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Abstract
It is well known that accurate probabilistic predic-
tors can be trained through empirical risk minimi-
sation with proper scoring rules as loss functions.
While such learners capture so-called aleatoric
uncertainty of predictions, various machine learn-
ing methods have recently been developed with
the goal to let the learner also represent its epis-
temic uncertainty, i.e., the uncertainty caused by a
lack of knowledge and data. An emerging branch
of the literature proposes the use of a second-
order learner that provides predictions in terms of
distributions on probability distributions. How-
ever, recent work has revealed serious theoretical
shortcomings for second-order predictors based
on loss minimisation. In this paper, we gener-
alise these findings and prove a more fundamental
result: There seems to be no loss function that
provides an incentive for a second-order learner
to faithfully represent its epistemic uncertainty in
the same manner as proper scoring rules do for
standard (first-order) learners. As a main mathe-
matical tool to prove this result, we introduce the
generalised notion of second-order scoring rules.

1. Introduction
The representation and quantification of uncertainty in ma-
chine learning, most notably of predictive uncertainty in
the setting of supervised learning, has recently attracted
increasing attention (Hüllermeier & Waegeman, 2021). Go-
ing beyond standard probabilistic prediction, various meth-
ods have been proposed that seek to distinguish between
so-called aleatoric and epistemic uncertainty (Senge et al.,
2014; Kendall & Gal, 2017). One way to do so is to learn
second-order predictors H : X −→ P(P(Y)) mapping a
query instance x to a probability distribution on the probabil-
ity distributions over the outcome space Y . This is motivated
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as follows: Assuming that outcomes cannot be predicted
deterministically, and hence taking a conditional probability
p∗ = p∗(· |x) on Y as the ground-truth, it is natural to train
a probabilistic predictor producing estimates p̂ = p̂(· |x).
Such estimates capture aleatoric uncertainty about the actual
outcome y ∈ Y , i.e., inherent randomness that the learner
cannot get rid of (even with perfect knowledge about p∗,
the outcome y remains random to some extent). However,
it does not allow the learner to express its epistemic uncer-
tainty, namely, its lack of knowledge about how accurately
p̂ approximates p∗. To capture this uncertainty as well, the
learner is allowed to predict a second-order distribution Q.
In other words, instead of committing to a single (point)
prediction p̂, the learner assigns probabilities Q(p) to all
candidate distributions p∗.

How to train a second-order predictor H on empirical data
in the form of tuples (x, y) ∈ X×Y , as commonly assumed
in supervised learning? To this end, several authors have
proposed extensions of empirical risk minimisation, i.e., to
find a predictor H that minimises the (regularised) loss on
the training data. Obviously, this requires a second-order
loss function L2 that compares second-order predictions
with actual outcomes: L2(Q, y) is the loss suffered by the
learner when predicting Q = H(x) and observing outcome
y. Different loss functions of this kind have been proposed
for classification (Sensoy et al., 2018; Malinin & Gales,
2018; 2019; Malinin et al., 2020b; Charpentier et al., 2020;
Huseljic et al., 2020; Kopetzki et al., 2021; Tsiligkaridis,
2021; Bao et al., 2021; Hammam et al., 2022) and regression
(Amini et al., 2020; Ma et al., 2021; Malinin et al., 2020a;
Charpentier et al., 2022; Oh & Shin, 2022; Pandey & Yu,
2022).

Focusing on the classification setting, Bengs et al. (2022)
have shown theoretical shortcomings of second-order loss
minimisation. In particular, they prove that the second-order
loss functions proposed in the literature do not incentivise
the learner to predict its epistemic uncertainty in a faithful
way. Similar issues have been revealed by Meinert et al.
(2022) for empirical loss minimisation in the regression
setting. While criticising specific types of losses, none
of these papers strictly excludes the existence of other loss
functions that may provide the right incentive for the learner.

In this paper, we therefore strive for a more general result,
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which applies to any kind of loss function and to both the
classification and regression setting. To this end, we intro-
duce second-order scoring rules as our main mathematical
tool. For the case of standard (first-order) probabilistic pre-
dictions, it is well known that loss functions in the form
of proper scoring rules (such as log-loss in classification
and squared error loss in regression) provide exactly the
right incentive to the learner: To minimise such a loss in
expectation, the learner has to provide unbiased predictions
of ground-truth probabilities p∗(· |x).

Transferring this notion from the aleatoric to the epistemic
level, we ask the following question: Is there a second-order
loss L2 that incentivises the learner to be honest in the sense
of predicting Q = H(x) whenever Q corresponds to its
actual belief about the ground-truth distribution p∗(· |x)?
Our main result is again a negative answer to this question:
There seems to be no meaningful second-order loss function
(scoring rule) incentivising the learner to faithfully reveal
its true beliefs on the epistemic level.

It should be mentioned that Whitcomb & Benson (1996)
point out a similar issue for the Continuous Ranked Probabil-
ity Score (Matheson & Winkler, 1976; Gneiting & Raftery,
2007). However, they do not study the general question of
existence of a second-order scoring rule of the above kind
as rigorously as we do in this work.

2. Setting and Notation
We assume a standard supervised learning setting with in-
stance (or feature) space X , label (or outcome) space Y ,
and training data D =

{(
x(n), y(n)

)}N
n=1

⊂ X × Y .
Here, Y can either correspond to a classification task (i.e.,
Y = {y1, . . . , yK} for some K ∈ N≥2) or a regression
task (i.e., Y = R). Following the classical setting, we
also assume that the data is generated i.i.d. according to
an underlying joint probability p∗ on X × Y , i.e., each
z(n) = (x(n), y(n)) is a realisation of Z = (X,Y ) ∼ p∗.
Correspondingly, each instance x ∈ X is associated with
a conditional distribution p∗(· |x) on Y , such that p∗(y |x)
is the probability to observe label y as an outcome given x.

Let P(Ω) denote the set of probability distributions on the
measurable space (Ω,A), where A is a σ-algebra on Ω.
We write P1(Y) := P(Y) for the set of all probability dis-
tributions over Y and P2(Y) := P(P(Y)) for the set of
all probability distributions over P(Y). For sake of conve-
nience, we also define P0(Y) := Y. We refer to the elements
in P1(Y) as first-order distributions, while the elements in
P2(Y) are referred to as second-order distributions. We
shall use lowercase letters, e.g. p̂, p, for elements of the
former, and uppercase letters, e.g. Q̂,Q, for elements of
the latter. The Dirac measure at y ∈ P0(Y) is denoted by
δy ∈ P1(Y); likewise, δp ∈ P2(Y) denotes the Dirac mea-

sure at p ∈ P1(Y), where the underlying space of the Dirac
measure should be clear from the context. Finally, we write
R = [−∞,∞] for the extended real line.

Learning Predictive First-Order Models Suppose a hy-
pothesis space H1 ⊂ P1(Y)X = {h : X → P1(Y)} to be
given. Thus, a hypothesis h in H1 maps instances x ∈ X
to probability distributions on outcomes (first-order distri-
butions). In standard supervised learning, the goal of the
learner is to induce a hypothesis (predictive model) with
low (first-order) risk

R1(h) ..=

∫
X×Y

L1(h(x), y) dp
∗(x, y) , (1)

where L1 : P1(Y)×Y −→ R is a (first-order) loss function.
The choice of a hypothesis is commonly guided by the
empirical risk

R1,emp(h) ..= N−1
N∑

n=1

L1

(
h(x(n)), y(n)

)
, (2)

i.e., the performance of a hypothesis on the training data.
However, since R1,emp(h) is only an estimation of the true
risk R1(h), the empirical risk minimiser

ĥ ..= argmin
h∈H1

R1,emp(h)

(or any other predictor) favoured by the learner will normally
not coincide with the true risk minimiser (Bayes predictor)

h∗ ..= argmin
h∈H1

R1(h).

Correspondingly, there remains (epistemic) uncertainty re-
garding h∗ as well as the approximation quality of ĥ
(in the sense of its proximity to h∗) and the predictions
p̂(· |x) = ĥ(x) produced by this hypothesis.

Example 2.1. In the classification setting with Y =
{y1, . . . , yK}, appropriate first-order loss functions are the
Brier score or the cross-entropy loss:

LBrier
1 (p, y) =

K∑
k=1

(p(yk)− 1{yk=y})
2 , (3)

LCE
1 (p, y) = −

K∑
k=1

1{yk=y} log(p(yk)) , (4)

where 1{·} is the indicator function. Both have the appeal-
ing property that the optimal hypothesis h∗(x) coincides
with the conditional class distribution p∗(· |x). Other suit-
able first-order losses include the spherical score, Winkler’s
score, or the Beta score. We refer to Gneiting & Raftery
(2007) for an overview, who also provide examples of ap-
propriate first-order loss functions for the case of regression
(i.e., Y = R).
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Learning Predictive Second-Order Models Quite re-
cently, there has been much interest in predictive models
of second-order, i.e., mappings from instances x ∈ X to
probability distributions on probability distributions over
the outcomes (second-order distributions). Formally, a hy-
pothesis space H2 ⊂ P2(Y)X = {H : X → P2(Y)} is
considered. Thus, H(x) assigns a probability to each dis-
tribution p(· |x) ∈ P1(Y), and the more certain the learner
about the true conditional distribution p∗(· |x), the more
concentrated or “peaked” H(x) is.

In light of this, the basic idea of direct epistemic uncertainty
prediction is to try to learn a second-order predictor in the
“classical” way through loss minimisation, just like a first-
order predictor. Formally, a second-order loss function

L2 : P2(Y)× Y −→ R (5)

is specified, which compares second-order predictions H(x)
with (zero-order) observations y, such that minimising L2

on the training data D yields a “good” second-order predic-
tor. Formally, the minimiser Ĥ of the empirical risk induced
by L2, i.e.,

R2,emp(H) ..= N−1
N∑

n=1

L2

(
H(x(n)), y(n)

)
, (6)

over the considered hypothesis space H2 should pro-
vide accurate predictions for a given x by means of
Ep∼Ĥ(x)EY∼p[Y ], while reporting the second-order (epis-
temic) uncertainty in a reasonable and faithful manner.
Preferably, these properties should be reflected by the true
risk minimiser H∗ ..= argminH∈H2

R2(H), where

R2(H) ..=

∫
X×Y

L2(H(x), y) dp∗(x, y) (7)

is the (second-order) risk induced by the loss L2.

Usually, the hypotheses in H2 are mappings from X to a
parametrised family of second-order distributions. More
precisely, the image of these mappings is P2(M), where
M is some specific parameter space such that P2(M) is
in fact a strict subset of P2(Y). Each element Q ∈ P2(M)
can be encoded by means of a parameter vector m ∈ M,
i.e., Q = Qm. Thus, the hypotheses in H2 are encoded by
a mapping from instances x ∈ X to a parameter vector m.
In light of this, the second-order distributions Q ∈ P2(M)
have usually support only on a strict subset of P1(Y) due to
the parameterisation. This support is again often a parame-
terised family of first-order distributions P1(Θ), where Θ is
yet another parameter space.

Example 2.2 (Classification). Consider the classification set-
ting with Y = {y1, . . . , yK}, where the goal is to learn a pre-
dictive second-order model. Here, the most commonly used

parameterised class of second-order distributions P2(M) is
the set of Dirichlet distributions with parameter space

M =
{
m = (m1, . . . ,mK) |mi > 0, i = 1, . . . ,K

}
having support on the (first-order) categorical distributions
P1(Θ), where

Θ =
{
θ = (θ1, . . . , θK) ∈ [0, 1]K | ∥θ∥1 = 1

}
(see (Sensoy et al., 2018; Malinin & Gales, 2018; 2019;
Malinin et al., 2020b; Charpentier et al., 2020; Huseljic et al.,
2020; Kopetzki et al., 2021; Tsiligkaridis, 2021; Bao et al.,
2021; Hammam et al., 2022)). In this case, P1(Y) = P1(Θ).

In this setting, losses of the following kind have been sug-
gested:

LBay
2

(
Q, y

)
= Ep∼Q L1

(
p, y
)
+ λ dKL(Q,Q0) , (8)

where λ ≥ 0 is some regularisation parameter, L1 :
P(Y) × Y → R is some appropriate first-order loss,
dKL : P2(Y)×P2(Y) → R the KL-divergence, and Q0 the
uniform distribution on P2(Y). The idea is that the first com-
ponent in (8) enforces correct predictions, which, however,
might favour peaked second-order distributions. Therefore,
the second component in (8) acts as a countermeasure, since
it penalises deviations from the most non-peaked second-
order distribution, namely the uniform distribution. Other
variants have also been proposed for this component, e.g.
based on the Fisher information matrix (Tsiligkaridis, 2021)
or the Hilbert-Schmidt independence criterion (Bao et al.,
2021).
Example 2.3 (Regression). Consider the regression setting,
i.e., Y = R, where again the goal is to learn a predictive
second-order model. Amini et al. (2020) published the
pioneering work in this regard, using normal-inverse gamma
(NIG) distributions for the parameterised class of second-
order distributions P2(M), such that

M =
{
m = (m1, . . . ,m4) |m1 ∈ R,m2, > 0

m3 > 1,m4 > 0
}
.

Note that Amini et al. (2020) denote (m1,m2,m3,m4) by
(γ, ν, α, β). Accordingly, this second-order distribution is
essentially a distribution over the set of Gaussian distribu-
tions, i.e.,

P1(Θ) = {N(µ, σ2) | (µ, σ) ∈ Θ},

where Θ = {(µ, σ) |µ ∈ R, σ > 0} is the set of (location-
scale) parameters of Gaussian distributions.

The second-order loss function suggested in this regard is

LDER
(
m, y

)
= Lt

(
m, y

)
+ λ · PEN

(
m, y

)
, (9)
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where

Lt
(
m, y

)
= 1/2 log (π/m2)−m3 log(m2,4) (10)

+ (m3 + 1/2) log
(
(y −m1)

2m2 +m2,4

)
+ log (Γ(m3)/Γ(m3+

1
2 )) ,

m2,4 := 2m4(1 +m2) and

PEN
(
m, y

)
= |m1 − y| · (m3 + 2m2).

Here, Lt is the negative log-likelihood function of a Student-
t distribution with location parameter m1, scale parameter
2m3 and m2,4

2m2m3
degrees of freedom. Similarly, as for the

class of second-order loss functions in the classification
setting in (8), the first component in (9) should enforce
correct predictions, while the second component prevents
the use of too peaked second-order distributions. For an
NIG distribution, this can be achieved by penalising too
large values of m2 and m3, as the variance terms of an NIG
distribution depend reciprocally on these, respectively.

Follow-up papers on (Amini et al., 2020) adjust the loss in
(9) by replacing the negative log-likelihood with squared
loss (Oh & Shin, 2022), by changing the regularisation term
(Pandey & Yu, 2022), or by considering a mixture of NIG
distributions instead of a single one (Ma et al., 2021). An-
other line of research modifies (8) to the regression setting
(Malinin et al., 2020a; Charpentier et al., 2022).

3. Scoring Rules for First-order Losses
In this section, we review the essential concepts of proper
scoring rules, which is a class of (first-order) loss functions
incentivising the learner to predict probabilities in an unbi-
ased way. Here, unbiased means that the learner minimises
expected loss if (and only if) it predicts the true (conditional)
probability distribution.

Definition 3.1. A (first-order) scoring rule S1 : P1(Y) ×
P1(Y) → R based on the (first-order) loss L1 : P1(Y) ×
Y → R, such that L1(p, ·) is P1(Y)-quasi-integrable1 for
all p ∈ P1(Y), is given for all p̂, p ∈ P1(Y) by

S1(p̂, p) = EY∼p[L1(p̂, Y )]. (11)

The second component (i.e., p) of a scoring rule represents
the target distribution or ground-truth p∗(· |x), while the
first component (i.e., p̂) represents the predicted distribu-
tion, e.g. p̂(· |x) = ĥ(x). Thus, integrating (11) over the
distribution of the instances x leads to the (first-order) risk
in (1), i.e., R1(ĥ) =

∫
X S1(ĥ(x), p(y|x)) dpX(x), where

pX denotes the distribution over the instances.
1A function defined on Y and taking values in the extended

real line is P1(Y)-quasi-integrable if it is measurable w.r.t. A and
is quasi-integrable w.r.t. all p ∈ P1(Y).

Note that in the literature it is more common to refer to the
loss function L1 as the scoring rule, while S1 is referred to
as the expected score (Gneiting & Raftery, 2007; Ovcharov,
2018). However, to make the distinction between loss func-
tion and scoring rule even clearer, we will stick with the
notion in Definition 3.1.

Structural properties imposed on a scoring rule allow to as-
sess the goodness-of-fit between the distributions by means
of the scoring rule.

Definition 3.2. A (first-order) scoring rule S1 is called

• regular w.r.t. the class P1(Y) if S1(p̂, p) ∈ R for all
p̂, p ∈ P1(Y) except possibly that S1(p̂, p) = ∞ if p̂ ̸=
p.

• proper w.r.t. the class P1(Y) if

S1(p̂, p) ≥ S1(p, p) for all p̂, p ∈ P1(Y). (12)

• strictly proper w.r.t. the class P1(Y) if it is proper and

S1(p̂, p) > S1(p, p) for all p̂ ̸= p. (13)

Regular scoring rules assign finite scores, except that a
prediction might receive an infinite score, e.g., if an event
claimed to be impossible is realised. For proper scoring
rules predicting the target distribution gives the best expec-
tation, while strictly proper scoring rules ensure that no
other prediction can achieve this value. From an uncertainty
awareness perspective, the remark by Gneiting & Raftery
(2007) in this regard is enlightening: “If S is proper, then
the forecaster who wishes to maximize the expected score is
encouraged to be honest and to volunteer his or her true be-
liefs.”2 Or, similarly, the one by Ovcharov (2018) regarding
(strictly) proper scoring rules: “By being maximized in ex-
pectation at the true prediction, they incentivize a forecaster
to truthfully report his private information.”3

4. Scoring Rules for Second-order Losses
Inspired by the uncertainty awareness perspective of first-
order scoring rules, we ask whether one can define a similar
scoring rule for second-order losses L2 : P2(Y)× Y → R.
Apparently, such a scoring rule needs to be a mapping from
P2(Y)× P2(Y) to R to maintain the same spirit.

Definition 4.1. A (second-order) scoring rule S2 : P2(Y)×
P2(Y) → R based on the (second-order) loss L2 : P2(Y)×
Y → R, such that L2(Q, ·) is P2(Y)-quasi-integrable for
all Q ∈ P2(Y), is given for all Q̂,Q ∈ P2(Y) by

S2(Q̂,Q) = Ep∼Q

[
EY∼p[L2(Q̂, Y )]

]
. (14)

2Gneiting & Raftery (2007) consider the scenario of maximis-
ing the score instead of minimising it as we do in this paper, which
is more in line with the standard approach in machine learning.

3Note that Ovcharov (2018) also considers maximising the
score instead of minimising it as we do in this paper.
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Note that the definition of a proper second-order scoring
rule is quite different from what is known in the literature as
a (local) proper scoring rule of order two (Parry et al., 2012;
Ehm & Gneiting, 2012). The latter refers to (first-order)
scoring rules, where the score depends on the predictive
density only through its value and the values of its first as
well as second derivative at the realizing event. Moreover,
the second-order losses (or scoring rules) we consider have
a different signature as the ones in (Murphy & von Holstein,
1971), which are of the form L̃2 : P2(Y)× P1(Y) → R.

Compared to (11) the definition in (14) involves an addi-
tional expectation w.r.t. the second-order distribution of the
second component (i.e., Q). Again, the second component
represents a target (second-order) distribution, while the first
component (i.e., Q̂) represents a predicted (second-order)
distribution for a given instance x, e.g. Q̂(x) = Ĥ(x). Un-
like first-order distributions, however, there is no such thing
as a ground-truth second-order distribution. Nevertheless,
the above definition of a second-order scoring rule allows
a similar close connection to the second-order risk as for
first-order scoring rules: Suppose one would know a pri-
ori that the underlying conditional distributions, considered
as random functions, are distributed according to a known
second-order distribution Qx (varying with the instances x).
Then, S2 as in Definition 4.1 relates to the risk induced by
L2 (see (7)) as follows:∫

X
S2(Ĥ(x), Qx) dpX(x)

=

∫
X

∫
P1(Y)

R2(Ĥ(x), p) dQx(p)dpX(x),
(15)

where R2(Ĥ(x), p) =
∫
Y L2(Ĥ(x), y) dp(y) is the condi-

tional risk of Ĥ if p ∈ P1(Y) is the ground-truth conditional
distribution. Thus, a risk minimising learner is automati-
cally encouraged to minimise the second-order scoring rule
in case the target second-order distribution Q is known.

This connection is perhaps even more clarified in the case
of learning without an instance space4, where the latter
equation (15) boils down to

S2(Ĥ,Q) =

∫
P1(Y)

R2(Ĥ, p) dQ(p).

Akin to the first-order case (see Definition 3.2) we can spec-
ify structural properties of a second-order scoring rule.

Definition 4.2. A (second-order) scoring rule S2 is called

• regular w.r.t. the class P2(Y) if S2(Q̂,Q) ∈ R for any

4Equivalently, we may assume an instance space X = {x0}
consisting of only a single instance, which is observed over and
over again (and can therefore be ignored, as it does not carry any
information).

Q̂,Q ∈ P2(Y) except possibly that S2(Q̂,Q) = ∞ if
Q̂ ̸= Q.

• proper w.r.t. the class P2(Y) if

S2(Q̂,Q) ≥ S2(Q,Q) for all Q̂,Q ∈ P2(Y). (16)

• strictly proper w.r.t. the class P2(Y) if it is proper and

S2(Q̂,Q) > S2(Q,Q) for all Q̂ ̸= Q. (17)

Given the similarity of (16) (or (17)) to (12) (or (13)) as well
as the similar relationship of second-order proper scoring
rules to the second-order risk as in the case of first-order, we
can provide a similar remark as above for proper first-order
scoring rules regarding uncertainty quantification for the
second-order case. That is, if S2 is proper, then the learner
that wishes to minimise the expected score is encouraged
to be honest and to volunteer its true beliefs (represented
by the second component). In other words, if the second-
order distribution Q is the (subjective) belief of the learner,
then the best score is only obtained by using Q̂ = Q as a
prediction, i.e., sticking to its own belief.

In the following, we derive a characterization of (strictly)
proper second-order scoring rules similar to those known
for (strictly) proper first-order scoring rules (see Theorem
1 in (Gneiting & Raftery, 2007)). To this end, we need the
definition of a concave functional on P2(Y) and its induced
supertangent (or supergradient).
Definition 4.3. (i) A function G : P2(Y) → R is concave
if for all λ ∈ [0, 1], Q, Q̃ ∈ P2(Y) it holds that

G(λQ+ (1− λ)Q̃) ≥ λG(Q) + (1− λ)G(Q̃).

It is strictly concave if the latter holds with equality only in
the case where Q = Q̃.

(ii) A function G∗(Q, ·) : Y → R is a supertangent of G at
Q̃ ∈ P2(Y) if it is integrable w.r.t. Q̃, quasi-integrable w.r.t.
to all Q ∈ P2(Y) and for all Q ∈ P2(Y) it holds that

G(Q) ≤ G(Q̃)

+

∫
P1(Y)

∫
Y
G∗(Q̃, y) dp(y) d(Q− Q̃)(p).

(18)

In case the inequality in (18) is strict for Q ̸= Q̃, then G∗ is
called a strict supertangent of G.

Equipped with this we can show the following characteri-
zation of (strictly) proper second-order scoring rules, the
proof of which can be found in Appendix B.1.
Theorem 4.4. A scoring rule S2 based on the (second-
order) loss L2 : P2(Y) × Y → R is (strictly) proper iff
there exists a (strictly) concave function G2 : P2(Y) → R
such that

L2(Q, y) = G2(Q) +G∗
2(Q, y)

−
∫
P1(Y)

∫
Y
G∗

2(Q, y) dp(y) dQ(p)
(19)
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for all Q ∈ P2(Y) and y ∈ Y, where G∗
2(Q, ·) : Y → R is

a (strict) supertangent of G at Q.

This theorem states in essence that a second-order scoring
rule S2 induced by a second-order loss L2 is (strictly) proper
if and only if G2(·) = S2(·, ·) is (strictly) concave and
L2(Q, ·) is a (strict) supertangent of G2 at Q for all Q ∈
P2(Y).

Another characterization of (strictly) proper scoring rules
can be derived by means of (strictly) order sensitive func-
tions (Nau, 1985; Ovcharov, 2018).

Definition 4.5. A function S : P2(Y) × P2(Y) → R is
(strictly) order sensitive if the function

f :[0, 1] → R
λ 7→ S((1− λ)Q′ + λQ,Q)

(20)

is (strictly) monotonically decreasing for all second-order
distributions Q,Q′ ∈ P2(Y).

If S is a (second-order) scoring rule, this property states that
the score increases steadily as one moves away from the
target distribution. Unsurprisingly, there is a close connec-
tion between (strict) propriety and (strict) order sensitivity
of a scoring rule, as shown in the following theorem (for the
proof see Appendix B.2).

Theorem 4.6. A scoring rule S2 based on the (second-
order) loss L2 : P2(Y)× Y → R is (strictly) proper iff S2

is (strictly) order sensitive.

Finally, the following property of (strictly) proper second-
order scoring rules is useful as it allows to normalise the
scores if necessary.

Lemma 4.7. If L2 : P2(Y) × Y → R induces a (strictly)
proper scoring rule S2, then L̃2(Q, y) = cL2(Q, y) + g(y)
for any constant c > 0 and P2(Y)-integrable function g :
Y → R induces a (strictly) proper scoring rule S̃2.

The proof follows directly from Definition 4.2 and is there-
fore omitted.

5. Non-existence of Proper Second-order
Scoring Rules

In this section, we use the characterizations of (strictly)
proper second-order scoring rules derived above to show
negative results regarding the existence of a reasonable
second-order loss L2 such that the induced second-order
scoring rule is (strictly) proper. Here, reasonable refers to
loss functions that are desired from an optimization per-
spective, i.e., almost continuous, as well as an uncertainty
penalization perspective, which we shall discuss in more
detail after each theoretical result.

5.1. Classification

We start with the classification setting, i.e., Y =
{y1, . . . , yK} for some K ∈ N≥2. Note that any proba-
bility distribution p on Y is characterised by a probability
mass function, which we shall also denote by p.

Theorem 5.1. There exists no loss function L2 : P2(Y)×
Y → R such that the induced second-order scoring rule S2

is proper if either of the following holds for L2 :

(i) L2(·, y′′) is almost continuous for all y′′ ∈ Y and for
all y ∈ Y, Q,Q ∈ P2(Y), it holds that

L2(Q, y) < L2(Q, y) (21)

iff Ep∼Q[p(y)] > Ep∼Q[p(y)].

(ii) there exist y ∈ Y and Q,Q ∈ P2(Y) such that

L2(Q, y) < L2(Q, y)&Ep∼Q[p(y)] < Ep∼Q[p(y)]

(22)

and ∑
yk ̸=y

(
L2(Q, yk)− L2(Q, y)

)
≤
∑
yk ̸=y

(
L2(Q, yk)− L2(Q, y)

)
.

(23)

Proof. Case (i). Assume that L2 satisfies (i). Note that (16)
is a for-all-condition, so that if we assume (i) to hold and
can find two second-order distributions such that (16) is not
fulfilled, we are done. As (i) is also a for-all-condition, it
is sufficient to construct two second-order distributions that
essentially consider a binary classification setting, i.e., they
only have support on first-order distributions which in turn
have only support on two fixed classes, but violate (16).

Consequently, we restrict the second-order distributions to
the binary classification case with K = 2, by considering
the subset of P2(Y) which has only support on first-order
distributions which in turn have only support on two fixed
classes. For ease of notation, let us use the encoding y1 = 0
and y2 = 1, so that Y = {0, 1}.

In light of Theorem 4.6 the function in (20) for S = S2

needs to be (strictly) monotonically decreasing if S2 is
(strictly) proper. Thus, for all λ ∈ [0, 1], Q,Q′ ∈ P2(Y) it
must hold that

S2(Q̃,Q) ≥ S2(Q,Q),

where we abbreviated Q̃ = λQ+ (1− λ)Q′. This is equiv-
alent to∫

P1(Y)

L2(Q̃, 0)p(0) + L2(Q̃, 1)p(1) dQ(p)

≥
∫
P1(Y)

L2(Q, 0)p(0) + L2(Q, 1)p(1) dQ(p)

6
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which due to p(0) = 1 − p(1) for all p ∈ P1(Y) can be
further rewritten to∫
P1(Y)

L2(Q̃, 0) +
(
L2(Q̃, 1)− L2(Q̃, 0)

)
p(1) dQ(p)

≥
∫

P1(Y)

L2(Q, 0) +
(
L2(Q, 1)− L2(Q, 0)

)
p(1) dQ(p).

(24)

Choose Q,Q′ ∈ P2(Y) and λ such that

• Q̃ = δδ0 , i.e., the second-order Dirac measure, which
puts all its mass on the first-order Dirac measure at 0,

• 0 < Ep∼Q[p(1)], which can be achieved as soon as Q
assigns mass to first-order distributions, which are assign-
ing positive mass to class 1,

• Ep∼Q[p(1)] <
(
1 + L2(Q̃,1)−L2(Q,1)

L2(Q,0)−L2(Q̃,0)

)−1

< 1, which

can be achieved, since L2(·, y′′) is by assumption almost
continuous for all y′′ ∈ Y, and (21) together with the
previous two properties of Q and Q̃ implies

min
(
L2(Q̃, 1)−L2(Q, 1), L2(Q, 0)−L2(Q̃, 0)

)
> 0.

Then, (24) is violated, since

Ep∼Q[p(1)] <
(
1 +

L2(Q̃, 1)− L2(Q, 1)

L2(Q, 0)− L2(Q̃, 0)

)−1

⇔ L2(Q̃, 0) + Ep∼Q[p(1)]
(
L2(Q̃, 1)− L2(Q̃, 0)

)
< L2(Q, 0) + Ep∼Q[p(1)]

(
L2(Q, 1)− L2(Q, 0)

)
⇔

∫
P1(Y)

L2(Q̃, 0) +
(
L2(Q̃, 1)− L2(Q̃, 0)

)
p(1) dQ(p)

<

∫
P1(Y)

L2(Q, 0) +
(
L2(Q, 1)− L2(Q, 0)

)
p(1) dQ(p).

Case (ii). Assume that L2 satisfies (ii). Similarly to (24) we
can derive that∫

P1(Y)

L2(Q̃, y)

+
∑
yk ̸=y

(
L2(Q̃, yk)− L2(Q̃, y)

)
p(yk) dQ(p)

≥
∫

P1(Y)

L2(Q, y)

+
∑
yk ̸=y

(
L2(Q, yk)− L2(Q, y)

)
p(yk) dQ(p).

(25)

must hold if S2 is proper, since p(y) = 1−
∑

yk ̸=y p(yk).

However, if λ ∈ [0, 1], Q′ ∈ P2(Y) are such that Q̃ = Q,

(which is possible due to convexity of P2(Y)), then (25) is
violated, due to (22) and (23).

Note that the two cases are not entirely exhaustive, as con-
dition (23) is required additionally to condition (22), but
requiring only the latter condition would correspond to
the complementary condition of (21). Nevertheless, condi-
tion (23) essentially requires the loss function to be cost-
insensitive regarding any two classes, which is in the ab-
sence of additional a priori knowledge on the data set not
too restrictive. For illustration purposes, consider the binary
classification case, i.e., Y = {y1, y2}, so that (23) reads
(w.l.o.g. y = y1) as

L2(Q, y2)− L2(Q, y1) ≤ L2(Q, y2)− L2(Q, y1).

Now, if (22) holds, then Q assigns fewer (prediction) proba-
bility to y1 than Q. As a consequence, Q will assign more
(prediction) probability to y2 than Q. However, if the costs
for assigning probability to the class y2 are much higher
than for y1, i.e., the loss is cost-sensitive, then the latter
left-hand side L2(Q, y2)− L2(Q, y1) will be large, but the
right-hand side L2(Q, y2) − L2(Q, y1) will be small, so
that the inequality is likely to be violated. If the loss is
cost-insensitive, however, this will not be the case, or to be
more precise, we can find Q and Q such that this is not the
case (condition (ii) of Theorem 5.1 associated to (23) is an
existence statement).

Condition (22) is fulfilled if the second-order loss function
L2 penalises second-order point predictions (i.e., δp) more
drastically as for instance (second-order) predictions which
are slightly deviating from point predictions. This is the
case for loss functions with a regularisation term that intro-
duces a bias towards the second-order uniform distribution
(Sensoy et al., 2018; Charpentier et al., 2020; Tsiligkaridis,
2021). As a consequence, the (loss-minimising) learner has
a tendency to predict more flat distributions. On the other
hand, the condition in (21) enforces second-order point pre-
dictions to be more concentrated for the correct class, and
avoid concentration for incorrect classes, so that the learner
has a tendency to predict more peaked distributions.

The results complement those of Bengs et al. (2022) for
the empirical risk minimiser for the existing second-order
losses (see (8)), since losses fulfilling (22) and (23) are a
generalization of the Bayesian losses with a too large regu-
larisation parameter, while losses fulfilling (21) generalise
the Bayesian losses with a too low regularisation parameter.

5.2. Regression

Next, we consider the case of regression, i.e., Y = R.
Theorem 5.2. There exists no loss function L2 : P2(Y)×
Y → R such that the induced second-order scoring rule S2

is proper if either of the following holds for L2 :

7
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(i) L2(·, y′′) is almost continuous for all y′′ ∈ Y and for
all y ∈ Y, Q,Q ∈ P2(Y), it holds that

L2(Q, y) < L2(Q, y) (26)

iff |Ep∼Q[E(p)]− y| < |Ep∼Q[E(p)]− y|.
(ii) there exist µ ∈ Y, a first-order distribution p̃ ∈ P1(Y)

with mean µ, a second-order distribution Q ∈ P2(Y),
and some δ > 0 such that for almost all 5 y ∈ (µ −
δ, µ+ δ) it holds that

L2(Q, y) < L2(δp̃, y) (27)

and
∫(

(µ−δ,µ+δ)
)∁ L2(Q, y) dp̃(y)

<

∫(
(µ−δ,µ+δ)

)∁ L2(δp, y) dp̃(y),

(28)

where
(
(µ− δ, µ+ δ)

)∁
= Y \ (µ− δ, µ+ δ).

Proof. Case (i). Let pl, pr ∈ P1(Y) be first-order distribu-
tions and µ∗ ∈ R such that

• pl has only support on (−∞, µ∗) and pr has only support
on (µ∗,∞),

• pl has expected value µl < µ∗ and pr has an expected
value µr > µ∗,

• it holds for all λ ∈ (0, 1) that

EY∼pl
[L2(Qλ, Y )− L2(δpl

, Y )] > 0,

where Qλ = (1− λ)δpl
+ λδpr

.

This is possible, since

EY∼pl
[L2(Qλ, Y )− L2(δpl

, Y )]

=

∫
(−∞,µl]

L2(Qλ, y)− L2(δpl
, y) dpl(y)

+

∫
[µl,µ∗)

L2(Qλ, y)− L2(δpl
, y) dpl(y)

and the first term is always positive by (26), as
Ep∼δpl

[E(p)] = µl and Ep∼Qλ
[E(p)] = (1−λ)µl+λµr >

µl. Thus, by suitable choice of µ∗, pl and pr (as well as µl

and µr), the second term can be designed such that it is
smaller than the first in absolute terms, since L2(·, y′′) is by
assumption almost continuous for all y′′ ∈ Y.

Let Q̃ = δpl
, and choose Q ∈ P2(Y) such that Q = (1 −

λ∗)δpl
+ λ∗δpr

, where

0 < λ∗ <

(
1 +

EY∼pr
(L2(Q̃, Y )− L2(Q,Y ))

EY∼pl
(L2(Q,Y )− L2(Q̃, Y ))

)−1

< 1.

(29)

5A condition holds for almost all x in some set X, if the subset
on which the condition does not hold has probability mass 0.

This choice of λ∗ can be achieved as EY∼pl
(L2(Q,Y ) −

L2(Q̃, Y )) > 0 by choice of µ∗, pl and pr, and (26) implies
that EY∼pr

(L2(Q̃, Y )− L2(Q,Y )) > 0, since for all y in
the support of pr it holds that L2(Q̃, y) − L2(Q, y) > 0.
Thus,

S2(Q̃,Q)

=

∫
P1(Y)

∫
Y
L2(Q̃, y) dp(y) dQ(p)

= (1− λ∗)

∫
Y

L2(Q̃, y) dpl(y) + λ∗
∫
Y

L2(Q̃, y) dpr(y)

= (1− λ∗)EY∼pl
(L2(Q̃, Y )) + λ∗EY∼pr (L2(Q̃, Y ))

< (1− λ∗)EY∼pl
(L2(Q,Y )) + λ∗EY∼pr (L2(Q,Y ))

= S2(Q,Q),

where the inequality is due to (29). The latter shows that we
can find two second-order distributions that violate (16).

Case (ii). Let us abbreviate (µ−δ, µ+δ) by (µ±δ). Choose
Q to be δp̃, then (27) and (28) imply that

S2(Q,Q)

=

∫
P1(Y)

∫
Y
L2(Q, y) dp(y) dQ(p)

=

∫
Y
L2(Q, y) dp̃(y)

=

∫
(µ±δ)

L2(Q, y) dp̃(y) +

∫(
µ±δ
)∁ L2(Q, y) dp̃(y)

<

∫
(µ±δ)

L2(δp̃, y) dp̃(y) +

∫(
µ±δ
)∁ L2(δp̃, y) dp̃(y)

=

∫
(µ±δ)

L2(Q, y) dp̃(y) +

∫(
µ±δ
)∁ L2(Q, y) dp̃(y)

=

∫
Y
L2(Q, y) dp̃(y)

=

∫
P1(Y)

∫
Y
L2(Q, y) dp(y) dQ(p) = S2(Q,Q).

Thus, S2 is not proper.

The two cases in Theorem 5.2 are quite similar to the ones
in Theorem 5.1: the first corresponds to second-order losses
that incentivise the learner to predict more flat distributions,
while the second incentivises predictions of peaked distri-
butions. The second-order loss function for the regression
case suggested by Amini et al. (2020) (see Example 2.3)
fulfils the conditions in the second case of Theorem 5.2 as
the following proposition shows.

Proposition 5.3. The deep evidential regression loss func-
tion LDER

2 : P2(M)×Y → R in (9) fulfils the conditions in
Theorem 5.2 (ii).
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Proof. Let µ ∈ R be arbitrary but fixed and σ > 0 be
some small value. Note that an NIG distribution with
parameters m1 = µ, m2 = ∞ and m3,m4 such that
m4/(m3 − 1) = σ2 and m3 sufficiently large corresponds
to δp̃ with E(p̃) = µ and V(p̃) = σ2. However, by using for
Q an NIG distribution with m̃1 = m1, m̃2 = 1, m̃3 = 1
and m̃4 = m4, the deep evidential regression loss of δp̃ is
larger for all y except for y = µ than the deep evidential
regression loss of Q.

6. Conclusion
Our results confirm concerns raised by recent work regard-
ing the conceptual meaningfulness of direct epistemic un-
certainty quantification through empirical risk minimisation
of second-order distributions. More precisely, unlike for
the case of empirical risk minimisation of strictly proper
first-order loss functions to report first-order (aleatoric) un-
certainty in a faithful manner, there seems to be no strictly
proper second-order loss function counterpart to report
second-order (epistemic) uncertainty in a faithful manner.
Although our results do not completely exclude existence,
they do so for a large class of second-order loss functions,
including those losses previously proposed in the literature.

The most likely explanation for the revealed existence issue
is the discrepancy between the orders that these second-
order loss functions exhibit: a second-order prediction H(x)
is evaluated in light of a zero-order observation y, skipping
the intervening first-order. Thus, to make the loss function
meaningful, one would rather need observations of real-
izations of the first-order distribution, i.e., a sample in the
form of probabilities and assess the second-order prediction
in light of these first-order observations. However, such
data cannot exist even in principle, because the ground-truth
conditional distribution is supposedly constant.

This suggests that (probabilistic) learning on the epistemic
level cannot be frequentist in nature, unlike learning about
the ground-truth conditional distribution on the first-order
(aleatoric level). Instead, it appears that learning on the
second-order (epistemic level) is necessarily Bayesian and
requires a prior, which then of course has an influence on
the degree of (epistemic) uncertainty.
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network: Uncertainty estimation without OOD samples
via density-based pseudo-counts. In Proc. NeurIPS, 33rd
Neural Information Processing Systems, volume 33, pp.
1356–1367, 2020.

Charpentier, B., Borchert, O., Zugner, D., Geisler, S.,
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A. List of Symbols
The following table contains a list of symbols that are frequently used in the main paper as well as in the following
supplementary material.

General Learning Setting
X instance space
Y label space, either {y1, . . . , yK} for some K ∈ N≥2 for classification or Y = R for regression
D training data

{(
x(n), y(n)

)}N
n=1

⊂ X × Y
p∗ data generating probability
p∗(· |x) conditional distribution or density on Y , i.e., p∗(y |x) probability to observe y given x in classification

density of y given x in regression
P(Y),P1(Y) the set of probability distributions on Y
P1(Θ) a parameterised subset of P1(Y) with Θ being the parameter space

First-order Learning Setting
H1 (first-order) hypothesis space consisting of hypothesis h : X −→ P1(Y)
L1 loss function for first-order hypothesis, i.e., L1 : P1(Y)× Y −→ R
R1,emp(·) empirical risk of a first-order hypothesis (cf. (2))
R1(·) risk or expected loss of a first-order hypothesis (cf. (1))
ĥ empirical risk minimiser, i.e., ĥ = argminh∈H1

R1,emp(h)
h∗ true risk minimiser or Bayes predictor, i.e., h∗ = argminh∈H1

R1(h)
S1(·, ·) first-order scoring rule induced by some first-order loss function L1,

i.e., S1 : P1(Y)× P1(Y) → R with S1(p̂, p) = EY∼p[L1(p̂, Y )] (see (11))
Second-order Learning Setting

P2(Y) the set of distributions on P1(Y) (the set of second-order distributions)
P2(M) a parameterised subset of P2(Y) with M being the parameter space
H2 (second-order) hypothesis space consisting of hypothesis H : X −→ P2(Y)

Q,Q′, Q̄, Q̃ probability distributions on P1(Y) i.e., elements of P2(Y)
Q0 uniform distribution on P1(Y) (an element of P2(Y))
L2 loss function for second-order hypothesis, i.e., L2 : P2(Y)× Y −→ R
LBay
2 Bayesian loss functions for classification setting (see (8))

LDER deep evidential regression loss functions for regression setting (see (9))
R2,emp(·) empirical risk of a second-order hypothesis (cf. (6))
R2(·) risk or expected loss of a second-order hypothesis (cf. (7))
Ĥ second-order empirical risk minimiser, i.e., Ĥ = argminH∈H2

R2,emp(H)
S2(·, ·) second-order scoring rule induced by some second-order loss function L2,

i.e., S2 : P2(Y)× P2(Y) → R with S2(Q̂,Q) = Ep∼Q

[
EY∼p[L2(Q̂, Y )]

]
(see (14))

Distributions & Expectations
N(µ, σ2) Gaussian distribution with location parameter µ and scale parameter σ > 0
δy Dirac measure at y ∈ Y (i.e., δy is an element P1(Y) )
δp Dirac measure at p ∈ P1(Y) (i.e., δp is an element P2(Y) )
E(p) expected value of the distribution p ∈ P1(R), i.e., E(p) =

∫
y dp(y)

V(p) variance of a distribution p ∈ P1(R), i.e., V(p) = E
[
(p− E[p])2

]
Ep∼Q[p(y)] expected probability assigned to class y ∈ Y (i.e., classification setting) according to Q ∈ P2(Y),

i.e., Ep∼Q[p(y)] =
∫
P1(Y)

p(y)dQ(p)

Ep∼Q[E(p)] expected value of the expected distribution (for regression, i.e., Y = R) according to Q ∈ P2(Y),
i.e., Ep∼Q[E(p)] =

∫
P1(Y)

∫
Y y dp(y)dQ(p)

Miscellaneous
dKL (·, ·) Kullback-Leibler divergence (on P2(Y)× P2(Y))
LBrier
1 Brier score (see (3))

LCE
1 Cross-entropy loss (see (4))

Lt negative log-likelihood of Student-t distribution (see (10))
PEN penalization function in deep evidential regression loss function (see below (10))
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B. Missing Proofs of Section 4
B.1. Proof of Theorem 4.4

We will use the following lemma for the proof of Theorem 4.4, which we shall prove at the end of this subsection.

Lemma B.1. If a function G : P2(Y) → R has a supertangent G∗(Q, ·) at any Q ∈ P2(Y), then G is concave. If the
supertangent property in (18) holds with strict inequality for all Q ̸= Q̃, then G is strictly concave.

Proof. Suppose S2 (or rather L2) fulfils the representation in (19), then

S2(Q̂,Q)

= Ep∼Q

[
EY∼p[L2(Q̂, Y )]

]
=

∫
P1(Y)

∫
Y
L2(Q̂, y) dp(y) dQ(p)

(19)
= G2(Q̂) +

∫
P1(Y)

∫
Y
G∗

2(Q̂, y) dp(y) dQ(p)

−
∫
P1(Y)

∫
Y
G∗

2(Q̂, y) dp(y) dQ̂(p)

= G2(Q̂) +

∫
P1(Y)

∫
Y
G∗(Q̂, y) dp(y) d(Q− Q̂)(p)

(18)
≥ G2(Q)

= G2(Q) +

∫
P1(Y)

∫
Y
G∗

2(Q, y) dp(y) dQ(p)

−
∫
P1(Y)

∫
Y
G∗

2(Q, y) dp(y) dQ(p)

(19)
=

∫
P1(Y)

∫
Y
L2(Q, y) dp(y) dQ(p)

= Ep∼Q

[
EY∼p[L2(Q,Y )]

]
= S2(Q,Q),

where we used for the inequality that G∗
2 is a supertangent of G at Q̂, i.e., that (18) holds for Q. Note that the inequality is

strict if G2 is strictly concave and Q̂ ̸= Q.

Conversely, suppose S2 to be (strictly) proper scoring rule. Define G2 by G2(Q) = S2(Q,Q), then G∗
2(Q, y) = L2(Q, y)

is a supertangent of G2 at any Q̃ ∈ P2(Y). Indeed, let Q ∈ P2(Y), then

G2(Q)

= S2(Q,Q)

= S2(Q̃, Q̃)− S2(Q̃, Q̃) + S2(Q̃,Q)− S2(Q̃,Q)

+ S2(Q,Q)

≤ S2(Q̃, Q̃)− S2(Q̃, Q̃) + S2(Q̃,Q)

= S2(Q̃, Q̃) +

∫
P1(Y)

∫
Y
L2(Q̃, y) dp(y) d(Q− Q̃)(p)

= G2(Q̃) +

∫
P1(Y)

∫
Y
G∗

2(Q̃, y) dp(y) d(Q− Q̃)(p),

where for the inequality we used that S2 is proper. This inequality is strict for all Q̃ ̸= Q if S2 is strictly proper. Thus, G2 is
(strictly) concave due to Lemma B.1. The definitions of G2 and G∗

2 directly imply that L2 has the representation in (19),
since G2(Q) =

∫
P1(Y)

∫
Y G∗

2(Q, y) dp(y) dQ(p).

12



On Second-Order Scoring Rules for Epistemic Uncertainty Quantification

Proof of Lemma B.1. Let Q, Q̃ ∈ P2(Y) and λ ∈ [0, 1] be arbitrary but fixed. Abbreviate Qλ = (1 − λ)Q + λQ̃. Then,
since G∗ is by assumption a supertangent of G for any element of P2(Y), it holds by the supertangent property (see (18))
that

G(Q) ≤ G(Qλ) +

∫
P1(Y)

∫
Y
G∗(Qλ, y) dp(y) d(Q−Qλ)(p),

G(Q̃) ≤ G(Qλ) +

∫
P1(Y)

∫
Y
G∗(Qλ, y) dp(y) d(Q̃−Qλ)(p).

If we consider the convex combination of these two inequalities and noting that Q − Qλ = λQ − λQ̃ as well as
Q̃−Qλ = (1− λ)Q̃− (1− λ)Q, we obtain

(1− λ)G(Q) + λG(Q̃) ≤ (1− λ)G(Qλ) + (1− λ)

∫
P1(Y)

∫
Y
G∗(Qλ, y) dp(y) d(Q−Qλ)(p)

+ λG(Qλ) + λ

∫
P1(Y)

∫
Y
G∗(Qλ, y) dp(y) d(Q̃−Qλ)(p)

= (1− λ)G(Qλ) + (1− λ)λ

∫
P1(Y)

∫
Y
G∗(Qλ, y) dp(y) d(Q− Q̃)(p)

+ λG(Qλ) + (1− λ)λ

∫
P1(Y)

∫
Y
G∗(Qλ, y) dp(y) d( Q̃−Q︸ ︷︷ ︸

=−(Q−Q̃)

)(p)

= G(Qλ).

Thus, G is concave according to Definition 4.3.

If G∗ is a strict supertangent, then all inequalities above are strict if Q ̸= Q̃ and λ ∈ (0, 1) and consequently G is strictly
concave in this case.

B.2. Proof of Theorem 4.6

Proof. Suppose S2 is order sensitive. Since P2(Y) is convex, we can represent any element Q̂ by a suitable convex
combination of a target second-order distribution Q and another suitable second-order distribution Q̃. Formally, for all Q̂,Q
there exist λ ∈ [0, 1] and Q̃ such that Q̂ = (1− λ)Q̃+ λQ. Thus,

S2(Q̂,Q) = S2((1− λ)Q̃+ λQ,Q) ≥ S2(Q,Q),

which implies that S2 is proper. This inequality is strict if S2 is strictly order sensitive and Q̂ ̸= Q implying that S2 is
strictly proper.

Now, assume that S2 is proper. Note that any scoring-rule S2 is (convex) linear in its second argument: For all λ ∈ [0, 1]
and Q,Q′, Q̂ ∈ P2(Y) it holds that

S2(Q̂,λQ+ (1− λ)Q′)

= Ep∼λQ+(1−λ)Q′
[
EY∼p[L2(Q̂, Y )]

]
=

∫
P1(Y)

∫
Y
L2(Q̂, y) dp(y) d(λQ+ (1− λ)Q′)(p)

= λ

∫
P1(Y)

∫
Y
L2(Q̂, y) dp(y) dQ(p)

+ (1− λ)

∫
P1(Y)

∫
Y
L2(Q̂, y) dp(y) dQ′(p)

= λS2(Q̂,Q) + (1− λ)S2(Q̂,Q′).
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Order sensitivity of a scoring rule holds if for all λ ∈ [0, 1] and Q,Q′ ∈ P2(Y)

S2(Q
′, Q)− S2((1− λ)Q′ + λQ,Q) ≥ 0. (30)

This follows by propriety of S2 : Abbreviate Q̃ = (1− λ)Q′ + λQ and note that by convex linearity in the second argument

(1− λ)S2(Q
′, Q′) + λS2(Q

′, Q) = S2(Q
′, Q̃) ≥ S2(Q̃, Q̃) = (1− λ)S2(Q̃,Q′) + λS2(Q̃,Q),

which is equivalent to

S2(Q
′, Q)− S2((1− λ)Q′ + λQ,Q) ≥ (1− λ)

λ

(
S2(Q̃,Q′)− S2(Q

′, Q′)
)
.

The right-hand side is non-negative since S2 is proper, which implies (30). Finally, if S2 is strictly proper, then (30) holds
with strict inequality implying strict order sensitivity of S2.
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