random
unary-binary trees with depth between 1 and 6 are gener-
ated, then internal nodes are assigned either unary or binary
operators as described in Table 2 in Appendix A.1 according
to their arity, and leaves are assigned variables {z}q4<5 and
constants. In order to generate D, for each expression e, we
sample a support of n points x; € R%. The values for each
coordinate are drawn independently from one another using
a uniform distribution ¢/, with the bounds randomly selected
from the interval [—10, 10]. Next, the expression value y;
is obtained via the evaluation of the expression e on the
previously sampled support. More details on the generation
of numerical data can be found in Appendix A.1

Generating Dpy.  Privileged information Dpy is composed
of hypotheses. From an expression e, we extract the follow-
ing properties:

* Complexity. We use the definition of complexity pro-
vided by (La Cava et al., 2021), i.e. the number of math-
ematical operators, features, and constants in the output
prediction.

* Symmetry. We use the definition of generalized symme-
try proposed in (Udrescu et al., 2020): f has generalized
symmetry if the d components of the vector x € R? can
be split into groups of k£ and d — k components (which we
denote by the vectors x’ € R¥ and x”/ € R~* ) such that
fx) = f(x',x") = g[h(x'),x"] for some unknown
function g.

* Appearing branches. We consider the set of all the
branches that appear in the prefix tree of the generating
expression. For instance, for z; 4 sin x5 this set would be
[+, 21, +21, sin, sin(za), 22, + sin, + sin(z2)]. For each
expression, in the training set, we sample a subset of
this list, ensuring that each element of the subset is sam-
pled with a probability inversely proportional to its length
squared and that the full expression tree is never given to
the model.
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Figure 1. Neural Symbolic Regression with Hypotheses. 1) A dataset of numerical observations is obtained; 2) the user formulates a
set of hypotheses based on some properties they believe the final expression should possess. After being tokenized independently, the
properties tensors are concatenated to form a unique conditioning tensor; 3) numerical data as well as the formulated hypotheses are given
as input to two different encoders. Their outputs are then summed and the resulting tensor is processed by a decoder which outputs a set
of candidate equations. For NSRwH to be effective and controllable, the candidate expressions should respect the input hypotheses.

Appearing constants. We also enable the inclusion of
a-priori-known constants at test time. We implement this
conditioning by drawing inspiration from the concept of
pointers in computer programming: we give as input to
the model the numerical constant and a pointer, and the
model has to place the input pointer in the correct location
in the output prediction. This approach does not require
representing each constant with a different token, hence
preventing the explosion of the output vocabulary size.

Absent branches. We condition our model with the in-
formation about subtrees not appearing in true expression.
The procedure for extracting this property follows the
same logic as the extraction of appearing subtrees.

In the rest of the paper, we refer to these properties as
Complexity, Symmetry, Positive, Constants,
and Negat ive. It is important to note that the set of prop-
erties used in this work is not exhaustive and can easily be
expanded based on the user’s prior knowledge. We pro-
vide more details on their exact computation along with a
practical example of their extraction in Appendix A.2.

2.3. Model

Architecture. We use NeSymReS (Biggio et al., 2021) as
our base neural symbolic regressor for its simplicity and in
the following, we explain how to incorporate the descrip-
tion Dpy as an input to the model g4 (e|D, Dpr). Note that
the very same conditioning strategy can easily be applied
to alternative more advanced NSR architectures, such as
those introduced in (Valipour et al., 2021; Kamienny et al.,
2022). NSRwH consists of three architectural components:

a numerical encoder encym, a symbolic encoder encgym,,
and a decoder dec (see Fig. 1). Numerical data D, repre-
sented by a tensor of size (B, n, D), where B is the batch
size, n is the number of points and D is the sum of depen-
dent/independent variables (D = 5 + 1), is converted into
a higher dimensional tensor D’ of size (B,n, H) using a
multi-hot bit representation according to the half-precision
IEEE-754 standard and an embedding layer, where H is
the hidden dimension (512 for our experiments). D’ is
then processed by a set-transformer encoder (Lee et al.,
2019), a variation of (Vaswani et al., 2017) with better in-
ference time and less memory requirement, to produce a
New tensor Zyq,, = encpum(D’) of size (B, S, H), where
S (50 for our experiments) is the sequence length after the
encoder processing. Dpi, represented by a tensor of size
(B, M) where M is the number of tokens composing the
conditioning hypotheses string, is converted into a higher
dimensional tensor D5, of size (B, M, H) via an embed-
ding layer. This new tensor is then input into an additional
set-transformer to produce a tensor zym, = encsym (Dp;)
of size (B, S, H). Znym and zgy, are summed together
to produce a new tensor Zyysed = Znum + Zsym Of size
(B, S, H). Finally, z,q is fed into a standard transformer
decoder network, dec, that autoregressively predicts token
by token the corresponding expressions using beam search
for the best candidates. We resorted to the element-wise
summation of Zj,q,, and zg,,, instead of concatenation in
order to reduce memory usage in the decoder, which in-
creases quadratically with the sequence length due to cross
attention.

Training and testing. As done in all NSR approaches, we
use the cross-entropy loss on next-token prediction using
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teacher-forcing (Sutskever et al., 2014), i.e. conditioning
9o (Etr1]e1:t, D, Dpr) on the first ¢ tokens of the ground-
truth e. As for NeSymReS, we “skeletonize” target expres-
sions by replacing constants by a constant token ¢ or, in
the case the position of the constant is known a priori, a
pointer symbol is used. To prevent our model from being
dependent on privileged information at test time, we include
training examples with partial privileged information. This
means we only provide the model with a subset of all the
possible conditionings. For example, only Positive and
Symmetry are given, while Negative, Complexity
and Constants are masked out. This is a useful feature
of our model as, depending on the use case, some informa-
tion might not be available and we want the model to still
be usable in those cases. At test time, as for NeSymReS, we
use beam search to produce a set of predicted expressions,
then we apply Broyden—Fletcher—Goldfarb—Shanno algo-
rithm (BFGS) (Fletcher, 1987) to recover the values of the
constants by minimizing the squared loss between the origi-
nal outputs and the output from the predicted expressions.
More details on the model and training hyperparameters can
be found in Appendix B.

3. Experiments

In this section, we first introduce the datasets and metrics
used to evaluate the model and then we present our ex-
periments aimed to assess different properties of NSRwH,
including its controllability, and its performance when Dp;
is available, and when it is not. Over the experimental
section, we use the standard NeSymReS as a reference base-
line, which is referred to as standard_nesy in the plots.
While our approach could be used with other NSR methods,
we have chosen to solely focus on NeSymReS as a baseline
model. This allows us to better comprehend the advantages
that come from conditioning, instead of assessing various
NSR models with distinct numerical input architectures and
expression generators. As mentioned in Section 1, GP meth-
ods can be hardly conditioned on our set of properties, and
as such a comparison with them would be unfair.

3.1. Experimental setup

To generate training data, we follow the pipeline introduced
in Section 2.2 resulting in a training set comprising 200
million symbolic expressions with up to 5 variables. The
datasets and metrics used to test NSRwH are described
below.

Datasets. We use five different databases in our experi-
ments, each characterized by different degrees of complex-
ity: 1) train_nc: this dataset comprises 300 symbolic
expressions, not including numerical constants. The number
of independent variables varies from 1 to 5. The equa-

tions are sampled from the same distribution of the train-
ing set; 2) train_wc: it comprises the same equations
of train_nc but with numerical constants randomly in-
cluded in each expression. As such, it represents a more
challenging framework than the previous one as the model
has the output constant placeholders in the correct po-
sitions and BFGS has to find their numerical value; 3)
only_five_variables_nc: it consists of 300 expres-
sions without constants, strictly selected to have 5 indepen-
dent variables each. The dataset has been chosen to assess
the performance of our algorithm in a higher-dimensional
scenario; 4) AIF': it comprises all the equations with up to
5 independent variables extracted from the publicly avail-
able AIFeynman database (Udrescu and Tegmark, 2020). It
includes equations from the Feynman Lectures on Physics
series and serves to test the performance of NSRwH on
mathematical expressions stemming from several physics
domains; 5) black_box: it is extracted from the ODE-
Strogatz (Strogatz, 2018) databases and serves to evaluate
NSRwH in the case where no prior information is available.
As also noted by Kamienny et al. (2022), these datasets
are particularly challenging as they include non-uniformly
distributed points and have different input support bounds
than those used by our dataset generation pipeline.

Metrics. We use three different metrics to evaluate our
models: 1) is_satisfied: this metric measures the per-
centage of output predictions that agree with a certain prop-
erty. For all the properties this metric is calculated as fol-
lows: given a known equation, we calculate the mean over
the total number of times the predictions of the model across
the beam size matches the property under consideration. The
final metric value is given by the average of the above quan-
tity across all the equations in the test set; 2) is_correct:
given a test equation, for each point (z, y) and prediction g,
we calculate numpy .is_close (y, ). Then, we take the
mean over all the support points and obtain a real number.
If this number is larger than 0.99, we deem our prediction
to match the true one and we assign a score of 1, otherwise
0. The final metric value is obtained by calculating the per-
centage of correctly predicted equations over the entire test
set. Importantly, the support points are chosen to be dif-
ferent from those fed into the model at test time; 3) R2__:
given a test equation, and n points {z;,y; }I~,, and the cor-
responding predictions {g; }?"_,, we calculate the coefficient
of determination, also known as R? score, as defined below:

3 A N\2
Z:I:l (yi — 9i) zn:y
—\2 g
S (v — 3 po

The final metric is calculated by taking the mean of the
R? scores obtained for each equation in the test set. More
details on the test datasets and metrics can be found in
Appendix C.

R*=1- where ¢ =

S|
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Figure 2. Controllability and property matching: The panels show the level of agreement with various types of input conditioning
signals —in terms of the i s_satisfied metric — of our model and the unconditioned baseline (standard_nesy), both in the noiseless
case (full line) and when noise is injected in the input data (dashed line), as a function of the beam size. The reported results are averaged

across all datasets apart from black box.

3.2. Can transformers efficiently restrict the inference
space using descriptions?

Arguably, the main challenge in symbolic regression is rep-
resented by the extremely large search space over mathe-
matical expressions. Methods based on brute force search
techniques are doomed to fail or to fall into spurious local
minima. The goal of this section is to show that neural
symbolic regression algorithms can be controlled in such
a way that their output adheres with a set of pre-specified
inductive biases — meant to narrow the search space — on
the nature of the sought expression.

Each panel in Fig. 2 shows the evolution of the
is_satisfied metric for various types of conditioning
properties as the beam size increases, with and without noise
injected in the input data. Noise perturbations are injected
in the output of the input data, y, according to the following
formula:

where € ~ N(0,|y|) and p=0.01.
ey
The goal of the experiment is twofold: first, we want to
assess whether NSRwH is able to capture the meaning of
the input conditing, and second, we want to verify how con-
sistent such an agreement is as we increase the beam size
and inject noise.
From the results in Fig. 2, we can observe that the predic-
tions of NSRwH attain a very high is_satisfied score
for all the evaluated properties. This is in contrast with the
unconditioned model which does not consistently capture
the underlying properties. This is particularly evident when
noise is added to the data, as our model shows robustness
to such perturbations, while the standard NSR method ex-
periences greater variations. This is explained by the fact
that the standard method grounds its predictions solely on
numerical data. As such, when these are severely corrupted,
results deteriorate accordingly. We also note that when all
possible conditioning properties are given to the model (see
all), NSRwH tends to underperform with respect to the
case when a single property is provided, in particular as the

y=y+pe

beam size increases. This is likely due to interference effects
between different hypotheses, which causes the model, at
large beam sizes, to select the subset of them that is more
consistent with the numerical data.

3.3. Can NSRwH leverage privileged information?

In this section, we investigate whether the ability of NSRwH
to capture the meaning of the input properties can be lever-
aged to improve performance.
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Figure 3. Conditioning improves performance. Comparison be-
tween NSRwH conditioned with different types of hypotheses and
the unconditioned baseline (standard_nesy) in terms of the
is_correct metric. Each column corresponds to a different test
dataset.

To perform these experiments we make use of
is_correct metric introduced above and we study
how performance changes under the effect of noise, number
of input data, and amount of conditioning. The beam size
for both NSRwH and NeSymReS is set to 5. We start
our evaluation from the noiseless case, i.e. no noise is
injected in the expressions’ evaluation at test time. As
such, the mapping between input covariates and the output
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Figure 5. Dependence on the number of input points. Comparison between NSRwH conditioned with different types of hypotheses and
the unconditioned baseline (standard_nesy) in terms of the i s_correct metric, as a function of the number of input points, for the
trainonc, trainwe,only_five variables_nc and AIF datasets from left to right.

value is exactly represented by the ground truth symbolic
expression. Fig. 3, shows the performance of NSRwH and
the unconditioned model in terms of the is_correct
metric described above and the different properties provided
at test time.

Generally, NSRwH efficiently leverages the prompted infor-
mation to improve its performance. Among the considered
individual properties, Positive is the most effective
one. However, it is interesting to note that Symmetry is
particularly effective on the only_five variables_nc
(ofv_nc) dataset. This is due to the high-dimensional nature
of the dataset and the fact the symmetry information is
more useful in such cases. Providing information about
the ground-truth constants leads to significant performance
improvements on the train_wc dataset, showcasing
the effectiveness of our strategy of providing numerical
constants to the model. Finally, al1, the combination of
all the considered properties, is by far the most impacting
conditioning. It is noteworthy that, while in some cases
the performance of individual properties may not be
significantly better than the baseline, their combination
(all) proves to be highly successful, indicating that the
model is able to combine them together effectively.

3.3.1. CASE WITH NOISE

In this paragraph, we explore the more challenging scenario
where noise is injected into the output value y at test time.
In particular, we use Eq. 1 with six different noise levels
p € {0,0.0001,0.001,0.01, 0.1, 1}. The beam size for both
NSRwH and NeSymReS is set to 5 in this experiment. As
shown in Fig. 4, the performance improvements are even
more pronounced than in the noiseless case shown in Fig. 3.
This illustrates that the incorporation of meaningful induc-
tive biases in our model enables it to effectively manage the
impact of noise and, as a result, improves generalization.

3.3.2. DEPENDENCE ON THE NUMBER OF INPUT POINTS.

In a similar manner as the previous paragraph, this investi-
gation examines whether NSRwH can utilize input condi-
tioning to enhance its performance in the challenging, yet
common scenario where small datasets are used as input.
As before, the beam size for both NSRwH and NeSym-
ReS is set to 5. As illustrated in Fig. 5, as the number of
input points decreases, the performance of both the condi-
tioned and unconditioned models also declines. However,
in NSRwH this effect is significantly reduced, keeping rel-
atively high levels of accuracy even when working in the
small data regime.
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3.3.3. DEPENDENCE ON THE AMOUNT OF
CONDITIONING

In this section, we investigate how the performance changes
as we increase the amount of conditioning. We conduct this
experiment using both Positive and Constants as we
can easily control the degree of conditioning by adjusting
the probability of the number of subtrees and constants that
appear, respectively. As before, the beam size for both
NSRwH and NeSymReS is set to 5. Fig 6 shows how
the value of the is_correct metric changes as we vary
the amount of Positive and Constants information.
As expected, a monotonic trend can be observed for both
properties as the amount of conditioning is increased. The
peak in performance is reached when the two properties are
provided in the largest amounts, suggesting that the model
can combine the two prompts to maximize its prediction
accuracy.
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Figure 6. Dependence on the amount of conditioning. The
heatmap shows how changing the probability of appearing subtrees
and constants affects NSRwH’s performance on the train_wc
dataset, measured by the is_correct metric. The y-axis shows
the probability of constants appearing, with 100% meaning all con-
stants are inputted. The x-axis shows the normalized conditioning
length, with 1.0 meaning the model sees positive sub-branches
whose length adds up to the prefix ground truth.

3.4. What if no assumptions can be made?

This section investigates the scenario where no prior knowl-
edge is available to condition the model.

Model Type is_correct RZ___
Random Positive Conditions 0.35 + 0.06 0.86 + 0.05
Standard Model [5K] 0.23 £0.00 0.74 +0.05
Standard Model [10] 0.12+0.04 0.324+0.03

Table 1. No privileged information available. Comparison be-
tween NSRwH with randomly sampled hypotheses, a standard
NSR approach (NeSymReS) with beam size 5000, and a standard
NSR approach with beam size 10 (same as NSRwH). Results are
averaged over 5 runs.

The objective of the experiment is to determine if using
NSRwH with randomly sampled hypotheses can outper-
form a standard NSR model, which can only improve its
predictions by increasing the beam size. According to prior
work, conventional search techniques of NSR, such as beam
search and random sampling, quickly reach a saturation
point in exploring the search space, making larger beam
sizes ineffective for exploration (see Fig. 16 in (Kami-
enny et al., 2022)). The experiment is conducted on the
black_box dataset. The standard model uses a large beam
size of M = 5000, which is within the saturation regime,
and NSRwH uses N = 500 diverse, randomly sampled
Positive conditionings with a beam size of M /N = 10
for each. As such, both methods utilize the same compu-
tational budget. Table 1 shows that NSRwH outperforms
the standard NSR model on the black_box dataset. We
highlight that the policy used to randomly sample positive
operators is very sparse and highly suboptimal. As such,
the design of more effective search routines over the space
of properties represents an interesting avenue for future
research.

4. Discussion

Conclusive remarks. This work presents a novel ap-
proach for symbolic regression that enables the explicit
incorporation of inductive biases reflecting prior knowledge
of the problem at hand. In contrast to previous works, this
can be effectively done at test time, drastically reducing the
computational overhead. Thanks to this property, our model
better lends itself to online and interactive applications of
symbolic regression, thus enabling fast hypothesis testing, a
highly desirable feature for scientific discovery applications.
We demonstrate the value of this approach with a number
of examples and ablation studies where numerical data is
scarce or affected by noise.

Limitations and future work The main limitation of the
proposed approach is realized in the scenario where no prior
knowledge is available. In this case, the performance gains
obtained in Section 3.3 are not guaranteed. However, in
Section 3.4, our final experiment suggests an intriguing op-
portunity for future research - leveraging NSRwH’s extra
degree of freedom to explore the equation space more effi-
ciently. In addition, the properties investigated in this work
are not exhaustive and it is conceivable to include additional
forms of prior knowledge, such as alternative definitions of
the complexity of mathematical expressions based on syntax
or semantics (Kommenda et al., 2015; Vladislavleva et al.,
2009). Finally, we remark that thanks to its simplicity, the
same idea at the basis of NSRwH can be applied to more
advanced NSR algorithms, like the one recently proposed
by (Kamienny et al., 2022), likely resulting in further per-
formance improvements. We intend to investigate the above
questions in future work.
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A. Dataset generation
A.1. Generating D

We build our training dataset first by generating symbolic expressions skeletons (i.e. mathematical expressions where the
values of the constants are replaced by placeholder tokens) using the framework introduced by (Lample and Charton, 2019).
Our vocabulary consists of the unary and binary operators shown in Table 2. We considered scalar (output dimension equal
to 1) expressions with up to 5 independent variables with a maximum prefix length and depth of 20 and 6 respectively.

To obtain the mathematical expression and corresponding numerical evaluation during training for each equation we adopt
the following procedure:

* An equation skeleton is randomly sampled from the pool of symbolic expression skeletons

* The sampled expression is simplified using the simplify function from Sympy (Meurer et al., 2017) in order to
remove any redundant term.

* Constants of the skeleton are sampled from ¢/ (—10, —10) if they are additive, and logarithmically from 2/(0.05, 10) if
multiplicative.

* The extrema of the support for each independent variable is sampled independently from a uniform distribution
U(—10, 10) with the distance between the left and right extrema of at least 1.

* For each independent variable, n input points are sampled from the previously sampled support, where n is sampled
between U/(1,1000). Support points that lead to absolute values bigger than 65504 or NANs are discarded and
re-sampled.

* We evaluate the sampled expression on the previously obtained support points by using the 1ambdi fy function from
Sympy (Meurer et al., 2017).

Arity | Operators

Unary | sqrt, pow2, pow3, powd
inv, log, exp
sin, cos, asin

Binary‘ add, sub, mul, div

Table 2. Operators used in our data generation pipeline.

As the input evaluations can lead to large values, we follow (Biggio et al., 2021) and we convert them from float to a
multi-hot bit representation according to the half-precision IEEE-754 standard before feeding them into the model.

A.2. Generating Dp
A.2.1. COMPLEXITY

The complexity of a sentence is determined by the sum of the number of nodes and leaves in the expression, as outlined in
(La Cava et al., 2021). Each complexity value is represented by a unique token, ranging from 1 (i.e. z1) to 20.

A.2.2. SYMMETRY

We use the definition of generalized symmetry proposed by (Udrescu et al., 2020): f has generalized symmetry if the d
components of the vector x € R? can be split into groups of k and d — k components (which we denote by the vectors
x' € R¥ and x”” € R?* ) such that f(x) = f (x/,x") = g[h(x'),x"] for some unknown function g. As explained in

(Udrescu et al., 2020), in order to check the presence of generalized symmetry in the set of variables x’, it is sufficient to

. . . . .V f(x ") . .
check whether the normalized gradient of f with respect to x’ is independent on x”, i.e. % is x”-independent.

We have created two tokens for each symmetry combination, one to represent the presence of symmetry and one to represent
its absence. The total number of tokens is 50, as there are 32 possible symmetry combinations when there are five variables,
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but some of them are not informative and are excluded, leaving 25 useful combinations. When the number of variables is
less than five, only the tokens related to the actual variables are passed to the model (see example in Section A.2.5).

A.2.3. APPEARING / ABSENT BRANCHES

To sample both appearing and absent branches for an expression, we create two candidate pools: a positive and a negative
one. The positive pool is created by using the Depth-First-Search (DFS) algorithm to list all the subtrees within the current
prefix expression and then by removing the subtree corresponding to the entire expression and other non-informative subtrees
like ;. The negative pool is created by filtering out the branches that are already present in the current prefix tree from a
pre-computed set of branches, obtained from a large pool of expression trees within the training distribution. We sample
subtrees from these pools with a probability proportional to the inverse of their length squared, both during training and
evaluation. To regulate the total information given to the model, two parameters, p,, for the positive subtrees and p,, for
the negative subtrees, are used. The product of p, (p,,) and the ground truth length determines the total number of tokens
provided to the model, denoted as s, (s,,). Positive (Negative) subtrees are sampled until the aggregate sum of their lengths,

Zf\i 1 Len(sampled subtrees, ), reaches the s, (s,,) value. Sub-branches are separated by special separator tokens.

A.2.4. CONSTANTS

Each a-priori-known constant is assigned to a specific symbol, such as pointer_0 for the first constant, pointer_1 for
the second, and so on. We then give the symbolic encoder the corresponding pointer and a numerical embedding obtained by
first converting the known constant in its equivalent 16-bit representation and then passing it through a learnable linear layer
that makes its dimension match that of the symbolic embedding. In the target expression, we replace the standard constant
placeholder with the pointer_i token in the expression. At training and evaluation stages, we regulate the probability of a
constant being a-priori-known with a parameter p..

A.2.5. EXAMPLE OF EXTRACTION AND PROCESSING OF CONDITIONING INFORMATION

This section provides a concrete example of how different conditionings are extracted and processed to be fed into our
model. Consider the expression x3 sin (z1 + 23).

To determine the Posit ive conditioning, we must first convert it into prefix notation. This is achieved by first rewriting it
as ['mul’, ’x3’, ’sin’, *add’, "z, "x2’] and then enumerating all the possible subtrees of the expression, excluding trivial
subtrees such as 'x5’ alone. These are: [[’add’], ['mul’], [’sin’], ["add’, *x1’], ["add’, *z5’], [mul’, *x3’], ["add’, *z1’, "z2’],
[’sin’, ’add’, *z;’, *z2’], [mul’, ’sin’, *add’, x;’, *x2’]]. Positive conditionings are then sampled from this pool with a
probability inversely proportional to the length squared of the subtree. So a positive conditioning such as ['mul’, *x3’] is
less likely to be sampled than [’sin’] but more likely than ["'mul’, ’sin’, ’add’, *x1’, *x2’].

To obtain the Negat ive conditionings, we generate subtrees at random that are absent from the positive pool. This is
achieved by randomly selecting an expression, enumerating the subtrees within it, and then randomly choosing subtrees
from the expression that are not present in the positive pool. For example, for the expression above, a negative conditioning
could be [’'mul’, *x1’], or [’exp’] since none of these are present in the positive pool. The number of sub-trees supplied to
the model is determined by the values of p,, and p,,, and the total length of the expression. For example, if p,, is 0.5, then the
total length of the sampled sub-trees will be 3, since the overall length of the ground truth is 6.

Constant conditioning would be empty since no constants can be obtained.

Complexity conditioning is simply the sum of total nodes and leaves of the prefix expression tree, so in this case, it is
equal to 6.

For the Symmet ry conditioning, we followed the definition given provided by (Udrescu et al., 2020). For our example
expression, we will have symmetry between x; and x5 but not between x1, x3 or xo, T3.

Once computed, the conditionings are wrapped into a string, tokenized, and then fed into the model. The string will have the
following form:

[;Positive;, ’sin’, j/Positive;, jPositive;, 'mul’, *x3’, j/Positive;, jNegative;, 'exp’, j/Negative;, {Negative;, 'mul’, "x1’,
i/Negative;, ’Complexity=6’, *TrueSymmetryX1X?2’, ’FalseSymmetryX2X3’, *FalseSymmetryX1X3’].

If some conditionings should be masked, they are simply excluded from the list; for instance, if we only want to provide
symmetry conditioning, the string would have the following form:

['TrueSymmetryX1X2’, ’FalseSymmetryX2X3’, 'FalseSymmetryX1X3’]
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B. Training and testing details

We trained the model with 200 million equations using three NVIDIA GeForce RTX 3090 for a total of five days with
a batch size of 400. As in (Biggio et al., 2021), we used a 5-layer set encoder as our numerical encoder and a five-layer
standard Transformer decoder as our expression generator. The conditioning and numerical embedding are summed before
the expression generator.
In the training process, the Adam optimizer is employed to optimize the cross-entropy loss, utilizing an initial learning rate
of 10~4, which is subsequently adjusted in proportion to the inverse square root of the number of steps taken.
To ensure a fair comparison, the standard model, standard_nesy, was trained using the same number of equations and
the same numerical encoder and expression generator architecture. In addition, both models have been trained for an equal
number of iterations.
B.1. Amount of conditioning during training
During training, we give the model a varying amount of conditioning signals to avoid excessive dependence on them. We
adopt the following approach:

* Positive: p,, as defined in the sub-section A.2.3, is O with probability 0.7. Otherwise, it is sampled from /(0, 1)

* Negative: p,, as defined in the sub-section A.2.3 is O with probability 0.7. Otherwise, it is sampled from 2/(0, 1)

* Complexity: We provide the complexity token to the network with a probability of 0.3

e Symmetry: We provide the symmetry tokens to the network with a probability of 0.2.

* Constants: p. as defined in the sub-section A.2.4 is equal to 0.15.

B.2. Amount of conditioning during testing

We use a variety of conditioning signals, with each combination of signals referred to by a specific term.

* Positive: p, as defined in the sub-section A.2.3 is equal to 0.5. The other conditioning signals are disabled.
* Negative: p, as defined in the sub-section A.2.3 is equal to 0.5. The other conditioning signals are disabled.
e Complexity: We provide the complexity token to the network. The other conditioning signals are disabled.
* Symmetry: We provide the symmetry token to the network. The other conditioning signals are disabled.

* Constants: We provide the value of each constant with a probability of 0.8. The other conditioning signals are
disabled.

* Vanilla: No conditioning is given (all conditionings are masked). The model sees only the numerical inputs. This is
equivalent to the standard model.

e All: combines Positive, Negative, Complexity, Symmetry and Constants conditioning. Each condi-
tioning signal is enabled, with parameters equal to the values mentioned for each individual setting with the sole
exception of constants where the probability of providing a constant is set to 0.3.

C. Test datasets and metrics
C.1. Evaluation datasets

We created three datasets, train_nc, train_wc and only_five_variables_nc using the same generator configura-
tion as the training set, but with different initial seeds. For train_nc and train_wc datasets, we selected 300 equations,
removing all constants from the first and selecting random constants for the second. These equations have different levels
of complexity. In contrast, for only_five_variables_nc, we restricted our dataset to equations with five variables,
discarding the others. We also removed any constants from these equations. In addition, we evaluate our model on two
open-source datasets, namely ATF, consisting of the equation in the Al Feynman database (Udrescu and Tegmark, 2020)
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and black_box comprising of 14 datasets from the ODE-Strogatz database (Strogatz, 2018). For all experiments except
3.4, the training points were used to both fit constants with BFGS and to select the predicted expression among the beam
candidates. Specifically, once the constants were fitted, the expression with the lowest BEGS loss was chosen as the predicted
expression. However, since in Section 3.4 a much larger beam size (5000 compared to 5 of the other experiments) was used,
we followed a different approach: 60% of the points were used for fitting constants, and the remaining 40% to select the best
expression. The expression with the highest R? scores on this 40% support was chosen as the predicted expression.

C.2. Evaluation Procedure

Fortrain nc,train.wcand only_five_variables_nc we sample the support points following the same procedure
as in the training pipeline. For Al Feynman equations, we use the support defined in the dataset. For the ODE-Strogatz dataset
we followed the approach from (La Cava et al., 2021) and used 75% of the points from the function call fetch_data from
the PMLB repository for training (Olson et al., 2017) and the remaining for testing.

For the other datasets, to test the quality of our prediction, we sampled 500 points from the OOD support I/ (—25, 25). Our
criterion for identifying equations as symbolically equivalent to the ground truth was a 99% or higher average output of the
numpy.is_close (y, §) function across the support points. This threshold accounted for numerical inaccuracies, such
as those caused by numerical instability near support points close to zero, so that equations symbolically equivalent were not
misclassified due to these errors.

D. Additional results

In this section, we report some additional results obtained by evaluating the model on the R? metric. We conclude with a
subsection comparing the model obtained by completely masking the symbolic encoder of NSRwH (vanilla model) and
a standard NSR model without any symbolic encoder (standard_nesy).

D.1. R? metric

Figs 7, 8 and 9 repeat the analysis performed in the main body but with the R? metric instead of the is_correct metric.
The scores in this section are calculated by extracting the R? value for each expression. If such a value is above 0.99, a
score of 1 is assigned, otherwise zero. Finally, the so obtained boolean scores are averaged across the entire test set. We
refer to this metric as R3 oq.
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Figure 7. Conditioning improves performance. Comparison between NSRwH conditioned with different types of hypotheses and the
standard NeSymReS for the different datasets in terms of R2 g9 score

D.2. Comparison between masked NSRwH and standard model
In this section, we compare the fully masked model — referred to as vanilla — to the standard NSR method (without a

symbolic encoder) — referred to as standard-nesy. The goal is to show that their performance is aligned, indicating that
NSRwH represents an enhanced version of standard NSR.
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Figure 8. Dependence on the input noise.

Comparison between NSRwH conditioned with different types of hypotheses and the
unconditioned baseline (standard_nesy) in terms of the R2 4 metric, as a function of the noise level in the input data, for the
trainonc, trainwc, only_five_variables_nc and AIF datasets from left to right.
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Figure 9. Dependence on the number of input points. Comparison between NSRwH conditioned with different types of hypotheses
and the unconditioned baseline (standard_nesy) in terms of the R3 oo metric, as a function of the number of input points, for the
trainonc, trainwc, only_five_variables_nc and AIF datasets from left to right.
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Figure 10. Masked NSRwH vs. NeSymReS. Comparison between fully masked NSRwH (vanilla) and standard NeSymReS
(standard_nesy) for different noise levels for the train_nc, train_wc, only_five_variables_nc and AIF datasets from

left to right.
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Figure 11. Masked NSRwH vs. NeSymReS. Comparison between fully masked NSRwH (vanilla) and standard NeSymReS
(standard-nesy) for a different number of input points for the train_nc, train_wc, only_five_variables_nc and AIF

datasets from left to right.
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