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Abstract
Counterexample-guided repair aims at creat-
ing neural networks with mathematical safety
guarantees, facilitating the application of neu-
ral networks in safety-critical domains. How-
ever, whether counterexample-guided repair is
guaranteed to terminate remains an open ques-
tion. We approach this question by showing that
counterexample-guided repair can be viewed as a
robust optimisation algorithm. While termination
guarantees for neural network repair itself remain
beyond our reach, we prove termination for more
restrained machine learning models and disprove
termination in a general setting. We empirically
study the practical implications of our theoretical
results, demonstrating the suitability of common
verifiers and falsifiers for repair despite a disad-
vantageous theoretical result. Additionally, we
use our theoretical insights to devise a novel algo-
rithm for repairing linear regression models based
on quadratic programming, surpassing existing
approaches.

1. Introduction
The success of artificial neural networks in such diverse
domains as image recognition (LeCun et al., 1998), natu-
ral language processing (Brown et al., 2020), predicting
protein folding (Senior et al., 2020), and designing novel
algorithms (Fawzi et al., 2022) sparks interest in applying
them to more demanding tasks, including applications in
safety-critical domains. Neural networks are proposed to
be used for medical diagnosis (Amato et al., 2013), au-
tonomous aircraft control (Jorgensen, 1997; Julian et al.,
2018), and self-driving cars (Bojarski et al., 2016). Since a
malfunctioning of such systems can threaten lives or cause

1Department of Computer and Information Science, University
of Konstanz, Konstanz, Baden-Württemberg, Germany. Corre-
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environmental disaster, we require mathematical guarantees
on the correct functioning of the neural networks involved.
Formal methods, including verification and repair, allow
obtaining such guarantees (Pulina & Tacchella, 2010). As
the inner workings of neural networks are opaque to human
engineers, automated repair is a vital component for creating
safe neural networks.

Alternating search for violations and removal of violations
is a popular approach for repairing neural networks (Pulina
& Tacchella, 2010; Goodfellow et al., 2015; Guidotti et al.,
2019a; Dong et al., 2021; Goldberger et al., 2020; Sivaraman
et al., 2020; Tan et al., 2021; Bauer-Marquart et al., 2022).
We study this approach under the name counterexample-
guided repair. Counterexample-guided repair uses inputs
for which a neural network violates the specification (coun-
terexamples) to iteratively refine the network until the net-
work satisfies the specification. While empirical results
demonstrate the ability of counterexample-guided repair to
successfully repair neural networks (Bauer-Marquart et al.,
2022), a theoretical analysis of counterexample-guided re-
pair is lacking.

In this paper, we study counterexample-guided repair
from the perspective of robust optimisation. Viewing
counterexample-guided repair as an algorithm for solving
robust optimisation problems allows us to encircle neural
network repair from two sides. On the one hand side, we are
able to show termination and optimality for counterexample-
guided repair of linear regression models and linear clas-
sifiers, as well as single ReLU neurons. Coming from the
other side, we disprove termination for repairing ReLU net-
works to satisfy a specification with an unbounded input set.
Additionally, we disprove termination of counterexample-
guided repair when using generic counterexamples without
further qualifications, such as being most-violating. While
we could not address termination for the precise robust pro-
gram of neural network repair with specifications having
bounded input sets, such as L∞ adversarial robustness or
the ACAS Xu safety properties (Katz et al., 2017), our ro-
bust optimisation framework provides, for the first time to
the best of our knowledge, fundamental insights into the
theoretical properties of counterexample-guided repair.

Our analysis establishes a theoretical limitation of repair
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with otherwise unqualified counterexamples and suggests
most-violating counterexamples as a replacement. We em-
pirically investigate the practical consequences of these find-
ings by comparing early-exit verifiers — verifiers that stop
search on the first counterexample they encounter — and
optimal verifiers that produce most-violating counterexam-
ples. We complement this experiment by investigating the
advantages of using falsifiers during repair (Bauer-Marquart
et al., 2022), which is another approach that leverages sub-
optimal counterexamples. These experiments do not reveal
any practical limitations for repair using early-exit verifiers.
In fact, using an early-exit verifier consistently yields faster
repair for ACAS Xu networks (Katz et al., 2017) and an
MNIST (LeCun et al., 1998) network, compared to using
an optimal verifier. While the optimal verifier often allows
performing fewer iterations, this advantage is offset by its
additional runtime cost most of the time. Our experiments
with falsifiers demonstrate that they can provide a significant
runtime advantage for neural network repair.

For repairing linear regression models, we use our theoreti-
cal insights to design an improved repair algorithm based
on quadratic programming. We compare this new algo-
rithm with the Ouroboros (Tan et al., 2021) and SpecRe-
pair (Bauer-Marquart et al., 2022) repair algorithms. The
new quadratic programming repair algorithm surpasses
Ouroboros and SpecRepair, illustrating the practical rel-
evance of our theoretical results.

We highlight the following main contributions of this paper:

1. We formalise neural network repair as a robust optimi-
sation problem and, therefore, view counterexample-
guided repair as a robust optimisation algorithm.

2. Using this theoretical framework, we prove termination
of counterexample-guided repair for more restrained
problems than neural network repair and disprove ter-
mination in a more general setting.

3. We empirically investigate the merits of using falsifiers
and early-exit verifiers during repair.

4. Our theoretical insights into repairing linear regression
models allow us to surpass existing approaches for
repairing linear regression models using a new repair
algorithm.

2. Related Work
This paper is concerned with viewing neural network repair
through the lens of robust optimisation. Neural network
repair relies on neural network verification and can make
use of neural network falsification. Counterexample-guided
repair is related to other counterexample-guided algorithms.
We introduce related work from these fields in this section.

Neural Network Verification We can verify neural net-
works, for example, using Satisfiability Modulo Theo-
ries (SMT) solving (Katz et al., 2017; Ehlers, 2017) or
Mixed Integer Linear Programming (MILP) (Tjeng et al.,
2019). Verification benefits from bounds computed using
linear relaxations (Ehlers, 2017; Singh et al., 2018; Zhang
et al., 2018; Xu et al., 2021). A particularly fruitful tech-
nique from MILP is branch and bound (Bunel et al., 2018;
Palma et al., 2021; Wang et al., 2021). Approaches that
combine branch and bound with multi-neuron linear relax-
ations (Ferrari et al., 2022) or extend branch and bound
using cutting planes (Zhang et al., 2022b) form the current
state-of-the-art (Müller et al., 2022).

Falsifiers are designed to discover counterexamples fast at
the cost of completeness — they can not prove specification
satisfaction. We view adversarial attacks as falsifiers for
adversarial robustness specifications. Falsifiers use generic
local optimisation algorithms (Szegedy et al., 2014; Good-
fellow et al., 2015; Kurakin et al., 2017; Madry et al., 2018),
global optimisation algorithms (Uesato et al., 2018; Bauer-
Marquart et al., 2022), or specifically tailored search and
optimisation techniques (Papernot et al., 2015; Chen et al.,
2020).

Neural Network Repair Neural network repair is con-
cerned with modifying a neural network such that it satisfies
a formal specification. Many approaches make use of the
counterexample-guided repair algorithm while utilising dif-
ferent counterexample-removal algorithms. The approaches
range from augmenting the training set (Pulina & Tacchella,
2010; Goodfellow et al., 2015; Tan et al., 2021), over spe-
cialised neural network architectures (Guidotti et al., 2019a;
Dong et al., 2021), and neural network training with con-
straints (Bauer-Marquart et al., 2022), to using a verifier
for computing network weights (Goldberger et al., 2020).
Counterexample-guided repair is also applied to support vec-
tor machines (SVMs) and linear regression models (Guidotti
et al., 2019b; Tan et al., 2021). Using decoupled neural
networks (Sotoudeh & Thakur, 2021) provides optimality
and termination guarantees for repair but is limited to two-
dimensional input spaces.

When considering only adversarial robustness, an alternative
to counterexample-guided repair is provably robust train-
ing. Here, the applied techniques include interval arith-
metic (Gowal et al., 2018), semi-definite relaxations (Raghu-
nathan et al., 2018), linear relaxations (Mirman et al., 2018),
and duality (Wong & Kolter, 2018). Also specialised neural
network architectures can increase the adversarial robust-
ness of neural networks (Cissé et al., 2017; Zhang et al.,
2022a).

Robust and Scenario Optimisation Robust optimisa-
tion is, originally, a technique for dealing with data uncer-
tainty (Ben-Tal et al., 2009). Although robust optimisation
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problems are, in general, NP-hard (Ben-Tal & Nemirovski,
1998), polynomial-time methods exist in many —typically
convex — settings (Ben-Tal et al., 2009). Scenario problems
and chance-constrained problems relax robust problems.
Feasibility for a scenario problem can be linked to feasi-
bility for a chance-constrained problem (Campi & Garatti,
2008) and even to a perturbed robust problem (Esfahani
et al., 2015). In this paper, we consider the worst-case per-
spective on robust optimisation (Mutapcic & Boyd, 2009).

Loss functions based on robust optimisation can be used to
train for adversarial robustness and beyond (Madry et al.,
2018; Wong & Kolter, 2018; Fischer et al., 2019). We
study a different robust optimisation formulation, where the
specification is modelled as constraints.

Counterexample-Guided Algorithms Besides neural
network repair, counterexample-guided approaches are also
used in model checking (Clarke et al., 2000), program syn-
thesis (Solar-Lezama et al., 2006), and beyond (Henzinger
et al., 2003; Reynolds et al., 2015; Nguyen et al., 2017).
The notion of minimal counterexamples in program syn-
thesis (Jha & Seshia, 2014), which is based on an ordering
of the counterexamples, encompasses our notion of most-
violating counterexamples. While related, the termination
results for counterexample-guided program synthesis (Solar-
Lezama et al., 2006) do not transfer to repairing neural net-
works, as they only apply for finite input domains. We study
infinite input domains in this paper.

3. Preliminaries and Problem Statement
In this section, we introduce preliminaries on robust optimi-
sation, neural networks, and neural network verification be-
fore progressing to neural network repair, counterexample-
guided repair, and the problem statement of our theoretical
analysis.

3.1. Robust Optimisation

We consider general robust optimisation problems of the
form

P :


minimise

v
f(v)

subject to g(v,d) ≥ 0 ∀d ∈ D
v ∈ V,

(1)

where V ⊆ Rv, D ⊆ Rd and f : V → R, g : V × D → R.
Both V and D contain infinitely many elements. There-
fore, a robust optimisation problem has infinitely many con-
straints. The variable domain V defines eligible values for
the optimisation variable v. The set D may contain, for
example, all inputs for which a specification needs to hold.
In this example, g captures whether the specification is sat-
isfied for a concrete input. Elaborating this example leads
to neural network repair, which we introduce in Section 3.4.

A scenario optimisation problem relaxes a robust opti-
misation problem by replacing the infinitely many con-
straints of P with a finite selection. For d(i) ∈ D, i ∈
{1, . . . , N}, N ∈ N, the scenario optimisation problem is

SP :


minimise

v
f(v)

subject to g
(
v,d(i)

)
≥ 0 ∀i ∈ {1, . . . , N}

v ∈ V.
(2)

The counterexample-guided repair algorithm that we study
in this paper uses a sequence of scenario optimisation prob-
lems to solve a robust optimisation problem.

3.2. Neural Networks

A neural network netθ : Rn → Rm, with parameters θ ∈
Rp is a function composition of affine transformations and
non-linear activations. For our theoretical analysis, it suf-
fices to consider fully-connected neural networks (FCNN).
Our experiments in Section 5 also use convolutional neural
networks (CNN). We refer to Goodfellow et al. (2016) for
an introduction to CNNs. An FCNN with L hidden layers
is a chain of affine functions and activation functions

netθ = h(L+1) ◦ σ(L) ◦ h(L) ◦ · · · ◦ σ(1) ◦ h(1), (3)

where h(i) : Rni−1 → Rni and σ(i) : Rni → Rni

with ni ∈ N for i ∈ {0, . . . , L+1} and, specifically, n0 = n
and nL+1 = m. Each h(i) is an affine function, called an
affine layer. It computes h(i)(z) = W(i)z + b(i) with
weight matrix W(i) ∈ Rni×ni−1 and bias vector b(i) ∈
Rni . Stacked into one large vector, the weights and biases
of all affine layers are the parameters θ of the FCNN. An
activation layer σ(i) applies a non-linear function, such as
ReLU [z]

+
= max(0, z) or the sigmoid function σ(z) =

1
1+e−z in an element-wise fashion.

3.3. Neural Network Verification

Neural network verification is concerned with automatically
proving that a neural network satisfies a formal specification.

Definition 3.1 (Specification). A specification Φ =
{φ1, . . . , φS} is a set of properties φi. A property φ =
(Xφ,Yφ) is a tuple of an input set Xφ ⊆ Rn and an output
set Yφ ⊆ Rm.

We write netθ ⊨ Φ when a neural network netθ : Rn →
Rm satisfies a specification Φ. Specifically,

netθ ⊨ Φ⇔ ∀φ ∈ Φ : netθ ⊨ φ (4a)
netθ ⊨ φ⇔ ∀x ∈ Xφ : netθ(x) ∈ Yφ. (4b)

Example specifications, such as L∞ adversarial robustness
or an ACAS Xu safety specification (Katz et al., 2017) are
defined in Appendix C.
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Counterexamples are at the core of the counterexample-
guided repair algorithm that we study in this paper.

Definition 3.2 (Counterexample). An input x ∈ Xφ for
which a neural network netθ violates a property φ is called
a counterexample.

To define verification as an optimisation problem, we intro-
duce satisfaction functions. A satisfaction function quan-
tifies the satisfaction or violation of a property regarding
the output set. Definition 3.4 introduces the verification
problem, also taking the input set of a property into account.

Definition 3.3 (Satisfaction Function). A function fSat :
Rm → R is a satisfaction function of a property φ =
(Xφ,Yφ) if y ∈ Yφ ⇔ fSat(y) ≥ 0.

Definition 3.4 (Verification Problem). The verification prob-
lem for a property φ = (Xφ,Yφ) and a neural network netθ
is

V : f∗Sat =

{
minimise

x
fSat(netθ(x))

subject to x ∈ Xφ.
(5)

We call a specification a linear specification when its prop-
erties have a closed convex polytope as an input set and an
affine satisfaction function. Appendix C contains several
examples of satisfaction functions from SpecRepair (Bauer-
Marquart et al., 2022). The following Proposition follows
directly from the definition of a satisfaction function.

Proposition 3.5. A neural network netθ satisfies the prop-
erty φ if and only if the minimum of the verification prob-
lem V (f∗Sat) is non-negative.

We now consider counterexample searchers that evaluate
the satisfaction function for concrete inputs to compute an
upper bound on the minimum of the verification problem V .
Such tools can disprove specification satisfaction by discov-
ering a counterexample. They can also prove specification
satisfaction when they are sound and complete.

Definition 3.6 (Soundness and Completeness). We call a
counterexample searcher sound if it computes valid upper
bounds and complete if it is guaranteed to find a counterex-
ample whenever a counterexample exists.

Definition 3.7 (Verifiers and Falsifiers). We call a sound
and complete counterexample searcher a verifier. A sound
but incomplete counterexample searcher is a falsifier.

Definition 3.8 (Optimal and Early-Exit Verifiers). An op-
timal verifier is a verifier that always produces a global
minimiser of the verification problem — a most-violating
counterexample. An early-exit verifier aborts on the first
counterexample it encounters. It provides any counterexam-
ple, without further qualifications.

We can perform verification through global minimisation of
the verification problem from Equation (5). For ReLU-

activated neural networks, global minimisation is possi-
ble, for example, using Mixed Integer Linear Program-
ming (MILP) (Cheng et al., 2017; Lomuscio & Maganti,
2017). Falsifiers may perform local optimisation using pro-
jected gradient descent (PGD) (Kurakin et al., 2017; Madry
et al., 2018) to become sound but not complete. We name
the approach of using PGD for falsification BIM, abbreviat-
ing the name Basic Iterative Method used by Kurakin et al.
(2017).

3.4. Neural Network Repair

Neural network repair means modifying a trained neural
network so that it satisfies a specification it would otherwise
violate. While the primary goal of repair is satisfying the
specification, the key secondary goal is that the repaired
neural network still performs well on the intended task.
This secondary goal can be captured using a performance
measure, such as the training loss function (Bauer-Marquart
et al., 2022) or the distance between the modified and the
original network parameters (Goldberger et al., 2020).

Definition 3.9 (Repair Problem). Given a neural net-
work netθ, a property φ = (Xφ,Yφ) and a performance
measure J : Rp → R, repair translates to solving the repair
problem

R :

{
minimise

θ∈Rp
J(θ)

subject to fSat(netθ(x)) ≥ 0 ∀x ∈ Xφ.
(6)

The repair problem R is an instance of a robust optimisation
problem as defined in Equation (1). Checking whether a
parameter θ is feasible for R corresponds to verification.
In particular, we can equivalently reformulate R using the
verification problem’s minimum f∗Sat from Equation (5) as

R′ :

{
minimise

θ∈Rp
J(θ)

subject to f∗Sat ≥ 0.
(7)

We stress several characteristics of the repair problem that
we relax or strengthen in Section 4. First of all, netθ is a
neural network and we repair all parameters θ of the network
jointly. Practically, netθ is a ReLU-activated FCNN or
CNN, as these are the models most verifiers support. For
typical specifications, such as L∞ adversarial robustness or
the ACAS Xu safety specifications (Katz et al., 2017), the
property input set Xφ is a hyper-rectangle. Hyper-rectangles
are closed convex polytopes and, therefore, bounded.

3.5. Counterexample-Guided Repair

In the previous section, we have seen that the repair problem
includes the verification problem as a sub-problem. Using
this insight, a natural approach to tackle the repair problem
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Algorithm 1 Counterexample-Guided Repair

N ← 0
repeat

// counterexample-removal (8)
θ(N) ← local minimiser of CRN

N ← N + 1
// verification (9)
x(N) ← global minimiser of VN

until fSat
(
netθ(N−1)

(
x(N)

))
≥ 0

is to iterate running a verifier and removing the counterex-
amples it finds. This yields the counterexample-guided
repair algorithm, that was first introduced by Goldberger
et al. (2020), in a similar form. Removing counterexamples
corresponds to a scenario optimisation problem CRN of the
robust optimisation problem R from Equation (6), where

CRN :


minimise

θ∈Rp
J(θ)

subject to fSat
(
netθ

(
x(i)
))
≥ 0

∀i ∈ {1, . . . , N}.
(8)

Algorithm 1 defines the counterexample-guided repair al-
gorithm using CRN and V from Equation (5). In analogy
to CRN , we use VN to denote the verification problem in
iteration N . Concretely,

VN :

{
minimise

x
fSat(netθ(N−1)(x))

subject to x ∈ Xφ.
(9)

We call the iterations of Algorithm 1 repair steps.

Algorithm 1 is concerned with repairing a single property.
However, the algorithm extends to repairing multiple proper-
ties by adding one constraint for each property to CRN and
verifying the properties separately. While Algorithm 1 is
formulated for the repair problem R, it is easy to generalise
it to any robust program P as defined in Equation (1). Then,
solving CRN corresponds to solving SP from Equation (2)
and solving VN corresponds to finding maximal constraint
violations of P .

The question we are concerned with in this paper is
whether Algorithm 1 is guaranteed to terminate after finitely
many repair steps. We investigate this question in the fol-
lowing section by studying robust programs that are similar
to the repair problem for neural networks and typical speci-
fications, but either more restrained or more general.

4. Termination Results for Algorithm 1
The counterexample-guided repair algorithm (Algorithm 1)
repairs neural networks by iteratively searching and remov-
ing counterexamples. In this section, we study whether
Algorithm 1 is guaranteed to terminate and whether it pro-
duces optimally repaired networks. Our primary focus is

Table 1: Symbol Overview

Symbol Meaning

R Repair Problem (6)
CRN Counterexample Removal Problem (8)
VN Verification Problem for netθ(N−1) (9)
θ† (Local) minimiser of R
θ(N) (Local) minimiser of CRN

x(N) Global minimiser of VN

on studying robust optimisation problems that are more re-
strained or more general than the repair problem R from
Equation (6). We apply Algorithm 1 to such problems and
study termination of the algorithm for these problems. On
our way, we also address the related questions of optimality
on termination and termination when using an early-exit
verifier as introduced in Definition 3.8.

Table 1 summarises the central problem and variable names
that we use throughout this paper. The iterations of Algo-
rithm 1 are called repair steps. We count the repair steps
starting from one but index the counterexample-removal
problems starting from zero, reflecting the number of con-
straints. Hence, the minimiser of the counterexample-
removal problem CRN−1 from Equation (8) in repair
step N is θ(N−1). The verification problem in repair step N
is VN with a global minimiser x(N).

4.1. Optimality on Termination

We prove that when applied to any robust program P as
defined in Equation (1), counterexample-guided repair pro-
duces a minimiser of P whenever it terminates. While
Algorithm 1 is formulated for the repair problem R, it is
easy to generalise it to P , as described in Section 3.5. The
following proposition holds regardless of whether we search
for a local minimiser or a global minimiser of R.

Proposition 4.1 (Optimality on Termination). When-
ever Algorithm 1 terminates after N iterations, it holds
that θ(N−1) = θ†.

We defer the proof of Proposition 4.1 to Appendix A.1.

4.2. Non-Termination for General Robust Programs

In this section, we demonstrate non-termination and diver-
gence of Algorithm 1 when we relax the assumptions on
the repair problem R that we outline in Section 3.4. In
particular, we drop the assumption that the property’s input
set Xφ is bounded. We disprove termination by example
when Xφ is unbounded. To simplify the proof, we use a
non-standard neural network architecture. We also present a
fully-connected neural network (FCNN) that similarly leads
to non-termination. However, for this FCNN we also have
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to relax the assumption that we repair all parameters of a
neural network jointly. Instead, we repair an individual
parameter of the FCNN in isolation.

Proposition 4.2 (General Non-Termination). Algorithm 1
is not guaranteed to terminate for J : R2 → R, fSat :
R2 → R, and netθ : R → R2, where J(θ) =
netθ(0)1, fSat(y) = y2 + y1 − 1, Xφ = R, and

netθ(x) =

[(
θ1θ2

θ1x+ θ2

)]+
, (10)

where [x]
+
= max(0, x) denotes the ReLU.

Proof Idea. The network in Proposition 4.2 is constructed
such that it allows for an execution of Algorithm 1 where
the counterexamples x(N) and the parameter iterates θ(N)

diverge, such that Algorithm 1 does not terminate. The
detailed proof and a visualisation of this phenomenon are
contained in Appendix A.2.

Example 1 (Non-Termination for an FCNN). The network
in Proposition 4.2 fits our definition of a neural network
but does not have a standard neural network architecture.
However, Algorithm 1 also does not terminate for repairing
only the parameter θ of the FCNN

netθ(x) =

[(
−1 0
1 −1

)[(
0
1

)
x+

(
θ
2

)]+
+

(
2
0

)]+
, (11)

when fSat and J(θ) are as in Proposition 4.2. The proof
of non-termination for this FCNN is discussed in Ap-
pendix A.2.1.

4.3. Robust Programs with Linear Constraints

In the previous section, we relax assumptions on neural
network repair and show non-termination for the resulting
more general problem. In this section, we look at a more
restricted class of problems instead: robust problems with
linear constraints. For this class, we can prove termination
regardless of the objective J . Therefore, this class encom-
passes such cases as training a linear regression model, a
linear support vector machine (SVM), or a deep linear net-
work (Saxe et al., 2014) to conform to a linear specification.
Linear specifications, as defined in Section 3.3, only con-
sist of properties with an affine satisfaction function and a
closed convex polytope as an input set.

Theorem 4.3 (Termination for Linear Constraints).
Let g(θ,x) = fSat(netθ(x)) be linear in x and let Xφ be a
closed convex polytope. Algorithm 1 computes a minimiser
of

R :

{
minimise

θ∈Rp
J(θ)

subject to g(θ,x) ≥ 0 ∀x ∈ Xφ,
(12)

in a finite number of repair steps.

Proof Idea. For R as in Equation (12), all verification
problems VN are linear programs sharing the same fea-
sible set Xφ. Due to this, all most-violating counterexam-
ples x(N) are vertices of Xφ, of which there are only finitely
many. This forces Algorithm 1 to terminate. The detailed
proof is contained in Appendix A.3.

The insights from our proof enable a new repair algorithm
for linear regression models based on quadratic program-
ming. We discuss and evaluate this algorithm in Section 5.3.

4.4. Element-Wise Monotone Constraints

Next, we study a different restricted class of repair problems
that contains repairing single ReLU and sigmoid neurons
to conform to linear specifications. This includes repairing
linear classifiers, which are single sigmoid neurons. In
this class of problems, the constraint function g(θ,x) =
fSat(netθ(x)) is element-wise monotone and continuous
and Xφ is a hyper-rectangle. We show termination for this
class.

Element-wise monotone functions are monotone in each
argument, all other arguments being fixed at some value.
They can be monotonically increasing and decreasing in the
same element but only for different values of the remaining
elements. We formally define element-wise monotonicity
in Appendix A.4. The definition includes single ReLU and
sigmoid neurons.

Theorem 4.4 (Termination for Element-Wise Monotone
Constraints). Let g(θ,x) = fSat(netθ(x)) be element-wise
monotone and continuous. Let Xφ be a hyper-rectangle.
Algorithm 1 computes a minimiser of

R :

{
minimise

θ∈Rp
J(θ)

subject to g(θ,x) ≥ 0 ∀x ∈ Xφ

(13)

in a finite number of repair steps under the assumption
that the algorithm prefers global minimisers of VN that are
vertices of Xφ.

The assumption in this theorem is weak, as we show in
Appendix A.4. In particular, it is easy to construct a global
minimiser of VN that is a vertex of Xφ given any global
minimiser of VN . Given that all x(N) are vertices of Xφ

under this assumption, Theorem 4.4 follows analogously to
Theorem 4.3. Appendix A.4 contains a detailed proof.

4.5. Neural Network Repair with Bounded Input Sets

Table 2 summarises our results regarding the termination
of Algorithm 1. On the one hand, Theorem 4.4 provides us
with a termination guarantee for repairing single neurons.
On the other hand, Proposition 4.2 shows that Algorithm 1
is not, in general, guaranteed to terminate when applied
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Table 2: Summary of Termination Results for Algorithm 1

Problem Class Model Specification Termination

fSat(netθ(x)) linear in x,
Xφ closed convex polytope

Linear Regression Model, Linear
SVM, Deep Linear Network

Linear ✓ (Theorem 4.3)

fSat(netθ(x)) elem.-wise mon.
and cont., Xφ hyper-rectangle

Linear Classifier, ReLU Neuron Linear ✓ (Theorem 4.4)

Xφ bounded Neural Network Bounded Input Set ?

Xφ unbounded Neural Network Unbounded Input Set × (Proposition 4.2)

Using an early-exit verifier Any Any × (Proposition 4.5)

to neural networks. However, both results do not readily
transfer to our primary target — neural network repair with
bounded input sets. When looking at neural network repair,
the verification problem can have a minimiser anywhere
inside the feasible region. Furthermore, this minimiser may
move when the network parameters are modified. Therefore,
the reasoning we use for proving Theorems 4.3 and 4.4 is not
directly applicable when repairing neural networks. Coming
from the other side, Proposition 4.2 relies on constructing
a diverging sequence of counterexamples. However, when
counterexamples need to lie in a bounded set, as it is the
case with common neural network specifications, it becomes
intricate to construct a diverging sequence originating from
a repair problem.

In summary, although we can not answer at this point
whether Algorithm 1 terminates when applied to neural
network repair for bounded property input sets, our method-
ology is useful for studying related questions. In the follow-
ing section, we continue our theoretical analysis, showing
that early-exit verifiers are insufficient for guaranteeing ter-
mination of Algorithm 1.

4.6. Early-Exit Verifiers

From a verification perspective, verifiers are not required to
find most-violating counterexamples. Instead, it suffices to
find any counterexample if one exists. In this section, we
show that using just any counterexample is not sufficient for
Algorithm 1 to terminate, even for linear regression models.
Consider a modification of Algorithm 1, where we only
search for a feasible point of VN with a negative objective
value instead of the global minimum. This corresponds to
using an early-exit verifier during repair. The following
proposition demonstrates that this modification can lead to
non-termination.
Proposition 4.5 (Non-Termination for Early-Exit Veri-
fiers). Algorithm 1 modified to use an early-exit verifier
is not guaranteed to terminate for J, fSat,netθ : R → R,
where J(θ) = |θ|, fSat(y) = y, netθ(x) = θ − x,
and Xφ = [0, 1].

Proof Idea. Assume that the early-exit verifier generates the
sequence x(N) = 1

2 − 1
N+2 . This leads to non-termination

of Algorithm 1. The detailed proof of Proposition 4.5 is
contained in Appendix A.5.

This result concludes our theoretical investigation. In the
following section, we research empirical aspects of Algo-
rithm 1, including the practical implications of the above
result on using early-exit verifiers during repair.

5. Experiments
Optimal verifiers that compute most-violating counterex-
amples are theoretically advantageous but not widely avail-
able (Strong et al., 2021). Conversely, early-exit verifiers
that produce plain counterexamples without further quali-
fications are readily available (Katz et al., 2019; Bak et al.,
2020; Tran et al., 2020; Zhang et al., 2022b; Ferrari et al.,
2022), but are theoretically disadvantageous, as apparent
from Section 4.6. In this section, we empirically compare
the effects of using most-violating counterexamples and
sub-optimal counterexamples — as produced by early-exit
verifiers and falsifiers — for repair. Additionally, we apply
our insights from Section 4.3 for repairing linear regres-
sion models. Appendix D contains additional experimental
results. Our experiments address the following questions
regarding counterexample-guided repair:

1. How does repair using an early-exit verifier compare
quantitatively to repair using an optimal verifier?

2. What quantitative advantages does it provide to use
falsifiers during repair?

3. Can we surpass existing repair algorithms for linear
regression models using our theoretical insights?

In our experiments, we repair an MNIST (LeCun et al.,
1998) image classification network, ACAS Xu aircraft con-
trol networks (Julian et al., 2018; Katz et al., 2017), a Col-
lisionDetection (Ehlers, 2017) particle dynamics network,
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CD RMI MNIST ACAS Xu

9% 0% 6% 0%
10%

0%

86%
97%
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(a) Which is faster in terms of runtime?

CD RMI MNIST ACAS Xu

56%

0%

56%
79%

28%

0%
20% 18%9%

92%

24%
3%

(b) Which is faster in terms of repair steps?

Figure 1: Optimal vs. Early-Exit Verifier. We plot how frequently repair using the optimal verifier or the early-exit
verifier is faster in terms of (a) runtime and (b) repair steps. Grey bars depict how frequently both approaches are
equally fast. We consider two runtimes equal when they deviate by at most 30 seconds. We use four different datasets:
CollisionDetection (CD), integer datasets (RMI), MNIST and ACAS Xu. Gaps to 100% are due to failing repairs.

and integer dataset Recursive Model Indices (RMIs) (Tan
et al., 2021) for database indexing. RMIs contain two stages:
a first-stage neural network and several second-stage lin-
ear regression models. We collect 50 repair instances for
MNIST, 34 for ACAS Xu, 100 for CollisionDetection, 50
for RMI first-stage networks and 100 for RMI second-stage
models. A detailed description of all datasets, networks and
specifications is contained in Appendix B.

For repair, we make use of an early-exit verifier, an opti-
mal verifier, and the BIM falsifier (Kurakin et al., 2017;
Madry et al., 2018). To obtain an optimal verifier, we
modify the ERAN verifier (Singh et al., 2022) to compute
most-violating counterexamples. This is described in Ap-
pendix B.1. We use the modified ERAN verifier both as the
early-exit and as the optimal verifier. We use the SpecRepair
counterexample-removal algorithm (Bauer-Marquart et al.,
2022) unless otherwise noted. Our implementation and hard-
ware are documented in Appendix B.4. Our source code
is available at https://github.com/sen-uni-kn/
specrepair.

5.1. Optimal vs. Early Exit Verifier

To evaluate how repair using an early-exit verifier compares
to repair using an optimal verifier, we run repair using both
verifiers for CollisionDetection, MNIST, ACAS Xu, and the
RMI first-stage networks.

Figure 1 depicts which verifier leads to repair fastest. The
figure shows this both for the absolute runtime of repair and
the number of repair steps. For the larger MNIST and ACAS
Xu networks, we observe that repair using the early-exit
verifier requires less runtime in most cases. Regarding the
number of repair steps, we observe the opposite trend. Here,
the optimal verifier yields repair in fewer repair steps more
often than not. The additional runtime cost of computing
most-violating counterexamples offsets the advantage in
repair steps. For the smaller CollisionDetection network
and the RMI first stage networks, we primarily observe

0 10 20 30 40 50
102

103

104

Optimal

Early-Exit

BIM

#Repaired Instances

R
un

tim
e

(s
)

Figure 2: Repair using Falsifiers. We plot the number of
repaired MNIST instances that individually require less than
a certain runtime. We plot this for repair using BIM , only
the optimal verifier and only the early-exit verifier .

that only infrequently repair using one verifier outperforms
using the other by more than 30 seconds. While there is
no variation regarding the number of repair steps for the
Integer Dataset RMIs, Figure 1b shows the same trend for
CollisionDetection as for ACAS Xu and MNIST.

5.2. Using Falsifiers for Repair

Falsifiers are sound but incomplete counterexample
searchers that specialise in finding violations fast. In this
section, we study how falsifiers can speed up repair. For this
purpose, we repair an MNIST network using the BIM (Ku-
rakin et al., 2017; Madry et al., 2018) falsifier that we de-
scribe in Section 3.3. We start repair by searching coun-
terexamples using BIM. Only when BIM fails to produce
further counterexamples we turn to the early-exit verifier.
Ideally, we would want that the verifier is invoked only once
to prove specification satisfaction. Practically, often sev-
eral additional repair steps have to be performed using the
verifier.

Figure 2 summarises the results of our experiment. We
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Table 3: Repairing Linear Regression Models. We report
the success rates of repairing RMI second-stage linear re-
gression models for two specifications with different error
bounds ε. The success rates include models that already
satisfy their specification.

Success Rate
Algorithm ε = 100 ε = 150

Ouroboros ∗ 30% 77%
SpecRepair ⋆ 58% 94%
Quadratic Programming 72% 97%
∗ Tan et al. (2021) ⋆ Bauer-Marquart et al. (2022)

see that using BIM can significantly accelerate repair of the
MNIST network, demonstrating the potential of falsifiers for
repair. BIM is an order of magnitude faster than the early-
exit verifier, yet it can find counterexamples with a larger
violation. Thus, BIM can sometimes provide the repair
step advantage of the optimal verifier at a much smaller
cost. Appendix D.1 contains further experiments on using
falsifiers for repair.

5.3. Repairing Linear Regression Models

Our theoretical investigation into the repair of linear regres-
sion models in Section 4.3 provides interesting insights that
can be used to create a repair algorithm for linear regression
models based on quadratic programming. In this section, we
describe this algorithm and compare it to the Ouroboros (Tan
et al., 2021) and SpecRepair (Bauer-Marquart et al., 2022)
repair algorithms. Both Ouroboros and SpecRepair are
counterexample-guided repair algorithms. The linear re-
gression models we repair are the second-stage models of
several integer dataset RMIs.

Insights into Repairing Linear Regression Models We
recall from Section 4.3 that for repairing a linear regres-
sion model to conform to a linear specification, the most-
violating counterexample for a property is always located at
one of the vertices of the property’s input set. This implies
two conclusions for repairing the second-stage RMI models:

a) To verify a linear regression model, it suffices to eval-
uate it on the vertices of the input set. This provides
us with an analytical solution of the verification prob-
lem V . As the input of the RMI second-stage models
is one-dimensional, we only have to check property
violation for two points per property.

b) Since we can analytically solve V , we can rewrite R′

from Equation (7) using, for RMI second-stage mod-
els, two constraints per property. The two constraints
correspond to evaluating the satisfaction function for
the two vertices of the property input set. We obtain an

equivalent formulation of the repair problem R from
Equation (6) with a finite number of constraints.

Repair using Quadratic Programming Conclusion b)
provides an equivalent formulation of the repair problem R
with finitely many linear constraints. We train and repair the
second-stage models using MSE. Since MSE is a convex
quadratic function and all constraints are linear, it follows
that the repair problem is a quadratic program (Boyd &
Vandenberghe, 2014). This allows for applying a quadratic
programming solver to repair the linear regression models
directly. We use Gurobi (Gurobi Optimization, LLC, 2021)
and report the results for repairing linear regression models
using this method under the name Quadratic Programming.

Table 3 summarises the results of repairing the second-stage
RMI linear regression models. Our new Quadratic Program-
ming repair algorithm achieves the highest success rate,
outperforming Ouroboros and SpecRepair. In fact, due to
solving the repair problem directly, Quadratic Programming
is guaranteed to produce the optimal repaired model when-
ever repair is possible. Our implementation of the different
algorithms does not allow for a fair runtime comparison, but
we remark that the runtime of Quadratic Programming is
competitive in our experiments.

6. Conclusion
In this paper, we prove termination of counterexample-
guided repair for linear regression models, linear classifiers
and single ReLU neurons, assuming linear specifications.
We disprove termination for repairing neural networks when
the specification has an unbounded input set. As our re-
sults show, our methodology of viewing repair as robust
optimisation is useful for studying the theoretical proper-
ties of counterexample-guided repair. Empirically, we find
that both early-exit verifiers and falsifiers allow achieving
repair and can give speed advantages. For repairing lin-
ear regression models, we surpass existing approaches by
designing a novel repair algorithm using our theoretical in-
sights. Overall, we believe that robust optimisation provides
a rich arsenal of useful tools for studying and advancing
repair, both theoretically and practically.

Future Work Theorems 4.3 and 4.4 provide sufficient
conditions for termination of Algorithm 1. Deriving suf-
ficient conditions that are closer to neural network repair
is an interesting direction for future work, as is deriving
necessary conditions for termination. Another direction for
future work is studying different classes of verifiers beyond
optimal and early-exit verifiers. Further sufficient condi-
tions, necessary conditions, and a more refined taxonomy
of verifiers could provide insights into why, practically, Al-
gorithm 1 terminates even when using early-exit verifiers.
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Figure 3: Constraint Visualisations for Non-Termination Proofs. We visualise the function fSat(netθ(x)) from Proposi-
tion 4.2 and for the FCNN variant from Example 1. In both cases, the parameter iterates θ(N) and the counterexamples x(N)

diverge to∞ along the dark-red flat surface where the fSat value is negative. This divergence implies non-termination of
Algorithm 1. The black line represents an example sequence of diverging parameter and counterexample iterates.

A. Proofs
This section contains the full proofs of all our propositions and theorems.

A.1. Proposition 4.1

Proof of Proposition 4.1. Assume Algorithm 1 has terminated after N iterations for some robust program R. Since
Algorithm 1 has terminated, we know that minVN ≥ 0. Hence, θ(N−1) is feasible forR. As θ(N−1) also minimisesCRN−1,
which is a relaxation of R, it follows that θ(N−1) minimises R.

This proof is independent of whether we search for a local minimiser or a global minimiser of R. Therefore, Proposition 4.1
holds regardless of the type of minimiser of R that we are interested in.

A.2. Proposition 4.2

For proving Proposition 4.2, we first prove non-termination for a simplified version of the network in Proposition 4.2. This
simplified version serves as a lemma for proving Proposition 4.2.

Lemma A.1. Algorithm 1 does not terminate for J : R → R, fSat : R2 → R and netθ : R → R2 where J(θ) =
netθ(0)1, fSat(y) = y2 + y1 − 1, Xφ = R, and

netθ(x) =

[(
−θ

θ − x

)]+
, (14)

where [x]
+
= max(0, x) denotes the ReLU.

The network netθ in Lemma A.1 corresponds to the network from Proposition 4.2 with θ1 = −1. This leads to a one-
dimensional input and a one-dimensional parameter space. Because of this, we can visualise the optimisation landscape
that underlies repairing netθ. This visualisation is insightful for the proof of non-termination. Therefore, before we begin
the proof of Lemma A.1, we first give an intuition for the proof using Figure 3a. The core of the proof is that Algorithm 1
generates parameter iterates θ(N) and counterexamples x(N) that lie on the dark-red flat surface of Figure 3a, where fSat
is negative. The combination of fSat and the objective function J that prefers non-negative θ(N) leads to θ(N) ≥ 0 for
every N ∈ N. As there is always a new counterexample x(N) for every θ(N−1) ≥ 0, Algorithm 1 does not terminate.
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Proof of Lemma A.1. Let J , fSat, netθ and Xφ be as in Lemma A.1. Assembled into a repair problem, they yield

R :

{
minimise

θ∈R
[−θ]+

subject to [θ − x]
+
+ [−θ]+ − 1 ≥ 0 ∀x ∈ R.

(15)

We now show that Algorithm 1 does not terminate when applied to R. The problem CR0 is minimising J(θ) = [−θ]+
without constraints. The minimiser of J is not unique, but all minimisers satisfy θ(0) ≥ 0. Let θ(0) ≥ 0 be such a minimiser.

Searching for the global minimiser x(1) of V1, we find that this minimiser is non-unique as well. However, all minimisers
satisfy x(1) ≥ θ(0). This follows since any minimiser of

g
(
x,θ(0)

)
=
[
θ(0) − x

]+
+
[
−θ(0)

]+
− 1 (16)

minimises
[
θ(0) − x

]+
as the remaining terms of Equation (16) are constant regarding x. The observation x(1) ≥ θ(0)

applies analogously for later repair steps. Therefore, x(N) ≥ θ(N−1).

For any further repair step, we find that all non-negative feasible points θ of CRN satisfy

θ ≥ max
(
x(1), . . . ,x(N)

)
+ 1. (17)

This follows because g
(
x(i),θ

)
≥ 0 has to hold for all i ∈ {1, . . . , N} for θ to be feasible for CRN . Now, if θ ≥ 0, we

have
g
(
x(i),θ

)
=
[
θ − x(i)

]+
+ [−θ]+ − 1 =

[
θ − x(i)

]+
− 1 ≥ 0, (18)

for all i ∈ {1, . . . , N}. We see that Equation (18) is satisfied for all i ∈ {1, . . . , N} only if θ is larger than the largest x(i)

by at least one. This yields equivalence of Equations (18) and (17).

As Equation (17) always has a solution, there always exists a positive feasible point for CRN . Now, due to J , any
minimiser θ(N) of CRN is positive and hence satisfies Equation (17). Putting these results together, we obtain

θ(0) ≥ 0 (19a)

x(N) ≥ θ(N−1) (19b)

θ(N) ≥ x(N) + 1. (19c)

Inspecting Equation (15) closely reveals that no positive value θ is feasible for R as there always exists an x ≥ θ. However,
it follows from Equations (19) that the iterate θ(N) of Algorithm 1 is always positive and thus never feasible for R. Since
feasibility for R is the criterion for Algorithm 1 to terminate, it follows that Algorithm 1 does not terminate for this repair
problem.

Remark A.2. We might be willing to accept non-termination for problems without a minimiser. However, R from
Equation (15) has a minimiser. We have already seen in the proof of Lemma A.1 that all positive θ are infeasible for R.
Similarly, all θ ∈ (−1, 0] are infeasible. However, all θ ≤ −1 are feasible as

[θ − x]
+
+ [−θ]+ − 1 ≥ [−θ]+ − 1 ≥ 0, (20)

for any x ∈ R. For negative θ, J prefers larger values. Because of this, the only minimiser of R is θ† = −1. Indeed,
Algorithm 1 not only fails to terminate but also moves further and further away from the optimal solution.

We now prove Proposition 4.2 using Lemma A.1. As will become clear during the proof, the divergence for Lemma A.1
transfers to Proposition 4.2.

Proof of Proposition 4.2. Let J , fSat, netθ and Xφ be as in Proposition 4.2. The repair problem is

R :

{
minimise

θ∈R
[θ1θ2]

+

subject to [θ1x+ θ2]
+
+ [θ1θ2]

+ − 1 ≥ 0 ∀x ∈ R.
(21)
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To show that Algorithm 1 is not guaranteed to terminate for R, we now construct an execution of Algorithm 1 that does not
terminate. We first consider CR0, which is minimising J without constraints. Choosing θ1 = −1 and θ2 ≥ 0 yields a local
minimiser of J , since J(θ) = 0, which is the global minimum of J . Assuming θ

(0)
2 ≥ 0 and θ

(0)
1 = −1, we now show that

there is an execution of Algorithm 1, such that

∀N ∈ N0 : θ
(N)
1 = −1 ∧ θ

(N)
2 ≥ 0 (22)

As θ1 = −1 recreates the neural network from Lemma A.1, Proposition 4.2 follows from Lemma A.1 when Equation (22)
holds for some execution. In the proof of Lemma A.1, we have already shown that there exists a θ(N) satisfying Equation (22)
that is feasible for CRN . Since J

(
θ(N)

)
= 0 for any θ(N) satisfying Equation (22), there exist such parameters that are a

local (in fact global) minimiser of CRN . Therefore, Algorithm 1 is not guaranteed to terminate when repairing the neural
network in Proposition 4.2, as there exists an execution of Algorithm 1 that does not terminate.

Remark A.3. While the proof of Proposition 4.2 constructs an execution that does not terminate, the example in Proposi-
tion 4.2 also permits executions that terminate. In the following, we discuss different executions of Algorithm 1, including
the executions that terminate. Beyond the execution constructed in the proof of Proposition 4.2, all executions with

∀N ∈ N0 : θ1 < 0 ∧ θ2 ≥ 0 (23)

fail to terminate. Such executions may, however, converge to a solution θ1 = 0, θ2 ≥ 1. While still failing to terminate,
they do not diverge. Values of θ1 > 0 lead to non-termination, analogously to the case where θ1 < 0. Also in this case,
Algorithm 1 may converge to a solution with θ1 = 0. There also exist executions where Algorithm 1 terminates, namely
when it chooses θ1 = 0 at some point during its execution. Choosing θ1 = 0 is a valid choice, as it yields local minimisers
of J and allows removing any set of counterexamples. Therefore, for the example in Proposition 4.2, it is possible that
Algorithm 1 terminates, but there is no guarantee.

Regarding the plausibility of non-terminating executions, we first remark that it is reasonable to obtain θ
(0)
1 ̸= 0, as neural

network training is unlikely to reach θ
(0)
1 = 0 exactly. Regarding the plausibility of the choice of local minimisers of CRN ,

we consider different concrete counterexample-removal algorithms.

• Gradient-based techniques (Pulina & Tacchella, 2010; Goodfellow et al., 2015; Dong et al., 2021; Tan et al., 2021;
Bauer-Marquart et al., 2022) are unable to remove counterexamples for Proposition 4.2, as fSat does not provide
information on improving property violation through its gradient. This is because the region where the most violating
counterexamples are located is flat. Therefore, these techniques fail to remove counterexamples, which makes it
impossible to study the termination of Algorithm 1.

• For SMT-based techniques (Goldberger et al., 2020), the choice of the local minimum θ(N) depends on the heuristics
applied by the SMT solver. The SMT solver may choose to increase only one parameter, leading to a non-terminating
execution, such as the one constructed in the proof of Proposition 4.2.

A.2.1. EXAMPLE 1

Figure 4 visualises the FCNN from Example 1 The proof of non-termination for this FCNN is analogous to the proof of
Lemma A.1. Figure 3b visualises fSat(netθ(x)) for the FCNN from Equation (11). Comparison with Figure 3a reveals that
the key aspects of fSat(netθ(x)) for the FCNN are identical to Lemma A.1, except for being shifted. Most notably, there
also exists a flat surface with a negative fSat value. As J also prefers non-negative θ in this example, Algorithm 1 diverges
here as well.

A.3. Theorem 4.3

Proof of Theorem 4.3. We prove termination of Algorithm 1 for R from Theorem 4.3. Optimality then follows from
Proposition 4.1. Let g : Rp × Rn → R be linear in the second argument. Let Xφ be a closed convex polytope. Given this,
every VN is a linear program and all VN share the same feasible set Xφ. Because VN is a linear program, its minimiser
coincides with one of the vertices of the feasible set Xφ.

It follows that ∀N ∈ N : x(N) ∈ vert(Xφ), where vert(Xφ) are the vertices of Xφ. Because vert(Xφ) is finite, at some
repair step N of Algorithm 1, we obtain a minimiser that we already encountered in a previous repair step. Let Ñ be this
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Figure 4: Fully-Connected Neural Network Variant of Proposition 4.2. This Figure visualises Equation (11). Empty nodes
represent single ReLU neurons. Edge labels between nodes contain the network weights. Where edges are omitted, the
corresponding weights are zero. Biases are written next to the incoming edge above the ReLU neurons.

previous repair step, such that x(Ñ) = x(N). Since θ(N−1) is feasible for CRN−1, it satisfies

0 ≤ g
(
θ(N−1),x(Ñ)

)
= g
(
θ(N−1),x(N)

)
= fSat

(
netθ(N−1)

(
x(N)

))
. (24)

As this is the termination criterion of Algorithm 1, the algorithm terminates in repair step N .

A.4. Theorem 4.4

We first formally introduce element-wise monotonous functions. Informally, element-wise monotone functions are monotone
in each argument, all other arguments being fixed at some value.

Definition A.4 (Element-Wise Monotone). A function f : X → R, X ⊆ Rn, is element-wise monotone if

∀i ∈ {1, . . . , n} : ∀x ∈ X : f |X∩({x1}×···×{xi−1}×R×{xi+1}×···×{xn}) is monotone. (25)

Remark A.5. Affine transformations of element-wise monotone functions maintain element-wise monotonicity. This directly
follows from affine transformations maintaining monotonicity.

Element-wise monotone functions can be monotonically increasing and decreasing in the same element but only for different
values of the remaining elements. Examples of element-wise monotone functions include the single neurons

[
wTx+ b

]+
and σ

(
wTx+ b

)
, where [x]

+
= max(0, x) is the ReLU function and σ(x) = 1

1+e−x is the sigmoid function. These
functions are also continuous.

In Theorem 4.4, we make an assumption on the global minimisers that Algorithm 1 prefers when there are multiple global
minimisers. In the proof of Lemma A.6, we show that the assumption in Theorem 4.4 is a weak assumption. In particular,
we show that it is easy to construct a global minimiser of VN that is a vertex of Xφ given any global minimiser of VN .
Lemma A.6 is a preliminary result for proving Theorem 4.4.

Lemma A.6 (Optimal Vertices). Let R, g and Xφ be as in Theorem 4.4. Then, for every N ∈ N there is x̃(N) ∈ vert(Xφ)
that globally minimises VN , where vert(Xφ) denotes the set of vertices of Xφ.

Proof. Let R, g, Xφ be as in Lemma A.6. Let N ∈ N. To prove the lemma we show that a) VN has a minimiser and b)
when there is a minimiser of VN , some vertex of Xφ also minimises VN and has the same fSat value.

a) As the feasible set of VN is closed and bounded due to being a hyper-rectangle and the objective function is continu-
ous, VN has a minimiser.

b) Let x(N) ∈ Rn be a global minimiser of VN . We show that there is a x̃(N) ∈ vert(Xφ) such that x̃(N) also
minimises VN since

g
(
θ(N−1),x(N)

)
≥ g
(
θ(N−1), x̃(N)

)
. (26)

Pick any dimension i ∈ {1, . . . , n}. As g is element-wise monotone, it is non-increasing in one of the two directions
along dimension i starting from x(N). When x(N) does not already lie on a face of Xφ that bounds expansion
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along the i-axis, we walk along the non-increasing direction along dimension i until we reach such a face of Xφ.
As Xφ is a hyper-rectangle and, therefore, bounded, it is guaranteed that we reach such a face. We pick the point
on the face of Xφ as the new x(N). While keeping dimension i fixed, we repeat the above procedure for a different
dimension j ∈ {1, . . . , n}, i ̸= j. We iterate the procedure over all dimensions always keeping the value of x(N) in
already visited dimensions fixed.

In every step of this procedure, we restrict ourselves to a lower-dimensional face of Xφ as we fix the value in one
dimension. Thus, when we have visited every dimension, we have reached a 0-dimensional face of Xφ, that is, a
vertex. Since we only walked along directions in which g is non-increasing and since g is element-wise monotone, the
vertex x̃(N) that we obtain satisfies Equation (26). Since x(N) is a global minimiser, Equation (26) needs to hold with
equality.

Together, a) and b) yield that there is always a vertex x̃(N) ∈ vert(Xφ) that globally minimises VN .

Proof of Theorem 4.4. We prove termination with optimality following from Proposition 4.1. Let R, g, Xφ be as in
Theorem 4.4. Also, assume that Algorithm 1 prefers vertices of Xφ as global minimisers of VN . From Lemma A.6 we know
that there is always a vertex of Xφ that minimises VN . From the proof of Lemma A.6 we also know that it is easy to find
such a vertex given any global minimiser of VN . As Algorithm 1 always chooses vertices of Xφ under our assumption, there
is only a finite set of minimisers x(N), as a hyper-rectangle has only finitely many vertices. Given this, termination follows
analogously to the proof of Theorem 4.3.

A.5. Proposition 4.5

Proof of Proposition 4.5. Let J , fSat, netθ and Xφ be as in Proposition 4.5. When inserting these into Equation (6), we
obtain the repair problem

R :

{
minimise

θ∈R
|θ|

subject to θ − x ≥ 0 ∀x ∈ [0, 1].
(27)

Assume the early-exit verifier generates the sequence x(N) = 1
2 − 1

N+2 as long as these points are counterexamples
for netθ(N−1) . Otherwise, let it produce x(N) = 1, the global minimum of all VN .

Minimising J without constraints yields θ(0) = 0. The point x(1) = 1
2 − 1

3 is a valid result of the early-exit verifier for V1,
as it is a counterexample. We observe that the constraint

fSat(netθ(x)) = θ − x ≥ 0 (28)

is tight when θ = x. Smaller θ violate the constraint. Since J prefers values of θ closer to zero, it always holds for any
minimiser of CRN that

θ(N) = max
(
x(1), . . . ,x(N)

)
= x(N). (29)

The last equality is due to the construction of the points returned by the early-exit verifier. However, for these values
of θ(N), 1

2 − 1
N+2 always remains a valid product of the early-exit verifier for VN . Thus we obtain,

θ(N) = x(N) =
1

2
− 1

N + 2
. (30)

The minimiser of R is θ† = 1. However, θ(N) does not converge to this point but to the infeasible limN→∞ θ(N) = 1
2 .

Since the iterates θ(N) always remain infeasible for R, the modified Algorithm 1 never terminates.

B. Experiment Design
In our experiments, we repair an MNIST (LeCun et al., 1998) network, ACAS Xu networks (Katz et al., 2017), a
CollisionDetection (Ehlers, 2017) network, and integer dataset Recursive Model Indices (RMIs) (Tan et al., 2021). For repair,
we make use of an early-exit verifier, an optimal verifier, the SpecAttack falsifier (Bauer-Marquart et al., 2022), and the BIM
falsifier (Madry et al., 2018; Kurakin et al., 2017). To obtain an optimal verifier, we modify the ERAN verifier (Singh et al.,
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Table 4: Network Architectures. In(•) gives the dimension of the network input. Convolutional layers are denoted
Conv(out=•, kernel=•, stride=•, pad=•), where out is the number of filters and kernel, stride, and
pad are the kernel size, stride, and padding for all spatial dimensions of the layer input. Fully-connected layers are denoted
FC(out=•), where out is the number of neurons. [•] × n denotes the n-fold repetition of the block in square brackets.
RMI stands for the Integer Dataset RMIs.

Dataset Network Architecture

MNIST In(1×28×28), Conv(out=8, kernel=3, stride=3, pad=1), ReLU,
FC(out=80), ReLU, FC(out=10)

ACAS Xu In(5), [FC(out=50), ReLU] × 6, FC(out=5)
Collision-Detection In(6), [FC(out=10), ReLU] × 2, FC(out=2)
RMI, First Stage In(1), [FC(out=16), ReLU] × 2, FC(out=1)
RMI, Second Stage In(1), FC(out=1)

2022) to compute most-violating counterexamples. We use the modified ERAN verifier both as the early-exit and as the
optimal verifier in our experiments, as it supports both exit modes.

In all experiments, we use the SpecRepair counterexample-removal algorithm (Bauer-Marquart et al., 2022) unless otherwise
noted. We set up all verifiers and falsifiers to return a single counterexample. For SpecAttack, which produces multiple
counterexamples, we select the counterexample with the largest violation. We make this modification to eliminate differences
due to some tools returning more counterexamples than others, as we are interested in studying the effects of counterexample
quality, not counterexample quantity.

We make our source code available under the Apache 2.0 license1 at https://github.com/sen-uni-kn/
specrepair. Our experimental data is available at https://doi.org/10.5281/zenodo.7938547.

B.1. Modifying ERAN to Compute Most-Violating Counterexamples

The ETH Robustness Verifier for Neural Networks (ERAN) (Singh et al., 2022) combines abstract interpretation with
Mixed Integer Linear Programming (MILP) to verify neural networks. For our experiments, we use the DeepPoly abstract
interpretation (Singh et al., 2019). ERAN leverages Gurobi (Gurobi Optimization, LLC, 2021) for MILP. To verify properties
with low-dimensional input sets having a large diameter, ERAN implements the ReluVal input splitting branch and bound
procedure (Wang et al., 2018). We employ this branch and bound procedure only for ACAS Xu.

The Gurobi MILP solver can be configured to stop optimisation when encountering the first point with a negative satis-
faction function value below a small threshold. We use this feature for the early-exit mode. To compute most-violating
counterexamples, we instead run the MILP solver until achieving optimality.

The input-splitting branch and bound procedure evaluates branches in parallel. In the early-exit mode, the procedure
terminates when it finds a counterexample on any branch. As other branches may contain more-violating counterexamples,
we search the entire branch and bound tree in the optimal mode.

B.2. Datasets, Networks, and Specifications

We perform experiments with four different datasets. In this section, we introduce the datasets, as well as what networks we
repair to conform to which specifications. The network architectures for each dataset are contained in Table 4.

B.2.1. MNIST

The MNIST dataset (LeCun et al., 1998) consists of 70 000 labelled images of hand-written Arabic digits. Each image
consists of 28× 28 pixels. The dataset is split into a training set of 60 000 images and a test set of 10 000 images. The task
is to predict the digit in an image from the image pixel data. We train a small convolutional neural network achieving 97%
test set accuracy (98% training set accuracy). Table 4 contains the concrete architecture.

We repair the L∞ adversarial robustness of this convolutional neural network for groups of 25 input images. These images

1https://www.apache.org/licenses/LICENSE-2.0.html
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are randomly sampled from the images in the training set for which the network is not robust. Each robustness property has
a radius of 0.03. Overall, we form 50 non-overlapping groups of input images. Thus, each repaired network is guaranteed to
be locally robust for a different group of 25 training set images. While specifications of this size are not practically relevant,
they make it feasible to perform several (50) experiments for each verifier variant. We formally define L∞ adversarial
robustness in Appendix C.1.

We train the MNIST network using Stochastic Gradient Descent (SGD) with a mini-batch size of 32, a learning rate of 0.01
and a momentum coefficient of 0.9, training for two epochs. Counterexample-removal uses the same setup, except for using
a decreased learning rate of 0.001 and iterating only for a tenth of an epoch.

B.2.2. ACAS XU

The ACAS Xu networks (Katz et al., 2017) form a collision avoidance system for aircraft without onboard personnel.
Each network receives five sensor measurements that characterise an encounter with another aircraft. Based on these
measurements, an ACAS Xu network computes scores for five possible steering directions: Clear of Conflict (maintain
course), weak left/right, and strong left/right. The steering direction advised to the aircraft is the output with the minimal
score. Each of the 45 ACAS Xu networks is responsible for another class of encounter scenarios. More details on the system
are provided by Julian et al. (2018). Each ACAS Xu network is a fully-connected ReLU network with six hidden layers
of 50 neurons each.

Katz et al. (2017) provide safety specifications for the ACAS Xu networks. Of these specifications, the property ϕ2 is
violated by the largest number of networks. We repair ϕ2 for all networks violating it, yielding 34 repair cases. The
property ϕ2 specifies that the score for the Clear of Conflict action is never maximal (least-advised) when the intruder is far
away and slow. The precise formal definition of ϕ2 is given in Appendix C.2.

We repair the ACAS Xu networks following Bauer-Marquart et al. (2022). To replace the unavailable ACAS Xu training
data, we randomly sample a training and a validation set and compare with the scores produced by the original network. As
a loss function, we use the asymmetric mean square error loss of Julian & Kochenderfer (2019). We repair using the Adam
training algorithm (Kingma & Ba, 2015) with a learning rate of 10−4. We terminate training on convergence, when the loss
on the validation set starts to increase, or after at most 500 iterations.

For assessing the performance of repaired networks, we compare the accuracy and the Mean Absolute Error (MAE) between
the predictions of the repaired network and the predictions of the original network on a large grid of inputs, filtering out
counterexamples. For all networks, the filtered grid contains more than 24 million points.

B.2.3. COLLISIONDETECTION

The CollisionDetection dataset (Ehlers, 2017) is introduced for evaluating neural network verifiers. The task is to predict
whether two particles collide based on their relative position, speed, and turning angles. The training set of 7000 instances
and the test set of 3000 instances are obtained from simulating particle dynamics for randomly sampled initial configurations.
We train a small fully-connected neural network with 20 neurons on this dataset. The full architecture is given in Table 4.

Similarly to MNIST, we repair the adversarial robustness of this network for 100 non-overlapping groups of ten randomly
sampled inputs from the training set. Here we also include inputs that do not violate the specification to gather a sufficient
number of groups. Each robustness property has a radius of 0.05.

The CollisionDetection network is trained for 1000 iterations using Adam (Kingma & Ba, 2015) with a learning rate of 0.01.
Repair uses Adam with a learning rate of 0.001, terminating training on convergence or when reaching 5000 iterations.

B.2.4. INTEGER DATASET RMIS

Learned index structures replace index structures, such as B-trees, with machine learning models (Kraska et al., 2018).
Tan et al. (2021) identify these models as prime candidates for neural network verification and repair due to the strict
requirements of their domain and the small size of the models. We use Recursive Model Indices (RMIs) (Kraska et al., 2018)
in our experiments. The task of an RMI is to resolve a key to a position in a sorted sequence.

We build datasets, RMIs and specifications following Tan et al. (2021), with the exception that we create models of two
sizes. While Tan et al. (2021) build one RMI with a second-stage size of ten, we build ten RMIs with a second-stage size of
ten and 50 RMIs with a second-stage size of 304. Each RMI is constructed for a different dataset. We create models of
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two second-stage sizes because the smaller size does not yield unsafe first-stage models, while the larger second-stage size
does not yield unsafe second-stage models. However, we want to repair models of both stages. Therefore, when repairing
first-stage models in Section 5.2, we repair the first-stage models of the RMIs with second-stage size 304. In Section 5.3, we
repair the second-stage models of the RMIs with second-stage size ten.

Each dataset is a randomly generated integer dataset consisting of a sorted sequence of 190 000 integers. The integers are
randomly sampled from a uniform distribution with the range

[
0, 106

]
. The task is to predict the index of an integer (key) in

the sorted sequence.

We build an RMI for each dataset. Each RMI consists of two stages. The first stage contains one neural network. The second
stage contains several linear regression models. In our case, the second stage contains either ten or 304 models. Each dataset
is first split into several disjoint blocks, one for each second-stage model. Now, the first-stage network is trained to predict
the block an integer key belongs to. The purpose of this model is to select a model from the second stage. Each model
of the second stage is responsible for resolving the keys in a block to the position of the key in the sorted sequence. The
architectures of the models are given in Table 4.

We train the first-stage model to minimise the Mean Square Error (MSE) between the model predictions and the true blocks.
Training uses Adam (Kingma & Ba, 2015) with a learning rate of 0.01 and a mini-batch size of 512. For an RMI with a
second-stage size of ten, we train for one epoch. For the larger second-stage size of 304, we train for six epochs.

Minimising the MSE between the positions a second-stage model predicts and the true positions can be solved analytically.
We use the analytic solution for training the second-stage models. In Section 5.3, we compare with Ouroboros (Tan et al.,
2021) that also uses the analytic solution. SpecRepair (Bauer-Marquart et al., 2022) can not make use of the analytic solution.
Instead, it repairs second-stage models using gradient descent with a learning rate of 10−13, running for 150 iterations.

The specifications for the RMIs are error bounds on the predictions of each model. For a first-stage neural network, the
specification is that it may not deviate by more than one valid block from the true block. The specification for a second-stage
model consists of one property for each key in the target block and one for all other keys that the first stage assigns to the
second-stage model. The property for a key ki specifies that the prediction for all keys between the previous key ki−1 and
the next key ki+1 in the dataset may not deviate by more than ε from the position for ki. We use two sets of specifications,
one with ε = 100 and one with ε = 150. According to Tan et al. (2021), the specifications express a guaranteed error bound
for looking up both existing and non-existing keys. The formal definitions of the specifications are given in Appendix C.3.

As the original Ouroboros implementation is not publicly available, we reimplement Ouroboros, including creating integer
dataset RMIs. To roughly estimate whether our reimplementation is faithful, we can examine the average size of the
specifications for the second-stage models for the RMIs with second-stage size ten. As these specifications include keys that
are wrongly assigned to a second-stage model, they can serve for quantifying the accuracy of the first-stage models. The
specifications that we obtain for these models have a similar average size as reported by Tan et al. (2021) (19 426 properties).
This indicates that our reimplementation is faithful.

B.3. Repair Algorithms

Except for Section 5.3, we exclusively use the SpecRepair counterexample-removal algorithm (Bauer-Marquart et al., 2022)
in our experiments. In Section 5.3, we also use the Ouroboros (Tan et al., 2021) repair algorithm and the novel Quadratic
Programming repair algorithm. Additionally, we leverage different falsifiers for repair. This section introduces these tools.

Both Ouroboros and SpecRepair are counterexample-guided repair algorithms. Ouroboros performs repair by augmenting
the training set with counterexamples and retraining the linear regression models using an analytic solution. SpecRepair
uses the L1 penalty function method (Nocedal & Wright, 2006). We use SpecRepair with a decreased initial penalty weight
of 2−4 and a satisfaction constant of 10−4. We do not limit the number of repair steps a repair algorithm may perform,
except for Section 5.3. Here, we perform at most two repair steps for SpecRepair. For Ouroboros, we perform up to five
repair steps following Tan et al. (2021).

The Quadratic Programming repair algorithm from Section 5.3 is exact. That is, we obtain an infeasible problem if and only
if the linear regression model can not satisfy the specification and otherwise obtain the optimal repaired regression model.
To mitigate floating point issues, we require the satisfaction function to be at least 10−2 in Equation (6) instead of requiring
it to be just non-negative. That corresponds to applying a satisfaction constant as in SpecRepair (Bauer-Marquart et al.,
2022).
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We run SpecAttack Bauer-Marquart et al. (2022) using Sequential Least SQuares Programming (SLSQP) as network
gradients are available. Following Carlini & Wagner (2017), we run BIM (Kurakin et al., 2017; Madry et al., 2018) with
Adam (Kingma & Ba, 2015) as optimiser. BIM performs local optimisation ten times from different random starting points.

B.4. Implementation and Hardware

We build upon SpecRepair (Bauer-Marquart et al., 2022) for our experiments, leveraging the modified ERAN. SpecRepair
and ERAN are implemented in Python. SpecRepair is based on PyTorch (Paszke et al., 2019). For repairing linear regression
models, we also use an ERAN-based Python reimplementation of Ouroboros (Tan et al., 2021). The original Ouroboros
implementation is not publicly available. The quadratic programming repair algorithm for linear regression models is
implemented in Python and leverages Gurobi (Gurobi Optimization, LLC, 2021).

All experiments were conducted on Ubuntu 2022.04.1 LTS machines using Python 3.8. The ACAS Xu, CollisionDetection
and Integer Dataset RMI experiments were run on a compute server with an Intel Xeon E5–2580 v4 2.4GHz CPU (28 cores)
and 1008GB of memory. The MNIST experiments were run on a GPU compute server with an AMD Ryzen Threadripper
3960X 24-Core Processor and 252GB of memory, utilising an NVIDIA RTX A6000 GPU with 48GB of memory.

We limit the execution time for repairing each ACAS Xu network and each MNIST specification to three hours. For
CollisionDetection and the Integer Dataset RMIs, we use a shorter timeout of one hour. Except for ACAS Xu, whenever
we report runtimes, we repeat all experiments ten times and report the median runtime from these runs. This way, we
obtain more accurate runtime measurements that are necessary for interpreting runtime differences below one minute. For
ACAS Xu, the runtime differences are sufficiently large for all but one network, so that we can faithfully compare different
counterexample searchers without repeating the experiments.

C. Specifications
In this section, we formally define the specifications used throughout this paper.

C.1. L∞ Adversarial Robustness

Adversarial robustness is a specification for classifiers capturing that small perturbations of an input may not change the
classification. For L∞ adversarial robustness, the input set is an L∞ ball (a hyper-rectangle).

Assume the input space has n dimensions and there are m classes. Furthermore, assume the classifier produces a score
for each class so that the classifier has m outputs. Also, assume the classification is the class with the largest score.
Let D ⊂ Rn × {1, . . . ,m} be the set of labelled inputs for which we want to specify adversarial robustness. Then, the L∞
adversarial robustness specification with radius ε is

Φ = {φ(x, c) | (x, c) ∈ D} (31a)

φ(x, c) =

(
{x′ | x′ ∈ Rn, ∥x′ − x∥∞ ≤ ε} ,

{
y

∣∣∣∣∣ y ∈ Rm,

m∧
i=1

yi ≤ yc

})
. (31b)

The SpecRepair satisfaction function (Bauer-Marquart et al., 2022) for a property φ(x, c) is

fSat(y) =
m
min
i=1

yc − yi. (32)

Equivalently, we can split up each property into several properties with just one linear constraint, yielding a linear
specification. We describe this in Section C.3.

C.2. ACAS Xu ϕ2

This safety specification consists of a single property. The property ϕ2 of Katz et al. (2017) is

ϕ2 =

(
[55947.691,∞]× R2 × [1145,∞]× [−∞, 60],

{
y

∣∣∣∣∣ y ∈ R5,

5∨
i=1

y1 ≤ yi

})
. (33)
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The output set expresses that Clear-of-Conflict is not the maximal score, or, in other words, is not least advised. The input
set of this property is unbounded, but each ACAS Xu network has a bounded input domain. Intersected with one of the
input domains, we obtain a closed input set for the property. The SpecRepair satisfaction function for ϕ2 is

fSat(y) =
m

max
i=1

yi − y1. (34)

C.3. Integer Dataset RMI Error Bounds

For an RMI, the specification of a first-stage model is that it may not deviate by more than one valid block from the true
block a key resides in. Let [l1, u1], [l2, u2], . . . , [lK , uK ] be the blocks of the RMI, where K ∈ {10, 304} is the number of
blocks. Then, the specification of the first-stage model is

Φ = {φi}Ki=1 (35a)
φi = ([li, ui], [max(1, i− 1),min(i+ 1,K)]) ∀i ∈ {1, . . . ,K}. (35b)

The specification of a second-stage model contains one property for each key ki that is in the model’s target block or is
assigned to the model by the first-stage model. Let K ⊂ N be the indices of keys that are in the model’s block or assigned to
it. Each property expresses that the predictions for all keys between the previous key ki−1 and the next key ki+1 deviate by
at most ε ∈ {100, 150} from the true position pi of ki. When there is no previous or next key in the dataset, we use the key
itself as bound. Therefore, k0 = k1 and k190 001 = k190 000. Now, the second-stage specification is

Φ = {φi}i∈K (36a)
φi = ([min(ki−1 + 1, ki),max(ki+1 − 1, ki)], [pi − ε, pi + ε]) . (36b)

The output sets of these properties are hyper-rectangles. In the SpecRepair property format, one-dimensional hyper-
rectangles correspond to a conjunction of two linear constraints. A conjunction of multiple linear constraints does not yield
an affine satisfaction function, as SpecRepair uses a minimum to encode conjunctions. This is illustrated by Equation (32).
To obtain a linear specification, we can split each property into two properties, such that each property only has one linear
constraint. Using this alternative formulation, the specification of a second-stage model is

Φ = {φi}i∈K ∪ {ψi}i∈K (37a)
φi = ([min(ki−1 + 1, ki),max(ki+1 − 1, ki)], {y | y ∈ R,y ≥ pi − ε}) (37b)
ψi = ([min(ki−1 + 1, ki),max(ki+1 − 1, ki)], {y | y ∈ R,y ≤ pi + ε}) . (37c)

This formulation yields the affine SpecRepair satisfaction functions fSat(y) = y− pi− ε for the property φi and fSat(y) =
pi + ε− y for ψi. As the input set of each property is a hyper-rectangle, Φ from Equation (37) is a linear specification.

D. Additional Experimental Results
In this section, we report additional experimental results. This includes additional results on using falsifiers for repair and an
overview of the success rates and repaired network performance when using different verifiers and falsifiers for repair. For
comparison with earlier work, we report our full ACAS Xu results in Section D.3.

A Note on Failing Repairs We witness several failing repairs in our experiments. These are either due to timeout or due
to failing counterexample-removal. There are no indications of non-termination regarding Algorithm 1 itself in these failing
repairs. In other words, we do not observe exceedingly high repair step counts. This holds true both for the optimal verifier,
for which termination remains an open question, and the early-exit verifier, for which we disprove termination in Section 4.6.

D.1. Using Falsifiers for Repair

In this section, we report additional results on repair using falsifiers. To study the advantages of falsifiers for repair, we repair
an MNIST network and the ACAS Xu networks using the SpecAttack (Bauer-Marquart et al., 2022) and BIM (Kurakin
et al., 2017; Madry et al., 2018) falsifiers. We outline the approach of the BIM falsifier in Section 3.3. We start repair by
searching counterexamples using one of the falsifiers. Only when the falsifier fails to produce further counterexamples we
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Figure 5: Repair using Falsifiers. We plot the number of repaired instances that individually require less than a certain
runtime. We plot this for repair using SpecAttack , only the optimal verifier and only the early-exit verifier . Both
experiments use a timeout of three hours. Runtimes are given on a logarithmic scale.

turn to the early-exit verifier. Ideally, we would want that the verifier is invoked only once to prove specification satisfaction.
Practically, often several additional repair steps have to be performed using the verifier.

For ACAS Xu, we observe that BIM generally fails to find counterexamples. Therefore, we only report using SpecAttack for
ACAS Xu. For the small CollisionDetection and Integer Dataset networks, the verifier is already comparably fast, so neither
BIM nor SpecAttack can provide a runtime advantage. We also evaluated combining falsifiers with the optimal verifier, but
this does not improve upon using the early-exit verifier.

SpecAttack Figure 5 summarises our results for repairing the MNIST network and the ACAS Xu networks using
SpecAttack. For the MNIST network, using SpecAttack is inferior to using only the early-exit verifier. In our experiments,
SpecAttack provides no significant runtime advantage for generating counterexamples over the early-exit verifier and
tends to compute counterexamples with a smaller violation. SpecAttack’s runtime scales well with the network size but
exponentially in the input dimension. Thus, it is not surprising that it provides no advantage for our MNIST network, which
is tiny compared to state-of-the-art image classification networks.

For ACAS Xu, we would expect that SpecAttack outperforms using only the early-exit verifier more clearly than apparent
from Figure 5. Here, SpecAttack’s runtime is an order of magnitude faster than the runtime of the early-exit verifier.
SpecAttack can also provide an advantage in repair steps in many cases. However, at times using SpecAttack also increases
the number of repair steps. Additionally, SpecAttack sometimes makes the final invocations of the early-exit verifier more
costly than when only the verifier is used.

Additional Results on BIM The results of our experiments using BIM on MNIST are summarised in Figure 2. We already
discussed that BIM can significantly accelerate repair. For MNIST, repair using BIM is the fastest method in 70% of the
repair cases, compared to 26% for only the early-exit verifier, 2% for SpecAttack and 0% for only the optimal verifier.
In 2% of the cases, the runtime of the two best variants is within 30 seconds. The breakdown of which method is the fastest
for each repair case shows that the picture is not as clear as we may wish it to be — BIM provides a significant runtime
advantage in 70% of the cases, but in 26% of the cases using only the early-exit verifier is faster.

Our experiments using falsifiers demonstrate that they can give a substantial runtime advantage to repair, but they also show
that speeding up repair traces back to more intricate properties beyond just falsifier speed. Understanding these properties
better is a promising future research direction for designing better falsifiers for repair.

D.2. Success Rates and Repaired Network Performance

Table 5 summarises the success rates of repairing MNIST, ACAS Xu, and CollisionDetection networks and Integer Dataset
RMI first-stage models using different verifiers and falsifiers. For the large MNIST and ACAS Xu networks, the early-exit
verifier enables repair in some cases where repair using the optimal verifier fails due to timeout. Regarding the use of
falsifiers, there are minor variations for the Integer Dataset RMIs and CollisionDetection. These differences are due to
failing repairs. Here, the counterexample removal procedure is unable to remove all counterexamples provided by, for
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Table 5: Experiments: Success Rates. The success rates when repairing the ACAS Xu, MNIST, and CollisionDetection
networks and integer dataset RMI first-stage models using the different verifiers and falsifiers. For ACAS Xu, BIM is not
included as it is unable to discover counterexamples for these networks.

Success Rate
Dataset Optimal Early-Exit BIM SpecAttack

ACAS Xu 82.5% 100.0% – 100.0%
MNIST 96.0% 100.0% 100.0% 100.0%
Integer Datasets 92.0% 92.0% 94.0% 90.0%
CollisionDetection 90.0% 90.0% 89.0% 88.0%

Table 6: Experiments: Median Accuracy. The median repaired network accuracy when repairing the ACAS Xu, MNIST,
and CollisionDetection networks and integer dataset RMI first-stage models using the different verifiers and falsifiers. We
report the test set accuracy for MNIST and CollisionDetection and the training set accuracy for the integer dataset RMIs.
For ACAS Xu, we report the accuracy for recreating the predictions of the original network for a large grid of inputs, as
described in Appendix B.2. We report the median accuracy among the cases where repair is successful for all verifiers and
falsifiers. For ACAS Xu, BIM is not included as it is unable to discover counterexamples for these networks.

Median Accuracy
Dataset Optimal Early-Exit BIM SpecAttack

ACAS Xu 99.6% 99.6% – 99.6%
MNIST 97.4% 97.5% 97.4% 97.5%
Integer Datasets 90.9% 90.9% 90.0% 91.0%
CollisionDetection 89.8% 90.2% 90.0% 89.9%

example, the optimal verifier, while it succeeds for another set of counterexamples.

Table 6 summarises the performance of the repaired networks. We only observe minimal variations regarding the performance.
Using the early-exit verifier slightly outperforms the optimal verifiers on MNIST and CollisionDetection. The impact of BIM
and SpecAttack is inconsistent across datasets. We recommend fine-tuning the initial penalty weight to the counterexample
violation magnitude instead of using a different counterexample searcher to increase repaired network performance.

D.3. ACAS Xu

For comparison with the earlier work of Bauer-Marquart et al. (2022), we report our detailed ACAS Xu results in Table 7.
Due to improvements in the interaction with the verifier, we are successful more frequently than any method evaluated
by Bauer-Marquart et al. (2022). At the same time, we maintain the level of repaired network performance.
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Table 7: Detailed ACAS Xu Results. Opt. and E.E denote repair using the optimal and the early-exit verifier, respectively.
Sp.A. denotes repair using SpecAttack and the early-exit verifier. The symbol ✓ denotes successful repair, while 

denotes timeout. Both accuracy and Mean Absolute Error (MAE) compare the predictions of the repaired network with the
predictions of the initial faulty network for a large grid of inputs. More details on this are provided in Appendix B.2.

Status Accuracy MAE

Spec. Model Opt. E.E. Sp.A. Opt. E.E. Sp.A. Opt. E.E. Sp.A.

ϕ2 N2,1 ✓ ✓ ✓ 99.6% 99.4% 99.6% 0.10 0.15 0.11
ϕ2 N2,2 
 ✓ ✓ – 99.2% 99.1% – 0.18 0.22
ϕ2 N2,3 ✓ ✓ ✓ 99.7% 99.7% 99.7% 0.09 0.10 0.11
ϕ2 N2,4 ✓ ✓ ✓ 99.7% 99.5% 99.8% 0.08 0.11 0.08
ϕ2 N2,5 
 ✓ ✓ – 99.4% 99.3% – 0.11 0.11
ϕ2 N2,6 ✓ ✓ ✓ 99.6% 99.5% 99.5% 0.12 0.11 0.10
ϕ2 N2,7 
 ✓ ✓ – 99.5% 14.5% – 0.17 0.16
ϕ2 N2,8 ✓ ✓ ✓ 99.6% 99.6% 99.7% 0.12 0.15 0.13
ϕ2 N2,9 ✓ ✓ ✓ 99.9% 99.8% 99.8% 0.17 0.14 0.14
ϕ2 N3,1 ✓ ✓ ✓ 99.0% 99.3% 99.4% 0.22 0.14 0.17
ϕ2 N3,2 ✓ ✓ ✓ 99.9% 99.8% 99.8% 0.08 0.09 0.13
ϕ2 N3,4 ✓ ✓ ✓ 99.6% 99.6% 99.6% 0.11 0.13 0.08
ϕ2 N3,5 ✓ ✓ ✓ 99.5% 99.5% 99.5% 0.08 0.10 0.08
ϕ2 N3,6 ✓ ✓ ✓ 99.8% 99.8% 99.7% 0.05 0.06 0.06
ϕ2 N3,7 ✓ ✓ ✓ 99.6% 99.6% 99.7% 0.09 0.08 0.08
ϕ2 N3,8 ✓ ✓ ✓ 99.6% 99.6% 99.7% 0.13 0.10 0.11
ϕ2 N3,9 
 ✓ ✓ – 97.5% 97.5% – 0.19 0.18
ϕ2 N4,1 ✓ ✓ ✓ 99.8% 99.8% 99.8% 0.10 0.07 0.10
ϕ2 N4,3 ✓ ✓ ✓ 99.6% 99.6% 99.5% 0.09 0.08 0.13
ϕ2 N4,4 ✓ ✓ ✓ 99.7% 99.6% 99.7% 0.11 0.15 0.09
ϕ2 N4,5 ✓ ✓ ✓ 99.6% 99.5% 99.5% 0.09 0.07 0.12
ϕ2 N4,6 
 ✓ ✓ – 99.5% 99.6% – 0.13 0.11
ϕ2 N4,7 
 ✓ ✓ – 99.2% 99.2% – 0.17 0.18
ϕ2 N4,8 ✓ ✓ ✓ 99.4% 99.3% 99.5% 0.08 0.08 0.09
ϕ2 N4,9 ✓ ✓ ✓ 96.5% 96.4% 96.5% 0.16 0.14 0.13
ϕ2 N5,1 ✓ ✓ ✓ 99.7% 99.5% 99.6% 0.12 0.13 0.09
ϕ2 N5,2 ✓ ✓ ✓ 99.7% 99.7% 99.7% 0.08 0.07 0.08
ϕ2 N5,3 ✓ ✓ ✓ 99.9% 99.9% 99.9% 0.04 0.04 0.04
ϕ2 N5,4 ✓ ✓ ✓ 99.7% 99.7% 99.7% 0.10 0.07 0.10
ϕ2 N5,5 ✓ ✓ ✓ 99.8% 99.7% 99.8% 0.10 0.13 0.11
ϕ2 N5,6 ✓ ✓ ✓ 99.6% 99.5% 99.5% 0.13 0.11 0.11
ϕ2 N5,7 ✓ ✓ ✓ 99.3% 99.3% 99.5% 0.17 0.14 0.11
ϕ2 N5,8 ✓ ✓ ✓ 99.6% 99.4% 99.5% 0.13 0.12 0.13
ϕ2 N5,9 ✓ ✓ ✓ 99.0% 98.9% 99.1% 0.14 0.13 0.09

28 34 34 99.6% 99.5% 99.6% 0.10 0.11 0.11
success frequency median median
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