
Not all Strongly Rayleigh Distributions
Have Small Probabilistic Generating Circuits

Markus Bläser 1

Abstract
Probabilistic modeling is a central task in machine
learning. Probabilistic models should be tractable,
i.e., allowing tractable probabilistic inference,
but also efficient, i.e., being able to represent a
large set of probability distributions. Zhang et
al. (ICML 2021) recently proposed a new model,
probabilistic generating circuits. They raised the
question whether every strongly Rayleigh distribu-
tion can be efficiently represented by such circuits.
We prove that this question has a negative answer.
There are strongly Rayleigh distributions that can-
not be represented by polynomial-sized proba-
bilistic generating circuits, assuming a widely ac-
cepted complexity theoretic conjecture.

1. Introduction
Probabilistic modeling is a central task in machine learn-
ing. However, probabilistic inference easily becomes in-
tractable when the underlying models become large and
complicated, see (Roth, 1996) for a theoretical explanation.
Therefore, it is important to develop probabilistic models
that are tractable (TPMs for short), that is, they allow for
probabilistic inference that is tractable in the size of the
model. On the other hand, the probabilistic models should
be as expressive efficient as possible (in the sense of Martens
& Medabalimi (2014)), which means that they can represent
as many classes of distributions as possible while staying
small in size. The more classes we can represent, the broader
the spectrum of applications of the model. However, there is
typically a tradeoff between expressiveness and tractability.
The more expressive the model, the harder will be proba-
bilistic inference.

Examples of tractable models are for instance bounded
treewidth graphical models (Meila & Jordan, 2000; Koller &
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Friedman, 2009), the well-known determininantal point pro-
cesses (Borodin & Rains, 2005; Kulesza & Taskar, 2012),
or probabilistic circuits like for instance sum-product net-
works (Darwiche, 2009; Kisa et al., 2014; Poon & Domin-
gos, 2012). These models represent probability distributions
by computing probability mass functions: the input is an
assignment to the random variables and the output is the
corresponding probability of the event.

Zhang et al. (2021) recently proposed a new model, prob-
abilistic generating circuits (PCGs). Unlike probablistic
circuits, they represent probability distributions by probabil-
ity generating functions. Probability generating functions
represent the joint distribution of a set of binary random
variables as the coefficients of a multilinear polynomial.
This new model is still tractable as it supports marginal in-
ference. Furthermore it is very efficient, it subsumes all the
probablistic models mentioned above in this regard.

What makes PGCs particularly attractive is the fact that
many interesting probability distributions are defined via
generating polynomials. Strongly Rayleigh (SR) distribu-
tions (Borcea et al., 2009) are a prominent example here.
Zhang et al. (2021) leave it as a question for further research
which classes of interesting distributions can we represented
efficiently by PGCs. In particular, they ask the question
whether all SR distributions can be expressed by a polyno-
mial size PGC.

1.1. Our work

As our main result, we prove that this question has a negative
answer, as has already been conjectured by Zhang et al.
We prove that there is a family of SR distributions that
does not have polynomial size PGCs assuming a widely
believed complexity theoretic assumption, namely, that the
polynomial time hierarchy is infinite.

1.2. Previous work

A distribution is strongly Rayleigh, if the corresponding
generating polynomial is real stable. There is a natural
candidate for a counter example to the question by Zhang
et al., namely, matching polynomials. However, it turns out
that they are not directly suited as a counter example, as we
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will explain now.

The matching polynomial of a graph G = (V,E) with n

nodes is defined as µG(x) =
∑⌈n/2⌉

i=0 (−1)imix
2i, where

mi is the number of matchings of size i of G, see Section 4
for definitions. This polynomial has a multivariate general-
ization, namely

MG(x1, . . . , xn) =
∑

M matching of G

(−1)|M |
∏

i matched in M

xi.

Here, we sum over all matchings and for each matching, we
add up one monomial (“label”) that enumerates all matched
nodes. MG specializes to µG by replacing every xi by the
same variable x, that is µG(x) = MG(x, . . . , x).

Assume that n is even. It is well-known that counting all
perfect matchings, that is, computing mn/2 is #P-complete
(and in particular NP-hard) even for bipartite graphs, see
Section 7 for definitions. It is a classical result that matching
polynomials (univariate and multivariate) are real stable
(Heilmann & Lieb, 1972; Amini, 2019). However, this does
not prove that there are real stable polynomials that have
large arithmetic circuits. In fact, the matching polynomial
µG is univariate and therefore trivially has a small arithmetic
circuit. Also, it is not clear whether MG has small a circuit
for a particular G. The #P-hardness of matchings only
tells us that the mapping that maps a graph to its matching
polynomial is hard, but not each polynomial itself.

One can define a more general matching polynomial that
subsumes all matching polynomials: Let ei,j , 1 ≤ i < j ≤
n be a set of

(
n
2

)
variables and let Kn denote the complete

graph on n nodes, where we identify the nodes with the set
{1, . . . , n}. Let

Mn(x, e) =
∑

M matching in Kn

(−1)|M |
∏

{i,j}∈M

xiei,jxj . (1)

This polynomials lists for each matching not only the vari-
ables corresponding to the nodes matched, but also a vari-
able for each edge in the matching. Let G = (V,E) be a
graph on n nodes and let η ∈ {0, 1}(

n
2) be the character-

istic vector of E, that is, there is a 1 in the vector if the
corresponding edge is in E and a 0 otherwise. Then we
have

Mn(x, η) = MG(x),

since a product in (1) survives iff all ei,j in it are set to
1. Therefore, Mn contains every matching polynomial and
hence, in some sense, also the computational hardness of
the mapping that maps a graph to its matching polynomial.

However, this does not solve the problem, as we were are
not able to prove that this polynomial Mn is real stable. (For
such reasons that simple polynomials like 1 + x2 or 1− x3

are not real stable. More general, Choe et al. (2004) prove

that the support of a real stable polynomial necessarily forms
a jump system, as introduced by Bouchet & Cunningham
(1995).) Therefore, we define a new and even more general
multilinear polynomial that in the end turns out to be real
stable and for which we can rule out that it has polynomial
size arithmetic circuits under standard complexity theoretic
assumptions.

1.3. Organisation of the paper

In Section 2 we introduce probability generating polynomi-
als and circuits (PGC). We recall the definition of strongly
Rayleigh (SR) distributions in Section 3. In Section 4, we
introduce matchings and generalizations of it, which form
the basis of our construction of a SR distribution that does
not have small PGCs. In Section 5, we give the actual con-
struction of our generating polynomial and prove in Section
6 that it is real stable. Section 7 contains basic definitions
and facts from complexity theory that we need to prove
our impossibility result. We show that the polynomials
we defined are hard to evaluate (in a complexity theoretic
sense) in Section 8. While the polynomial we constructed
is real stable, it does not yet define a SR distribution. In
Section 9, we modify the construction such that it becomes
a probability generating polynomial while still staying real
stable. Finally, we prove that this probability generating
polynomial does not have polynomial size PGCs unless the
polynomial time hierarchy collapses in Section 10. Our
main result is Theorem 10.1 and its Corollary 10.2. Thus
it is considered to be unlikely that these polynomial size
PGCs exist, since it is a standard assumption in complexity
theory that the polynomial time hierachy is infinite. Some
proofs are deferred to Appendix A due to space limitations.

2. Probabilistic generating circuits
Generating polynomials are a tool in combinatorics used to
encode sequences of numbers. In particular, probability dis-
tributions over binary random variables can be represented
by multilinear polynomials.

Definition 2.1. Let P be some probability distribution over
binary random variables X1, . . . , Xn. The probability gen-
erating polynomial g for P is defined by

g(z1, . . . , zn) =
∑

S⊆{0,1}

αSz
S ,

where αS = P ({Xi = 1 : i ∈ S}, {Xi = 0 : i /∈ S}) and
zS =

∏
i∈S zi.

A probability generating polynomial represents each joint
probability by the cofficient of the corresponding mono-
mial. Probability generating polynomials have an exponen-
tial number of coefficients. Arithmetic circuits are a way to
store them efficiently.
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Figure 1. A probabilistic generating circuit representing the poly-
nomial 1
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yz, which is real stable. On the righthand

side is the corresponding distribution, which is strongly Rayleigh.

Definition 2.2 ((Zhang et al., 2021)). A probabilistic gener-
ating circuit1 (PGC) is a directed acyclic graph consisting
of three types of nodes:

1. Nodes labelled with “+” (sum nodes), the edges going
into sum nodes can be labelled with rational constants.

2. Nodes labelled with “×” (product nodes)

3. Nodes of indegree 0 (leaves), which are labelled with
constants or variables.

There is a unique node of outdegree 0, the output node.

Figure 1 shows a small PGC. PGCs are equivalent to
arithmetic circuits, a standard model in complexity theory
(Saptharishi, R. et al., 2021). Each node of a PGC represents
a polynomial in the natural way: An input node represents a
single variable polynomial or a constant. A sum node repre-
sents the weighed sum of the polynomials represented by its
children and a product node the product of the polynomials
represented by its children. The polynomial represented by
the output node is the polynomial represented by the PGC.

The size of a PGC is the number of nodes in it, the descrip-
tion size is the length of some encoding of the PGC as a
binary string. It is more natural to study the description size
of a circuit, since it also takes into account the bit size of
the constants involved. This avoids having degenerate cases
in which the circuit has only a few nodes but constants with
a large binary expansion.

Note that the coefficients of a PGC do not necessarily form
a probability distribution. They do not need to sum up to
1 and can even be negative. The learning process has to
ensure that we get a probability distribution in the end, see
(Zhang et al., 2021) for a further discussion and examples.

1The term probabilistic generating circuit was coined by Zhang
et al, however, it might be more natural to use the term probabil-
ity generating circuit, since they compute probability generating
polynomials.
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Figure 2. A bipartite
graph with bipartition
U = {u1, u2, u3} and
V = {v1, v2, v3}.
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Figure 3. The thick edges are
a perfect matching.

3. Strongly Rayleigh distributions
An important class of distributions are the strongly Rayleigh
distributions (Borcea et al., 2009), which were first defined
for studying negative dependence:
Definition 3.1. A polynomial f ∈ R[z1, . . . , zn] is real
stable if f(ζ1, . . . , ζn) ̸= 0 for all ζ1, . . . , ζn ∈ C with
ℑ(ζi) > 0, 1 ≤ i ≤ n. (ℑ denotes the imaginary part.)
Definition 3.2. A distribution on variables X1, . . . , Xn is
strongly Rayleigh (SR), if its generating polynomial is real
stable.

SR distributions are naturally characterized by their generat-
ing polynomials rather than by probability mass functions.
Zhang et al. (2021) identify subclasses of SR distributions,
like spanning tree distributions or determinantal point pro-
cesses, that can be efficiently represented by PGCs. It is
natural to ask whether all SR distributions can be efficiently
represented by PGCs. We give a negative answer to this
question.

4. Graphs, matchings, and functions
A graph G is called bipartite, if we can partition its nodes
into two set U and V such that all edges have one node
in U and the other node in V . When we write G = (U ∪
V,E) we mean that G is a bipartite graph with bipartition U
and V . We will typically call these nodes u1, . . . , um and
v1, . . . , vn in the following. M ⊆ E is called a matching if
each node of U and V appears in at most one edge of M .
M is called perfect, if every node is in exactly one edge. If
a bipartite graph has a perfect matching, then necessarily
|U | = |V |. The size |M | of a matching is the number of
edges in it. If M is perfect, then |M | = |U | = |V |.
Example 4.1. Figure 2 shows a bipartite graph with three
nodes on each side. The thick edges in Figure 3 form a
perfect matching. Figure 4 shows a matching of size two.

We can interpret a perfect matching M as a bijective func-
tion U → V . If e = {ui, vj} is an edge in M , then M
maps ui to vj . If we identify ui with i and vj with j, then
M can also be interpreted as a permutation of the number
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Figure 4. The thick edges are
a matching of size two.
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Figure 5. The thick edges
form a total function U → V ,
which is not injective.

{1, . . . , n}. In general, if M is a matching (but not neces-
sarily perfect), then M defines a partial function which is
injective when restricted to its domain.
Example 4.2. The perfect matching in Figure 3 defines the
function that maps u1 7→ v2, u2 7→ v3, and u3 7→ v1. In-
terpreted as a permutation, it is the cyclic shift (123). The
matching in Figure 4 maps u1 7→ v1 and u2 7→ v3 and is
undefined on u3. Restricted to its domain, it is an injec-
tive function. We can interpret it as a partial permutation
mapping 1 7→ 1 and 2 7→ 3.

We can interpret a matching as a function that is injective
when restricted to its domain. It turns out that to obtain our
main result it is useful to consider arbitrary functions and
not just injective ones.

Definition 4.3. Let G = (U ∪ V,E) be a bipartite graph.
F ⊆ E is called a (partial) function, if every node in U is
incident to at most one edge in F .

Such a set F is called a function, because it naturally defines
a partial function U → V . For each node u, there is at most
one edge (u, v) ∈ F .2 Then v is the image of u. We write
F (u) = v. If there is no such edge, then the function is
undefined on u. The image of F is imF := {v ∈ V |
∃u ∈ U : (u, v) ∈ F}, that is, all the nodes that appear
on the righthand side of an edge in F . The domain of F ,
domF := {u ∈ U | ∃ v ∈ V : (u, v) ∈ F}, is the set of all
nodes in U on which F is defined. A function F is called
total if domF = U .
Example 4.4. The thick edges in Figure 5 are the function
mapping u1 7→ v1, u2 7→ v2, and u3 7→ v1. This function
is total (all nodes in U are matched), but not injective, since
v1 is contained in two edges.

So far, we considered functions F from U → V . We can
also consider functions V → U . A set H ⊆ E is a (partial)
function from V → U if each node in V is incident to at
most one edge in H . For each node v, there is at most
one edge (u, v) ∈ H . Then u is the image of v. We write
H(v) = u.

2We will write edges directed from now, since later on, we will
identify U with V .
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Figure 6. The thick edges
form a partial function from
V to U .
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Figure 7. A double function.

Example 4.5. Figure 6 shows a function from V to U that
maps v2 7→ u2 and v3 7→ u2. It is partial and not injective
when restricted to its domain.

The next definition will be crucial for our construction.
Definition 4.6. Let G = (U ∪ V,E) be a bipartite graph.

1. E′ ⊆ E is called a (partial) double function, if E′ =
F ∪ H for a (partial) function F : U → V and a
(partial) function H : V → U .

2. E′ is called a total double function, if in addition, F
and H are both total functions.

Example 4.7. Figure 7 shows the double function that is
created by combining the functions from Figure 5 and 6. It
is not a total double function since the function in Figure 6 is
not. The edge {u2, v2} appears in both functions, but it only
appears once in the double function. This will be an issue,
because we cannot distinguish this from the case when the
edge was missing in one of the two functions. Therefore,
we will consider multigraphs in the following.

Such a graph is a bipartite graph with multiedges, that is,
there might be several edges between two nodes u and v.
Any of the edges between u and v can appear in a function
that maps u to v. This will be important in the constructions
that follow.

5. Function generating polynomials
Let Km,n denote the complete bipartite graph with m nodes
on lefthand and n nodes on the righthand side, respectively.
Let K

(d)
m,n be the complete bipartite multigraph with m

nodes on lefthand and n nodes on the righthand side and
between each pair of nodes, there are exactly d copies of
an edge. Obviously, Km,n = K

(1)
m,n. Every bipartite multi-

graph with m and n nodes on each side, respectively, and
maximum degree ≤ d can be obtained from K

(d)
m,n by the

deletion of edges. In this way, we will encode many graphs
into one.
Example 5.1. Figure 8 shows the complete bipartite multi-
graph with three nodes on each side and three copies of each
edge.
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Figure 8. The complete bipar-
tite multigraph K

(3)
3,3 .

u1
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v1
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v3

Figure 9. When we remove
the light grey edges from
K

(3)
3,3 , we get the graph from

Figure 7 with each edge trip-
licated. The thick edges form
an instantiation of the double
function in Figure 7.

We consider Km,n. We will label the nodes on the left-
hand and righthand side by {1, . . . ,m} and by {1, . . . , n},
respectively. This is slightly abusive, since these sets are
formally not disjoint. However, we will write the edge set
with a direction, that is, as {1, . . . ,m} × {1, . . . , n}, so
there is no danger of confusing nodes on the lefthand side
with ones on the righthand side. Let e = (ei,j : 1 ≤ i ≤
m, 1 ≤ j ≤ n} be a set of variables, which we identify with
the edges in the obvious way.

The signed double function generating polynomial is defined
as

DFm,n(e) =
∑
F,H

(−1)|F |+|H|
∏

(i,j)∈F

ei,j
∏

(i′,j′)∈H

ei′,j′ .

(2)

where the sum is taken over all subsets F of the edges of
Km,n that are a partial function U → V and subsets H that
are a partial function V → U . For each double function of
Km,n, that is, each pair (F,H), the polynomial contains one
monomial. This monomial lists the variables corresponding
to edges that are contained in F and H . The sign factor in
the front is important for obtaining real stability (see the next
section). Note that if an edge appears in F and in H , then the
monomial contains the corresponding variable with degree
two. This turns out to be a problem in the interpolation
process in the proof of Theorem 8.3. By forbidding variables
of degree two, the weights that different double functions
get in the proof of Theorem 8.3 depend on the number of
shared edges. In this way, we are able to extract the number
of perfect matchings in the end. Therefore, we generalize
the double function generating polynomial to multigraphs
and change the way how double functions are represented
by monomials slightly but in an important way.
Example 5.2. The double function consisting of the two
functions in Figures 5 and 6 corresponds to the monomial
e1,1e

2
2,2e2,3e3,1.

The signed double function generating polynomial gener-

alizes to K
(d)
m,n in the obvious way. Let e(d) = (e

(δ)
i,j : 1 ≤

i ≤ m, 1 ≤ j ≤ n, 1 ≤ δ ≤ d). We sum over all pairs of
functions (F,H). For each edge, we now have d choices,
so every double function gives rise to many monomials by
choosing different copies. The definition of this general-
ization DF (d)

m,n is given in Equation (3) in Figure 10 (since
it does not fit into one column). Note that when F and H
share an edge e, then we are forced to take a different copy
of e for F and H . This is an important difference that will
circumvent the problem mentioned above for DFm,n.

Example 5.3. Figure 9 shows an instantiation of the dou-
ble function in Figure 7. The corresponding monomial is
e
(1)
1,1e

(2)
2,2e

(3)
2,2e

(1)
2,3e

(2)
3,1. (The indices of the copies of the edges

in Figure 9 are labelled from top to bottom.)

Note that we obtain DF (d−1)
m,n from DF (d)

m,n by simply set-

ting all variables e
(d)
i,j to zero. In the same way, we can

define the signed double function generating polynomial for
any bipartite multigraph G with degree bounded by d by
zeroing out variables e(t+1)

i,j , . . . , e
(d)
i,j when the edge (i, j)

has multiplicity t in G.

We define the signed total double function generating poly-
nomials DFtotm,n and DFtot (d)m,n in the same way as
DFm,n and DF (d)

m,n. Instead of summing over all pair of
functions (F,H), we sum over all pairs of total functions
instead in Equations (2) and (3).

From the double function in Example 5.3, we cannot ex-
actly recover the two functions forming the double function
unambigously. One function (from V → U ) surely consists
of (2, 2) and (2, 3) and the other (from U → V ) of (2, 2)
and (3, 1). The edge (1, 1) can be put into any of the two
functions. This means that the coefficient of the monomial
in DFm,n will be 2, since the monomial can be created in
two ways in the definition of DFm,n. The same holds true
for all instantiations of the double function in DF (d)

m,n.

We can make it unambiguous by also denoting the do-
mains of the two functions with every monomial. We
take additional variables u = (ui : 1 ≤ i ≤ m) and
v = (vj : 1 ≤ j ≤ n). The extended double function
generating polynomials is defined in (4) in Figure 10. If
the node i is in domF , then ui appears in the correspond-
ing monomial. If j is in domH , then vj appears. In this
way, each monomial does not contain the edges but also the
domains of the two functions.

Example 5.4. The two monomials of DFext
(3)
3,3 cor-

responding to the monomial e
(1)
1,1e

(2)
2,2e

(3)
2,2e

(2)
2,3e

(2)
3,1 in

Example 5.3 are u1u2u3e
(1)
1,1e

(2)
2,2e

(3)
2,2e

(1)
2,3e

(2)
3,1v2v3 and

u2u3e
(1)
1,1e

(2)
2,2e

(3)
2,2e

(1)
2,3e

(2)
3,1v1v2v3.

The introduction of the variables u1, . . . , um and v1, . . . , vn
will not make the situation completely unambiguous. The
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DF (d)
m,n(e

(d)) =
∑
F,H

(−1)|F |+|H|
∏

(i,j)∈F\H

d∑
δ=1

e
(δ)
i,j

∏
(i′,j′)∈H∩F

∑
1≤δ′<γ≤d

e
(δ′)
i′,j′e

(γ)
i′,j′

∏
(i′′,j′′)∈H\F

d∑
δ′′=1

e
(δ′′)
i′′,j′′ (3)

DFext (d)m,n(e
(d), u, v)

=
∑
F,H

(−1)|F |+|H|
∏

(i,j)∈F\H

d∑
δ=1

uie
(δ)
i,j

∏
(i′,j′)∈H∩F

∑
1≤δ′<γ≤d

ui′e
(δ′)
i′,j′e

(γ)
i′,j′v

(γ)
j′

∏
(i′′,j′′)∈H\F

d∑
δ′′=1

e
(δ′′)
i′′,j′′vj′′

(4)

Figure 10. The definitions of DF
(d)
m,n and DFext

(d)
m,n. The sums are over all double functions (F,H) of Km,n. The expressions in

equations (3) and (4) generate all possible double functions of the complete bipartite multigraph on m + n nodes. For each of them,
they generate one monomial. The outer sum sums only over double functions of the complete bipartite graph and then in the inner
sums, we choose the copies of the edges accordingly. To obtain the monomial of Example 5.3 we take as F the function (1, 1), (2, 2),
(3, 1) (see Figure 5) and as H the function (2, 2), (2, 3) (see Figure 6). In the inner part, we now generate all monomials of the form
e
(a)
1,1e

(b)
2,2e

(c)
2,2e

(d)
2,3e

(f)
3,1 with a, b, c, d, f being between 1 and d and b < c. This includes the monomial of Example 5.3. The first product in

(3) runs over the edges (1, 1) and (3, 1), which are in F but not in H . The second product runs over the edge (2, 2), since it appears in F
and H . The last product is over the remaining edge (2, 3). There is a second way to generate this monomial, as it also can arise from a
different double function, see the discussion before Example 5.4.

important point is that we will use these variables to prove
the real stability of DFext (d)m,n. Then, we will use DFext (d)m,n

to prove the real stability of DF (d)
m,n.

Example 5.5. When F and H are both perfect matchings,
then (F,H) and (H,F ) will be mapped to the same mono-
mials in DFext (d)m,n.

6. Double function generating polynomials are
stable

The following polynomial will be the basic building block.
It is well known and easy to see that it is real stable.

Lemma 6.1. 1− uie
(δ)
i,j is real stable.

Lemma 6.2.
∏

1≤i,j≤n

∏d
δ=1(1− uie

(δ)
i,j ) is real stable.

Proof. The product of real stable polynomials is real stable,
see e.g. (Pemantle, 2012).

The polynomial above is a product of sums. In each fac-
tor, we can either choose the summand 1 or the summand
−uie

(δ)
i,j . Therefore, each monomial corresponds to a sub-

set of the edges (with multiplicities). For each edge (i, j)
and copy δ, we also multiply with the variable ui, which
represents the source of the edge. Therefore, we have the
following lemma.

Lemma 6.3. The monomials in
∏

1≤i,j≤n

∏d
δ=1(1−uie

(δ)
i,j )

that are multilinear in u1, . . . , un stand in one-to-one cor-
respondence with partial funcions F : U → V and a vec-
tor (δi)i∈domF , specifying which copy of the edge (i, j) is
taken.

In the same way, we can consider the functions V → U by
looking at the polynomial

∏
1≤i,j≤n

d∏
δ=1

(1− e
(δ)
i,j vj) (5)

This polynomial is real stable, too, and Lemma 6.3 holds
accordingly.

Lemma 6.4. The multilinear monomials of the product of
the two polynomials in Lemma 6.3 and Equation (5) stand
in one-to-one correspondence with partial double functions
(F,H) and vectors (δi)i∈domF and vector (γj)j∈domH

such that whenever (i, j) ∈ F ∩H , then δi ̸= γj .

Proof. The multilinear monomials contain each ui at most
once. Therefore, at most one node on the lefthand side is
matched. The same is true for the righthand side, since
each vj has degree at most one, too. Since double func-
tions in K

(d)
m,n need to choose different copies of an edge,

if it appears in both functions F and H , the corresponding
monomial is multilinear, too.

The multi-affine part operator MAP takes a polynomial and
removes all monomials that are not multilinear, that is, that
contain at least one variable of degree two or higher. If x
is a variable, the operator MAPx takes a polynomial and
removes all monomials that are not multilinear in x, that is,
that contain x with a degree two or higher. We can write

MAPx(f) = (1 + x̂∂x)f |x=0

where x̂ is a new variable, that replaces x (and can be re-
named into x afterwards). Here ∂x denotes the partial deriva-

6
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tive operator. MAPx naturally generalizes to sets of vari-
ables. It is well-known that the MAPx- and MAP-operator
preserve real stability (Borcea & Brändén, 2009).

Lemma 6.5. We have

DFext (d)m,n(e
(d), u, v) = MAP(P ),

where

P =
∏

1≤i,j≤n

d∏
δ=1

(1− uie
(δ)
i,j )

∏
1≤i,j≤n

d∏
δ=1

(1− e
(δ)
i,j vj)

is the product from Lemma 6.4.

Proof. Follows immediately from Lemma 6.4: After ap-
plying the MAP-operator to the righthand side, only the
multilinear monomials survive. The multilinear monomi-
als are exactly the monomials of DFext (d)m,n. The sign of a
monomial in P is positive if it contains an even number of
edge variables e(δ)i,j . Otherwise it is negative. The same is
true in DFext (d)m,n. Therefore, also the signs match.

Corollary 6.6. DFext (d)m,n is real stable.

Proof. Follows from the facts that the polynomial P is real
stable by Lemma 6.2 and that the operator MAP is stability
preserving.

From DFext (d)m,n, we can obtain DF (d)
m,n by setting

the u and v variables to 1, that is DF (d)
m,n(e

(d)) =

DFext (d)m,n(e
(d), u, v)|u1,...,un,v1,...,vn=1.

Lemma 6.7. DF (d)
m,n is real stable.

Proof. Replacing variables by positive real numbers pre-
serves stability, see e.g. (Pemantle, 2012).

Since monomials of DF (d)
m,n stand in one-to-one correspon-

dence with double functions in K
(d)
m,n, we can count all

double functions (with signs) in a given multigraph G by
setting the edge variables e(δ)i,j to 1 or 0, depending whether
the edges appear in G or not.

7. Complexity theory basics
We give some background information on the relevant com-
plexity classes and results. We refer to (Papadimitriou, 1994;
Arora & Barak, 2009) for further explanations and proofs of
the well-known theorems mentionend in this section. Under-
standing the exact definitions of the classes is not necessary
to understand the paper, the important fact for this paper is
that counting perfect matchings in bipartite graphs is hard.

Deciding whether a formula ϕ in conjunctive normal form
(CNF) has a satisfying assignment is the defining problem
of the famous class NP. If we instead want to count the
number of satisfying assignments, we get a problem which
is complete for the class #P defined by Valiant. Obviously,
when you can count the number of satisfying assignments,
then you can decide whether there is at least one, therefore,
#P is a “harder” class than NP. It turns out that some
problems become #P-hard when considered as a counting
problem while their decision versions are easy. Perfect
matchings in bipartite graphs is such an example: There
are efficient algorithms for the decision problem, but the
counting version is hard, as proven by Valiant.

Theorem 7.1 (Valiant). Counting perfect matchings in bi-
partite graphs is #P-complete under Turing reductions.

Above, a problem A is Turing reducible to a problem B
if there is a polynomial time deterministic Turing machine
that solves A having oracle access to B. This means, that
an efficient algorithm for B will yield an efficient algorithm
for A and in this sense, A is easier than B.

The class NP is defined by an existential quantifier: There
is an assignment that satisfies the given formula. The com-
plement coNP of NP is defined by a universal quantifier:
Every assignment is not satisfying. If we now take more
quantifiers, we get the so-called polynomial time hierarchy
PH, an ascending chain of complexity classes Σk (and the
corresponding co-classes Πk). It is widely believed that
PH is infinite, that is, Σk ⊊ Σk+1 for all k. If for some k,
Σk = Σk+1, then we say that PH collapses, since in this
case it can be shown that Σk = PH. Experts consider this to
be very unlikely. Therefore, if some assumption implies that
PH collapses, this is a strong indication that this assumption
is false.

The class P/poly is a so-called nonuniform class. A prob-
lem P is in the class P/poly if there is a polynomial time
deterministic Turing machine M and a sequence of polyno-
mially long strings (an), the so-called “advice”, such that
for all inputs x of length n, M on input (x, an) accepts iff
x ∈ P . That is, in addition to the input, we get the advice
an, which has to be the same for all inputs of length n. Al-
ternatively, one can define P/poly as the set of all problems
that have polynomial size nonuniform circuits.

Theorem 7.2 (Karp–Lipton). If NP ⊆ P/poly, then PH
collapses to the second level Σ2.

8. Counting double functions is #P-hard
We prove that counting double functions is #P-hard by
reducing the problem of counting perfect matchings PM in
bipartite graphs to it. We start by showing that the counting
of total double functions can be reduced to the counting of
all double functions.

7
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Lemma 8.1. The evaluation of DFtot (d)m,n is polynomial
time reducible to the evaluation of DF (d)

m,n (by Turing re-
ductions).

Proof. Every monomial of DFtot (d)m,n also appears in
DF (d)

m,n. Let M be a monomial in DF (d)
m,n correspond-

ing to two functions F and H . The degree of M is
|domF |+ |domH|, the sum of the size of the domains of
the two functions. If M corresponds to two total functions
(and hence appears in DFtot (d)m,n), then the total degree of
M is m+n. All other monomials have smaller total degree.

We replace each variable e(δ)i,j by e
(δ)
i,j ·t, where t is a new vari-

able for bookkeeping purposes. We consider the resulting

polynomial D̂F
(d)

m,n as a polynomial in t with coefficients

being polynomials in the original variables e(δ)i,j . Monomials
of the same total degree s in DF (d)

m,n will all appear in the
coefficient polynomials of ts.

Therefore, we plug in m+ n+ 1 many different values for

t into D̂F
(d)

m,n. From these values we can obtain the coef-

ficients of D̂F
(d)
m,n (as a polynomial in t) using Lagrange

interpolation with only polynomial overhead. The coeffi-
cients of tm+n is DFtot (d)m,n.

Remark 8.2. In the proof above, we can assume that we
are given a PGC for DF (d)

m,n and from this, we construct a
PGC for DFtot (d)m,n whose size is polynomial in the size of
the given circuit, since we need m + n + 1 copies of the
circuit for the evaluation at the interpolating points and the
circuit that realizes the Lagrange interpolation. The same
proof would also work if we only could evaluate DF (d)

m,n

by oracle access. When we want to compute a particular
value DFtot (d)m,n(e) for some input point e, then we query
DF (d)

m,n(τ · e) for m + n + 1 different scalar values of τ
and can recover DFtot (d)m,n(e) using the same interpolation
process.

Theorem 8.3. Counting of perfect matchings in bipartite
graphs is polynomial time reducible to the evaluation of
DFtot (n+2)

n,n . The evaluation points occuring in the reduc-
tion are all {0, 1}-valued.

The proof is deferred to Appendix A due to space con-
straints.
Remark 8.4. Again, the reduction works when we are given
a PGC for DFtot (n+2)

n,n . From this, we can compute a PGC
for PM in polynomial time. Or DFtot (n+2)

n,n is given as an
oracle, then we get a Turing reduction from counting perfect
matchings to DFtot (n+2)

n,n .

Corollary 8.5. Evaluating DFtot (n+2)
n,n is #P-hard. This

is even true when the input is {0, 1}-valued.

Proof. This follows from Theorem 8.3 together with the
fact that counting perfect matchings is #P-hard.

9. Normalization
While we now have a real stable polynomial that is #P-hard
to evaluate, namely DF (n+2)

n,n , by Lemma 6.7, Lemma 8.1
and Corollary 8.5, DF (n+2)

n,n is not the generating polyno-
mial of a SR distribution. First of all, some of the coeffi-
cients are negative and second, the distribution is not nor-
malized.

Note that the signs of the monomials of DF (d)
m,n have a regu-

lar pattern, the signs of odd degree monomials are negative
and of even degree monomials are positive. For a polyno-
mial f(x1, . . . , xn) with the degree of x1 being t in f , the
inversion of f at x1 is xt

1f(−1/x1, x2, . . . , xn). Note that
this is again a polynomial and the degree of x1 is ≤ t. The
inversion of f is the polynomial obtained when inverting
every variable.

Lemma 9.1. Let Pn be the inversion of DF (n+2)
n,n . Then

1. Pn is multilinear.

2. All cofficients of Pn are nonnegative.

3. Pn is real stable.

Proof. The first item follows from the fact, that the inversion
cannot increase the degree of a variable. For the second
item note that the inversion flips the sign of each variable.
Since the coefficients of the odd degree monomials have
negative signs in DF (d)

m,n, they have positive signs in Pn.
The even degree monomials have positive coefficients and
they stay positive in Pn. The third item follows, since
inversion preserves stability, see e.g. (Pemantle, 2012).

So the coefficients of Pn are an unnormalized SR distribu-
tion.

Lemma 9.2. The evaluation of Pn is #P-hard, even when
restricted to integers of size polynomial in n.

Proof. DFtot (n+2)
n,n is #P-hard to evaluate, even when re-

stricted to {0, 1}-valued vectors by Theorem 8.3. In the
reduction of DFtot (n+2)

n,n to DF (n+2)
n,n we are free to choose

the interpolation points, so we could choose values of the
form 1/s. In the reduction of DF (n+2)

n,n to Pn, 1/s will be
replaced by −s, so the claim follows.

Sn := Pn(1, . . . , 1) is the sum of all coefficients of Pn.
Sn can be computed efficiently, since it is the number of
all double functions of K(n+2)

n,n , see the next lemma. Let
P̂n := Pn/Sn. P̂n now is a normalized SR distribution that
has all the properties from Lemmas 9.1 and 9.2.

8
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We now show how to compute Sn in polynomial time. We
need to introduce an auxiliary quantity. Tm,n,ℓ denotes
the number of all instantiations of double functions (F,H)

in K
(d)
m,n such that domF ⊆ {1, . . . , ℓ}. Consider such a

double function. We can have F (s) = n for any number
j ≤ ℓ of indices s ∈ {1, . . . , ℓ}. For each s, we can choose
one out of d multiedges. On the other hand, H(n) can
either be undefined, or mapped to one of the j indices s
with F (s) = n or mapped to another index. In the first case,
there is one choice, in the second case we can choose out
of d− 1 multiedges and in the third out of d. This gives the
following recursion

Tm,n,ℓ =

ℓ∑
j=0

(
ℓ

j

)
dj(1 + j(d− 1) + (m− j)d)Tm,n−1,ℓ−j

for n > 0 and ℓ > 0. The status of the node vn is com-
pletely determined, so we can remove it from the further
considerations. The domain of the residual function F ′ is—
after reordering—contained in {1, . . . , ℓ− j}. For the base
cases, we have

Tm,0,ℓ = 1,

Tm,n,0 = (md+ 1)n.

In the case when n = 0, then there is only one double
function (F,H). F is undefined everywhere and H is the
empty function. In the case when ℓ = 0, then there is only
one F , again the function that is undefined everywhere. But
H can be an arbitrary function, for each s ∈ {1, . . . , n}, we
can either choose one out of the md multiedges leaving vs
or have H(s) being undefined.

Lemma 9.3. We can compute the normalization constant
Sn in polynomial time.

Proof. We have Sn = Tn,n,n. The entries in the table
Tm,ν,λ can be computed using two nested loops running
over ν and λ . The computation of one value Tm,ν,λ can be
done in polynomial time.

Note that for the further proof it would not be necessary
that we can compute Sn, since we could also encode this
knowledge in the advice string.

10. Circuit lower bounds
Recall that we want to prove that there are SR distributions
that have large (that is superpolynomial) PGCs. Recall that
P̂n is the generating polynomial of an SR distribution.

Theorem 10.1. If P̂n has PGCs of polynomial description
size, then P#P ⊆ P/poly.

Proof. Let M be a polynomial time deterministic Turing
machine with oracle access to a problem in #P. We con-
struct a polynomial time DTM with polynomial advice that
can simulate M . The advice an will be the PGC for Pn. N
simulates M step by step. Whenever M calls the oracle, M
will evaluate the PGC an instead. This is possible, since
evaluating P̂n is #P-hard. If the PGC has high degree, then
the intermediate results might become large. In this case,
we multiply by Sn (see Lemma 9.3), get the integer val-
ued polynomial Pn and can now perform the computation
modulo an integer with polynomially many bits. (This is a
standard technique.) The result will be exact, since Pn(e)
has polynomially many bits.

We finally obtain our main result, that there are SR distribu-
tions without polynomial size PGCs, unless PH collapses.

Corollary 10.2. If P̂n has PGCs of polynomial description
size, then PH collapses.

Proof. By Toda’s theorem (see Section 17.4 of (Arora &
Barak, 2009)), PH ⊆ P#P. Since NP ⊆ PH, the corol-
lary follows directly from the Karp–Lipton theorem (Theo-
rem 7.2).
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programs. I. Linear operators preserving stability. Inven-
tiones mathematicae, 177:541–569, 2009.
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A. Omitted proofs
Proof. (of Theorem 8.3) Let G = (U ∪ V,E) be an instance of PM . G has bipartition U and V . We can assume that
|U | = |V | = n. We label the nodes in both sets by {1, . . . , n}.

We consider DFtot (d)n,n on K
(d)
n,n. (The value d will be chosen later and it turns out that n+ 2 is the right choice.) We encode

the input graph G into K
(d)
n,n by setting all variables e(δ)i,j to zero, 1 ≤ δ ≤ d, for all edges (i, j) /∈ E. That is, we get a

multigraph Ĝ in which each edge of G is duplicated d times.

Now take a total double function (F,H) of G. We have n = |F | = |H|, so there are 2n edges in total. How many ways are
there to map it into Ĝ? Assume that F and G share s edges. If an edge appears only in F or only in G, then we can choose
one of the d copies in Ĝ. There are 2n− 2s edges of this kind. If an edge appears both in F and H , then for first edge, we
can choose one of the d copies, but for the second edge, we can only choose from the remaining d− 1 copies, since by the
definition of DFtot (d)n,n, we have to select distinct edges. Thus is F and H share s edges, then the pair (F,H) gives rise to

d2n−2s(d(d− 1))s

instantiations in Ĝ.

What pairs (F,H) share the most edges? These are the pairs with F = H . This means that F is a function from U → V but
also from V → U . Since |U | = |V | and F is total, this can only happen if F is a perfect matching in G, that is, a bijective
function. Perfect matchings and double functions sharing n edges stand in a one-to-one correspondence, since for each
perfect matching M , (M,M) is obviously a total double function.

Let as be the number of double functions in G that share s edges. Let D(d)

Ĝ
be the evaluation of DFtot (d)n,n at Ĝ, that is, we

plug in the value 0 for each multiedge that is not present in Ĝ and the value 1 for each multiedge that is present in Ĝ. By the
consideration above, we have

D
(d)

Ĝ
=

n∑
s=0

d2n−2s(d(d− 1))sas = dn
n∑

s=0

dn−s(d− 1)sas. (6)

The last equations shows that DFtot (d)n,n viewed as a function in d is a polynomial in d. Note that we can get any value D
(t)

Ĝ

from DFtot (d)n,n for any value t ≤ d by setting the variables e(1)i,j = · · · = e
(t)
i,j = 1 and e

(t+1)
i,j = · · · = e

(d)
i,j = 0 for all edges

(i, j) in Ĝ and all edge variable for edges not in Ĝ to 0.

Since d is arbitrary, Equation (6) is also true other values. We can write this in matrix form:
D

(2)

Ĝ

D
(3)

Ĝ
...

D
(n+2)

Ĝ

 =


2n 0 . . . 0
0 3n . . . 0
...

...
. . .

...
0 0 . . . (n+ 2)n




2n 2n−1 . . . 1
3n 3n−12 . . . 2n

...
...

. . .
...

(n+ 2)n (n+ 2)n+1(n+ 1) . . . (n+ 1)n




a0
a1
...
an



=


2n 0 . . . 0
0 3n2n . . . 0
...

...
. . .

...
0 0 . . . (n+ 2)n(n+ 1)n




2n 2n−1 . . . 1
( 32 )

n ( 32 )
n−1 . . . 1

...
...

. . .
...

(n+2
n+1 )

n (n+2
n+1 )

n+1 . . . 1




a0
a1
...
an


The matrix on the lefthand side in the second row is a diagonal matrix with nonzero elements on the diagonal, hence it
is invertible. The matrix on the righthand side is a Vandermonde matrix. Since the values 2, 3

2 , . . . ,
n+2
n+1 are all pairwise

distinct, the second matrix is also invertible. Hence we can compute the values a0, . . . , an from D
(2)

Ĝ
, D

(3)

Ĝ
, . . . , D

(n+2)

Ĝ
in

polynomial time.

Thus, the overall reduction works as follows: Given our input graph G, we compute the values D(2)

Ĝ
, D

(3)

Ĝ
, . . . , D

(n+2)

Ĝ
by

specialising the variables e(δ)i,j as described above. From these values, we can recover an, which is the number of perfect
matchings in G.
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