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Abstract

We consider the problem of subset selection
where one is given multiple rankings of items and
the goal is to select the highest “quality” subset.
Score functions from the multiwinner voting liter-
ature have been used to aggregate rankings into
quality scores for subsets. We study this setting
of subset selection problems when, in addition,
rankings may contain systemic or unconscious
biases toward a group of items. For a general
model of input rankings and biases, we show that
requiring the selected subset to satisfy group fair-
ness constraints can improve the quality of the
selection with respect to unbiased rankings. Im-
portantly, we show that for fairness constraints
to be effective, different multiwinner score func-
tions may require a drastically different number
of rankings: While for some functions, fairness
constraints need an exponential number of rank-
ings to recover a close-to-optimal solution, for
others, this dependency is only polynomial. This
result relies on a novel notion of “smoothness” of
submodular functions in this setting that quanti-
fies how well a function can “correctly” assess the
quality of items in the presence of bias. The re-
sults in this paper can be used to guide the choice
of multiwinner score functions for the subset se-
lection setting considered here; we additionally
provide a tool to empirically enable this.

1. Introduction
The task of selecting a size-k subset from a set of m items is
a basic problem in machine learning and computer science
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with applications arising in recommender systems (McSh-
erry, 2002; El-Arini et al., 2009), feature selection (Guyon &
Elisseeff, 2003), search engines (Agrawal et al., 2009), data
summarization (Elhamifar & Kaluza, 2017; Angelidakis
et al., 2022), and algorithmic hiring (Schumann et al., 2019;
Raghavan et al., 2020; Deczynski, 2021). The simplest for-
mulation of this problem assumes that every item has some
reported utility, which leads to the selection of k items with
the highest utility. In several applications, however, items
are evaluated from multiple points of view, e.g., different
users evaluating items in a group recommendation or short-
listing setting (Jameson & Smyth, 2007; Raghavan et al.,
2020; Streviniotis & Chalkiadakis, 2022a), or a single user
evaluating items from different perspectives (e.g., in person-
alized recommendations, a user might be interested in being
recommended items from different categories, and separate
orderings for categories are produced (El-Arini et al., 2009;
Streviniotis & Chalkiadakis, 2022b; Gawron & Faliszewski,
2022)). Moreover, these different evaluations oftentimes
come in the form of rankings of the m items instead of
numerical scores (Chakraborty et al., 2019; Streviniotis &
Chalkiadakis, 2022b;a). Asking for rankings instead of
numerical scores for items is a popular approach (e.g., as
witnessed by its usage to train large language models, like
ChatGPT with human feedback (Ramponi, 2022), and in
reinforcement learning (Christiano et al., 2017)) because
numerical scores have a higher elicitation cost and can lead
to aggregation and calibration issues (Griffin & Brenner,
2004; Mitliagkas et al., 2011; Wang & Shah, 2019).

A principled method to aggregate n rankings of m items into
a single quality score function for subsets of {1, . . . ,m}
is the usage of “score functions” studied in the multi-
winner voting literature within social choice theory (Fal-
iszewski et al., 2017; Chakraborty et al., 2019; Mondal
et al., 2021; Streviniotis & Chalkiadakis, 2022b; Gawron
& Faliszewski, 2022; Streviniotis & Chalkiadakis, 2022a;
Lackner & Skowron, 2023). Here, many score functions
have been proposed and their properties and merits have
been extensively discussed (Elkind et al., 2017b;a; Lackner
& Skowron, 2019). These functions, for instance, allow for
specifying which part of each ranking to take into account,
and how many of the selected items are relevant from the
perspective of each ranking. For instance, a score function
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may only take into account the top choice of each ranking,
and the quality of a subset is then the number of rankings
whose top choice it contains (this score function is referred
to as single non-transferable vote, or SNTV). More gen-
erally, a score function may take into account the entire
ranking. For instance, each ranking may add m− 1 points
to the quality of a subset if its top choice is present in it,
another m − 2 points if its second most preferred choice
is present, and so on (the resulting score function is called
the Borda count). While SNTV and Borda lead to modular
set functions, more general score functions from the mul-
tiwinner voting literature give rise to general submodular
functions (Definition 2.2), and a multitude of techniques
have been developed to optimize the quality of the selection
with respect to the given rankings (Procaccia et al., 2008;
Skowron et al., 2015; Aziz et al., 2015).

However, there is growing evidence that rankings of items –
whether generated by humans or ML algorithms – may con-
tain implicit and/or other forms of systemic biases against
socially-salient groups (e.g., those defined by race, gender,
opinions) (Rooth, 2010; Kite & Whitley, 2016; Régner et al.,
2019). For instance, in the context of subset selection, Ca-
pers IV et al. (2017) detected that, despite identical qualifi-
cations, members of admission committees rank White med-
ical students above African Americans, and Moss-Racusin
et al. (2012) found that faculty members evaluate male appli-
cants for a job as more qualified than female ones. The latter
bias has also been observed in Amazon’s former resume
screening tool (Dastin, 2018), as human biases can find
their way into the output of machine learning algorithms
in case they are trained on biased or systematically skewed
data (Dastin, 2018; Bogen & Rieke, 2018; Dressel & Farid,
2018; Raghavan et al., 2020; Jiang & Nachum, 2020). A
question arises: in which situations can bias be mitigated
in subset selection based on aggregating multiple (biased)
rankings using multiwinner score functions, and in these sit-
uations, how can the selection of a high-quality committee
with respect to the unbiased rankings be guaranteed?

A model to incorporate such biases for the simplest (nu-
merical) formulation of subset selection was considered by
Kleinberg & Raghavan (2018): Items are partitioned into
an advantaged and a disadvantaged group and item i has
latent utility Wi. For members of the advantaged group, the
observed utility is the same as the latent utility, whereas, for
members of the disadvantaged group, the observed utility
is θ ·Wi for some global bias parameter θ ∈ [0, 1]. Klein-
berg & Raghavan (2018) show that when optimizing for
the summed observed utility, the latent utility of the se-
lected subset drops sharply in the presence of implicit bias.
These suboptimal selections as well as strong negative con-
sequences for the affected groups have also been observed
in practice (Rooth, 2010; Kang et al., 2011; Chapman et al.,
2013; Kite & Whitley, 2016; Greenwald & Lai, 2020).

To mitigate suboptimal selections in the presence of bias,
one popular intervention is the use of representational con-
straints, which are a type of group fairness constraint re-
quiring that a certain fraction of the selected items need to
be part of the disadvantaged group (used, e.g., in the form
of the Rooney Rule in shortlisting job applicants (Collins,
2007; Waldstein, 2015), or in primary elections (Evéquoz
et al., 2022)). Kleinberg & Raghavan (2018) studied the ef-
fectiveness of such representational constraints in their bias
model and demonstrated that, while for worst-case Wi’s
these constraints may not improve the latent utility of the
selection, under certain conditions, e.g., assuming that the
Wi’s are all drawn from the same distribution, representa-
tional constraints can increase the expected latent quality of
the returned selection. Subsequent works have confirmed
the power of representational constraints to reduce the ef-
fect of bias in more involved settings such as online subset
selection (Salem & Gupta, 2020), with intersectional groups
(Mehrotra et al., 2022), producing a ranking of items (Celis
et al., 2020), and subset selection if biases come in the form
of evaluation uncertainty (Emelianov et al., 2022a;b).

Representational constraints have also already been con-
sidered in the context of subset selection based on score
functions from multiwinner voting, albeit with a focus on
the computational complexity of selecting subsets max-
imizing some goal function while respecting such con-
straints (Bredereck et al., 2018; Celis et al., 2018). In
contrast to these works, following the work of Kleinberg
& Raghavan (2018), we analyze whether and when repre-
sentational constraints can debias subset selection based
on multiple input rankings and help to select high-quality
subsets. Notably, previous results on selection in the
presence of bias do not apply to our setting, as we as-
sume that the input comes from multiple sources, in the
form of rankings (and not numerical values of items),
which are aggregated using multiwinner score functions.

Our contributions. We study the power of representational
constraints for the following problem: Given n potentially
biased rankings over m items, an integer k, and a score
function F , select a size-k subset of the items with a high
score according to F with respect to the latent rankings.
As in the work of Kleinberg & Raghavan (2018), without
distributional assumptions on the rankings and an explicit
model of bias (that quantifies the relation between latent
and observed rankings), no algorithm can guarantee that
the returned subset has even a small fraction of optimum
latent quality even with representational constraints (see,
e.g., Section 3.1). We consider a model where each latent
ranking in the input is generated i.i.d. from a given distribu-
tion and then bias is introduced into each of these rankings
in a “controlled” manner, inspired by the work of Klein-
berg & Raghavan (2018); our model is more general and
is presented in Section 2. We then give an algorithm and
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prove that there is a representational constraint such that, if
the number of input rankings is large enough, the algorithm
outputs an “approximately” optimal solution with respect
to the latent rankings; see Theorem 3.2. We note that while
the algorithm takes as input biased rankings and aims to
find the subset with the maximum (biased) score subject
to the representational constraint, its guarantee is with re-
spect to the (unconstrained) optimal solution when the input
rankings are unbiased. Importantly, the number of input
rankings the above result requires to hold depends on the
chosen multiwinner score function. To mathematically cap-
ture these differences between (submodular) multiwinner
score functions, we introduce a new notion of “smooth-
ness” (Definition 3.1), which quantifies how well the score
function can “correctly distinguish” the strength of candi-
dates among the same group under the latent and biased
preferences. A particular challenge here is that by consid-
ering submodular instead of modular functions, assessing
the strength of a candidate becomes more difficult as a can-
didate’s “quality” depends on the other candidates present
in the subset, and that which of two candidates has a higher
marginal contribution to some subset might change by bi-
asing the rankings. We complement our algorithmic result
with an impossibility result that establishes the need for a
large number of input rankings for certain multiwinner score
functions; see Theorem D.3.

As a simple corollary of our results, we show a stark con-
trast between the two popular multiwinner score functions
SNTV and Borda: Under a utility-based model generalizing
the model of Kleinberg & Raghavan (2018) falling into our
general class of generative models, for SNTV an exponen-
tial number of input rankings (in the number of items) is
needed for representational constraints to recover a close-
to-optimal solution, whereas for Borda the dependency is
only polynomial (Theorems 3.3 and D.3). This difference is
also intuitive, as under SNTV only a local snapshot of each
ranking, i.e., who is ranked in the first position, is taken
into account making fine-grained distinctions of candidates’
quality harder, whereas for Borda the full ranking matters.

In summary, we contribute to the growing literature on
designing algorithms in the presence of bias by showing
the effectiveness of representational constraints in ranking-
based subset selection. Distinguishing the effectiveness of
representational constraints for different multiwinner score
functions based on a new notion of smoothness, we con-
tribute to a better understanding of multiwinner score func-
tions, thereby providing further guidance for the selection of
such a rule in the desired context. Allowing for a convenient
extension of our theoretical results, we give code that, given
a bias model and scoring function as input, can be used as a
tool to study the smoothness of the score function and the
effectiveness of representational constraints with respect to
the given bias model via simulations (Section G).

Other related work. We present additional related works
on the study of representational constraints beyond subset
selection, submodular maximization, learning user prefer-
ences in the presence of noise, and other forms of subset
selection in Section A.

2. Models of Score Functions, Bias, and
Representational Constraints

In this section, we formally introduce our setting and the
studied problem. For the sake of consistency with the lit-
erature, we use terminologies from the multiwinner voting
literature. We start by introducing the family of score func-
tions in Section 2.1, then our bias model in Section 2.2, and
lastly representational constraints in Section 2.3. We present
an overview of all used notation in Table 1 in the appendix.

2.1. A Family of Score Functions

Given a set C of candidates (also called items), let L(C)
be the set of all strict and complete orders over C. We
refer to elements of L(C) as preference lists (or rankings)
and to subsets of C as committees. Given a preference
list ≻ ∈ L(C), we use pos≻(c) to denote the position of
c ∈ C in ≻ and use pos≻(S) := (pos≻(c))c∈S to denote
the vector of positions of each c ∈ S.

In the classic multiwinner voting problem, there is (i) a set
C of m candidates, (ii) a set V of n voters together with a
preference profile R = {≻v∈ L(C) : v ∈ V } where ≻v is
the preference list of voter v, (iii) a function F : 2C → R≥0

with an evaluation oracle that depends on R, and (iv) a
desired committee size k ∈ [m]. The goal is then to select a
committee S that maximizes F (S) subject to having size-k.
Our results apply to a general class of submodular functions
F . For its definition, we use the following notion to compare
the quality of committees.
Definition 2.1 (Position-wise dominance). Given ≻ ∈
L(C) and two committees S = {c1, . . . , ck} and S′ =
{c′1, . . . , c′k} of equal size, satisfying pos≻(c1) > · · · >
pos≻(ck) and pos≻(c

′
1) > · · · > pos≻(c

′
k), we say that S

position-wise dominates S′ with respect to ≻ if for every
ℓ ∈ [k], pos≻(cℓ) ≤ pos≻(c

′
ℓ).

We consider the following general family of score functions.
Definition 2.2 (Multiwinner score function). Given a set
C of candidates and the voters’ preference profile R =
{≻v∈ L(C) : v ∈ V }, we say a function F : 2C → R≥0 is
a multiwinner score function if F satisfies the following:
• (Separability) there is a function f : 2C × L(C) → R≥0

mapping committees and preference lists to scores such
that for every S ⊆ C, F (S) =

∑
v∈V f(S,≻v). Here,

fv(S) := f(S,≻v) = f(pos≻v
(S))1 is the score voter v

1We only consider functions f of the positions pos≻v
(S) of
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awards to S that depends on their preference list ≻v;
• (Monotone submodular) for every voter v ∈ V , fv is a

monotone submodular function;2

• (Domination sensitive) for every v ∈ V and committees
S, S′ ⊆ C with |S| = |S′| and set T ⊆ C \ S ∪ S′, if S
position-wise dominates S′ with respect to ≻v, we have
fv(S)− fv(S

′) ≥ fv(S ∪ T )− fv(S
′ ∪ T ) ≥ 0.3

Among others, Definition 2.2 captures the following score
functions F (S) =

∑
v∈V f(S,≻v) relevant to our work:4

• If f(S,≻) =
∑

c∈S 1pos≻(c)=1, F is the SNTV rule.

• If f(S,≻) =
∑

c∈S (m− pos≻(c)), F is the Borda rule.

• If f(S,≻) = maxc∈S {m− pos≻(c)}, F is the ℓ1-
Chamberlin-Courant rule (or ℓ1-CC rule) introduced by
Chamberlin & Courant (1983).

We conclude by defining the marginal contribution of a can-
didate: Given a function f : 2C×L(C) → R≥0, preference
list ≻ ∈ L(C), committee S ⊊ C and candidate c ∈ C \ S,
we define fS(c,≻) := f(S ∪ {c},≻) − f(S,≻) to be the
marginal contribution of c to S with respect to f and ≻.

2.2. Multiwinner Voting in the Presence of Bias

In this section, we define the general problem of subset se-
lection based on multiple input rankings in the presence of
implicit bias. Our general approach is in line with previous
works on subset selection (Kleinberg & Raghavan, 2018;
Celis et al., 2020), and assumes that the candidates are par-
titioned into an advantaged group G1 and a disadvantaged
group G2, where disadvantaged candidates c ∈ G2 face
systematic biases. Henceforth, we denote by ≻v the “true”
or latent preference of voter v, and by ⊁v their biased or
observed preference. We consider the following problem.
Problem 1 (Multiwinner voting in the presence of bias).
Let R = {≻v∈ L(C) : v ∈ V } be the voter’s latent pref-
erence lists and R̂ = {⊁v∈ L(C) : v ∈ V } be the voter’s
biased or observed preference lists. Further, let F : 2C →
R≥0 be a multiwinner score function, and k ≥ 1 be the
desired committee size. The goal of the multiwinner voting
problem in the presence of bias is to select a size-k com-
mittee S that (approximately) maximizes F (S), while only
taking R̂ as input (and not knowing R).
S in ≻v , imposing that f is symmetric with respect to candidate
indices. Such functions are known as neutral functions in social
choice.

2Here, “monotone” means that for any S ⊊ C and candidate
c ∈ C \ S, fv(S ∪ {c}) ≥ fv(S); “submodular” means that for
any S ⊊ T ⊊ C and candidate c ∈ C\T , fv(T ∪{c})−fv(T ) ≤
fv(S ∪ {c})− fv(S).

3Voters award a higher score to the better committee S than to
the worse committee S′. Adding the same candidates to S and S′

decreases the difference between their awarded scores (as the two
become “more similar”).

4As discussed in Section B.1, Definition 2.2 also covers the
larger classes of committee-scoring rules and approval-based rules.

2.2.1. MODELS FOR LATENT AND BIASED PREFERENCES

We consider a general setting of how the latent and biased
preferences of voters are generated. Our main assumption
is that there are no differences between voters, implying
that all voters sample their latent and biased preferences
from the same distribution. This is a common assumption
both in the line of work on selection in the presence of bias
(Kleinberg & Raghavan, 2018; Celis et al., 2020; Emelianov
et al., 2020) and in many mechanisms to sample preferences
in social choice theory (Szufa et al., 2020). We first define
our generative model for latent preferences:

Definition 2.3 (Generative model for latent preferences).
A generative model µ for latent preferences is defined by a
distribution π over L(C): under µ, each voter v ∈ V draws
its latent preference list ≻v from π independently.

Similarly, in our generative model for biased preferences, we
only require that all voters with the same latent preferences
sample their biased preferences from the same distribution.
Formally, our generative model for biased preferences takes
a latent preference list ≻ as input and draws a biased prefer-
ence list ⊁ from a certain conditional distribution on ≻. For
instance, this would allow for swapping down a candidate
from the disadvantaged group uniformly at random in the
given, latent preferences.

Definition 2.4 (Generative model for biased preferences).
A generative model µ̂ for biased preferences is defined by
a distribution π̂ over L(C) × L(C): under µ̂, each voter
v ∈ V with latent preference ≻v draws its biased preference
list ⊁v from π̂ |≻v independently.5

Note that our generative model for biased preferences also
allows that some voters are biased and others unbiased (or
even that different voters have opposing biases). For in-
stance, µ̂ could be defined by a mixture of distributions,
where each voter v draws ⊁v according to π̂1 |≻v with
probability 1

2 and according to π̂2 |≻v with probability 1
2 .

In this case, roughly half of the voters would generate their
biased preferences according to π̂1, and the remaining vot-
ers would generate them using π̂2 and, hence, display no
bias (or a potentially opposite) bias than the other voters.

2.2.2. UTILITY-BASED MODEL

In this section, we give a specific example of what a gen-
erative model for latent and biased preferences could look
like. For this, we present a natural adaption of the bias
model considered by Kleinberg & Raghavan (2018) to our
setting. In the resulting utility-based model, we assume that
each voter v ∈ V has a non-zero latent utility wv,c (respec-
tively biased utility ŵv,c) for each candidate c ∈ C, and

5Definition 2.4 can be extended to condition on additional
information beyond ≻v . For instance, Definition 2.6, considers
the conditional distribution with respect to a latent utility vector
wv (which specifies ≻v) instead of ≻v .
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that in their latent (respectively biased) preferences voters
rank candidates sorted in the non-increasing order of wv,c

(respectively ŵv,c) with breaking ties arbitrarily. We start
by explaining how the latent utilities are generated:
Definition 2.5 (Utility-based latent generative model).
Every candidate c ∈ C has an intrinsic utility ωc ≥ 0. For
each voter v ∈ V and candidate c ∈ C, the utility wv,c

is generated independently by wv,c = η · ωc, where η is a
random variable drawn uniformly from [0, 1].6

As in the work of Kleinberg & Raghavan (2018), apply-
ing bias then boils down to scaling down the utilities of
disadvantaged candidates.
Definition 2.6 (Utility-based biased generative model).
Given a bias parameter θ ∈ [0, 1], for every v ∈ V , ŵv,c =
wv,c for all c ∈ G1, and ŵv,c = θ · wv,c for all c ∈ G2.

The definition of the utility-based bias model implies that
the intrinsic utilities of all disadvantaged candidates reduce
by a factor of θ. However, note that this seemingly uniform
reduction can have different effects on different candidates:
As an extreme example suppose that G1 = {c3, c4, . . . , cm}
and G2 = {c1, c2} with intrinsic utility values ω1 = 10 and
ω2 = ω3 = · · · = ωm = 1. For any θ, the probability that
c1’s position in ⊁ is worse than their position in ≻ is 1 −
Θ(θ). Whereas the probability that the other disadvantaged
candidate c2 is placed at a worse position in ⊁ compared to
≻ is with 1−Θ(θm) much higher.

2.2.3. ORDER PRESERVATION

To analyze the capabilities of representational constraints
to mitigate bias, different ways in which the used multi-
winner score function interacts with the used generative
distributions for latent and biased preferences are relevant.
Capturing this interplay, in this section we introduce two
order-preservation properties of multiwinner score functions.
Both of these properties hold for the utility-based model,
but they may not hold for all generative models (Defini-
tions 2.3 and 2.4). In the remainder of this section and in
Sections 3.1 and 3.2, we present our results for general gen-
erative models. In Section 3.3 we describe the implications
of our general results for the utility-based model and in
Section F, we describe simplified variants of our general
arguments and properties tailored to the utility-based model.

In order to be able to compute a committee with close-to-
optimal utility in our algorithmic analysis, it will be crucial
that if the number n of voters is large enough, then the
optimal committee consists of the k candidates with the
highest expected individual scores Eµ [f(c,≻)] for c ∈ C,
as otherwise even if we would have access to the latent
generative model computing an optimal committee might

6More generally, one can consider other distributions and, we
do so, in Definitions B.3, B.8 and C.7.

be computationally intractable. To ensure this, it will turn
out that it is sufficient to assume that each candidate has
an intrinsic quality (i.e., Eµ [f(c,≻)]) and that this quality
determines the ordering of candidates by relative marginal
contributions to committees. More formally, we require that
if c has a higher intrinsic quality than c′, then c’s marginal
contribution to a committee S (for any S) is higher than that
of c′ (Item 1 in Definition 2.7). However, this still does not
restrict how the difference between the intrinsic quality of
candidates influences the difference between their marginal
contributions to some committee. To address this, we also
require that the difference in the marginal contributions of
c and c′ to committees is a non-increasing function with
respect to adding candidates to the committee (Item 2 in
Definition 2.7).

Definition 2.7 (Order-preservation with respect to latent
preferences). Given a generative model µ for latent prefer-
ence and a multiwinner score function F =

∑
v∈V f(·,≻v),

we say F is order-preserving with respect to µ if for any
two candidates c ̸= c′ ∈ C belonging to the same group
(G1 or G2) if Eµ [f(c,≻)] ≤ Eµ [f(c

′,≻)], then for any
subsets T ⊆ S ⊆ C \ {c, c′}
1. Eµ [fS(c,≻)] ≤ Eµ [fS(c

′,≻)] ;

2. Eµ [fS(c
′,≻)]−Eµ [fS(c,≻)]

≤ Eµ [fT (c
′,≻)]−Eµ [fT (c,≻)] .

We prove in Lemma B.2 that any multiwinner score function
F is order-preserving with respect to the utility-based latent
generative model (Definition 2.5). The reason for this is that
in the utility-based model the intrinsic quality of a candidate
c is an increasing function of ωc, as ωc ≤ ωc′ implies that
pos(c′,≻) < pos(c,≻) with probability at least 1

2 . The
order preservation can then be shown using the domination
sensitivity of F (Definition 2.2).

As an additional ingredient, we need a second (order-
preservation) property controlling the relation between the
latent µ and biased µ̂ generative models: Otherwise, if we
would allow µ̂ to be arbitrarily different from µ, then one
cannot hope to identify a committee with high latent utility
by just observing biased preferences (generated according
to µ̂). In particular, our second order-preservation property
restricts by how much the ratio between the marginal contri-
bution of two candidates c and c′ to some set S is allowed
to change when bias is applied.

Definition 2.8 (Order-preservation between latent and
biased preferences). Given a generative model µ for
latent preference lists and a generative model µ̂ for
biased preference lists, a multiwinner score function
F =

∑
v∈V f(·,≻v), and numbers β, γ ∈ [0, 1], we say

F is (β, γ) order preserving between µ and µ̂ if for any
two candidates c ̸= c′ ∈ C belonging to the same group
(G1 or G2) and any S ⊆ C \ {c, c′}, if β ·Eµ [fS(c

′,≻)] ≥
Eµ [fS(c,≻)] > 0, then γ ·Eµ̂ [fS(c

′,⊁)] ≥ Eµ̂ [fS(c,⊁)].

5



Subset Selection Based On Multiple Rankings in the Presence of Bias

In this definition, β specifies the range of candidates affected
by the property and 1− γ is the allowed gap between their
relative marginal contributions that can emerge by applying
bias: When β is close to 1 then we consider candidate
pairs c, c′ and sets S with a large range of Eµ[fS(c,≻)]

Eµ[fS(c′,≻)] . In
contrast, as γ goes to one, expected marginal contributions
are allowed to become more and more similar even in case
there is a substantial gap under µ (and, hence, candidates
get harder to distinguish).

In case no bias is applied to the preferences, for each can-
didate c and set S the expected marginal contribution of
c to S is the same in both µ and µ̂ (notably, this can also
happen in other cases, for instance, if both the latent and
biased preferences of a voter are independently drawn from
the uniform distribution on L(C)). If all expected marginal
contributions remain unchanged, every multiwinner score
function is (β, β) order preserving between µ and µ̂ for
any β ∈ (0, 1]. As shown in Lemma B.2, many multiwin-
ner score functions (including the examples in Section 2.1)
are (β, γ) order preserving between the utility-based latent
and biased generative model for any 0 ≤ β ≤ 1 − λ and
1 −m−Θ(1) · λ ≤ γ ≤ 1 where λ = m−Θ(1). Intuitively,
this is because we apply the same multiplicative bias to all
members of the disadvantaged group.

Recall that we have observed in Section 2.2.1 that Defini-
tion 2.4 also allows the biased preference lists to be drawn
from a mixture of two or more distributions. In the case of
mixtures of utility-based models, certain order-preservation
properties translate from the individual components to the
mixture. Concretely, assume that (µ, µ̂1) and (µ, µ̂2) are
two utility-based generative models with the same intrin-
sic values ω but heterogeneous bias parameters θ1 and
θ2 respectively. Let us consider mixtures of (µ, µ̂1) and
(µ, µ̂2). Using linearity of expectation, it can be shown that
if F is (βi, γi) order-preserving between µ and µ̂i for each
i∈{1, 2}, then F is (min {β1, β2} ,max {γ1, γ2}) order-
preserving between µ and δµ̂1+(1−δ)µ̂2 for any δ ∈ (0, 1).

Swapping-based bias model. In Section B.3, we present
a swapping-based bias model inspired by the popular Mal-
lows model (Mallows, 1957), which is also captured by
the general bias model. Given a latent preference list
≻ ∈ L(C), for t ≥ 1 iterations, this model selects two
candidates c ∈ G1 and c′ ∈ G2 with c′ being ranked above
c and swaps their position, where the average difference
in the position of swapped candidates can be controlled
by a parameter ϕ ∈ [0, 1]. We prove in Lemma B.13
that for λ = Θ(tϕ), all multiwinner score functions are
(1−λ, 1− λ

2 ) order preserving between the utility-based la-
tent generative model µ and swapping-based biased genera-
tive model µ̂. Intuitively, β is bounded away from 1 because,
unlike in the utility-based bias model, in the swapping-based
model bias acts non-uniformly across members of the dis-

advantaged groups (depending on their positions relative to
advantaged candidates in voters’ preference lists).

2.3. Representational Constraints

Let S⋆ := argmaxS⊆C:|S|=k F (S) denote the optimal so-
lution of the underlying multiwinner voting problem, and let
OPT := F (S⋆). Furthermore, let M ⊆ C denote the col-
lection of k candidates c with the highest value Eµ [f(c,≻)]
(as discussed above if F satisfies order-preservation with re-
spect to the latent generative model µ and n is high enough,
S⋆ is likely to be equal to M ).

A natural approach to solve the multiwinner voting prob-
lem in the presence of bias is to directly solve Ŝ :=
argmaxS⊆C : |S|=C F̂ (S). However, due to biases, this
may lead to committees with poor latent quality. In fact,
we argue in Remark D.2 that one can lose significant
value by not selecting candidates from G2, i.e., F (Ŝ) ≤
(1 − |G2∩S⋆|

2k ) · OPT. To mitigate such adverse effects of
bias, a popular intervention are representational constraints
that require the output subset to include at least a specified
number of candidates from the disadvantaged group.7

Definition 2.9 (Representational constraints). Given in-
teger 0 ≤ ℓ ≤ k, the ℓ-representational constraint requires
|S ∩ G2| ≥ ℓ for the selected committee S ⊆ C. Let
K(ℓ) denote the collection of subsets that satisfy the ℓ-
representational constraint.
In the presence of the ℓ-representational constraint, the
straightforward output subset, say Ŝℓ, is a solution to the
following optimization problem: maxS∈K(ℓ):|S|=k F̂ (S).
This paper centers around the following problem:
Problem 2 (Effectiveness of representational constraints).
Is there an integer 0 ≤ ℓ ≤ k such that F (Ŝℓ) ≈ OPT
(with high probability), where the inputs are as specified in
Problem 1? Moreover, is there a polynomial-time algorithm
that outputs a set S ∈ K(ℓ) with F (S) ≈ OPT?

3. Algorithmic Results for Problem 2
In this section, we show that representational constraints can
help mitigate the adverse effects of bias in ranking-based
subset selection with multiwinner score functions. Specifi-
cally, in Theorem 3.2, we provide a sufficient condition and
an efficient algorithm for Problem 2. Our algorithmic result
is based on a new notion of smoothness (Definition 3.1),
which distinguishes the capabilities of multiwinner score

7Note that enforcing representational constraints requires
knowledge of the sets of advantaged and disadvantaged candi-
dates. While they may not be available or costly to obtain in
some contexts, e.g., web-search (see (Mehrotra & Vishnoi, 2022)
and the references therein), they are available in relevant contexts
such as elections when groups are based on (combinations of)
socially-salient attributes (such as race, gender, age, and disability)
(Evequoz et al., 2022).
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functions to be debiased by representational constraints. Af-
terward, in Section 3.3, we discuss specific implications
of Theorem 3.2, among others, highlighting that under the
utility-based model the sufficient number of voters to re-
cover a close-to-optimal utility for SNTV or Chamberlin-
Courant is exponential in m, whereas this dependence is
only polynomial for Borda.

3.1. Smoothness

In a preliminary theoretical and empirical analysis, we ob-
served that SNTV requires a significantly higher number of
voters to recover the same solution quality as Borda when
using representational constraints. We provide a theoretical
demonstration of this contrast in Theorem 3.3. To quan-
titatively measure such differences between functions, we
introduce the following notion of smoothness of a multi-
winner score function F , which quantifies the ability of
representational constraints to recover a latent utility that is
close to optimal under F .

To build some intuition, let us focus on a case where F
is order-preserving with respect to µ and (1, 0.01) order-
preserving between (µ, µ̂). Then, the set M of candidates
with the highest expected value Eµ [f(c,≻)] is likely to
be an optimal solution and those candidates are also likely
to have the highest expected value Eµ̂ [f(c,≻)]. In this
case, our algorithm only needs to identify all and, in par-
ticular, the weakest candidate c from M using samples in
R̂ = {⊁v∈ L(C) : v ∈ V }. The marginal contribution of
this candidate can be as low as Eµ̂

[
fC\{c}(c,⊁)

]
. Let τ1(f)

be the maximum possible expected score Eµ [f(c,≻)] of
a candidate. To capture how many samples are needed
to identify the weakest candidate c from M , we intro-
duce a new parameter α which needs to be at least α ≥

1
τ1(f)

min
c∈M

Eµ̂

[
fC\{c}(c, ̸≻)

]
(note that τ1(f) acts as a nor-

malization). When α is close to 0, it is “more difficult” to
distinguish candidates in M from candidates in C \M since
margin values of some candidates from M are more likely
to be close to 0, and hence, a larger number of voters is
required to distinguish them.

This observation can be related to our initial finding re-
garding SNTV and Borda. SNTV requires more voters to
identify the strength of a candidate, as only the top choice of
a voter is taken into account. For instance, in the presence of
a strong candidate c⋆, who is ranked first with a high prob-
ability, it may take many samples to observe the first vote
where c⋆ is not ranked first. In contrast, for Borda, candidate
strength can be distinguished much more easily, as every
sampled vote provides new information on all candidates.

Note that in a different direction, we also need a sufficient
number of voters to ensure that candidates from M are likely
to constitute an optimal solution. For this, we again need

that the sampled votes are enough so that candidates from M
have a higher contribution than candidates from C \M with
respect to the latent votes; accordingly, similar to the above
we also require that α ≥ 1

τ1(f)
minc∈M Eµ

[
fC\{c}(c,≻)

]
.

Combining these observations with the order-preservation
properties, we propose the following definition of smooth-
ness. On an intuitive level, our smoothness definition boils
down to how well the multiwinner score function F can
“correctly distinguish” the strength of candidates among the
same group under the latent and biased preferences.

Definition 3.1 (Smoothness). Let F =
∑

v∈V f(·,≻v) be
a multiwinner score function. Let (µ, µ̂) be a generative
model defined in Definitions 2.7 and 2.8. Given α, β, γ ∈
[0, 1], we say F is (α, β, γ)-smooth with respect to (µ, µ̂)
if the following holds

• α ≥ 1
τ1(f)

minc∈M Eµ̂

[
fC\{c}(c, ̸≻)

]
and α ≥

1
τ1(f)

minc∈M Eµ

[
fC\{c}(c,≻)

]
,

• F is order-preserving with respect to µ; and

• F is (β, γ) order preserving between µ and µ̂.
We have already argued before that α influences the number
of voters required to identify a close-to-optimal commit-
tee. The parameter γ also influences the number of voters
needed but in this case, the larger γ gets the more votes are
needed: If γ is close to 1, then two candidates c, c′ with
Eµ [f(c,≻)] ≪ Eµ [f(c

′,≻)], may have a similar quality
in the presence of bias, Eµ̂ [f(c,⊁)] ≈ Eµ̂ [f(c

′,⊁)], mak-
ing it harder to identify the stronger candidate needed for
a close-to-optimal solution. In contrast to α and γ, factor
β bounds how close to the optimum one can get when ob-
serving biased voters: Intuitively, a value of β close to 1
implies that for two candidates the order of their marginal
contributions remains unchanged when applying the bias.
In contrast to this, for β < 1, for two candidates c, c′ with
Eµ [fS(c

′,≻)] > Eµ [fS(c,≻)] and Eµ[fS(c,≻)]
Eµ[fS(c′,≻)] ≥ β for

some set S, we allow the ratio of their marginal contri-
butions to S to change arbitrarily in the presence of bias.
Consequently, for such pairs of candidates c and c′, even
if the number of observed biased voters goes to infinity,
we will not be able to distinguish which of the two is the
stronger candidate under the latent distribution, leading to a
potential multiplicative loss of β in the latent quality of the
output solution due to wrongfully including c instead of c′

in the returned solution.

3.2. Main Theorem

As discussed above, for an (α, β, γ)-smooth function, the
values of α and γ determine the number of samples required
for representational constraints to return an approximately
optimal solution, while the value of β bounds the achievable
multiplicative approximation factor. Our main algorithmic
result matches these intuitions, and we provide a sufficient
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condition on n under which representational constraints
recover a solution S that is close to optimal. The proof of
this result appears in Section C.1.

Theorem 3.2 (Algorithmic result for Problem 2). Let
F : 2C → R≥0 be a multiwinner score function. Let µ and
µ̂ be generative models of latent and biased preference lists
respectively. Suppose F is (α, β, γ)-smooth with respect to
(µ, µ̂) for some α, β, γ ∈ [0, 1]. For any 0 < ε, δ < 1, if

n ≥ 16k
(αmin{ε,1−γ})2 · log m

δ ,

there is an algorithm that given groups G1, G2, numbers
k, ℓ = |M ∩G2|, and a value oracle O to F̂ (·) as input,
outputs a subset S ∈ K(ℓ) of size k such that

Prµ,µ̂ [F (S) ≥ (β − ε) ·OPT] ≥ 1− δ.

The algorithm makes O(mk) calls to oracle O and performs
O (m logm) arithmetic operations.

The algorithm underlying Theorem 3.2 is a standard greedy
algorithm (Algorithm 1 in Section C.1) that maximizes F̂
subjected to representational constraint ℓ = |M ∩G2|. The
key idea used in the proof of Theorem 3.2 is that, due to
the smoothness of F , when Algorithm 1 adds the ith candi-
date to the committee, the incurred marginal contribution
with respect to the latent preferences is at least a β fraction
compared to when building M and adding the ith highest
scoring candidate to a set of the (i − 1) highest scoring
candidates (Lemma C.4). Note that due to the greedy nature
of our algorithm, the output solution S may not be identical
to Ŝℓ for some ℓ (recall Ŝℓ = argmaxS∈K(ℓ):|S|=k F̂ (S)).
However, for modular score functions such as SNTV and
Borda, the algorithm always outputs S = Ŝ|M∩G2|. Hence,
for some multiwinner score functions, Theorem 3.2 also
implies F (Ŝℓ) ≥ (β − ε) ·OPT for ℓ = |M ∩G2|, which
partially addresses the first question of Problem 2.

Note that the value |M ∩G2| is unknown in advance. While
in general, this value depends on F and the generative mod-
els (µ, µ̂), there are also natural special cases where it is
independent. For instance, if we assume that preference
lists drawn from µ are not systematically skewed toward
candidates in either group, as may be the case in the real
world (Evequoz et al., 2022), then |M ∩G2| ≈ k · |G2|

m
with probability 1− ok(1). Moreover, in applications such
as recommendation systems that use multiwinner scoring
functions (Streviniotis & Chalkiadakis, 2022a), ℓ may be
tuned via A/B testing by trying different ℓ, estimating latent
quality from user engagement, and selecting the value of ℓ
that maximizes the latent quality.

It is worth noting that although α has a similar form as the
curvature of submodular functions, there are some differ-
ences between them that render the curvature ineffective in
measuring the effectiveness of representational constraints.
For instance, the curvature is unable to distinguish modular
functions. We discuss this and the relevance of Defini-

tion 3.1 to research on the effect of noise on multiwinner
voting in Section C.2.

Proof overview of Theorem 3.2. The smoothness condi-
tion is defined with respect to expectations over the gen-
erative models but in Theorem 3.2 we have only access to
n samples. The proof’s first component is a concentration
inequality showing that expectations over samples are close
to the true expectations: for any candidate c ∈ C and com-
mittee T ⊆ C “of interest,” Eµ[fT (c,≻)] ≈ 1

nFT (c) and
Eµ̂[fT (c,⊁)] ≈ 1

n F̂T (c) (Lemma C.3), where FT (c) :=

F (T ∪ {c}) − F (T ) and F̂T (x) := F̂ (T ∪ {c}) − F̂ (T ).
Let S ∈ K(ℓ) be the subset output by the algorithm. Recall
that M ⊆ C is the set of k candidates c with the highest
value Eµ [f(c,≻)] and OPT:=maxS⊆C:|S|=k F (S). The
proof strategy is to show that F (M) ≈ OPT (Lemma C.2)
and to compare the utility of “prefixes” of S to “prefixes” of
M (Lemma C.4). For this, for large enough n, we show that
our algorithm has the following property (Equation (41)):
there is an ordering m1, . . . ,mk of elements in M such that

∀i∈[ℓ], F̂{s1,...,si−1}(si) ≥ γ · F̂{s1,...,si−1}(mi), (1)

where sj is the j-th item added to S for any j. If
F is modular, the remainder of the proof is straightfor-
ward: Due to order preservation between µ and µ̂, Equa-
tion (1) implies that F{s1,...,si−1}(si)≥β ·F{s1,...,si−1}(mi)
for each i, and, since F is modular, F (S)=

∑
i F (si) ≥

β ·
∑

i F (mi)=β ·F (M). When F is not modular, we need
to show that Equation (1) implies that F{s1,...,si−1}(si) ≥
β ·F{m1,...,mi−1}(mi) (note the change in the base). We do
so in Lemma C.4 and Equations (52) and (53) using order
preservation with respect to µ.

3.3. Applications of Theorem 3.2
In this section, we focus on the utility-based generative
models (µ, µ̂) (Definition 2.6) and derive bounds for some
specific multiwinner score functions; see Tables 2 and 3
in the appendix for a summary of all results. Lemmas B.2
and B.7 give bounds on β and γ for this case. We provide
the missing values of α for some multiwinner score func-
tions and the resulting sufficient numbers of voters using
Theorem 3.2 in the following result, whose proof appears in
Section C.3.

Theorem 3.3 (Algorithmic result for the utility-based
generative model; Informal). Let (µ, µ̂) be the utility-
based generative models from Definitions 2.5 and 2.6 with
bias parameter θ ∈ (0, 1]. For ℓ1-CC and SNTV it holds
that α ≥ Θ

(
θ−2(m−1)

)
, and for Borda that α ≥ Θ

(
θ−2

)
.

Using this and Lemma C.8, Theorem 3.2 applies for

1. SNTV and ℓ1-CC with n ≥ θ−2(m−1) ·mΘ(1)ε−2 and
β = 1−m−Θ(1); and

2. Borda with n ≥ θ−2 ·mΘ(1)ε−2 and β = 1−m−Θ(1).
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Note that it is quite intuitive that the above computed α
values depend on θ as in the utility-based model θ controls
the multiplicative gap between the scores awarded to can-
didates from G2 compared to G1 and, thus, the value of

1
τ1(f)

minc∈M Eµ̂

[
fC\{c}(c, ̸≻)

]
.

The sufficient number of voters in the above result varies
significantly depending on the multiwinner score function:
on the one hand, for ℓ1-CC rule and SNTV the dependence
is θ−O(m), on the other hand, the dependence is only θ−2

for the Borda rule. We can also prove that these dependen-
cies are not only sufficient but also necessary by providing
an impossibility result (Theorem D.3) that shows that rep-
resentational constraints cannot recover an (approximately)
optimal solution if n is “substantially” smaller than these
bounds; see Section D for more discussions. Combined
with our impossibility result, Theorem 3.3 shows a stark
contrast between different score functions, e.g., SNTV and
Borda, under the utility-based model, implying that the latter
function is advantageous in the presence of implicit bias.

The above results extend to certain mixtures of generative
models. For instance, if F is (α1, β1, γ1)-smooth with re-
spect to (µ, µ̂1) and (α2, β2, γ2)-smooth with respect to
(µ, µ̂2), then for any δ ∈ (0, 1), it can be shown that F
is (δα1 + (1− δ)α1,min {β1, β2} ,max {γ1, γ2})-smooth
with respect to the mixture (µ, δµ̂1+(1−δ)µ̂2); this follows
from Definition 3.1 and linearity of expectation.

A tool for analyzing multiwinner score functions (Sec-
tion G). In addition to the above computations for existing
bias models and multiwinner score functions, we also pro-
vide code to estimate the smoothness of new multiwinner
score functions with respect to new generative models (Sec-
tion G). The code takes as input oracles that (1) evaluate the
multiwinner score function F and (2) sample from genera-
tive models (µ, µ̂). First, for specified m and k, it outputs
estimates (α̃, β̃, γ̃) of the smoothness of F with respect
to (µ, µ̂), along with corresponding confidence intervals
(implied by a concentration inequality; Lemma C.3). This
allows for theoretical estimates of the capabilities of repre-
sentational constraints using our main result (Theorem 3.2).

Second, given values of n, m, and k, it estimates the frac-
tion of the optimal score recovered by representational con-
straints for F with respect to the given (µ, µ̂). In Section G,
we illustrate the code using a set of latent generative models
provided by Szufa et al. (2020) in combination with the
swapping-based bias model (Definition B.12). In line with
Theorem 3.3, our observations in these simulations show
a stark contrast between SNTV and Borda: for all values
of n and generative models we consider, representational
constraints recover a significantly larger fraction of the max-
imum achievable latent score for Borda than for SNTV.

4. Conclusion and Future Work
In this paper, we have investigated the effectiveness of repre-
sentational constraints in the presence of bias, in a variant of
the subset selection problem with rankings of items as input.
To convert multiple rankings into scores for subsets, we
leverage ideas from multiwinner voting. Extending a line
of research on (re-)designing algorithms when the inputs
might suffer from biases (Kleinberg & Raghavan, 2018),
we demonstrate that representational constraints continue to
have the power to improve the latent quality of the solution
in the setting of multiple inputs and submodular (instead of
modular) score functions. Our work brings out differences
in the effectiveness of representational constraints depend-
ing on the (sub)modular score function used and can be used
to guide the choice of multiwinner score functions for subset
selection; we further provide a tool to enable the latter. To
carry out this analysis, we develop a notion of smoothness
of a submodular function that might be of further interest.

In addition to the already covered submodular multiwinner
score functions, it would be interesting to extend our work to
sequential rules such as STV, greedy CC, and greedy Mon-
roe (Faliszewski et al., 2017; Lackner & Skowron, 2023).
Designing interventions for debiasing outcomes of these
rules seems challenging as it is not clear how representa-
tional constraints can be implemented here (Celis et al.,
2018). As already discussed in the introduction, instead
of assuming that voters rank the items, each voter could
also provide a numerical (utility) score for each candidate
(Kleinberg et al., 2004; Skowron et al., 2016). The class
of submodular functions (Definition 2.2) we study contains
some functions relevant in this setting: if all voters assign
the same utility to their ith most preferred candidate for
every i. On a more general note, studying whether repre-
sentational constraints continue to be effective for further
classes of (non-separable) submodular functions is an inter-
esting direction but is likely to require a new approach, as
our smoothness definition and bias model assume that the
function is separable.

Finally, we remark that we study only one aspect of real-
world selection problems and other aspects must be care-
fully considered to avoid possible negative impacts of in-
tervention constraints. Indeed, intervention constraints can
help if they are used appropriately but may potentially also
have negative consequences, e.g., imposing intervention
constraints for one disadvantaged group may harm a differ-
ent not-considered disadvantaged group.
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A. Other Related Work
Comparison to (Mehrotra & Vishnoi, 2023). A recent work (Mehrotra & Vishnoi, 2023) studies a variant of subset
selection where the goal is to select a size-k subset that maximizes the value of a submodular function. Like this work
Mehrotra & Vishnoi (2023) also study the effectiveness of representational constraints for mitigating the adverse effects of
bias. They, however, consider a family of submodular functions that is relevant to recommendation and web search, which is
different from score functions considered in this work (Definition 2.2).

Specifically, in their setting, each item (such as websites, products, movies, or candidates) has m attributes (such as
topics, product-category, genres, or skills). Items and attributes in their setting map to candidates and voters respectively
in the context of this work. Accordingly, we refer to items and attributes as candidates and voters respectively in the
following. Mehrotra & Vishnoi (2023) specify a submodular function F : 2C → R≥0 by n non-decreasing functions
g1, g2, . . . , gn : R → R≥0 (which measure the utility for each voter) and an n×m utility matrix w (capturing the utility of
candidates to each voter) as follows: F (S) = g1

(∑
c∈S W1,c

)
+ g2

(∑
c∈S W2,c

)
+ · · ·+ gn

(∑
c∈S Wn,c

)
.

The primary difference between the two families is that in their family each voter provides us with a cardinal utility for each
candidate (scores W1,c,W2,c, . . . ,Wn,c for each candidate c) whereas we consider ordinal utilities specified by n rankings
of the m candidates. Numerical scores are more accurate but can lead to serious aggregation and calibration issues (Griffin
& Brenner, 2004; Mitliagkas et al., 2011; Steck, 2018; Wang & Shah, 2019). Moreover, while numerical scores are available
in recommendation and web-search contexts, in contexts most relevant to this work, such as elections, numerical scores
have a high elicitation cost (Griffin & Brenner, 2004; Mitliagkas et al., 2011; Wang & Shah, 2019). Due to this difference,
the family of submodular functions considered by Mehrotra & Vishnoi (2023) is incomparable to the multiwinner scoring
functions considered in this work (Definition 2.2).

• On the one hand, in Mehrotra & Vishnoi (2023)’s model, voters can have the same utility for two or more candidates and
can also have an arbitrarily large difference between the utilities of two candidates. However, because the functions we
consider are defined by strict rankings over candidates, voters cannot be indifferent between two candidates. Moreover,
as preferences are captured by rankings, we do not capture the magnitude of the difference in the utilities of two
candidates in, say, adjacent positions in a ranking.

• On the other hand, since in Mehrotra & Vishnoi (2023)’s model, the utility of a committee S to a voter v is a function
of the sum

∑
i∈S Wv,c, it cannot capture other utility functions such as the max utility a voter derives for a selected

candidate or the sum of utilities for the best t candidates included for some 1 < t < k which are required, e.g., to
capture the ℓ1-CC rule and its extensions.

That said, the SNTV rule, the Borda rule, and other committee scoring rules (Section B.1), can be captured by both the
family of submodular functions in (Mehrotra & Vishnoi, 2023) and Definition 2.2. Here, Mehrotra & Vishnoi (2023)’s and
our results complement each other. The bounds established by (Mehrotra & Vishnoi, 2023) on the number of voters that are
needed for representational constraints to recover a close-to-optimal utility degrades with poly(n/k)8 and, since the number
of voters, n, is much higher than the number of selected candidates, k, in real-world election contexts, (Mehrotra & Vishnoi,
2023)’s results lead to vacuous bounds in these contexts. In contrast, our main algorithmic result (Theorem 3.2) degrades
with 1

poly(n/k) and, hence, it gives a meaningful bound in contexts where n ≫ k but is vacuous if k ≫ n.

The reason why we are able to obtain results that degrade as poly
(
1
n

)
in our setting is because we require preference lists

to be i.i.d., because of which a fixed representational constraint is sufficient to recover high latent utility in our setting. In
contrast, Mehrotra & Vishnoi (2023) allow the utility matrix (that captures preferences in their model) to be non-i.i.d. and
show that, because of this, no fixed representational constraint is sufficient to recover any constant fraction of the optimal
latent utility. Instead, they give an algorithm that, given functions g1, . . . , gn and biased or observed utilities, determines the
relevant representational constraint. Such algorithms may be reasonable in certain contexts (such as recommendation and
web search) where the selection does not require direct human feedback but is not suitable in contexts that require direct
human feedback (such as elections) and where representational constraints must be fixed before human feedback (e.g. votes)
are collected.

Further related work on the study of representational constraints, learning preferences in the presence of noise, and
other works of subset selection. Beyond the study of the ability of representational constraints to increase the utility

8Concretely, their positive result degrades with O
(
n2k−1/4

)
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of selection, their effect on the decisionmaker’s bias over the long term has also been studied (Celis et al., 2021; Heidari
& Kleinberg, 2021). Moreover, apart from representational constraints, the power of various other interventions to debias
decisions based on biased inputs has also been studied, e.g., by Faenza et al. (2020); Garg et al. (2021) in the context of
school and college admission and by Blum & Stangl (2020) in the context of classification.

The problem of selecting a subset maximizing a multiwinner score function is a special case of submodular maximization.
There is a rich literature on submodular maximization. In this literature, optimization in the presence of cardinality constraints
has been extensively studied (Fujishige, 2005; Krause & Golovin, 2014) and there is a standard (1 − 1

e )-approximation
algorithm for finding a size-k subset maximizing a submodular function (Nemhauser et al., 1978).

Closer to our work from a methodological perspective, there are many works that want to learn user preferences, by e.g.,
fitting some parameterized generative model to the data (Guiver & Snelson, 2009; Lu & Boutilier, 2014; Vitelli et al., 2017;
Allouche et al., 2022). Particularly closely related to the present paper are works on the sample complexity of such learning
algorithms (Awasthi et al., 2014; Busa-Fekete et al., 2014; Caragiannis & Micha, 2017b; Liu & Moitra, 2018; Collas &
Irurozki, 2021), and the capabilities of different rules to recover a ground truth (Procaccia et al., 2012; Caragiannis et al.,
2022). Notably, the problem that we study also captures some of these learning problems by interpreting latent rankings as
the underlying ground truth and biased rankings as voters’ noisy estimates of the ground truth. Thereby, we recover settings
studied, e.g., by Procaccia et al. (2012) and Caragiannis et al. (2022).

Finally, there is also a large body of work studying the generalization of the simplest (numerical) formulation of subset
selection from outputting a subset to outputting a ranking (Liu, 2009; Burges, 2010). Within this body of works, the problem
of biases in the output rankings as well as different types of interventions, including representational constraints, to mitigate
these biases have been studied (Kay et al., 2015; Pitoura et al., 2021; Zehlike et al., 2022; Patro et al., 2022). This problem
is different from the variant of subset selection we study in two ways: (1) the input is a single numerical score for each item,
and (2) the output is a ranking instead of a subset.

B. Additional Materials for Section 2
In this section, we present additional examples and missing proofs from Section 2. For ease of reference, we also include
the following table of notations.

B.1. Examples of Multiwinner Score Functions

We list some well-known multiwinner score functions that are specific cases of Definition 2.2.

Committee scoring functions. A committee scoring function awards a score to each committee as

CS(S) =
∑
v∈V

g(pos≻v
(S))

for some function g : [m]k → R≥0. The followings are some examples of committee scoring rules.
Example B.1 (Examples of committee scoring functions). Let s ∈ Rm

≥0 be a vector. We have the following examples of
committee scoring functions.

• If s1 = 1 and si = 0 for i ≥ 2, and g(i1, . . . , ik) =
∑

l∈[k] sil , we call F the SNTV rule.

• If si = m− i for i ∈ [m], and g(i1, . . . , ik) =
∑

l∈[k] sil , we call F the Borda rule.

• If si = m− i for i ∈ [m], and g(i1, . . . , ik) = maxl∈[k] sil , we call F the ℓ1-CC rule.

Approval-based functions. Suppose each voter v ∈ V approves a subset Av of m′ candidates (that are the first m′ ∈ [m]
candidates in ≻v; note that m′ is the same for all voters).

An approval-based function awards a score to each committee as

App(S) =
∑

v∈V
g(|S ∩Av|),
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(a) Basic notation

Symbol Meaning

n Number of voters
m Number of candidates
k Number of selected candidates
V Set of voters
C Set of candidates
≻ A “latent” ranking of all candidates in C
⊁ A “biased” ranking of all candidates in C
µ Generative model of latent preferences

(Definition 2.3)
µ̂ Generative model of biased preferences

(Definition 2.4)
L(C) Set of all strict and complete orders over C
G1, G2 Advantaged and disadvantaged groups, re-

spectively. Disjoint subsets of C.
F Multiwinner score function F (S) =∑

v∈V f(S,≻v) (Definition 2.2)

(b) Notation specific to multiwinner scoring functions

Symbol Meaning

f A function f : 2C × L(C) → R≥0 such
that F (S) =

∑
v∈V f(S,≻v); see Defini-

tion 2.2

fS(c,≻) The marginal contribution of c to S with
respect to f and ≻: fS(c,≻) := f(S ∪
{c},≻)− f(S,≻).

pos≻(c) Position of c in the preference list ≻

τ1(f) The maximum possible expected score
Eµ [f(c,≻)] of a candidate (in the case of
multiwinner score functions this is the score
which function f(·,≻) awards to the set
consisting of the candidate ranked in the
first position of ≻)

(c) Notation specific to the utility-based model

Symbol Meaning

θ Bias parameter (Definition 2.6)

ωc Intrinsic utility of c ∈ C (Definition 2.5)

wv,c Latent utility of c ∈ C observed by voter v
(Definition 2.5)

ŵv,c Biased utility of c ∈ C observed by voter v
(Definition 2.6)

(d) Notation specific to the swapping-based model

Symbol Meaning

ϕ Bias parameter (Definition B.12)
t Number of swaps (Definition B.12)
A(≻) The collection of all pairs (i, j) such that

there exist c ∈ G1 and c′ ∈ G2 with
pos≻(c) = i > j = pos≻(c

′) (Defini-
tion B.12)

Z(≻) Normalization factor:
∑

(i′,j′)∈A(≻) ϕ
i′−j′

(Definition B.12)

(e) Voting rules and smoothness parameters

Symbol Meaning

SNTV Single non-transferable vote; defined by
f(S,≻) =

∑
c∈S 1pos≻(c)=1

Borda A multiwinner score functions defined by
f(S,≻) =

∑
c∈S (m− pos≻(c))

ℓ1-CC ℓ1 Chamberlin-Courant rule; defined by
f(S,≻) = max

c∈S
{m− pos≻(c)}

α Definition 3.1
β Definition 2.8
γ Definition 2.8

(f) Special subsets

Symbol Meaning

R Voters’ latent preference profile
{≻v∈ L(C) : v ∈ V }

R̂ Voters’ biased preference profile
{⊁v∈ L(C) : v ∈ V }

S⋆ argmaxS⊆C:|S|=k F (S)

Ŝ argmaxS∈K(ℓ):|S|=k F̂ (S)
M The collection of k candidates c with the

highest value Eµ [f(c,≻)]
K(ℓ) The collection of subsets of C that have at

least ℓ candidates from G2

Table 1. Table of notations.

where g : [k] → R≥0 is a non-decreasing concave function. The above definition captures the class of OWA-rules, which are
parameterized by an OWA-vector λ = (λ1, . . . , λk) with λ1 ≥ · · · ≥ λk ≥ 0 and correspond to g(i) =

∑i
j=1 λj . Among

others, the class of OWA-functions contains the popular PAV (λ = (1, 1
2 , . . . ,

1
k )) and ℓmin-CC (λ = (1, 0, . . . , 0)) rules.

18



Subset Selection Based On Multiple Rankings in the Presence of Bias

We note that our main result Theorem 3.2 can also be extended to approval-based rules where the size of the approval set
can be different for different voters.

B.2. Order-Preserving Properties of a Utility-Based Model

In this section, we show that the utility-based generative models (Definitions 2.5 and 2.6) are order-preserving with respect
to µ and between µ and µ̂. We divide the section into two parts corresponding to each proof.

B.2.1. ORDER PRESERVATION WITH RESPECT TO µ.

In this section, we prove the following lemma.

Lemma B.2 (Order-preserving properties of the latent utility-based model). Let F =
∑

v∈V f(·,≻v) be a multiwinner
score function. Let µ be a utility-based generative model defined in Definition 2.5. F is order-preserving with respect to µ.

Recall that in the utility-based model (Definition 2.5), the variable η is drawn from the uniform distribution on [0, 1]. We
will, in fact, prove a more general version of the above lemma that holds for any distribution of η that satisfies certain
properties (Definition B.3). With some abuse of notation, we use η to denote both the distribution and a value drawn from
distribution η (independent of all other randomness).

Definition B.3 (A family of distributions η). Let η be the distribution on R≥0 from Definition 2.6 that parameterizes the
generative model µ. Let cdfη : R → [0, 1] be the cumulative distribution function of η. We define the following properties
of η.

• (Order preserving A) η is order preserving if for all ε∈ [0, 1] and a2 ≥ a1 ≥ 0,

Pr
X,Y∼η

[X>Y (1− ε) | X,Y ∈ [a1, a2]] ≥
1

2
.

• (Order preserving B) We say η is order preserving if for all 0 ≤ a1 < a2 ≤ a3 < a4 and all ε ∈ [0, 1], the following
holds:

– Let E be the event that either X ∈ [a3, a4] and Y (1− ε) ∈ [a1, a2] or X ∈ [a1, a2] and Y (1− ε) ∈ [a3, a4]

– PrX,Y∼η [X ∈ [a3, a4] and Y ∈ [a1, a2] | E ] ≥ PrX,Y∼η [X ∈ [a1, a2] and Y (1− ε) ∈ [a3, a4] | E ] .

Several distributions on R≥0 including the uniform distribution on [0, 1] and the exponential distributions satisfy the
properties in Definition B.3. Order preservation properties A and B are used to ensure that if ωc > ωc′ (for any c, c′ ∈ C in
the same group), then conditioned on the event, say F , that {c, c′} appear in positions {ℓ1, ℓ2} (for any 1 ≤ ℓ1 < ℓ2 ≤ m),
then c′ is more likely to appear in position ℓ1 than in ℓ2. (Note that conditioned on F , c and c′ may appear in positions ℓ1
and ℓ2 respectively or in positions ℓ2 and ℓ1 respectively)

Fix the following parameters.

1. Any multiwinner score function F ;

2. Any distribution η satisfying the properties in Definition B.3;

3. Any pair of candidates c, c′ ∈ C in the same group (G1 or G2); and

4. Any subset S ⊆ C \ {c, c′}.

To prove that F is order-preserving with respect to µ, we need to show that if Eµ [f(c,≻)] < Eµ [f(c
′,≻)], then the

following two conditions hold

1. (Property A) for any subsets R ⊆ S ⊆ C \ {c, c′}, Eµ [fS(c,≻)] ≤ Eµ [fS(c
′,≻)] ;

2. (Property B) for any subsets R ⊆ S ⊆ C \ {c, c′}, Eµ [fS(c
′,≻)]− Eµ [fS(c,≻)] ≤ Eµ [fR(c

′,≻)]− Eµ [fR(c,≻)].
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Proof of Property A. The following is the main lemma used to prove Property A.

Lemma B.4. For any d, d′ ∈ C in the same group (G1 or G2) and any set T ⊆ C \ {c, c′}, if ωd′ ≥ ωd, then the following
holds

Eµ [fT (c
′,≻)] ≥ Eµ [fT (c,≻)] and Eµ̂ [fT (c

′,⊁)] ≥ Eµ̂ [fT (c,⊁)] .

Property A straightforwardly follows from the above lemma.

Proof of Property A. We claim that Eµ [f(c,≻)] < Eµ [f(c
′,≻)], implies that ωc ≤ ωc′ . To see this, suppose ωc > ωc′ ,

then from Lemma B.4 (invoked with T = ∅) it follows that Eµ [f(c,≻)] ≥ Eµ [f(c
′,≻)], which is a contradiction. Hence,

ωc ≤ ωc′ . Now, using Lemma B.4 with the set T = S and the fact that ωc ≤ ωc′ , Property A follows.

Proof of Property B. We first derive an equivalent version of Property B that is easier to prove.

Step 1 (An alternate version of Property B): By rearranging the terms in the inequality in Property B and using the definition
of the marginal score, we get the following equivalent version of Property B

∀R⊆S⊆C\{c,c′}, Eµ [f(S ∪ c′,≻)]− Eµ [f(R ∪ c′,≻)] ≤ Eµ [f(S ∪ c,≻)]− Eµ [f(R ∪ c,≻)] .

Using the definition of marginal score again, we get following equivalent version of Property B

∀R⊆S⊆C\{c,c′}, Eµ [fR∪c′(S \R,≻)] ≤ Eµ [fR∪c(S \R,≻)] .

Observe that the set S \ R is disjoint from R ∪ c′ and R ∪ c. Defining A := R and B := S \ R, we get the following
equivalent version

∀A,B⊆C\{c,c′} : A∩B=∅, Eµ [fA∪c′(B,≻)] ≤ Eµ [fA∪c(B,≻)] . (2)

We can prove the above inequality, however, the fact that B can have multiple candidates makes the proof unnecessarily
technical. Instead, we will simplify the above version of Property B using the following lemma.

Lemma B.5. For any d, d′ ∈ C, the following holds

∀X,Y⊆C\{c,c′} : X∩Y=∅, Eµ [fX∪c′(Y,≻)] ≤ Eµ [fX∪c(Y,≻)] ,

⇐⇒ ∀Y⊆C\{c,c′} ∀y∈C\X\{c,c′}, Eµ [fX∪c′(y,≻)] ≤ Eµ [fX∪c(y,≻)] .

Proof. We are required to prove (1) and equivalent (2), where (1) and (2) are the following conditions respectively

∀X,Y⊆C\{c,c′} : X∩Y=∅, Eµ [fX∪c′(Y,≻)] ≤ Eµ [fX∪c(Y,≻)] , (3)
∀Y⊆C\{c,c′} ∀y∈C\X\{c,c′}, Eµ [fX∪c′(y,≻)] ≤ Eµ [fX∪c(y,≻)] . (4)

Step A (2 =⇒ 1): Fix any disjoint X,Y ⊆ C \ {c, c′}. Let Y := {y1, y2, . . . , yt}. It holds that

Eµ [fX∪c′(Y,≻)] =
∑
i∈[t]

Eµ

[
fX∪c′∪y1∪y2∪···∪yi−1

(yi,≻)
]

≤
∑
i∈[t]

Eµ

[
fX∪c∪y1∪y2∪···∪yi−1

(yi,≻)
]

(Using Equation (3) to switch c′ with c)

≤ Eµ [fX∪c(Y,≻)]
(Using that FS(T ∪R) = FS(T ) + FS∪T (R) for all sets S,R, T and any submodular function F )

Step B (1 =⇒ 2): Equation (4) follows by setting Y = {y} in Equation (3).

Step 2 (Proving alternate version of Property B): Thus, from Equation (2) and Lemma B.5, it follows that the following
condition is equivalent to Property B.

∀A⊆C\{c,c′} ∀b∈C\X\{c,c′}, Eµ [fA∪c′(b,≻)] ≤ Eµ [fA∪c(b,≻)] . (5)
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Notation. We first define some notation that is used to express Eµ [fA∪c′(b,≻)] and Eµ [fA∪c(b,≻)]. Fix any voter v and
consider ≻v:=≻ where ≻ ∼ µ. Define w(i) as the i-th largest order statistic among the utilities of candidates in C \ {c, c′}
for each i ∈ [m− 1]. In other words, w(i) is the i-th largest value in the set

W := {wv,d | d ∈ C \ {c, c′}} .

By this definition, we have the inequalities

w(1) ≥ w(2) ≥ · · · ≥ w(m).

Define the interval Iℓ :=
[
w(ℓ), w(ℓ+1)

]
for each ℓ ∈ [m− 2]. Define Eℓ,k, for each ℓ, k ∈ [m− 2] as the event that

wv,c′ ∈ Iℓ and wv,c ∈ Ik. (Event Eℓ,k)

Define F as the event that
wv,c′ > wv,c. (Event F )

Note that F is equivalent to the event pos≻(c
′) < pos≻(c). Finally, for each ℓ ∈ [m], define the random variable

τpos≻(b)(pos≻(A), ℓ) := fA∪i(ℓ)(b,≻).

Where i(ℓ) is the candidate at the ℓ-th position in ≻. The randomness in τS(ℓ) due to the randomness in pos≻(A) and in
pos≻(b). Conditioned on any value of pos≻(A) and pos≻(b), due to domination sensitivity (Definition 2.2), it holds that

∀1 ≤ ℓ < k ≤ m, τA∪i(ℓ)(b) ≥ τA∪i(k)(b). (6)

We can express Eµ [fA∪c′(b,≻)] and Eµ [fA∪c(b,≻)] as follows

Eµ [fA∪c′(b,≻)] = EW

 ∑
ℓ,m∈[m−2]:ℓ<k

(
Pr [Eℓ,k] · τA∪i(ℓ)(b) + Pr [Ek,ℓ] · τA∪i(k)(b)

)
+ EW

 ∑
ℓ∈[m−2]

Pr [Eℓ,ℓ]
(
Pr [F | Eℓ,ℓ] · τA∪i(ℓ)(b) + Pr [¬F | Eℓ,ℓ] · τA∪i(ℓ+1)(b)

) ,

Eµ [fA∪c(b,≻)] = EW

 ∑
ℓ,m∈[m−2]:ℓ<k

(
Pr [Eℓ,k] · τA∪i(k)(b) + Pr [Ek,ℓ] · τA∪i(ℓ)(b)

)
+ EW

 ∑
ℓ∈[m−2]

Pr [Eℓ,ℓ]
(
Pr [F | Eℓ,ℓ] · τA∪i(ℓ+1)(b) + Pr [¬F | Eℓ,ℓ] · τA∪i(ℓ)(b)

) .

Hence, it follows that

Eµ [fA∪c′(b,≻)]− Eµ [fA∪c(b,≻)]

≥ EW

 ∑
ℓ,m∈[m−2]:ℓ<k

(Pr [Eℓ,k]− Pr [Ek,ℓ]) ·
(
τA∪i(ℓ)(b)− τA∪i(k)(b)

)
+ EW

 ∑
ℓ∈[m−2]

Pr [Eℓ,ℓ] · (Pr [F | Eℓ,ℓ]− Pr [¬F | Eℓ,ℓ]) ·
(
τA∪i(ℓ)(b)− τA∪i(ℓ+1)(b)

) (7)

Note that pos(A) and pos(b) are deterministic conditioned on any specific value of W and either (1) the event Eℓ,k for ℓ ̸= k
or (2) the event Eℓ,ℓ and F . Hence, Equation (6) holds. Further, we have the following claims using the two properties in
Definition B.3.

∀1≤ℓ<k≤m, . Pr [Eℓ,k]− Pr [Ek,ℓ] ≥ 0, (8)
∀1≤ℓ≤m, Pr [F | Eℓ,ℓ]− Pr [¬F | Eℓ,ℓ] ≥ 0. (9)

Substituting Equations (6) to (9) in Equation (7), it follows that

Eµ [fA∪c′(b,≻)]− Eµ [fA∪c(b,≻)] ≤ 0.

The above is equivalent to Equation (5). Since Equation (5), itself, is equivalent to Property B, Property B also follows.
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B.2.2. ORDER PRESERVATION BETWEEN µ AND µ̂

We first define a parameter σ(f) used in Lemma B.7.

Definition B.6. Let F =
∑

v∈V f(·,≻v) be a multiwinner score function. For each j ∈ [m], let i≻,j be the j-th candidate
in ≻. For each j ∈ [m] and S ⊆ S, define τj,S(f) to be the marginal score of i≻,j with respect to S, i.e.,

τj,S(f) := fS({i≻,j} ,≻)

which is independent of ≻ ∈ L(C). Let τm+1,S = 0 for any S ⊆ C and τmin := minS⊆C τm−1,S . σ(f) is defined as
follows.

σ(f) := min
S⊆C

min
ℓ∈[m−1]

τℓ,S(f) + τℓ+2,S(f)− 2τℓ+1,S(f)

τℓ,S(f)− τℓ+2,S(f)
, (10)

where we use the convention 0
0 = 1.

Intuitively, σ(f) measures a certain notion of convexity measure of f . Concretely, σ(f) ≥ 0 if and only if there is a convex
function g that takes value sℓ at ℓ (for each ℓ ∈ [m+ 1]). Moreover, strict inequality holds (i.e., σ(f) > 0) if and only if g is
strictly convex. The normalization in σ(f) ensures that it is invariant to a multiplicative scaling of F . As for examples:
σ(f) = 1 for SNTV and σ(f) = 0 for Borda rule or ℓ1-CC.

Lemma B.7 (Order-preservation between latent and biased utility-based models). Let F =
∑

v∈V f(·,≻v) be a
multiwinner score function. Let (µ, µ̂) be a utility-based generative model defined in Definitions 2.5 and 2.6. The following
holds for any 0 ≤ λ ≤ m−1/2.

1. If σ(f) > 0, then F is
(
1− λ, 1− σ(f) ·m−1 · Ω (λ)

)
order preserving between µ and µ̂; and

2. If σ(f) = 0 and τmin > 0 and τm,∅ = 0, then F is
(
1− λ, 1−m−2 · τmin

τ · Ω (λ)
)

order preserving between µ and µ̂.

In particular, this result implies the following:

1. The SNTV rule is
(
1−O(m−1/2), 1− Ω

(
m−3/2

))
order preserving between µ and µ̂;

2. The ℓ1-CC rule is
(
1−O(m−1/2), 1− Ω

(
m−3/2

))
order preserving between µ and µ̂; and

3. The Borda rule is
(
1−O(m−1/2), 1− Ω

(
m−3.5

))
order preserving between µ and µ̂.

Recall that in the utility-based model (Definition 2.5), the variable η is drawn from the uniform distribution on [0, 1]. We
will, in fact, prove a more general version of the above lemma that holds for any distribution of η that satisfies certain
properties (Definition B.8). With some abuse of notation, we use η to denote both the distribution and a value drawn from
distribution η (independent of all other randomness).

We will bound the parameters (β, γ) for any η from Definition 2.6 that satisfies the following properties.

Definition B.8 (Properties of the utility distribution η from Definition 2.6). Let η be the distribution on R≥0 from
Definition 2.6 that parameterizes the generative model µ. Let cdfη : R → [0, 1] be the cumulative distribution function of η.
We define the following properties of η.

• (Log-Lipshictzness) We say that cdfη is Log-lipschitz there exists a constant π > 0 such that, for all 0 < x < y,
cdfη(x)
cdfη(y)

≥ 1− πx
y ; and

• (Order preservation) We say η is order preserving if there exists a constant π > 0 such that, for all ε ∈ [0, 1] and t ≥ 0,
if PrX,Y∼η [X > Y (1− ε) | X,Y ≥ t] ≥ 1

2 ·
(
1 + ε

π

)
.

Several distributions on R≥0 including the uniform distribution on [0, 1] and the exponential distributions satisfy the
properties in Definition B.8. Roughly, log-lipshitzness requires that the log (cdfη(·)) is Lipshictz. It guarantees that if x and
y are multiplicatively close to each other, then cdfη(x) and cdfη(y) are multiplicative close to each other. Order preservation
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guarantees that if ωc > (1 + ε) · ωc′ (for any c, c′ ∈ C and ε ∈ [0, 1]), then Pr [wv,c > wv,c′ ] > 0.5 · (1 + Ω(ε)). Both of
these guarantees are required to establish the multiplicative guarantees in (β, γ) order preservation.

To prove that F is (β, γ) order preserving between µ and µ̂, we need to show that the following implication holds

β · Eµ [fS(c
′,≻)] > Eµ [fS(c,≻)] > 0. =⇒ γ · Eµ̂ [fS(c

′,⊁)] ≥ Eµ̂ [fS(c,⊁)] . (11)

We divide the proof of Lemma B.7 into two parts, corresponding to the two conditions in Lemma B.7. Both parts rely on the
following lemma, whose proof appears later.

Lemma B.9. Let F =
∑

v∈V f(·,≻v) be a multiwinner score function. Let (µ, µ̂) be a utility-based generative model
defined in Definitions 2.5 and 2.6. For any β ∈ [1−m−1/2, 1], any candidates c, c′ ∈ C in the same group (G1 or G2), and
any set S ⊆ C \ {c, c′}, the following implication holds

β · Eµ [fS(c
′,≻)] ≥ Eµ [fS(c,≻)] =⇒ ωc′

(
1−m−1 ·Θ(1− β)

)
> ωc.

Part 1 ((β, γ) order preservation with σ(f) > 0): Suppose σ(f) > 0. The following is the main lemma in this part.

Lemma B.10. Let F =
∑

v∈V f(·,≻v) be a multiwinner score function. Let (µ, µ̂) be a utility-based generative model
defined in Definitions 2.5 and 2.6. Suppose candidates c, c′ ∈ C are in the same group (G1 or G2) and set S ⊆ C \ {c, c′}.
If there exists a ρ > 0 such that ωc′(1− ρ) ≥ ωc and Eµ [fS(c

′,≻)] ,Eµ [fS(c,≻)] > 0, then there is a constant ε > 0 such
that

Eµ̂ [fS(c
′,⊁)]

Eµ̂ [fS(c,⊁)]
≥ 1 + ερσ(f)

1− ερσ(f)
.

(β, γ) order preservation follows from Lemmas B.9 and B.10. Concretely, the proof is as follows.

Proof of (β, γ) order preservation assuming Lemmas B.9 and B.10. From the LHS in Equation (11) and Lemma B.9,
it follows that ωc′

(
1−m−1 ·Θ(1− β)

)
> ωc. Hence, Lemma B.10 applicable with ρ = m−1 · Θ(1− β). From

Lemma B.10, it follows that the RHS of Equation (11) holds with γ = 1−Θ(m−1 ·Θ(1− β) · σ(f))

In the remainder of this section, we prove Lemma B.10.

Proof of Lemma B.10. Fix any voter v and consider ≻v:=≻ where ≻ ∼ µ. Define w(i) as the i-th largest order statistic
among the utilities of candidates in C \ {c, c′} for each i ∈ [m− 1]. In other words, w(i) is the i-th largest value in the set

W := {wv,d | d ∈ C \ {c, c′}} .

By this definition, we have the inequalities

w(1) ≥ w(2) ≥ · · · ≥ w(m).

Define the interval Iℓ :=
[
w(ℓ),∞

)
for each ℓ ∈ [m− 2]. Define Eℓ, for each ℓ ∈ [m− 2], as the event that

wv,c′ ∈ Iℓ. (Event Eℓ)

Define F as the event that
wv,c′ > wv,c. (Event F )

Note that F is equivalent to the event pos≻(c
′) < pos≻(c). For each j ∈ [m], let i≻,j be the j-th candidate in ≻. Finally,

for each ℓ ∈ [m], define the random variable
τS(ℓ) := fS(i≻,j ,≻).

The randomness in τS(ℓ) due to the randomness in pos(S). Conditioned on any value of pos(S), due to domination
sensitivity (Definition 2.2), it holds that

∀1 ≤ ℓ < k ≤ m, τS(ℓ) ≥ τS(k). (12)
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Using this notation, we can express Eµ [fS(c,≻)] and Eµ [fS(c
′,≻)] as follows

Eµ [fS(c
′,≻)]

Eµ [fS(c,≻)]

=
EW

[∑
ℓ∈[m−2] Pr [Eℓ] · (Pr [F | Eℓ] · (τS(ℓ)− τS(ℓ+ 1)) + Pr [¬F | Eℓ] · (τS(ℓ+ 1)− τS(ℓ+ 2)))

]
EW

[∑
ℓ∈[m−2] Pr [Eℓ] · (Pr [F | Eℓ] · (τS(ℓ+ 1)− τS(ℓ+ 2)) + Pr [¬F | Eℓ] · (τS(ℓ)− τS(ℓ+ 1)))

]
=

EW

[∑
ℓ∈[m−2] Pr [Eℓ] · (τS(ℓ)− τS(ℓ+ 2)) ·

(
1 + ερ · τℓ,S(f)+τℓ+2,S(f)−2τℓ+1,S(f)

τℓ,S(f)−τℓ+2,S(f)

)]
EW

[∑
ℓ∈[m−2] Pr [Eℓ] · (τS(ℓ)− τS(ℓ+ 2)) ·

(
1− ερ · τℓ,S(f)+τℓ+2,S(f)−2τℓ+1,S(f)

τℓ,S(f)−τℓ+2,S(f)

)] (13)

= min
T⊆C : |T |=|S|

min
ℓ∈[m]

1 + ερ · τℓ,S(f)+τℓ+2,S(f)−2τℓ+1,S(f)
τℓ,S(f)−τℓ+2,S(f)

1− ερ · τℓ,S(f)+τℓ+2,S(f)−2τℓ+1,S(f)
τℓ,S(f)−τℓ+2,S(f)

(Using that τS(ℓ)− τS(ℓ+ 2) ≥ 0 for all ℓ)

≥ 1 + ερσ(f)

1− ερσ(f)
. (Using Definition B.6 and that ε, ρ, σ(f) ≥ 0)

Part 2 ((β, γ) order preservation with σ(f) = 0): Suppose σ(f) = 0 and minS⊆C τm−1,S > 0. The following is the
main lemma in this part.

Lemma B.11. Let F =
∑

v∈V f(·,≻v) be a multiwinner score function. Let (µ, µ̂) be a utility-based generative model
defined in Definitions 2.5 and 2.6. Suppose candidates c, c′ ∈ C are in the same group (G1 or G2) and set S ⊆ C \ {c, c′}.
If there exists a ρ > 0 such that ωc′(1− ρ) ≥ ωc and Eµ [fS(c

′,≻)] ,Eµ [fS(c,≻)] > 0, then

Eµ̂ [fS(c
′,⊁)]

Eµ̂ [fS(c,⊁)]
≥ 1 + ρε ·m−1 · τmin

τ
· Ω(1).

(β, γ) order preservation follows from Lemmas B.9 and B.11. Concretely, the proof is as follows.

Proof of (β, γ) order preservation assuming Lemmas B.9 and B.10. From the LHS in Equation (11) and Lemma B.9,
it follows that ωc′

(
1−m−1 ·Θ(1− β)

)
> ωc. Hence, Lemma B.11 applicable with ρ = m−1 · Θ(1− β). From

Lemma B.11, it follows that the RHS of Equation (11) holds with γ = 1 +m−2 · τmin

τ ·Θ(1− β).

In the remainder of this section, we prove Lemma B.11.

Proof of Lemma B.11. We borrow notation from Lemma B.10. In addition, for each ℓ ∈ [m− 1], define

σℓ(f) :=
τℓ,S(f) + τℓ+2,S(f)− 2τℓ+1,S(f)

τℓ,S(f)− τℓ+2,S(f)
. (14)

Note that σ(f) = minℓ∈[m−1] σℓ(f). Since σ(f) = 0, it follows that for each ℓ ∈ [m− 1],

σℓ(f) ≥ 0. (15)

Moreover, since τm−1,S ≥ τmin > 0 (for all S ⊆ C \ im−1) and τm,S = τm+1,S = 0 (for all S ⊆ C) it follows that

σm−1(f) = 1. (16)
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Now we are ready to lower bound
Eµ[fS(c′,≻)]
Eµ[fS(c,≻)] : Equation (13) shows that

Eµ [fS(c
′,≻)]

Eµ [fS(c,≻)]

≥
EW

[∑
ℓ∈[m−1] Pr [Eℓ] · (τS(ℓ)− τS(ℓ+ 2)) ·

(
1 + ερ · τℓ,S(f)+τℓ+2,S(f)−2τℓ+1,S(f)

τℓ,S(f)−τℓ+2,S(f)

)]
EW

[∑
ℓ∈[m−1] Pr [Eℓ] · (τS(ℓ)− τS(ℓ+ 2)) ·

(
1− ερ · τℓ,S(f)+τℓ+2,S(f)−2τℓ+1,S(f)

τℓ,S(f)−τℓ+2,S(f)

)]
≥

EW

[∑
ℓ∈[m−1] Pr [Eℓ] · (τS(ℓ)− τS(ℓ+ 2)) · (1 + ερ · σℓ(f))

]
EW

[∑
ℓ∈[m−1] Pr [Eℓ] · (τS(ℓ)− τS(ℓ+ 2)) · (1− ερ · σℓ(f))

] (Using Equation (14))

≥
EW

[∑
ℓ∈[m−2] Pr [Eℓ] · (τS(ℓ)− τS(ℓ+ 2)) + Pr [Em−1] (1 + ερ) · τmin

]
EW

[∑
ℓ∈[m−2] Pr [Eℓ] · (τS(ℓ)− τS(ℓ+ 2)) + Pr [Em−1] (1− ερ) · τmin

] (Using Equations (15) and (16))

≥ EW [(m− 2)τ + Pr [Em−1] (1 + ερ) · τmin]

EW [(m− 2)τ + Pr [Em−1] (1− ερ) · τmin]
(Using that Pr[Eℓ], τS(ℓ)− τS(ℓ+ 2) ≥ 0 for all ℓ ∈ [m− 1])

=
(m− 2)τ + (1 + ερ) · τmin

(m− 2)τ + (1− ερ) · τmin
(Using that Pr [Em−1] = 1)

≥ 1 + Ω
(
ερm−1 · τmin

τ

)
.

Now we complete the proof of Lemma B.9.

Proof of Lemma B.9. Let λ := 1−β. As β ≥ 1−m−1/2, λ ≤ m1/2. We will prove (a strengthening of) the contra-positive
of the above statement: for any candidates d, d′ ∈ C in the same group (G1 or G2), the following

ωd′

ωd
∈ 1±m−1 ·Θ(λ) =⇒ Eµ [fS(d

′,≻)]

Eµ [fS(d,≻)]
∈ 1±Θ(λ). (17)

From the Log-Lipschitzness in Definition B.8, we have the following result: for any x, y > 0

x

y
∈ 1± λ =⇒ cdfη(x)

cdfη(y)
∈ 1±Oπ(λ), (18)

where π is a constant in Definition B.8.

Towards proving Equation (17), suppose (without loss of generality) that ωd′ > ωd. We can express Eµ [f(d
′,≻)] and

Eµ [f(d,≻)] as follows

Eµ [f(d
′,≻)] =

m∑
ℓ=1

Pr
µ
[pos≻(d

′) = ℓ] τℓ,S(f) and Eµ [f(d,≻)] =

m∑
ℓ=1

Pr
µ
[pos≻(d) = ℓ] τℓ,S(f). (19)

To prove Equation (17), it suffices to show that Prµ [pos≻(d
′) = ℓ] and Prµ [pos≻(d) = ℓ] are multiplicatively close for all

ℓ ∈ [m]. From Equation (18), for any i ̸= d, d′, we have the following

∀x ≥ 0,
cdfη

(
ωd′ ·x
ωi

)
cdfη

(
ωd·x
ωi

) ∈ 1±m−1 ·Θπ(λ). (Using that ωd′
ωi

· ωi

ωd
∈ 1±m−1Θ(λ))

Moreover, we also have

∀x > 0, cdfη

(
ωd′ · x
ωd · x

)
∈ 1±m−1 ·Θπ(λ). (20)
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We can show this as follows:

Prµ [pos≻(d) = ℓ]

Prµ [pos≻(d
′) = ℓ]

=
Eηd′

[∑
S⊆C\{d′} : |S|=ℓ−1

∏
i∈S

(
1− cdfη

(
ωd′ηd′

ωi

))∏
i ̸∈S cdfη

(
ωd′ηd′

ωi

)]
Eηd

[∑
S⊆C\{d} : |S|=ℓ−1

∏
i∈S

(
1− cdfη

(
ωdηd

ωi

))∏
i ̸∈S cdfη

(
ωdηd

ωi

)] (21)

Toward bounding the RHS of the above equality, fix any value ηd′ = ηd = η > 0. We have the following∑
S⊆C\{d′} : |S|=ℓ−1

∏
i∈S

(
1− cdfη

(
ωd′
ωi

))∏
i ̸∈S cdfη

(
ωd′
ωi

)
∑

S⊆C\{d} : |S|=ℓ−1

∏
i∈S

(
1− cdfη

(
ωd

ωi

))∏
i ̸∈S cdfη

(
ωd

ωi

)
≥

cdfη

(
ωd′
ωd

)
cdfη

(
ωd

ωd′

) ·

∑
S⊆C\{d′,d} : |S|=ℓ−1

∏
i∈S

(
1− cdfη

(
ωd′
ωi

))∏
i̸∈S cdfη

(
ωd′
ωi

)
∑

S⊆C\{d′,d} : |S|=ℓ−1

∏
i∈S

(
1− cdfη

(
ωd

ωi

))∏
i̸∈S cdfη

(
ωd

ωi

)
(20)
≥

(
1−m−1Θ(λ)

)
·

∑
S⊆C\{d′,d} : |S|=ℓ−1

∏
i∈S

(
1− cdfη

(
ωd′
ωi

))∏
i̸∈S cdfη

(
ωd′
ωi

)
∑

S⊆C\{d′,d} : |S|=ℓ−1

∏
i∈S

(
1− cdfη

(
ωd

ωi

))∏
i̸∈S cdfη

(
ωd

ωi

)
(19)
≥

(
1−m−1Θ(λ)

)
· (1−m−1Θ(λ))m−ℓ+1

≥ 1−Θ(λ). (Using that ℓ ≥ 0 and 0 ≤ λ ≤ 1) (22)

Substituting Equation (22) in Equation (21) and using the fact that if x1

y1
, x2

y2
≥ r, then x1+x2

y1+y2
≥ r (for any x1, x2, y1, y2, r ≥

0), it follows that

Prµ [pos≻(d) = ℓ]

Prµ [pos≻(d
′) = ℓ]

≥ 1−Θ(λ). (23)

An analogous argument, also shows that

Prµ [pos≻(d) = ℓ]

Prµ [pos≻(d
′) = ℓ]

≤ 1 + Θ(λ). (24)

The result follows by substituting Equations (23) and (24) into Equation (19).

B.3. Swapping-Based Biased Generative Model

In this section, we introduced a “swapping-based” biased model. Let µ be a generative model of latent preference lists ≻,
e.g., Definition 2.5. We propose the following generative model for biased preferences which can be seen as a biased variant
of the popular Mallows model (Mallows, 1957).

Definition B.12 (Swapping-based generative model of biased preference lists). Let ϕ ∈ [0, 1] and t ≥ 1 be a bias
parameter and number of swaps respectively. For any ≻, let A(≻) ⊆ [m]× [m] be the collection of all pairs (i, j) such that
there exist c ∈ G1 and c′ ∈ G2 with pos≻(c) = i > j = pos≻(c

′). Let ≻1 be a preference list drawn from µ. Given ≻i

(for any i ∈ [t]), ≻i+1 is generated as follows.

1. Sample a pair (i, j) ∈ A(≻i) with probability ϕi−j

Z(≻i)
, where, for any ≻, Z(≻) ≥ 0 is a normalization factor defined as

Z(≻) =
∑

(i′,j′)∈A(≻) ϕ
i′−j′ ; and

2. Swap the candidates at positions i and j in ≻i, and obtain ≻i+1.

Define ⊁:=≻t+1. Let µ̂ denote the generative model of ⊁ that depends on ≻ and ϕ.

Intuitively, we randomly improve the ranking of a candidate from the advantaged group and lower the ranking of a candidate
from the disadvantaged group, where the probability is proportional to their ranking difference in ≻. As ϕ comes closer 1,
the average distance between the positions of swapped candidates increases.
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Our next result shows that all multiwinner score functions satisfying Definition 2.2 are order preserving between µ and µ̂,
where µ̂ arises from the swapping-based generative model of biased preference lists and µ satisfies the following condition
for some parameter ρ > 0

min
c∈C

Eµ

[
fC\{c}(c,≻ )

]
≥ ρ. (25)

Lemma B.13 (Order-preserving properties of a swapping-based model). Let F =
∑

v∈V f(·,≻v) be a latent multiwin-
ner score function satisfying Definition 2.2. Let µ be any generative model such that F is order-preserving with respect
to µ (Definition 2.8) and satisfies Equation (25). For any numbers t ≥ 1 and ϕ ∈ (0, t−1) and the generative model µ̂ in
Definition B.12 with parameters µ, ϕ, and t = 1, F is

(
1− λ, 1− λ

2

)
order preserving between µ and µ̂ where

λ := Eµ

[
1

Z(≻)

]
·Θ

(
tϕ

1− ϕ
· τ
ρ

)
,

and Z(≻) is the normalizing constant corresponding to preference list ≻, as defined in Definition B.12.

Note that Lemma B.13 does not fix a specific generative model of latent preference lists µ. The bound on the parameter
γ depends on µ via the term Eµ

[
1

Z(≻)

]
. In general, we expect this term to be of the order Ω

(
m−1ϕ−1

)
. To see why,

note that for any preference list ≻ where there are at least r candidates c′ ∈ G2 (for any r ≥ 1) who are placed before
r−1m candidates c ∈ G1, then Z(≻) ≥ ϕr. When Eµ

[
1

Z(≻)

]
= Ω

(
m−1ϕ−1

)
, then Lemma B.13 implies that F is(

1, 1−O
(
m−1t

))
order preserving between µ and µ̂ for any ϕ ∈ (0, t−1).

Additionally, we have the following example that shows that this order preservation between µ and µ̂ does not hold for all
β ∈ [0, 1] when µ̂ the swapping-based bias generative model.
Example B.14 (Order preservation does not hold for all β ∈ [0, 1]). Suppose C = {d1, d2, a1}, G1 = {a1}, and
G2 = {d1, d2}. Let F : 2C → R≥0 be the 2-Bloc rule. Let ≻1,≻2, and ≻3 be the following preference lists

≻1:= (d2 ≻ d1 ≻ a1), ≻2:= (d1 ≻ a1 ≻ d2), ≻3:= (d2 ≻ a1 ≻ d1).

For some small δ > 0, let µ be a distribution such that

Pr
≻∼µ

[≻=≻1] = 1− 3δ, Pr
≻∼µ

[≻=≻2] = 2δ, Pr
≻∼µ

[≻=≻3] = δ.

In this case, on the one hand, the following holds

Eµ [f(d1,≻)]

Eµ [f(d2,≻)]
=

1− δ

1− 2δ
=

1

1− ε
> 1 for ε ≈ δ.

On the other hand,

Eµ̂ [f(d1, ̸≻)]

Eµ̂ [f(d2, ̸≻)]
=

Θ(ϕ+ δ)

1±Θ(ϕ+ δ)
= Θ(ϕ+ δ) < 1.

B.4. Proof of Lemma B.13: Order-Preserving Properties of the Swapping-Based Model

In this section, we prove Lemma B.13.

To show that F (β, γ) order preserving between µ and µ̂, we need to show that for any two candidates c, c′ ∈ C belonging
to the same group (G1 or G2) and any S ⊆ C \ {c, c′}, the following holds

β · Eµ [fS(c
′,≻)] ≥ Eµ [fS(c,≻)] > 0 =⇒ γ · Eµ̂ [fS(c

′,⊁)] ≥ Eµ̂ [fS(c,⊁)]. (26)

At a high level, we will prove the above implication by bounded Eµ̂ [fS(c,⊁) |≻] with an 1±O(ϕt) multiplicative factor
of fS(c,≻) (for any ≻ ∈ L(C) and c ∈ C) and then taking an expectation with respect to ≻∼ µ. Concretely, we prove the
following lemma.

Lemma B.15. Suppose t ≥ 1, ϕ ∈ (0, t−1), and ≻ ∈ L(C). Let λ := Eµ

[
1

Z(≻)

]
· O

(
tτϕ

ρ(1−ϕ)

)
. For any c ∈ C, and

S ⊆ C \ {c}, it holds that

Eµ [fS(c,≻)] · (1− λ) ≤ Eµ̂ [fS(c,⊁)] ≤ Eµ [fS(c,≻)] · (1 + λ).
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Lemma B.13 follows from the above result by taking an expectation with respect to ≻∼ µ.

Proof of Lemma B.13 assuming Lemma B.15. Fix any two candidates c, c′ ∈ C belonging to the same group (G1 or G2)
and any S ⊆ C \ {c, c′}. To prove Lemma B.13 it suffices to prove Equation (26). Suppose the following is true

β · Eµ [fS(c
′,≻)] ≥ Eµ [fS(c,≻)] > 0. (27)

(If this is not true, Equation (26) vacuously holds.) Using Lemma B.15, for any ≻ ∈ L(C), we have the following
inequalities

Eµ [fS(c
′,≻)] · (1− λ) ≤ Eµ̂ [fS(c

′,⊁)] ≤ Eµ [fS(c
′,≻)] · (1 + λ), (28)

Eµ [fS(c,≻)] · (1− λ) ≤ Eµ̂ [fS(c,⊁)] ≤ Eµ [fS(c,≻)] · (1 + λ). (29)

Now, we are ready to complete the proof

Eµ̂ [fS(c
′,⊁)]

(28)
≥ (1− λ) · Eµ [fS(c

′,≻)]

(27)
≥ 1− λ

β
· Eµ [fS(c,≻)]

(29)
≥ 1− λ

(1 + λ) · β
· Eµ̂ [fS(c,⊁)] .

Lemma B.13 follows by choosing r := 4λ
1+3λ = Eµ

[
1

Z(≻)

]
·O

(
tτϕ

ρ(1−ϕ)

)
,

β = 1− r, and γ =
β(1 + λ)

1− λ
= 1− r

2
.

It remains to prove Lemma B.15.

Notation. Fix c ∈ C and S ⊆ C \ {c}. For each j ∈ [m], let i≻,j be the j-th candidate in ≻. For each j ∈ [m], define
τj,S(f) to be the marginal score of i≻,j with respect to S, i.e.,

τj,S(f) := fS({i≻,j} ,≻)

which is independent of ≻ ∈ L(C). Fix any draw ≻ from µ. For each 1 ≤ ℓ ≤ m, let A(ℓ) ⊆ [m] \ [ℓ] be the set of indices
among [m] \ [ℓ] where G1 candidates appear in ≻. For each 1 ≤ ℓ ≤ m, let B(ℓ) ⊆ [ℓ] be the set of indices among [ℓ]
where G2 candidates appear in ≻.

We divide the proof into two cases depending on the group of c.

Case A (c ∈ G1): Suppose c ∈ G1. Let

j := pos≻(c).
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We will first consider the case where there is only one swap, i.e., t = 1, and later generalize to multiple swaps. We can
express Eµ̂ [fS(c,⊁) |≻] as follows.

Eµ̂ [fS(c,⊁) |≻] =
∑
ℓ∈[j]

Pr [c is swapped from j to ℓ] · τℓ,S +

1−
∑
ℓ∈[j]

Pr [c is swapped from j to ℓ]

 τj,S

(Using the facts that c ∈ G1, the positions of candidates in G1 only reduces, and the definition of τℓ,S)

=
∑

ℓ∈B(j)

Pr [c is swapped from j to ℓ] · τℓ,S +

1−
∑

ℓ∈B(j)

Pr [c is swapped from j to ℓ]

 τj,S

(Using the fact that c ∈ G1 and candidates in G1 only swap positions with candidates in G2 in one swap)

=
1

Z(≻)

∑
ℓ∈B(j)

ϕj−ℓ · τℓ,S +

1− 1

Z(≻)

∑
ℓ∈B(j)

ϕj−ℓ

 τj,S

(By construction in the swapping-based bias model; Definition B.12) (30)

We can upper bound the above expression as follows

Eµ̂ [fS(c,⊁) |≻] =
1

Z(≻)

∑
ℓ∈B(j)

ϕj−ℓ · τℓ,S +

1− 1

Z(≻)

∑
ℓ∈B(j)

ϕj−ℓ

 τj,S

≤ 1

Z(≻)

(
τ1,S · ϕj−1 + τ2,S · ϕj−2 + · · ·+ τj−1,S · ϕ

)
+

(
1− 1

Z(≻)
·
(
ϕ+ ϕ2 + · · ·+ ϕj−1

))
τj,S

≤ 1

Z(≻)

(
τ1,S · ϕj−1 + τ2,S · ϕj−2 + · · ·+ τj−1,S · ϕ

)
+ τj,S (Using that ϕ,Z(≻) ≥ 0)

≤ τ1,S
Z(≻)

·
(
ϕ+ ϕ2 + · · ·+ ϕj−1

)
+ τj,S (Using that τ1,S ≥ τ2,S ≥ · · · ≥ τm)

≤ τ

Z(≻)
· ϕ

1− ϕ
+ τj,S (Using that ϕ ≥ 0 and τ1,S ≤ τ )

= fS(c,≻) +
τ

Z(≻)
· ϕ

1− ϕ
.

Taking the expectation over ≻ ∼ µ, we get that

Eµ̂ [fS(c,⊁)] ≤ Eµ [fS(c,≻)] + Eµ

[
1

Z(≻)

]
· τϕ

1− ϕ
(25)
≤ Eµ [fS(c,⊁)] ·

(
1 + Eµ

[
1

Z(≻)

]
· τϕ

ρ(1− ϕ)

)
.

Since c ∈ G1, the position of candidates in G1 only reduces, and reducing the position increases the score, it follows that

Eµ̂ [fS(c,⊁) |≻] ≥ τj,S = fS(c,⊁).

Taking the expectation over ≻ ∼ µ, we get that

Eµ̂ [fS(c,⊁)] ≥ Eµ [fS(c,⊁)] .

Case B (c ∈ G2): Suppose c ∈ G2. Let

j := pos≻(c).
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We will first consider the case where there is only one swap, i.e., t = 1, and later generalize to multiple swaps. We can
express Eµ̂ [fS(c,⊁) |≻] as follows.

Eµ̂ [fS(c,⊁) |≻] =
∑

ℓ∈[m]\[j]

Pr [c is swapped from j to ℓ] · τℓ,S +

1−
∑

ℓ∈[m]\[j]

Pr [c is swapped from j to ℓ]

 τj,S

(Using the facts that c ∈ G2, the positions of candidates in G2 only increases, and the definition of τℓ,S)

=
∑

ℓ∈A(j)

Pr [c is swapped from j to ℓ] · τℓ,S +

1−
∑

ℓ∈A(j)

Pr [c is swapped from j to ℓ]

 τj,S

(Using the fact that c ∈ G2 and candidates in G2 only swap positions with candidates in G1 in one swap)

=
1

Z(≻)

∑
ℓ∈A(j)

ϕℓ−j · τℓ,S +

1− 1

Z(≻)

∑
ℓ∈A(j)

ϕℓ−j

 τj,S

(By construction in the swapping-based bias model; Definition B.12) (31)

We can lower bound the above expression as follows

Eµ̂ [fS(c,⊁) |≻] =
1

Z(≻)

∑
ℓ∈A(j)

ϕℓ−j · τℓ,S +

1− 1

Z(≻)

∑
ℓ∈A(j)

ϕℓ−j

 τj,S

≥

1− 1

Z(≻)

∑
ℓ∈A(j)

ϕℓ−j

 τj,S (Using that ϕ, τℓ,S , Z(≻) ≥ 0 for all ℓ ∈ [m])

≥
(
1− 1

Z(≻)

(
ϕ+ ϕ2 + . . .

))
τj,S (Using that ϕ, τℓ,S , Z(≻) ≥ 0 for all ℓ ∈ [m])

=

(
1− 1

Z(≻)
· ϕ

1− ϕ

)
τj,S .

Taking the expectation over ≻ ∼ µ, we get that

Eµ̂ [fS(c,⊁)] ≥ Eµ [τj,S ]−
ϕ

1− ϕ
· Eµ

[
τj,S
Z(≻)

]
≥ Eµ [τj,S ]−

ϕ

1− ϕ
· Eµ

[
τ

Z(≻)

]
(Using that τj,S ≤ τ )

≥ Eµ [fS(c,≻)]− ϕτ

1− ϕ
· Eµ

[
1

Z(≻)

]
(Using the definition of j)

(25)
≥ Eµ [fS(c,≻)]

(
1− ϕτ

ρ(1− ϕ)
· Eµ

[
1

Z(≻)

])
.

Since c ∈ G2, the position of candidates in G2 only increases, and increasing the position does not increase the score, it
follows that

Eµ̂ [fS(c,⊁) |≻] ≤ τj,S = fS(c,⊁).

Taking the expectation over ≻ ∼ µ, we get that

Eµ̂ [fS(c,⊁)] ≤ Eµ [fS(c,⊁)]

Completing the proof. Thus, across both cases, the following inequalities hold when t = 1:(
1− Eµ

[
1

Z(≻)

]
· τϕ

ρ(1− ϕ)

)
· Eµ [fS(c,⊁)] ≤ Eµ̂ [fS(c,⊁)] ≤

(
1 + Eµ

[
1

Z(≻)

]
· τϕ

ρ(1− ϕ)

)
· Eµ [fS(c,⊁)] .
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Consider a draw of ⊁, say ⊁1, obtained after performing one swap on ≻. Replacing ≻ by ⊁1 in the above proof, we get
bounds on utility with the swapping based model with t = 2 swaps. Repeating this argument t times, when ϕ ∈ (0, t−1), we
get the following bounds.(

1− Eµ

[
1

Z(≻)

]
· O(tτϕ)

ρ(1− ϕ)

)
· Eµ [fS(c,⊁)] ≤ Eµ̂ [fS(c,⊁)] ≤

(
1 + Eµ

[
1

Z(≻)

]
· O(tτϕ)

ρ(1− ϕ)

)
· Eµ [fS(c,⊁)] .

C. Missing Proofs From Section 3
C.1. Proof of Theorem 3.2: Main Algorithmic Result

We first provide the algorithm for Theorem 3.2, say Algorithm 1, which is a simple greedy algorithm that first selects ℓ
candidates from G2 in Line 1, then selects k − ℓ candidates from G1 in Line 2, and finally outputs their union S.

Algorithm 1 A greedy algorithm with an intervention constraint

1: Input: Numbers k, ℓ ∈ N, sets G1, G2 ⊆ C, and a value oracle O for F̂ (·)
2: Output: A subset S ⊆ K(ℓ) of size k

3: Select S2 := GREEDY(ℓ,G2,O, B = ∅)
4: Select S1 := GREEDY(k,G1,O, B = S2)
5: return S := S1 ∪ S2

Algorithm 2 GREEDY(Oracle for F , C, k) ((Nemhauser et al., 1978))

1: Input: A number ℓ ∈ N, two sets B and G, and a value oracle O for F̂ (·)
2: Output: A subset S ⊆ G ∪B with |S| = k
3: Initialize S = B
4: while |S| < k do
5: Set S = S ∪ argmaxi∈G FS(i)
6: end while
7: return S

To prove Theorem 3.2, we need to show that for any score function of multiwinner voting F : 2C → R≥0 that is
(α, β, γ)-smooth with respect to generative models (µ, µ̂) the following holds. If the number of voters is at least n ≥
Ω
(
k(αε0)

−2 · log 2
δ0

)
(for any 0 < ε0, δ0 < 1), then there exists an integer 0 ≤ ℓ ≤ m specifying the lower bound

constraint such that
Pr
µ,µ̂

[F (S) ≥ (β − ε0) ·OPT] ≥ 1− δ0.

Where S is the subset output by Algorithm 1, given the number ℓ, an oracle O for F̂ (·), and other parameters (namely, k,
G1, and G2) as input. Moreover, Algorithm 1 makes O(mk) calls to O and performs O(m logm) arithmetic operations.

Fix any α, β, γ ∈ (0, 1]. Let F (·) =
∑

v∈V f(·,≻v) be any score function of multiwinner voting that is (α, β, γ)-smooth
with respect to generative models (µ, µ̂). Recall that M ⊆ C is the set of k candidates c with the highest value Eµ [f(c,≻)].
Define ℓ as the following value

ℓ := |M ∩G2|
We use τ to represent τ1(f) for simplicity. We claim that this ℓ satisfies the claim in Theorem 3.2. To simplify the notation,
we define the following parameters

ε :=
min {ε0, 1− γ}

4β
, δ :=

δ0
3
, and n0(ε0, δ0) :=

51k

(αmin {ε0, 1− γ})2
· log 2

δ0
.

We divide the proof of Theorem 3.2 into the following two lemmas.

Lemma C.1. For any 0 < ε0, δ0 < 1, if n ≥ n0(ε0, δ0), then it holds that

Pr
µ,µ̂

[F (S) ≥ β · (1− ε) · F (M)] ≥ 1− δ. (32)
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Lemma C.2. For any 0 < ε0, δ0 < 1, if n ≥ n0(ε0, δ0), then it holds that

Pr
µ,µ̂

[F (M) ≥ (1− ε) · F (S⋆)] ≥ 1− 2δ. (33)

Theorem 3.2 follows from the above lemmas as follows.

Proof of Theorem 3.2 assuming Lemmas C.1 and C.2. Due to the lower bound on n in Theorem 3.2, it holds that n ≥
n0(ε0, δ0). Hence, from Lemmas C.1 and C.2 the Equations (32) and (33) hold. Since 3δ ≤ δ0, taking a union bound over
Equations (32) and (33), it follows that

Pr
µ,µ̂

[
F (S) ≥ β · (1− ε)2 · F (S⋆)

]
≥ 1− δ.

Since (1− ε)2 ≥ 1− 2ε (for any ε ∈ R) and 2ε · β ≤ ε0, it follows, as required, that

Pr
µ,µ̂

[F (S) ≥ (β − ε0) · F (S⋆)] ≥ 1− δ.

It remains to bound the number of calls and the number of arithmetic operations in Algorithm 1. Note that Algorithm 2 is
called as a subroutine from Algorithm 1 in Steps 1 and 2. Each run of Algorithm 2 makes exactly k |G| calls to O and does
O(|G| log |G|) arithmetic operations (to sort the marginal scores). Algorithm 2 is called twice in Algorithm 1, once with
parameters (k = ℓ, |B| = 0, G = G1), and once with (k = k, |B| = ℓ,G = G2). Since |G1| , |G2| ≤ m, the total number
oracle calls is O(mk) and the total number of arithmetic operations are O(m logm).

In the remainder of this section, we prove Lemmas C.1 and C.2. The proof of both Lemmas C.1 and C.2 uses the following
concentration result.
Lemma C.3 (Concentration of marginal utilities). For any generative models of preference lists µ, µ̂ and any score
function F (·) =

∑
v∈V f(·,≻v) from Definition 2.2 the following holds. For any δ > 0

Pr
µ

[
∃T=C or (T⊆C : |T |≤k), ∃c∈C , |FT (c)− Eµ [FT (c)]| ≥ τ

√
nk log

m

δ

]
≤ δ,

Pr
µ̂

[
∃T=C or (T⊆C : |T |≤k), ∃c∈C ,

∣∣∣F̂T (c)− Eµ̂

[
F̂T (c)

]∣∣∣ ≥ τ

√
nk log

m

δ

]
≤ δ.

Here, we slightly abuse the notation and denote singleton sets {c} by c. We also note in passing that concentration inequality
holds for any generative models of preference lists (µ, µ̂) and not just the generative models that satisfy Definition 2.8.

Proof. We first prove the first inequality. Since F is a separable function (Definition 2.2) and for each voter v ∈ V , their
preference list ≻v is drawn iid from µ, for any c ∈ C, {f(c,≻v)}v∈V is a set of iid and bounded random variables. The
concentration inequality follows from the Hoeffding’s inequality and the union bound (Motwani & Raghavan, 1995) as
shown next.

Fix any T ⊆ C and any c ∈ C. For each v ∈ V , define the random variable Zv := fT (c,≻v). As discussed, Zu and Zv

are independent for any u ̸= v. Moreover, for all v ∈ V , 0 ≤ Zv ≤ τ with probability 1 (by the non-negativity of f and
the definition of τ ). Hence, Hoeffding’s inequality is applicable on F (c) =

∑
v∈V f(c,≻v) (Motwani & Raghavan, 1995).

From the Hoeffding’s inequality (Motwani & Raghavan, 1995), it holds that

Pr
µ

[
|FT (c)− Eµ [FT (c)]| ≥ τ

√
nk log

m

δ

]
≤ exp

(
− 2

nτ2
· τ2 · n · k · log

(m
δ

))
≤ δ2k

m2k

≤ δ

m2k
. (Using that 0 ≤ δ ≤ 1)

The first concentration inequality in Lemma C.3 follows by taking the union bound over all choices of T ⊆ C of either (1)
size at most k or (2) T = C, and any c ∈ C, as there are at most 2k ·m + 1 ≤ m2k choices of (T, c). The proof of the
second inequality follows by replacing µ and F by µ̂ and F̂ in the above proof.
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C.1.1. PROOF OF LEMMA C.1

The proof is divided into multiple steps. We begin by defining the additional notation used in this proof.

Notation. Recall that ℓ = |M ∩G2|. Define the following sets

S ∩G1 := {a1, a2, . . . , ak−ℓ} and S ∩G2 := {b1, b2, . . . , bℓ} ,
M ∩G1 := {x1, x2, . . . , xk−ℓ} and M ∩G2 := {y1, y2, . . . , yℓ} .

Where the elements in S ∩G1 and S ∩G2 are in the order they are selected in Algorithm 1. The elements in M ∩G1 and
M ∩G2 are ordered in non-increasing order by Eµ [F (·)]: for all i ∈ [k − ℓ] and j ∈ [ℓ],

Eµ [F (xi)] ≥ Eµ [F (xi+1)] and Eµ [F (yj)] ≥ Eµ [F (yj+1)] .

To simplify the notation, for each i ∈ [k − ℓ] and j ∈ [ℓ], define the following prefixes:

A(i) := {a1, a2, . . . , ai} and B(j) := {b1, b2, . . . , bj} ,
X(i) := {x1, x2, . . . , xi} and Y (j) := {y1, y2, . . . , yj} .

Define A(0), B(0), X(0), and Y (0) as empty sets. Since B(j − 1) has j − 1 elements by the Pigeonhole principle (for any
j ∈ [ℓ]), there exists a y ∈ Y (j) such that y ̸∈ B(j − 1). Label this y as y(j). Similarly, there exists an x(i) ∈ X(i) (for any
i ∈ [k − ℓ]) such that x(i) ̸∈ A(i− 1). Let E be the following event

∀T=C or (T⊆C : |T |≤k), ∀c∈C , |FT (c)− Eµ [FT (c)]| ≤ τ

√
nk log

m

δ
and

∣∣∣F̂T (c)− Eµ̂

[
F̂T (c)

]∣∣∣ ≤ τ

√
nk log

m

δ
.

Lemma C.3 shows that Pr[E ] ≥ 1− 2δ.

Lemma C.4. Fix any i ∈ [k − ℓ] and j ∈ [ℓ]. Conditioned on the event E , the following inequalities hold

FB(ℓ)∪A(i−1)(ai) ≥ (1− ε) · β · FB(ℓ)∪A(i−1)(x(i)) and FB(j−1)(bj) ≥ (1− ε) · β · FB(j−1)(y(j)).

Proof. Fix any i ∈ [k − ℓ] and j ∈ [ℓ]. Suppose the event E holds.

Step 1 (Lower bound on F̂B(j−1)(bj) and F̂B(j−1)(y(j))): Consider the step where the set of items selected so far is

B(j − 1). At this step, Algorithm 1 selects the item with the largest value with respect to F̂B(j−1)(·). Since Algorithm 1
selects bj instead of y(j). it must hold that

F̂B(j−1)(bj) ≥ F̂B(j−1)(y(j)). (34)

Since E holds, it follows that

F̂B(j−1)(y(j)) ≥ Eµ̂

[
F̂B(j−1)(y(j))

]
− τ

√
nk log

m

δ
. (35)

Since y(j) ∈ M and y(j) ̸∈ B(j − 1), one can use the definition of α (Definition 3.1) to get the following lower bound

Eµ̂

[
F̂B(j−1)(y(j))

]
≥ Eµ̂

[
F̂C\{y(j)}(y(j))

]
(Using that for any submodular function F , FR(c) ≥ FR∪T (c) for any sets R and T and element c) (36)

≥ ατn. (Using the definition of α and that y(j) ∈ M ) (37)

Using Inequalities (34), (35), and (37) and the fact that n ≥ n(ε0, δ0) ≥ 4α−2k log m
δ , it follows that

F̂B(j−1)(bj), F̂B(j−1)(y(j)) ≥
ατn

2
. (38)
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Step 2 (Lower bound on Eµ[FB(j−1)(bj)]
Eµ[FB(j−1)(y(j))]

): From Inequalities (35) and (37), and the fact that n ≥ n(ε0, δ0) ≥

4ε−2α−2k log m
δ , it follows that

F̂B(j−1)(y(j)) ≥ (1− ε) · Eµ̂

[
F̂B(j−1)(y(j))

]
. (39)

Since the event E holds, it also follows that

Eµ̂

[
F̂B(j−1)(bj)

]
≥ F̂B(j−1)(bj)− τ

√
nk log

m

δ

(34)
≥ F̂B(j−1)(y(j))− τ

√
nk log

m

δ

≥ (1− ε) · F̂B(j−1)(y(j)).
(Using Equation (38) and the fact that n ≥ n(ε0, δ0) ≥ 4ε−2α−2k log m

δ ) (40)

Chaining Inequalities (39) and (40), it follows that

Eµ̂

[
F̂B(j−1)(bj)

] (40)
≥ (1− ε) · F̂B(j−1)(y(j))

(39)
≥ (1− ε)

2 · Eµ̂

[
F̂B(j−1)(y(j))

]
. (41)

If
Eµ[FB(j−1)(bj)]
Eµ[FB(j−1)(y(j))]

≤ β, then using (β, γ) order-preservation between µ and µ̂, it follows that

Eµ̂

[
F̂B(j−1)(bj)

]
Eµ̂

[
F̂B(j−1)(y(j))

] ≤ γ. (42)

Since E holds, the above inequality implies that

F̂B(j−1)(y(j)) ≥ γ−1 · F̂B(j−1)(bj)− 2τ

√
nk log

m

δ
(Using that γ ≤ 1)

≥ γ−1 · (1− ε) · F̂B(j−1)(bj)
(Using Equation (38) and the fact that n ≥ n(ε0, δ0) ≥ 4γ2(εα)−2k log m

δ )

≥ γ−1 · (1− ε) · F̂B(j−1)(bj).

Since ε < 1− γ, the above equation is a contradiction to Equation (34). Hence,

Eµ

[
FB(j−1)(bj)

]
Eµ

[
FB(j−1)(y(j))

] ≥ β. (43)

Step 3 (Completing the proof of the claim): Since y(j) ∈ M and y(j) ̸∈ B(j − 1), the definition of α (Definition 3.1)
implies that

Eµ

[
FB(j−1)(y(j))

]
≥ ατn. (44)

Substituting this in Equation (43) gives the following inequality

Eµ

[
FB(j−1)(bj)

]
≥ β · Eµ

[
FB(j−1)(y(j))

]
. (45)

Which, as E holds and β, (1− ε)2 ≤ 1, implies the following inequality

FB(j−1)(bj) ≥ β · FB(j−1)(y(j))− 2τ

√
nk log

m

δ
(46)

Equation (44) and the fact that E holds, also gives us that

FB(j−1)(y(j)) ≥ ατn− τ

√
nk log

m

δ

≥ ατn ·
(
1− 1

ατn
· τ

√
nk log

m

δ

)
≥ αnτ

2
. (Using that n ≥ n0(ε0, δ0) ≥ 4 · α−2 · k log m

δ ) (47)
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Substituting this lower bound in Equation (46) gives us the following multiplicative lower bound on FB(j−1)(bj)

FB(j−1)(bj)
(47)
≥ β · FB(j−1)(y(j)) ·

(
1− 4

βαnτ
· τ

√
nk log

m

δ

)
≥ β · (1− ε) · FB(j−1)(y(j)). (Using that n ≥ n(ε0, δ0) ≥ 16 · (αε · β)−2 · k log m

δ )

Replacing B(j − 1), bj and y(j) by B(ℓ) ∪A(i− 1), ai, and x(i) in Steps 1, 2, and 3 shows that

FB(ℓ)∪A(i−1)(ai) ≥ β · (1− ε) · FB(ℓ)∪A(i−1)(x(i)).

Completing the proof of Lemma C.1. Now we are ready to complete the proof of Lemma C.1.

Proof of Lemma C.1. Suppose the event E holds. F (S) can be lower bounded as follows

F (S) =

ℓ∑
j=1

FB(j−1)(bj) +

k−ℓ∑
i=1

FB(ℓ)∪A(i−1)(ai)

≥ β · (1− ε) ·

 ℓ∑
j=1

FB(j−1)(y(j)) +

k−ℓ∑
i=1

FB(ℓ)∪A(i−1)(x(i))

 .

(Using Lemma C.4 and the fact that E holds) (48)

Next, we lower bound the expected value of each term in the parenthesis in the RHS. Fix any j ∈ [ℓ]. Let c1, c2, . . . , cj−1 ⊆
B(j − 1) be a rearrangement of the elements of B(j − 1) such that Eµ [F (cr)] ≥ Eµ [F (cr+1)] for each r ∈ [j − 2]. Since
Y (j − 1) is the set j − 1 candidates in G2 corresponding to the j − 1 largest values in {Eµ [F (c)] | c ∈ G2}, it follows that

∀r∈[j−1], Eµ [F (yr)] ≥ Eµ [F (cr)] . (49)

We consider two cases depending on the value of y(j) ∈ Y (j) to compute a lower bound.

Case A (y(j) ̸∈ Y (j − 1)): Since y(j) ∈ Y (j) and y(j) ̸∈ Y (j − 1), in this case y(j) = yj . The following lower bound holds

Eµ

[
F{c1,c2,...,cj−1}(y(j))

]
= Eµ

[
F{c1,c2,...,cj−1}(yj)

]
(Using that, in this case, y(j) = yj) (50)

Let R ⊆ T ⊆ C be the following sets

R := {c2, . . . , cj−1} and T := {c2, . . . , cj−1, yj} .

Substituting these in the above equation, implies the following equation

Eµ

[
F{c1,c2,...,cj−1}(yj)

]
= Eµ [F (c1 ∪ T )]− Eµ [F (c1 ∪R)]

= Eµ [FT (c1)]− Eµ [FR (c1)] + Eµ [F (T )]− Eµ [F (R)]

≥ Eµ [FT (y1)]− Eµ [FR (y1)] + Eµ [F (T )]− Eµ [F (R)]

(Using Eµ [F (y1)] ≥ Eµ [F (c1)] and the fact that F is order-preserving with respect to µ)
= Eµ [F (y1 ∪ T )]− Eµ [F (y1 ∪R)]

= Eµ

[
F{y1,c2,...,cj−1}(yj)

]
.

Similarly, using that Eµ [F (y2)] ≥ Eµ [F (c2)], it follows that

Eµ

[
F{y1,c2,...,cj−1}(yj)

]
≥ Eµ

[
F{y1,y2,...,cj−1}(yj)

]
.
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More generally, it holds that for each r ∈ [j − 2]

Eµ

[
F{y1,...,yr−1,cr,cr+1,...,cj−1}(yj)

]
≥ Eµ

[
F{y1,...,yr−1,yr,cr+1,...,cj−1}(yj)

]
.

Chaining these j − 2 inequalities and Equality (50), it follows that

Eµ

[
F{c1,c2,...,cj−1}(y(j))

] (50)
≥ Eµ

[
F{c1,c2,...,cj−1}(yj)

]
≥ Eµ

[
F{y1,y2,...,yj−1}(yj)

]
. (51)

Case B (y(j) ∈ Y (j − 1)): Suppose y(j) = ys ∈ Y (j − 1). In this case, the following lower bound holds

Eµ

[
F{c1,c2,...,cj−1}(y(j))

]
= Eµ

[
F{c1,c2,...,cj−1}(ys)

]
(Using that, in this case, y(j) = ys)

≥ Eµ

[
F{c1,c2,...,cj−1}(yj)

]
(Using Eµ [F (ys)] ≥ Eµ [F (yj)] and the fact that F is order-preserving with respect to µ)

≥ Eµ

[
F{y1,y2,y3,...,yj−1} (yj)

]
. (Using Equation (51))

Hence, in either case, the following holds

Eµ

[
F{c1,c2,...,cj−1}(y(j))

] {c1,c2,...,cj−1}=B(j−1)
= Eµ

[
FB(j−1)(y(j))

]
≥ Eµ

[
FY (j−1) (yj)

]
. (52)

Replacing B(j − 1), Y (j − 1), y(j), G2, and j by B(ℓ) ∪ A(i − 1), X(i − 1), x(i), G1, and i gives the following lower
bound

Eµ

[
FB(ℓ)∪A(i−1)(x(i))

]
≥ Eµ

[
FY (ℓ)∪X(i−1) (xi)

]
. (53)

Substituting Equations (52) and (53) in Equation (48), we get that

F (S) ≥ β · (1− ε) ·

 ℓ∑
j=1

FY (j−1)(yj) +

k−ℓ∑
i=1

FY (ℓ)∪X(i−1)(xi)


= β · (1− ε) · (F (Y (ℓ) ∪X(k − ℓ)))

= β · (1− ε) · F (M). (Using that Y (ℓ) ∪X(k − ℓ) = M )

C.1.2. PROOF OF LEMMA C.2

Proof. Let E be the following event

∀T=C or (T⊆C : |T |≤k), ∀c∈C , |FT (c)− Eµ [FT (c)]| ≤ τ

√
nk log

m

δ
and

∣∣∣F̂T (c)− Eµ̂

[
F̂T (c)

]∣∣∣ ≤ τ

√
nk log

m

δ
.

From Lemma C.3, it follows that Pr[E ] ≥ 1− 2δ. Suppose the event E holds. Since M is the set of k candidates with the
largest values of Eµ [F (·)] and F is order preserving with respect to µ, it holds that

∀ d ∈ M, ∀ c ̸∈ M, Eµ [FS(d)] ≥ Eµ [FS(c)] .

Further, as E holds, the following inequality also holds

∀ d ∈ M, ∀ c ̸∈ M, FS(d) ≥ FS(c)− 2τ

√
nk log

m

δ
. (54)

Suppose |M ∩ S⋆| = a. Since both M and S⋆ have size k, it holds that |M\S⋆| = |S⋆\M | = k − a. Let

M\S⋆ := {d1, d2, . . . , dk−a} and S⋆\M := {c1, c2, . . . , ck−a} .

For each i ∈ [k − a], define

D(i) := {d1, d2, . . . , di} and C(i) := {c1, c2, . . . , ci}
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For i = 0, define D(0) and C(0) to be the emptyset. Conditioned on E , it holds that

F (M) = F (M ∩ S⋆) + FM∩S⋆(M\S⋆) = F (M ∩ S⋆) + FM∩S⋆ ({d1, d2, . . . , dk−a}) . (55)

Next, we lower bound FM∩S⋆ {d1, d2, . . . , dk−a}). The following inequality holds

FM∩S⋆ ({d1, d2, . . . , dk−a}) = FM∩S⋆ ({d2, . . . , dk−a}) + F(M∩S⋆)∪{d2,...,dk−a} (d1)

(54)
≥ FM∩S⋆ ({d2, . . . , dk−a}) + F(M∩S⋆)∪{d2,...,dk−a} (c1)− 2τ

√
nk log

m

δ

= FM∩S⋆ ({c1, d2, . . . , dk−a})− 2τ

√
nk log

m

δ
.

Similarly, for any r ∈ [k − a], it holds that

FM∩S⋆ ({c1, . . . , cr−1, dr, dr+1 . . . , dk−a}) ≥ FM∩S⋆ ({c1, . . . , cr−1, cr, dr+1 . . . , dk−a})− 2τ

√
nk log

m

δ
.

Chaining these k − a inequalities, we get that

FM∩S⋆ ({d1, d2, . . . , dk−a}) ≥ FM∩S⋆ ({c1, c2, . . . , ck−a})− 2(k − a) · τ
√

nk log
m

δ
.

Substituting this in Equation (55) and upper bounding the coefficient of the second term, 2(k − a), by 2k implies that

F (M) ≥ F (M ∩ S⋆) + FM∩S⋆ ({c1, c2, . . . , ck−a})− 2k · τ
√

nk log
m

δ

≥ F (S⋆)− 2k · τ
√
nk log

m

δ
. (56)

To convert this to a multiplicative guarantee, we need to lower bound F (S⋆). Since S⋆ maximizes F among all sets of size
at most k and M has size k, a lower bound on F (S⋆) is as follows

F (S⋆) ≥ F (M)

≥
∑
c∈M

FC\{c}(c)

≥ k · min
c∈M

FC\{c}(c)

≥ k · min
c∈M

Eµ

[
FC\{c}(c)

]
− kτ

√
nk log

m

δ
(Using that the event E holds)

≥ kn · min
c∈M

Eµ

[
fC\{c}(c,≻)

]
− kτ

√
nk log

m

δ
(Using the separability of F ; see Definition 2.2)

≥ αknτ − kτ

√
nk log

m

δ
(Using the definition of α; see Definition 3.1)

≥ αknτ

2
(Using that n ≥ n0(ε0, δ0) ≥ α−2k log m

δ ) (57)

Using this inequality we can get a multiplicative lower bound on F (M) as follows

F (M)
(56)
≥ F (S⋆)

(
1− 2k

F (S⋆)
· τ

√
nk log

m

δ

)
(57)
≥ F (S⋆)

(
1− 4k

αknτ
· τ

√
nk log

m

δ

)
≥ (1− ε) · F (S⋆) . (Using that n ≥ n0(ε0, δ0) ≥ 16α−2k log m

δ ) (58)
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it follows that F (S⋆) ≥ minc∈M F (c). From the definition of α, we have that minc∈M Eµ [F (c)] ≥ nατ . Conditioned
on E , it holds that minc∈M F (c) ≥ minc∈M Eµ [F (c)] − τ

√
nk log m

δ . Chaining the last three inequalities, shows that
conditioned on E

F (S⋆) ≥ nατ − τ

√
nk log

m

δ
≥ nατ

2
(Since n ≥ n(ε0, δ0) ≥ α−2 · k · log m

δ ) (59)

Finally, as Pr[E ] ≥ 1− 2δ, the above inequality implies the desired result:

Pr
µ,µ̂

[F (M) ≥ F (S⋆) · (1− ε)] ≥ 1− 2δ.

C.2. Additional Remarks About Theorem 3.2

Our definition of smoothness is also relevant to works that study the robustness of scoring functions to noise in the “ground
truth” preference list. These works assess the capabilities of scoring functions to uncover some ground truth from noisy
signals, which is a popular question in the field of epistemic social choice (Procaccia et al., 2012; Caragiannis et al., 2016;
Caragiannis & Micha, 2017a; Caragiannis et al., 2022). Our results and smoothness definitions extend to this setting as
follows. Suppose there is a ground truth preference list ≻truth of all candidates. The generative model µ of latent preferences
returns ≻truth with probability one, and all candidates are part of the disadvantaged group (i.e., G1 is empty). Now, the
noise model one is interested in simply becomes our generative model µ̂ for biased preference lists.

The smoothness of a function then gives insights into its robustness to such noise generalizing some concepts from the
literature: For instance, in a closely related setting, Caragiannis et al. (2022) study the robustness of approval-based
multiwinner scoring functions and introduce the notion of “accurate in the limit,” which roughly speaking means that if the
number of voters is high enough, then the underlying best committee maximizes the score function with respect to the noisy
votes with high probability. This can be captured by our smoothness definition. If for some noise model, the scoring function
F is (α, β, γ)-smooth with β = 1, then our results imply that F is accurate in the limit (Theorem 3.2). Moreover, unlike
existing work, Theorem 3.2 also gives a bound on how many noisy votes are required to achieve a (1− ε)-“approximately”
optimal committee (Caragiannis et al., 2022).
Remark C.5 (Comparing α with other notations). Further, our work is related to a line of works on predicting the outcome
of an election by sampling some of the voters (Bhattacharyya & Dey, 2021; Dey et al., 2022). These works bound the number
of voters required to accurately predict the outcome of the election. Such sampling bounds are often parameterized by the
margin of victory (Magrino et al., 2011; Xia, 2012), i.e., the lead of the election winner in the full election. Conceptually,
the margin of victory is related to α in the definition of smoothness (Definition 3.1), as α captures the quality of the weakest
candidate of the winning committee and thereby in some sense its “lead” against the remaining ones. Also, note that α has
a similar form as the curvature of submodular functions. However, there are some significant differences between them
implying that the curvature does not measure the effectiveness of representational constraints, as, e.g., the curvature is
unable to distinguish modular functions; see discussions in Remark C.6.
Remark C.6 (Comparison of α and the curvature of submodular functions). The curvature of a submodular function
often shows up in approximation-ratios of (constrained) monotone submodular maximization algorithms (Conforti &
Cornuéjols, 1984; Vondrák, 2010). The curvature λ(f) ∈ [0, 1] of Eµ [f(·,≻)] is defined as 1−minS⊆C,c̸∈S

Eµ[fS(c,≻)]
Eµ[f(c,≻)] .9

Hence, 1
1−λ(f) = minS⊆C,c̸∈S

Eµ[fS(c,≻)]
Eµ[f(c,≻)] . If µ = µ̂, then this has a similar form as α in Definition 3.1, but there are a few

important differences: the main difference is the denominator in 1
1−λ(f) depends both on c and f , whereas the denominator

in α depends f but not c. Because of this difference, while λ(f) measures the “closeness” of Eµ [f(·)] to being modular, α
is not related to the “closeness” to being modular. Many common multiwinner voting functions (including the SNTV and
Borda rules) are modular. Hence, the curvature λ(f) of all of these functions (including, both the SNTV and the Borda rule)
are the same (equal to 0). However, as our results show, in some cases, representational constraints have significantly higher
effectiveness for the Borda rule compared to the SNTV rule (Theorem 3.3). Thus, the curvature is not the right parameter to
measure the effectiveness of lower-bound constraints. In contrast to the curvature, α varies across modular functions (e.g.,
Theorem 3.3).

9Note that the curvature of Eµ [f(·,≻)] is well-defined as it is a submodular function.
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C.3. Proof of Theorem 3.3: Bounding α For the Utility-Based Model

In this section, we prove Theorem 3.3–which lower bounds α for the utility-based latent and biased generative models.

Recall that in the utility-based model (Definition 2.5), the variable η is drawn from the uniform distribution on [0, 1]. We
will, in fact, prove a more general version of the above lemma that holds for any distribution of η that satisfies certain
properties (Definition C.7). With some abuse of notation, we use η to denote both the distribution and a value drawn from
distribution η (independent of all other randomness).

Definition C.7 (Properties of the utility distribution η from Definition 2.6). Let η be the distribution on R≥0 from
Definition 2.6 that parameterizes the generative model µ. Let cdfη : R → [0, 1] be the cumulative distribution function of η.
We define the following properties of η.

• (Linear scaling) We say that the cumulative distribution function of η scales linearly if there exist constants λ0, π ∈ (0, 1)
such that for all λ ∈ (0, λ0) and ρ > 0, cdfη(λρ) ∈

[
πλ · cdfη(ρ), π−1λ · cdfη(ρ)

]
;

• (Exponential tail) We say that η has an exponential tail if there exists a constant π > 0 such that, for all t ≥ π−1,
PrX∼η [X ≥ t] ≤ exp (−πt).

Several distributions satisfy the above properties including the uniform distribution on [0, 1], the exponential distribution, and
the normal distribution truncated to R≥0. Roughly, the linear scaling property ensures that cdfη(λρ) behaves as λ · cdfη(ρ)
for λ and ρ close to 0. The exponential tail property ensures that with high probability the utilities of all candidates are
bounded above. These are relevant as for two candidates c ∈ G1 and d ∈ G2 and any user v ∈ V , the probability that
Pr [ŵv,d > ŵv,c | wv,c] = cdfη

(
θ · wv,d

ωc

)
. The exponential tail ensures that wv,d

ωc
is bounded and, hence, we can invoke

the linear scaling property. The linear scaling property, itself, ensures that the probability that a disadvantaged candidate
d ∈ G2 is placed before an advantaged candidate c ∈ G1 scales with θ.

For each j ∈ [m], let i≻,j be the j-th candidate in ≻. For each j ∈ [m], define σj(f) to be the marginal score of i≻,j with
respect to C \ {i≻,j}, i.e., σj(f) := fC\{i≻,j}({i≻,j} ,≻) for all ≻ ∈ L(C).

For any η which has the properties in Definition C.7, we show the following bounds on α.

Lemma C.8 (Bound on α for the utility-based generative model). Let F =
∑

v∈V f(·,≻v) be a latent multiwinner score
function such that σj > 0 and σj+1 = σj+2 = · · · = 0. Let (µ, µ̂) be generative models in Definitions 2.5 and 2.6 with any
parameters ω ∈ RC

≥0 and θ ∈ (0, 1]. Let µ be such that M ∩G2 ̸= ∅. There exists a θ0 > 0 (which is a function of η and ω)
such that for all θ ∈ (0, θ0) the following bounds holds for α.

Θ
(
θ|G1|−j × α0 ×

σj

τ

)
≤ α ≤ Θ

(
θ|G1|−j

)
.

Where α0 := (τ(f))−1 ·minc∈M Eµ

[
fC\{c}(c,≻)

]
. If ℓ = m− 1, then the upper bound improves to 1. If M ∩G2 = ∅,

the lower bound improves to α0 (the best possible).

Recall the closer α is to 1 the “easier” it is to distinguish candidates in M and in C \M . The above result shows that for
any multiwinner score function F , α is characterized by the value b, which is the smallest position such that fC\c(c,≻) = 0
for any c with pos≻(c) > b. Substituting the values of b for functions F from Section B.1 gives us the following bounds on
α for any θ ∈ (0, θ0).

• If F is the ℓ1 CC rule, then Θ
(
α0 · θ|G1|−1

)
≤ α ≤ Θ

(
θ|G1|−1

)
;

• If F is the b-Bloc rule, then Θ
(
α0 · θ|G1|−b

)
≤ α ≤ Θ

(
θ|G1|−b

)
; and

• If F is the Borda rule, then Θ(α0 · θ) ≤ α ≤ Θ(1).

Substituting the lower bounds on α into Theorem 3.2, we recover Theorem 3.3. It remains to prove Lemma C.8.

Order entries of ω, to get the following values ω(1) ≥ ω(2) ≥ · · · ≥ ω(m). Define ρ0 :=
ω(1)

ω(m)
. Let π, λ0 be the constants

corresponding to ρ0 in the linear scaling property (Definition C.7). Define

θ0 := min {ρ0, λ0, π} .
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Suppose θ ∈ (0, θ0). Fix any candidate c ∈ G2 ∩M and any voter v ∈ V . To prove Lemma C.8, we need to prove that

Θ
(
θm−j × α0 ×

σj

τ

)
≤ 1

τ
· Eµ̂

[
fC\{c}(c,≻)

]
≤ Θ

(
θ|G1|−j

)
. (60)

We can express Eµ̂

[
fC\{c}(c,≻)

]
as follows

Eµ̂

[
fC\{c}(c,⊁)

]
=

m∑
ℓ=1

Pr
µ

[
pos⊁(c) = ℓ

]
σℓ

=

m∑
ℓ=1

Pr
µ̂

[
pos⊁(c) ≤ ℓ

]
(σℓ − σℓ+1) . (61)

We will bound Prµ

[
pos⊁(i) = ℓ

]
. Let cdfη(·) be the cumulative distribution function of distribution η. For each d ∈ C,

let ηd be a draw from distribution η such that wv,d = ωd · ηd. We can upper bound Prµ

[
pos⊁(i) = ℓ

]
as follows

Pr
µ̂

[
pos⊁(c) ≤ ℓ

]
= Eηc

 ∑
S⊆C\{c} : |S|≤ℓ

∏
d∈S

(
1− cdfη

(
ωc · θ · ηc

wd · θI[d∈G2]

)) ∏
d ̸∈S

cdfη

(
ωc · θ · ηc

wd · θI[d∈G2]

)
(Using the fact for all i, j ∈ C, i appears before j in ≻ if and only if ωi · θI[i∈G2] · ηi > ωj · θI[j∈G2] · ηj) (62)

We can separate the second product as follows

∏
d̸∈S

cdfη

(
ωc · θ · ηc

wd · θI[d∈G2]

)
=

∏
d∈G1\S

cdfη

(
ωc · θ · ηc

wd

)
·

∏
d∈G2\S

cdfη

(
ωc · ηc
wd

)
(63)

From the linear scaling property of η (Definition C.7) and the facts that θ ≤ θ0 ≤ λ0 and ωc·ηc

wd
> 0, we have the following

bounds for each d ∈ G1

πθ · cdfη
(
ωc · ηc
wd

)
≤ cdfη

(
ωc · θ · ηc

wd

)
≤ θ

π
· cdfη

(
ωc · ηc
wd

)
≤ θ

π
. (Using that cdfη(x) ≤ 1 for all x ∈ R)

Substituting these bounds in Equation (63), we get

∏
d̸∈S

cdfη

(
ωc · θ · ηc

wd · θI[d∈G2]

)
≤

(
θ

π

)|G1\S|

·
∏

d∈G2\S

cdfη

(
ωc · ηc
wd

)

≤
(
θ

π

)|G1\S|

, (Using that cdfη(x) ≤ 1 for all x ∈ R)∏
d̸∈S

cdfη

(
ωc · θ · ηc

wd · θI[d∈G2]

)
≥ (πθ)

|G1\S| ·
∏
d̸∈S

cdfη

(
ωc · θ · ηc

wd · θI[d∈G2]

)
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Substituting these in Equation (62), implies the following bounds

Pr
µ̂

[
pos⊁(c) ≤ ℓ

]
≤ Eηc

 ∑
S⊆C\{c} : |S|≤ℓ

∏
d∈S

(
1− cdfη

(
ωc · θ · ηc

wd · θI[d∈G2]

))
·
(
θ

π

)|G1\S|


≤ Eηc

[(
θ

π

)|G1|−ℓ
]

(Using that |S| ≤ ℓ, θ ≤ θ0 ≤ π, and cdfη(x) ≤ 1 for all x ∈ R)

≤
(
θ

π

)|G1|−ℓ

,

Pr
µ̂

[
pos⊁(c) ≤ ℓ

]
≥ Eηc

 ∑
S⊆C\{c} : |S|≤ℓ

(πθ)
|G1\S| ·

∏
d∈S

(
1− cdfη

(
ωc · θ · ηc

wd · θI[d∈G2]

))
·
∏
d̸∈S

cdfη

(
ωc · θ · ηc

wd · θI[d∈G2]

)
(Using that |S| ≤ ℓ, θπ ≤ θ0 ≤ 1, and cdfη(x) ≤ 1 for all x ∈ R)

≥ (πθ)
|G1|−ℓ · Pr

µ
[pos≻(c) ≤ ℓ] .

Substituting this in Equation (61), we get

Eµ̂

[
fC\{c}(c,⊁)

]
=

m∑
ℓ=1

Pr
µ̂

[
pos⊁(c) ≤ ℓ

]
(σℓ − σℓ+1)

≤
m∑
ℓ=1

(
θ

π

)|G1|−ℓ

(σℓ − σℓ+1)

=

j∑
ℓ=1

(
θ

π

)|G1|−ℓ

(σℓ − σℓ+1) (Using that σj+1 = σj+2 = · · · = σm = 0)

≤ τ ·
j∑

ℓ=1

(
θ

π

)|G1|−ℓ

(Using that σℓ ≤ τ for all ℓ ∈ [m])

≤ τ ·
(
θ

π

)|G1|−j

. (Using that 0 ≤ θ
π ≤ 1)

We also have the following lower bound

Eµ̂

[
fC\{c}(c,⊁)

]
=

m∑
ℓ=1

Pr
µ̂

[
pos⊁(c) ≤ ℓ

]
(σℓ − σℓ+1)

≥
m∑
ℓ=1

(πθ)
|G1|−ℓ · Pr

µ
[pos≻(c) ≤ ℓ] · (σℓ − σℓ+1)

=

j∑
ℓ=1

(πθ)
|G1|−ℓ · Pr

µ
[pos≻(c) ≤ ℓ] · (σℓ − σℓ+1) (Using that σj+1 = σj+2 = · · · = σm = 0)

≥ (πθ)
|G1|−j · Pr

µ
[pos≻(c) ≤ j] · (σj − σj+1)

(Using that σℓ ≥ σℓ+1 and Prµ [pos≻(c) ≤ ℓ] ≥ 0 for all ℓ ∈ [m])

≥ (πθ)
|G1|−j · Pr

µ
[pos≻(c) ≤ j] · σj (Using that σj+1 = 0.)

≥ (πθ)
|G1|−j · α0

τ
.

(Using that α0 =
∑m

ℓ=1 Prµ [pos≻(c) ≤ ℓ] · (σℓ − σℓ+1) ≤ Prµ [pos≻(c) ≤ j] · τ )

This completes the proof of Equation (60) and, hence, Lemma C.8.
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C.4. Bounding α For the Swapping-Based Model

In this section, we bound the parameter α for any multiwinner scoring function when the biased generative model is the
swapping-based model (Definition B.12) and the latent generative model is µ is any generative model that satisfies the
following condition (for some parameter ρ > 0)

min
c∈C

Eµ

[
fC\{c}(c,≻ )

]
≥ ρ. (64)

Concretely, we prove the following bound on α.

Lemma C.9 (Bounds on α for the swapping-based model). Let F =
∑

v∈V f(·,≻v) be a latent multiwinner score
function. Suppose µ be a generative model such that F is order-preserving with respect to µ (Definition 2.8) and that
satisfies Equation (64) for some ρ > 0. For any numbers ϕ ∈ (0, t−1) and the generative model µ̂ in Definition B.12 with
parameters µ and ϕ, α satisfies the following bound

α ∈ α0 ·
(
1± Eµ

[
1

Z(≻)

]
· O(tϕ)

1− ϕ
· τ
ρ

)
Where α0 := (τ(f))−1 ·minc∈M Eµ

[
fC\{c}(c, ̸≻)

]
and Z(≻) is the normalizing constant corresponding to preference list

≻, as defined in Definition B.12.

Similar to Lemma B.13, the above lemma also does not fix a specific generative model of latent preference lists µ. The
parameter α depends on µ via the terms α0 and Eµ

[
1

Z(≻)

]
. As discussed in Section 2.2.3, in general, we expect Eµ

[
1

Z(≻)

]
to be of the order of Ω (mϕ). If this holds, then Lemma C.9, implies that α ∈ α0

(
1±O

(
m−1t

))
. The proof of Lemma C.9

appears in Section C.4.

Proof of Lemma C.9. Lemma C.9 follows as a corollary of Lemma B.15, which was proved in Section B.3. Consider any
c ∈ M , selecting the set S in Lemma B.15 as C \ {c}, we get that

Eµ

[
fC\{c}(c,≻)

]
· (1− λ) ≤ Eµ̂

[
fC\{c}(c,⊁)

]
≤ Eµ

[
fC\{c}(c,≻)

]
· (1 + λ).

where λ := Eµ

[
1

Z(≻)

]
·O

(
tϕ

1−ϕ · τ
ρ

)
. The lemma follows by taking the minimum over all c ∈ M .

D. Impossibility Results for Problem 2
In this section, we provide a necessary condition for Problem 2. Roughly speaking, we show that if n is not sufficiently large,
representational constraints cannot recover an (approximate) optimal solution. In combination with our algorithmic result,
we observe that under the utility-based model, the number of voters necessary for SNTV or ℓ1-CC to find a close-to-optimal
committee can be much larger than for Borda (Remark D.4).

Again, we let F =
∑

v∈V f(·,≻v) be a latent score function of multiwinner voting, and let (µ, µ̂) be a generative model
defined in Definitions 2.7 and 2.8. We propose the following definition.

Definition D.1 (Contribution of G2 ∩ S⋆). Let 0 ≤ ℓ ≤ k be an integer. Define rℓ :=

Eµ

[
maxS⊆C\(G2∩S⋆):|S|=k,|S∩G2|=ℓ

F (S)
OPT

]
to be the expected maximum ratio between the scores of an optimal com-

mittee S in C \ (G2 ∩ S⋆) with |S ∩G2| = ℓ and S⋆.

1− rℓ measures the contribution of candidates in G2 ∩ S⋆ to F for all subsets S with |S ∩G2| = ℓ. If rℓ is close to 1, we
can safely ignore candidates in G2 ∩ S⋆ and can still find a near-optimal solution from the remaining candidates, even with
constraint K(ℓ). Otherwise, if rℓ is not close to 1, we may need the candidates G2 ∩ S⋆ for a high-score committee. Then if
all candidates in G2 are indistinguishable under µ̂, it is likely that Ŝℓ loses a lot.
Remark D.2 (Discussion on the scale of rℓ). Usually, rℓ becomes smaller as the difference |ℓ− |G2 ∩ S⋆|| becomes larger.
For instance, for SNTV under Definition 2.5 with µ being the uniform distribution on interval [0, 1], suppose ωc = 1 for
all c ∈ S⋆ and ωc = 0.5 for all c ∈ C \ S⋆. We can verify that Eµ[F (c)] ≥ 2Eµ[F (c′)] for any c ∈ S⋆ and c′ ∈ C \ S⋆,
which implies that rℓ ≤ 1 − |ℓ−|G2∩S⋆||

2k when n,m are sufficiently large. This observation matches the intuition that
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a representational constraint K(ℓ) with ℓ ≈ |G2 ∩ S⋆| may be better for debiasing, also observed in (Celis et al., 2020;
Mehrotra et al., 2022).

Another consequence of this example is that we find F (Ŝ) ≪ OPT is possible. If the bias parameter θ < 0.5, we know that
Ŝ is likely to contain only candidates in G1, which results in F (Ŝ) ≤ r0 ·OPT ≤ (1− |G2∩S⋆|

2k ) ·OPT, i.e., Ŝ is far from
optimal.

For each j ∈ [m], let i≻,j be the j-th candidate in ≻. For each j ∈ [m], define τj(f) to be the score of i≻,j ,
i.e., τj(f) := f({i≻,j} ,≻) for all ≻∈ L(C). Let ≻ ∈ L(C) be a fixed preference list and define τmin(f) :=
min {τj(f) : j ∈ [m], τj(f) > 0} to be the smallest non-zero candidate value of f . Our main impossibility result is
summarized as follows.

Theorem D.3 (Impossibility result for Problem 2). Let F : 2C → R≥0 be a score function of multiwinner voting.
Let µ, µ̂ be generative models of latent/biased preference lists such that every ≻v/⊁v is i.i.d. drawn from µ/µ̂. Let
ζ := maxc∈G2

Eµ̂ [f(c,⊁)]. If ζ < τmin(f), k = o(|G2|), and n = o( τmin(f)
mζ ), with probability at least 0.9, F (Ŝℓ) ≤

(rℓ + o(1)) ·OPT holds for every 0 ≤ ℓ ≤ k.

Proof. By the definition of s(f) and ζ, we know that for every c ∈ G2,

Pr
µ̂
[f(c,⊁) > 0] ≤ ζ

s(f)
.

Consequently, we have that

Pr
µ̂
[F̂ (c) = 0,∀c ∈ G2] ≥

(
1− ζ

s(f)

)mn

.

Then since n = o(=
(

s(f)
mζ

)
, we have

Pr
µ̂
[F̂ (c) = 0,∀c ∈ G2] ≥ 1− o(1).

Conditioned on the event that F̂ (c) = 0 holds for all c ∈ G2, Ŝℓ exactly selects ℓ candidates from G2 since G2 does not
contribute to F̂ . Moreover, we can not distinguish candidates in G2 and can only randomly select ℓ candidates from G2 in
Ŝℓ, which results in o(1) probability to select any candidate from G2 ∩ S⋆ since |G2 ∩ S⋆| ≤ k = o(|G2|). Overall, with
probability at least 1− o(1), we have that

F (Ŝℓ) ≤ max
S⊆C\(G2∩S⋆):|S|=k,|S∩G2|=ℓ

F (S).

Thus, we conclude the theorem by the definition of rℓ.

Observe that the above theorem considers a more general generative model (µ, µ̂) that does not require order preserving
properties in Definitions 2.7 and 2.8. Roughly, Theorem D.3 indicates that the required number of voters is n = Ω( τmin(f)

mζ )

which is non-trivial when τmin(f)
ζ ≫ m. Note that τmin(f) ≤ τ1(f) always holds but usually has at most a poly(m)

gap. For instance, τmin(f) = τ1(f) for SNTV and Bloc, and τmin(f) =
τ1(f)
m−1 for Borda and ℓ1-CC. Also, note that ζ is

comparable to min
c∈M

Eµ̂

[
fC\{c}(c, ̸≻)

]
, specifically, ζ ≤ min

c∈M
Eµ̂

[
fC\{c}(c, ̸≻)

]
for SNTV and ℓ1-CC. Thus, the scale of

τmin(f)
ζ and 1

α in Definition 3.1 could be the same order, e.g., τmin(f)
ζ ≈ Ω( 1

α·poly(m) ), which leads to a required number of
voters n = Ω( 1

α·poly(m) ). Combining with the bound on α in Section 3.3, this required voter number is interesting; see the
following comparison.
Remark D.4 (Comparison of robustness between different rules). Specifically, under the utility-based generative model,
we have that n = Ω( θ−m+1

poly(m) ) for SNTV and ℓ1-CC and n = Ω( θ−1

poly(m) ) for Borda to achieve a near-optimal solution Ŝℓ

with a representational constraint, say F (Ŝℓ) ≈ OPT. Combining with Theorem 3.3, we know that the required voting
number of Problem 2 for SNTV and ℓ1-CC is at least Ω(θ−m+1), which is much larger than the sufficient voting number
O(θ−2 · poly(m)) for Borda. Thus, we may conclude that Borda is “more robust” than SNTV and ℓ1-CC under the
utility-based model.
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E. Summary of Bounds on Smoothness Parameters
In this section, we summarize all bounds on smoothness parameters proved in this work.

First, we summarize results for the utility-based model (see Definition 2.6), which also apply to variants where η is drawn
from an exponential or normal distribution (instead of the uniform distribution) on [0, 1].

Multiwinner scoring function α (Lemma C.8) β (Lemma B.7) γ (Lemma B.7)

SNTV Θ
(
θ−2(m−1)

)
1−Θ(m−1/2) 1−Θ(m−3/2)

ℓ1-CC Θ
(
θ−2(m−1)

)
1−Θ(m−1/2) 1−Θ(m−3/2)

Borda Θ
(
θ−2

)
1−Θ(m−1/2) 1−Θ(m−5/2)

Table 2. Smoothness parameters for the utility-based model Definition 2.6. The formal statements of the results appear as Lemmas B.7
and C.8. Note that these results hold for the utility-based model in Definition 2.6 as well as its variants where η is not uniformly distributed
on [0, 1] but is instead drawn from, say, an exponential distribution.

Next, we summarize the results for the swapping-based model (Definition B.12).

Multiwinner scoring function α (Lemma C.9) β (Lemma B.13) γ (Lemma B.13)

SNTV 1−Θ(ϕt) 1−Θ(ϕt) 1−Θ(ϕt)
ℓ1-CC 1−Θ(ϕt) 1−Θ(ϕt) 1−Θ(ϕt)
Borda 1−Θ(ϕt) 1−Θ(ϕt) 1−Θ(ϕt)

Table 3. Smoothness parameters for the swapping-based model (Definition B.12). The formal statements of the results appear as
Lemmas B.13 and C.9.

F. Case Study: Utility-Based Generative Model of Latent and Biased Preferences
In this section, we present a self-contained discussion of our main result (Theorem 3.2) within the utility-based model of
preferences (Definitions 2.5 and 2.6). In the utility-based model, each candidate c has an intrinsic utility ωc ≥ 0. The true or
latent utility of candidate c for voter v is

wv,c = ηv,c · ωc, (65)

where ηv,c is a random variable drawn uniformly at random from [0, 1] and independent of ηv′,c′ for any v′ ̸= v and c′ ̸= c.
These latent utilities, in turn, define the latent preference list of voters: for each voter v, ≻v is the list of candidates c
arranged in decreasing order of wv,c. The voters, however, do not observe their latent utilities for the candidates. Instead,
they observe a (possibly) biased version of these latent utilities. These observed utilities are modeled by a bias parameter
θ ∈ [0, 1]: for each candidate c and voter v, the observed utility of c for v is

ŵv,c :=

{
wv,c if c ∈ G1,

θ · wv,c if c ∈ G2.
(66)

Greedy is optimal without bias. Recall that our goal is to study the latent quality of solutions produced by algorithms
that satisfy representational constraints in the presence of bias. For simplicity, suppose that the exact expected observed,
biased marginal contributions Eµ̂ [fS(c,⊁)] are known for each c ∈ C and S ⊆ C (we relax this assumption later
in this section). Consider the greedy algorithm that, in each iteration t ∈ [k], selects the candidate c that maximizes
the expected marginal contribution to the set St selected so far (i.e., argmaxc∈C\St

Eµ̂ [fSt
(c,≻)]). Without bias (i.e.,

θ = 1), it can be shown that this algorithm outputs the set Sk that has the optimal latent utility among sets of size k (i.e.,
Eµ [f(Sk,≻)] = maxS⊆C : |S|=k Eµ [f(S,≻)]). Intuitively, this is because of the following invariant: for any c, c′ ∈ C

if ωc > ωc′ , then, for any S ⊆ C \ {c, c′} , Eµ [fS(c,≻)] > Eµ [fS(c
′,≻)] . (67)

This invariant itself holds because of the facts that: (1) if ωc > ωc′ then with probability strictly larger than 1
2 , c appears

before c′ in ≻v (for any v) and (2) f is domination sensitive (Definition 2.2).
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Constrained-greedy is optimal with bias. However, when there is bias (i.e., θ < 1), the above invariant does not hold
and the greedy algorithm may achieve a low latent utility. Nevertheless, because the latent utilities of all candidates in the
same group are uniformly reduced (Equation (66)), a group-wise version of the invariant holds: for any two candidates c, c′

in the same group (G1 or G2) for any c, c′ ∈ C

if ωc > ωc′ , then, for any S ⊆ C \ {c, c′} , Eµ̂ [fS(c,⊁)] > Eµ̂ [fS(c
′,⊁)] . (68)

This property enables us to design an algorithm that, given k and the expected biased marginal contributions utilities of
all candidates (i.e., Eµ̂ [fS(c,⊁)] for all c ∈ C and C ⊆ S) outputs a size-k subset satisfying representational constraints
that has optimal latent utility. Let S⋆ be any size-k subset maximizing the expected latent utility. Let ℓ = |S⋆ ∩ G2|. It
can be shown that the algorithm that first greedily selects ℓ candidates from G2 and, then, greedily selects k − ℓ candidates
from G1 achieves optimal expected latent utility (Algorithm 1). This is because (1) for any S, the top t candidates in G1

(respectively G2) by expected observed scores Eµ̂ [fS(c,⊁)] is the same as the top t candidates in G1 (respectively G2) by
expected latent scores Eµ [fS(c,≻)] and (2) S⋆ consists of the top k − ℓ (respectively ℓ) candidates from G1 (respectively
G2) by expected latent scores. Where the first fact is implied by Equations (67) and (68) and the second fact holds because
of Equation (67).

Thus, if one has access to the expected marginal contributions of the candidates {Eµ̂ [fS(c,⊁)] : c ∈ C \ S} (for all S)
and ℓ = |S⋆ ∩ G2|, then one can execute the aforementioned algorithm, which outputs a size-k subset satisfying the
representational constraints specified by ℓ and maximizing the expected latent utility. As mentioned before in Section 3, ℓ
can be estimated under natural assumptions on ω. Meanwhile, it remains to discuss how one has access to accurate expected
observed marginal contributions.

Effect of n on the effectiveness of representational constraints. In Problem 2, the input is n samples of observed
preference lists {⊁v}v generated as described above. For any S ⊆ C and c ∈ C \ S, a natural estimate of Eµ̂ [fS(c,⊁)] is
the sample mean 1

n

∑
v∈V fS(c,⊁v). One can prove an additive concentration bound for the resulting estimate (e.g., see

Lemma C.3 for a similar result). For any δ > 0, it holds that:

Pr

[
∀c∈C , ∀S⊆C\{c} : |S|=k−1

∣∣∣∣∣ 1n ∑
v∈V

fS(c,⊁v)− Eµ̂ [fS(c,⊁)]

∣∣∣∣∣ ≥ τ

√
nm log

m

δ

]
≤ δ. (69)

Note that, for the above bound to be meaningful, the expected observed utilities Eµ̂ [fS(c,⊁)] must be large compared to
the error term τ

√
nm log m

δ . We parameterize the scale of expected observed utilities using a parameter α◦:10

α◦(ω, θ, f) =
1

τ1(f)
min
c∈C

Eµ̂

[
fC\{c}(c, ̸≻)

]
,

where τ1(f) is a normalizing constant, defined as the maximum possible expected score Eµ [f(c,≻)] of a candidate. Instead
of taking the minimum over each candidate c ∈ C, one can show that it suffices to take a minimum over only certain
candidates. We do so in Definition 3.1 and Theorem 3.2.

For the utility-based model, a lower bound on α◦ is sufficient to ensure that, when n is large enough, representational
constraints achieve near-optimal latent utility.

Theorem F.1 (Informal version of Theorem 3.2 specialized to then utility-based model). Let F : 2C → R≥0 be a
multiwinner score function and µ, µ̂ be generative models corresponding to the utility-based model specified by ω and θ.
For any 0 < ε, δ < 1, if

n ≥ poly(m) · log (1/δ)
poly (ε · α◦(ω, θ, f))

,

there is an algorithm that given ℓ= |S⋆∩G2| and observed preferences {⊁v}v∈V , outputs a size-k subset S∈K(ℓ) such that

Prµ,µ̂ [F (S) ≥ (1− ε) ·OPT] ≥ 1− δ.

Generalizations. To derive Theorem F.1, we used two main properties: (1) in the absence of bias, there is a greedy algorithm
that achieves the optimal latent utility, and (2) that the order of candidates in any one group (G1 or G2) by their expected

10We use the superscript in α◦ to differentiate it from α in Definition 3.1.
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latent utilities is the same as their order by expected observed utilities (Equations (67) and (68)). Neither of these conditions
may be true beyond the utility-based model.

Order-preservation with respect to µ ensures that the greedy algorithm is optimal. In more general models, the first condition
in order-preservation with respect to µ (Definition 2.7) ensures that the greedy algorithm achieves the optimal latent utility
in the absence of bias. The second condition in order-preservation with respect to µ (Definition 2.7) enables us to show
that, even the constrained version of the greedy algorithm (which first selects k − ℓ candidates from G1 and then selects ℓ
candidates from G2) achieves the optimal latent utility.

Order-preservation between µ and µ̂ bounds distance between orderings of candidates by observed and latent preferences.
Beyond the utility-based model, we may not be able to guarantee that the order of candidates in each group (G1 and G2)
by their expected latent utilities is the same as their order by expected observed utilities. Indeed, this is not true in the
swapping-based model, where there is constant β such that if two candidates c, c′ in the same group have latent scores
Eµ [fS(c,≻)] and Eµ [fS(c

′,≻)] within a multiplicative factor β (i.e., βEµ [fS(c
′,≻)] ≤ Eµ [fS(c,≻)] ≤ 1

βEµ [fS(c
′,≻)]),

then it is possible that (see Example B.14)

Eµ [fS(c,≻)] > Eµ [fS(c
′,≻)] , but, Eµ̂ [fS(c,⊁)] < Eµ̂ [fS(c

′,⊁)] .

Order-preservation between µ and µ̂ (Definition 2.8) bounds the “distance” between the orderings of candidates in each
group (G1 and G2) by their expected latent utilities and their order by expected observed utilities: it requires the relative
order of two candidates c, c′ in the same group to be the same if their latent utilities are at least a factor of β apart, i.e., if
either Eµ [fS(c

′,≻)] ≤ β · Eµ [fS(c,≻)] or β · Eµ [fS(c,≻)] ≥ Eµ [fS(c
′,≻)].

G. Tool to Study Smoothness and Effectiveness of Representational Constraints With Novel Bias
Models

In this section, we illustrate how one could use the code as a tool for preliminary studies of the effectiveness of representa-
tional constraints with respect to novel bias models and multiwinner score functions, for which theoretical bounds may not
be readily available.

The code is available at the following link: https://github.com/AnayMehrotra/Selection-with-
Multiple-Rankings-with-Bias

G.1. Implementation Details

The code takes as input oracles that (1) evaluate a multiwinner score function F and (2) sample from generative models
(µ, µ̂). These oracles are specified by (python) functions. The code also takes m, n, and k as input.

First, for the specified m and k, it outputs estimates (α̃, β̃, γ̃) ∈ [0, 1] along with corresponding confidence intervals,
which follow from a concentration inequality (Lemma C.3). This allows for theoretical estimates of the capabilities of
representational constraints using our main result Theorem 3.2. (Note that α, β, γ are independent of n and ℓ). Concretely,
we numerically estimate (α, β, γ) as follows: since the empirical averages are concentrated around the expectations
Eµ[fS(c,≻)] and Eµ̂[fS(c, ̸≻)], we use this to compute α from its definition (Definition 3.1). As β and γ, given any
0 ≤ β ≤ 1, we compute 0 ≤ γ ≤ 1 that satisfies the condition in Definition 2.8 via binary search.

Second, given values of n, m, and k, the code estimates the fraction of the optimal score recovered by representational
constraints for the given F with respect to the given (µ, µ̂).

In the next section, we illustrate the code using a set of latent generative models provided by (Szufa et al., 2020) and the
corresponding swapping-based biased generative model (Definition B.12).

G.2. Illustration of the Code: Models of Latent Preferences by (Szufa et al., 2020) and the Swapping-Based Bias
Model

In this section, to illustrate use cases of our code, we analyze the effectiveness of the representational constraints with (1) the
family of generative models proposed by (Szufa et al., 2020) and (2) using the swapping-based bias model (Definition B.12).

Note that for any pair of generative models (µ, µ̂) one can study the effectiveness of representational constraints with a
multiwinner score function F using our theoretical results, by computing the smoothness parameters for Definition 3.1.
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Concretely, for the swapping-based model, one can use the bounds in Lemmas B.13 and C.9. The usefulness of the code is
in doing preliminary analysis on novel bias models, for which theoretical bounds may not be available.

G.2.1. SETUP

We vary the generative model µ across a subset of generative models provided by (Szufa et al., 2020); namely, we consider
the Single-Peaked model by Conitzer, the Mallows model, the Polya-Eggenberger Urn model, and the Impartial culture
model. We fix µ̂ to be the generative model corresponding to the swapping-based bias model (Definition B.12). We fix the
number of voters to be m = 50, the size of the committee to be k = 10, and vary the number of voters n ∈ {25, 50, 100}.
We fix the groups G1 and G2 to have equal size (i.e., |G1| = |G2|). We select the partitioning into groups uniformly at
random. The fraction of possible executed swaps is specified by a parameter λ ∈ [0, 1].

In each simulation, we fix a generative model µ, a value of n ∈ {25, 50, 100}, and a voting rule F from SNTV and Borda.
For fixed µ, n, and F , we vary λ over [0, 1]. Given a µ, n, F , and λ, we draw latent preferences {≻v| v ∈ V } i.i.d. from
µ. For each v ∈ V , we compute the maximum number of swaps tmax(v) that can be performed on the preference list ≻v

before all candidates in G1 are placed before all candidates in G2. Concretely, tmax(v) is the Kendall-Tau distance between
preference lists ≻v and ≻⋆

v , where ≻⋆
v is the unique preference list that (1) ranks all candidates in G1 before any candidate

in G2 and (2) satisfies for any c, c′ in the same group (G1 or G2) c ≻v c′ if and only if c ≻⋆
v c′.

In the swapping-based model, we arbitrarily fix ϕ = 0.5 for illustration. µ̂ is the generative model defined by the
swapping-based biased model specified by ϕ = 0.5 and which, for each v ∈ V , performs t swaps, where

t = λ · tmax(v).

Recall that ϕ controls the average difference in the positions of swapped candidates. When ϕ is close to 0, with high
probability, all swapped candidates are “neighbours” in the preference lists. At the other extreme, when ϕ is close to 1,
candidates who are “far” in the preference lists are also swapped.

G.2.2. OBSERVATIONS

The results appear in Figure 1. In We observe that, across all choices of µ, n, and fraction of swaps λ: representational
constraints recover a higher fraction of the optimal score with the Borda rule compared to the SNTV rule: for Borda, the
fraction recovered is > 0.99 across all simulations, whereas, for SNTV, it can be as low as 0.75 Further, for the SNTV rule,
the fraction of the optimal score recovered by representational constraints increases with n (for a given λ). For the Borda
rule, since the fraction of the optimal score recovered by representational constraints is already larger than 0.99 differences
across n are small.

These observations align with our theoretical results: From Theorem 3.3, we expect representational constraints to have a
higher effectiveness with the Borda rule compared to the SNTV rule. Similarly, from Theorems 3.2 and D.3, we expect the
effectiveness of the representational constraints to increase with n.
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Figure 1. Simulations results with different families of generative models µ: The plots show the fraction of the score recovered by
representational constraints with different preference aggregation functions F and generative models µ, under the swapping-based bias
model with ϕ = 0.5 (Definition B.12). In all of these simulations, the number of candidates is m = 50 and the size of the output
committee is k = 10. The number of candidates n and the generative model µ vary and are specified with the sub-figures. The y-axis
shows the fraction of the optimal score recovered by representational constraints. The x-axis shows the number of swaps t allowed in the
swapping-based model.
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