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Abstract

Differentially private (DP) optimization is the
standard paradigm to learn large neural networks
that are accurate and privacy-preserving. The
computational cost for DP deep learning, however,
is notoriously heavy due to the per-sample gra-
dient clipping. Existing DP implementations are
2 ∼ 1000× more costly in time and space com-
plexity than the standard (non-private) training.
In this work, we develop a novel Book-Keeping
(BK) technique that implements existing DP opti-
mizers (thus achieving the same accuracy), with
a substantial improvement on the computational
cost. Specifically, BK enables DP training on
large models and high dimensional data to be
roughly as fast and memory-saving as the stan-
dard training, whereas previous DP algorithms
can be inefficient or incapable of training due to
memory error. The computational advantage of
BK is supported by the complexity analysis as
well as extensive experiments on vision and lan-
guage tasks. Our implementation achieves state-
of-the-art (SOTA) accuracy with very small ex-
tra cost: on GPT2 and at almost the same mem-
ory cost (< 1% overhead), BK has 1.03× the
time complexity of the standard training (0.83×
training speed in practice), and 0.61× the time
complexity of the most efficient DP implemen-
tation (1.36× training speed in practice). We
open-source the codebase for the BK algorithm
at https://github.com/awslabs/fas
t-differential-privacy.

1 Introduction
Deep learning with differential privacy (DP; (Dwork et al.,
2006)) has shown strong performance while guaranteeing
rigorous protection against privacy risks, especially on large
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models that tend to memorize and leak the training data
(Carlini et al., 2021; Haim et al., 2022; Shokri et al., 2017).
For example, recent advances have shed light on the success
of DP GPT2 (Li et al., 2021; Bu et al., 2022b; Yu et al.,
2021), which achieves 64.6 BLEU score1 at strong privacy
guarantee (ϵ = 3), on the text generation task using E2E
restaurant review dataset. This is only marginally below the
standard non-private GPT2 (BLEU score 66.8). Similarly,
on computer vision tasks (ϵ = 2), DP vision transformers
and ResNets have obtained 97.1%/86.2% accuracy on CI-
FAR10/100 by (Bu et al., 2022a) and over 81% accuracy on
ImageNet by (De et al., 2022; Mehta et al., 2022).

However, DP training of large neural networks is well-
known to be computationally burdensome in comparison to
the standard training, in terms of both the training time and
the memory cost. For instance, training a small recurrent
neural network (0.598M parameters) experiences a 1000×
slowdown using DP optimizers in Tensorflow-Privacy (TF-
Privacy) library in (Bu et al., 2021a), and training a small
convolutional neural network (CNN, 0.605M parameters)
on CIFAR10 has a 24× slowdown with Tensorflow 2 and the
XLA compiler (Subramani et al., 2021). Even with SOTA
efficient implementations, large models such as RoBERTa
(Liu et al., 2019), GPT2 (Radford et al., 2019), ResNet (He
et al., 2016), VGG (Simonyan & Zisserman, 2014), ViT
(Dosovitskiy et al., 2020) and its variants, experience about
2 ∼ 3× slowdown in Pytorch (Li et al., 2021; Bu et al.,
2022a) and 2 ∼ 9× slowdown in JAX (Kurakin et al., 2022;
De et al., 2022), with possibly 4 ∼ 20× memory overhead
(Bu et al., 2022a; Li et al., 2021; Subramani et al., 2021) if
not running out of memory.

The efficiency bottleneck in DP deep learning lies in the
per-sample gradient clipping, which restricts the magnitude
of each per-sample gradient in the mini-batch. Applying
the clipping jointly with the Gaussian noise addition, one
can privately release the gradient to arbitrary optimizers
like SGD and Adam, and thus guarantee the privacy of the

1BLEU (BiLingual Evaluation Understudy) is a metric (0-100)
for automatically evaluating translated text. BLEU > 60 is consid-
ered as ”very high quality, adequate, and fluent translations, often
better than human”.
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Dataset SOTA setting Model Time
/Epoch

Relative Speed (same memory contraint)
to GhostClip to Opacus to non-DP

QQP (Li et al., 2021) RoBERTa-large (355M) 70’04” 1.36× 1.96× 0.77×(0.89×)
E2E (Li et al., 2021) GPT2-large (774M) 10’01” 1.36× 4.41× 0.83×(0.97×)

CIFAR (Bu et al., 2022a) BEiT-large (304M) 6’35” 1.33× 38.3× 0.76×(0.92×)
Table 1. Efficiency of BK algorithm on DP tasks using one A100 GPU (same accuracy). Note the speed is measured in wall-time
(hardware speed) and in complexity (theoretical speed). More models and tasks can be found in Table 9.

training as described in Section 1.3:

private gradient: Ĝ :=
∑

i
gi · C(∥gi∥2) + σDP · N (0, I),

private optimizer (e.g. SGD): Wt+1 = Wt − ηĜ. (1)

Here W is the model parameters, Li is the per-sample loss,
gi =

∂Li

∂W is the per-sample gradient, η is the learning rate,
σDP is the noise magnitude that defines the privacy loss, and
C(∥gi∥) or simply Ci is the per-sample clipping factor. For
example, in (Abadi et al., 2016), Ci = min{R/∥gi∥, 1}
for some clipping threshold R; in (Bu et al., 2021b), Ci =
I(∥gi∥ ≤ R); in (Bu et al., 2022b), Ci = 1/(∥gi∥+ 0.01)
or 1/∥gi∥ as the gradient normalization.

At high level, the DP training is a system effort consisting
of multiple parts:

I. optimizer: DP-SGD, DP-Adam, DP-LAMB;

II. parameter efficiency: last layer (linear probing), LoRA,
Adapter, BiTFiT;

III. implementation: Opacus, GhostClip, Book-Keeping;

IV. platform: Pytorch, JAX, TensorFlow (TF).

Previous works have tackled the efficiency bottleneck with
various approaches. One approach (part II) focuses on the
parameter efficiency by partially training a neural network,
in contrast to fully fine-tuning all model parameters, e.g.
only the last output layer (Tramer & Boneh, 2020), the
adapter layers (Houlsby et al., 2019; Mahabadi et al., 2021),
or the Low-Rank Adaptation (LoRA) (Hu et al., 2021; Yu
et al., 2021). For example, (Mehta et al., 2022) acceler-
ate the DP training on ImageNet (Deng et al., 2009) up to
30× by only training the last layer of ResNet152. Notice-
ably, parameter efficient fine-tuning does not improve on
the efficiency in terms of complexity per parameter, rather
than reducing the number of parameters. Furthermore, this
approach oftentimes leads to some accuracy degradation
compared to DP full fine-tuning (Bu et al., 2020; Mehta
et al., 2022; Li et al., 2021; Yu et al., 2021).

An orthogonal approach, including this work, focuses on
the computation efficiency (part III), i.e. reducing the time
and space complexity through efficient implementations,
without modifying the DP optimizers (part I) and thus not

affecting their performance. We will elaborate on existing
methods in Section 1.2. Additionally, these methods can be
compiled on different platforms (part IV) such as Tensor-
flow 2(XLA), JAX and Pytorch (Li et al., 2021; Subramani
et al., 2021; De et al., 2022; Kurakin et al., 2022), where re-
markable speed difference has been observed in some cases,
even with the same implementation. For example, (Subra-
mani et al., 2021) implemented DP-SGD using JAX and
claimed its efficiency advantage over the same algorithm
using Tensorflow or Pytorch.

1.1 Contributions

1. [Algorithm] We propose the book-keeping (BK) algo-
rithm that makes existing DP optimizers fast and mem-
ory efficient, especially comparable to non-private opti-
mizers. We demonstrate BK via the computation graph
in Figure 1. The highlight is that BK only uses one back-
propagation and never instantiates per-sample gradients
{ ∂Li

∂W}
B
i=1.

2. [Analysis] We analyze the complexity to show that BK
has almost the same time and space complexity as non-
DP training, especially when the feature dimension is
small (see Table 5).

3. [Extension] We strengthen BK using a layerwise deci-
sion to mix with Opacus (see Section 3.2), which proves
to be efficient when the feature dimension is large (and
difficult for GhostClip). We also extend BK to the param-
eter efficient fine-tuning such as DP LoRA and Adapter.

4. [Codebase] We develop a Pytorch (Paszke et al., 2019)
codebase for our BK algorithm, leveraging the auto-
differentiation technique on the computation graph and
a new trick in Appendix D.2. We highlight that our
codebase can automatically switch the standard training
of any model to its DP version, by adding a single piece
of codes.

5. [Experiments] We demonstrate the amazing efficiency
of BK on training large models, saving the memory up to
10× and boosting the speed by 30% ∼ 5× than previous
DP implementations.
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Figure 1. Forward pass and back-propagation of the l-th linear
layer (standard training is in black; DP training by our book-
keeping algorithm is added in red). Here a(l) is the activation
tensor, s(l) is the layer output, W(l),b(l) are weight and bias,
Li,L are the per-sample loss and the summed loss. The dotted
arrow is the inter-layer operation such as pooling or normalization.

1.2 Related works

Previous arts have developed different implementations of
the same DP optimizer in Equation (1). Among these imple-
mentations, the tradeoff between the time and space com-
plexity has been constantly maneuvered. TF-Privacy (Ten-
sorflow) back-propagates a vectorized loss [L1, · · · ,LB ]
to compute the per-sample gradients, each from one back-
propagation, which is memory-efficient but slow. Opacus
(Yousefpour et al., 2021) and (Rochette et al., 2019) acceler-
ate the training significantly using the outer product trick in
(Goodfellow et al., 2014), though incurring heavy memory
burden so as to store the per-sample gradients. This memory
burden is partially alleviated in FastGradClip (Lee & Kifer,
2020) by sharing the space complexity in two rounds of
back-propagation, hence almost doubling the time complex-
ity. In ghost clipping (Goodfellow, 2015; Li et al., 2021; Bu
et al., 2022a), the per-sample gradients can be clipped with-
out being instantiated, thus both time and space complexity
can be further improved if the feature dimension is small.
We refer interested readers to Figure 3 and Appendix C for
algorithmic details of these implementations.

We now compare BK to different implementations in Table 2

and Figure 2. In what follows, B is the batch size2, T(l) is
the feature dimension3, d(l), p(l) are the input or output
dimension of a layer.

1.3 Preliminaries

We work with the (ϵ, δ)-DP by (Dwork et al., 2006), defined
in Appendix A, which makes it difficult for any privacy
attacker to distinguish or detect an arbitrary training sample,
even with full access to the model. In deep learning, DP is
achieved by training on the private gradient in Equation (1)
with any optimizer such as SGD, Adam, FedAvg, etc. Es-
sentially, the private gradient is the addition of Gaussian
noise to the sum of clipped per-sample gradients, which
guarantees the DP protection through the privacy account-
ing theorems (Abadi et al., 2016; Mironov, 2017; Dong
et al., 2019; Zhu et al., 2021; Gopi et al., 2021; Koskela
et al., 2020).

2 Book-keeping: Efficient DP training in low
dimension

The main computational bottleneck of DP training comes
from the per-sample gradient clipping, or from the computa-
tion of per-sample gradient norms, to be exact. One widely
used approach in Opacus, TF-privacy, and FastGradClip,
is to instantiate the per-sample gradients and then deriv-
ing their norms. Straight-forward implementation of this
approach on a mini-batch of per-sample losses requires B
rounds of back-propagation (unacceptable slowdown) or
B× gradient storage (unacceptable memory burden; see
Opacus in Figure 2). Consequently, these implementations
are not suitable for large model training. For instance, (Li
et al., 2021) shows that, when training GPT2-large (774M

2In this work, we report the physical batch size, which affects
the efficiency but not the accuracy; the accuracy is only affected
by the logical batch size, which can be implemented through the
gradient accumulation of physical batch size.

3For non-sequential data, T = 1; for texts, T is the sequence
length, which is layer-independent; for images (or videos), T(l) is
the height×width(×time) of hidden feature representation, which
is layer-dependent.

Non-DP TF-privacy Opacus FastGradClip GhostClip BK (ours)
Instantiating per-sample grad ✗ ✓ ✓ ✓ ✗ ✗

Storing every layer’s grad ✗ ✗ ✓ ✗ ✗ ✗
Instantiating non-DP grad ✓ ✓ ✓ ✗ ✓ ✗

Number of back-propagation 1 B 1 2 2 1
Time Complexity of Clipping 6BTpd 6BTpd 8BTpd 8BTpd 10BTpd+O(BT 2) ≈ 6BTpd
Memory Overhead to non-DP 0 0 Bpd Bpd 2BT 2 min{2BT 2, Bpd}

Scalable to large model ✓ ✗ ✗ ✗ ✓ ✓
Scalable to high-dim input ✓ ✗ ✓ ✓ ✗ ✓

Table 2. Summary of different DP implementations on a linear/convolution layer RB×T(l)×d(l) → RB×T(l)×p(l) . The main bottleneck is
marked in red.
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Figure 2. Speed and memory on MLP and CIFAR100 (images are flattened into vectors). Left to right: deep network (50 layers, width
1000, 50M parameters, batch size 128), shallow network (10 layers, width 1000, 10M parameters, batch size 128), and wide network (10
layers, width 5000, 250M parameters, batch size 128 or 1024; Opacus is OOM). See more ablation study in Appendix F.

parameters), Opacus (Yousefpour et al., 2021) and JAX
(Subramani et al., 2021) cannot fit even one single sample
into a 24GB GPU.

An alternative approach, termed as the ghost clipping
(GhostClip), directly computes the per-sample gradient
norms without computing the gradients themselves. This is
made possible, unfortunately, through two rounds of back-
propagation. During the first back-propagation, one uses
the regular loss

∑
i Li and extracts the activation tensor

and the output gradient (a, ∂L
∂s ). One can use an algebraic

trick in Equation (2) to compute the per-sample gradient
norms {∥ ∂Li

∂W∥}i and the clipping factors {Ci}i in Equa-
tion (1). During the second back-propagation, one uses
the reweighted loss

∑
i CiLi whose gradient is directly the

weighted gradient
∑

i Cigi, which constitutes the private
gradient we need. Note that this double back-propagation
roughly doubles the training time (or to be more precise,
10/6 ≈ 1.667× when T is small; but this approach loses its
advantage when T is large), as shown in Table 2).

To make the DP training as efficient as the standard training,
we propose the book-keeping technique (BK) that ⟨1⟩ only
requires a single round of back-propagation, like Opacus
and the standard training; ⟨2⟩ does not instantiate the per-
sample gradients, like GhostClip.

2.1 Book-keeping algorithms

BK algorithms in their base forms are built on GhostClip and
especially the ghost norm trick, so as to avoid instantiating
the memory costly per-sample gradients: as can be seen in
Algorithm 1 and Figure 3, ∂Li

∂W = a⊤
i

∂L
∂si

is not computed
throughout the training. In comparison to GhostClip, our
significant improvement is solely on the speed (see Table 2)
through two novel tricks: the book-keeping and the ghost
differentiation. The entire BK algorithm is built on the
understanding of computation graph in Appendix A. Note
that these tricks also offer improved efficiency for existing
implementations, to be presented in Section 2.4. We now
elaborate on these tricks.

BK (base) = ghost norm︸ ︷︷ ︸
from GhostClip

+ book-keeping︸ ︷︷ ︸
ours

+ ghost differentiation︸ ︷︷ ︸
ours

Algorithm 1 Differentially private deep learning with BK
Parameters: l-th layer weights W(l), number of layers L,
noise level σ.

1: for layer l ∈ 1, 2, · · · , L do
2: Get activation tensor {a(l),i} by forward hook

3: for layer l ∈ L,L− 1, · · · , 1 do
4: Get output gradient { ∂L

∂s(l),i
} by backward hook

5: Compute per-example gradient norm ∥ ∂Li

∂W(l)
∥2F by

ghost norm trick in Equation (2)
6: Aggregate gradient norm across layers: ∥ ∂Li

∂W∥
2
F =∑

l ∥
∂Li

∂W(l)
∥2F

7: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)
8: for layer l ∈ L,L− 1, · · · , 1 do
9: Compute sum of clipped gradients Gl =

a⊤
(l)diag(C1, C2, · · · ) ∂L

∂s(l)

10: Delete {a(l),i}, { ∂L
∂s(l),i

}

11: Add Gaussian noise Ĝ = G+ σR · N (0, I)

12: Apply SGD/Adam/LAMB with the private gradient Ĝ

Ghost norm trick The ghost norm trick (Goodfellow,
2015) computes the gradient norm without the gradient:
while the gradient is instantiated by the multiplication in
Equation (2), the gradient norm can be computed without ai

meeting ∂L
∂si

. This trick is applicable to generalized linear
layers including the linear, the embedding (Li et al., 2021),
and the convolution layers (Bu et al., 2022a). We emphasize
that these generalized linear layers represent 99.9% of the
trainable parameters in modern neural networks.

We demonstrate this trick using a simple linear layer
si = aiW, where W ∈ Rd×p is the weight matrix,
a ∈ RB×T×d is the mini-batch input of this layer (a.k.a.
the activation tensor) and s ∈ RB×T×p is the output. Given
that the output gradient ∂L

∂s is readily available in the back-
propagation, for DP and standard training, one can directly
derive the per-sample gradient norm∥∥∥∥ ∂Li

∂W

∥∥∥∥2
Frobenius

= vec
( ∂L
∂si

∂L
∂si

⊤)
· vec

(
aia

⊤
i

)
(2)
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Figure 3. Standard (non-DP), Opacus, FastGradClip, GhostClip, and BK implementations, from left to right. Notice that BK directly
computes clipped gradient like Opacus, computes the ghost norm like GhostClip, and uses auto-differentiation like FastGradClip.

without actually computing ∂Li

∂W = a⊤
i

∂L
∂si

. Here ‘vec’
means flattening the T × T matrix to a vector. This trick is
particularly efficient when T is small, reducing the space
complexity from O(Bpd) to O(BT 2) by Table 3.

Figure 4. Backward propagation of BK algorithm. Here L :=∑
i Li, L̂ :=

∑
i CiLi.

Book-keeping trick This trick improves the time com-
plexity by removing the second back-propagation from
GhostClip. Our idea is to book-keep and re-use the out-
put gradient ∂L

∂s(l)
, which is deleted after the first back-

propagation of GhostClip and must be re-computed dur-
ing the second back-propagation. The difference between
GhostClip and BK is clearly illustrated via a line-by-line
comparison in Appendix C.1. In fact, denoting the total
number of model parameters as M =

∑
l p(l)d(l), our trick

reduces the time complexity from 10BTM +O(BT 2) by
GhostClip to 8BTM + O(BT 2) according to Table 3. In
contrast to Opacus, which book-keeps the per-sample gradi-
ents g(l)

i using O(BM) = O(B
∑

l p(l)d(l)) memory, we
instead book-keep the output gradient with substantially
cheaper O(BT

∑
l p(l)) memory when the feature dimen-

sion T is small.

Ghost differentiation trick This trick improves the time
complexity on the first back-propagation in GhostClip, fur-
ther reducing from 8BTM+O(BT 2) to 6BTM+O(BT 2)
in Table 2. Our idea is to only compute the output gradi-
ent ∂L

∂s(l)
but not the (non-private) parameter gradient ∂L

∂W .
That is, we break the 4BTM time complexity of the full
back-propagation into two sub-processes, each of 2BTM
complexity, and remove the unnecessary one.

To be more specific, during the back-propagation of Opacus
and GhostClip, the output gradient ∂L

∂s and then the parame-
ter gradient ∂L

∂W = a⊤ ∂L
∂s are computed. However, we can

stop after we obtain ∂L
∂s : we only need the output gradient to

compute the clipped parameter gradient ∂
∑

i CiLi

∂W in Line
9 of Algorithm 1. Therefore, the ghost differentiation trick
sets all parameters to not require gradients. See the techni-
cal details in Appendix D.2, including the origin parameter
trick that propagates on a computation graph even when no
parameters require gradients.

2.2 Complexity of DP implementations: a modular
analysis

In this section, we analyze the complexity of DP implemen-
tations from their opearation modules. We summarize the
time and space complexity in Table 3 and give the derivation
in Appendix B. We will refer to these modules by indices,
e.g. 2a for the computation of output gradient.

Now we are ready to decompose each implementation, fol-
lowing the flowcharts in Figure 3. Consequently, we can
easily write down the complexity of different implemen-
tations in Table 2. Such a modular analysis displays the
clear effects of the tricks in BK algorithm: the ghost norm
trick removes the memory costly 4 from Opacus and Fast-

GradClip; the book-keeping trick removes the 2b in the
second back-propagation of FastGradClip and GhostClip;
the ghost differentiation trick removes the 2b in the first
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back-propagation of Opacus and GhostClip.

• Standard (non-DP)= 1 + 2a + 2b

• Opacus= 1 + 2a + 2b + 4 + 5

• FastGradClip= 1 + 2a + 4 + 2a + 2b

• GhostClip= 1 + 2a + 2b + 3 + 2a + 2b

• BK (ours)= 1 + 2a + 3 + 2b

2.3 BK is optimally efficient in low dimension

When the feature dimension T is small, we claim that BK
is almost as efficient as the standard non-private training,
with a negligible O(BT 2) time and memory overhead by
Table 2:

Memory complexity: non-DP ≈ BK ≈ GhostClip
< FastGradClip≪ Opacus

Time complexity: non-DP ≈ BK < FastGradClip
≈ Opacus < GhostClip

Now, we discuss the cases where the data has low dimen-
sion and thus T is small. Generally speaking, the feature
dimension T(l) depends on both the data and the model.

For non-sequential input and 1D audio data, T = 1. For
sequential data such as texts (T being sentence length)
or time series (T being time duration), T(l) is fixed
across layers. In this case, BK is efficient on short-
sequence datasets including GLUE (Wang et al., 2019)
(e.g. SST2/QNLI/MNLI/QQP) and natural language gen-
eration datasets (e.g. E2E/DART), since T 2 ≪ p(l)d(l).
For instance, (Yu et al., 2021; Li et al., 2021; Bu et al.,
2022b) applied GPT2 on E2E dataset, which has a sequence
length T ≈ 100 and the number of parameters p(l)d(l) per
layer is 2 − 4M; (Yu et al., 2021; Li et al., 2021) applied
RoBERTa-large on GLUE datasets, which has a sequence
length T = 256 and the number of parameters per layer is
1 − 4M. As illustrated in Figure 5 and Table 1 (extended
in Table 9), BK improves the throughput of existing imple-
mentations by 25− 388% on multiple language tasks in (Li
et al., 2021; Bu et al., 2022b), with minor memory overhead
compared to GhostClip and non-private training.

However, on the convolution layers with image data, T(l)

is the product of hidden feature sizes (c.f. Section 3 in

(Bu et al., 2022a)), thus T(l) depends on the original image
size and network architecture. For example, larger kernel
size/dilation/stride in convolution layer reduces T(l), while
larger images have larger T(l) at each layer. Therefore, BK
(and GhostClip) may suffer on when training ResNet on
ImageNet (224 × 224), as we show in Figure 6 (see also
Table 7 in (Bu et al., 2022a)), although training the same
network efficiently on CIFAR10/100 (32× 32).
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Figure 5. Memory and speed of different DP implementations. Up-
per: GPT2 on E2E dataset (fixing B, DP speed is 0.86 ∼ 0.89×
of non-DP). Lower: RoBERTa-large on GLUE datasets. Note
here the hybrid implementations are equivalent to the base ones,
because of the short sequence length.

Module 1 Forward pass 2 Back-propagation
3 Ghost norm

4 Per-sample grad
instantiation

5 Weighted sum of
per-sample grad(a)output gradient (b)parameter gradient

Time complexity 2BTpd 2BTpd 2BTpd 2BT 2(p+ d) 2BTpd 2Bpd
Space complexity pd+BTd BT (p+ d) pd 2BT 2 Bpd 0

Table 3. Time and space complexity of modules in DP training for one generalized linear layer.

6



Differentially Private Optimization on Large Model at Small Cost

2.4 Applying our tricks to existing implementations

Our tricks in Section 2.1 can also improve other existing im-
plementations, reducing the time complexity of GhostClip
from 10BTpd+ 2BT 2(p+ d) to 6BTpd+ 2BT 2(p+ d),
that of Opacus and FastGradClip from 8BTpd to 6BTpd.
We highlight that these improved implementations are lever-
aged to design hybrid implementation in Section 3.2. In
addition to DP full fine-tuning, BK is demonstrated in Ap-
pendix E.2 to also apply to the parameter efficient fine-
tuning like Adapters (Houlsby et al., 2019) and LoRA (Hu
et al., 2021).

GhostClip = 1 + 2a + 2b + 3 + 2a + 2b

ghost differentiation−−−−−−−−−−→
book-keeping

1 + 2a + 3 + 2b (BK)

Opacus = 1 + 2a + 2b + 4 + 5

ghost differentiation−−−−−−−−−−→ 1 + 2a + 4 + 5

FastGradClip = 1 + 2a + 4 + 2a + 2b

book-keeping−−−−−−−−−−→ 1 + 2a + 4 + 2b

3 Hybrid Book-keeping: Efficient DP
training in high dimension

In previous section, we have analyzed DP implementations
in the small T regime, where the ghost norm-based Ghost-
Clip and BK are efficient. Nevertheless, in the large T and
large model regime, none of the base implementations may
be efficient (see Figure 6) and we turn to hybrid methods.

3.1 Large T necessitates non-ghost norm method

A closer look at the space complexity in Table 3 shows that,
the ghost norm trick is favored over the per-sample gradient
instantiation if and only if 2T 2

(l) < p(l)d(l), where p(l)d(l) is
the number of parameters at one layer. When this criterion is
violated for large T , GhostClip/BK (base) can significantly
under-perform Opacus/FastGradClip, as shown in Figure 6,
Figure 7 and Table 10.

Similar to Section 2.3, we discuss two cases where T is
large. For paragraph or document-level language tasks like
WikiHop (Welbl et al., 2018) and TriviaQA (Joshi et al.,
2017), T can range from 2000 ∼ 20000 to train large lan-
guage models, which makes 2T 2 = 8 ∼ 800M. For exam-
ple, LLAMA (Touvron et al., 2023) is trained with token
length 4096 ≤ T ≤ 8192 and GPT-3 (Brown et al., 2020)
is trained with token length T = 2048.

For image tasks, particularly on CNN, T(l) varies at each
layer with large values on top layers, as the features are less
compressed by convolution and pooling. Taking ImageNet
and the first convolution layer of VGG11 as an example
(see Table 3 of (Bu et al., 2022a)), 2T 2

(1) = 5 × 109 ≫

p(1)d(1) = 1.7 × 103. Consequently, ghost norm-based
implementations (i.e. GhostClip and BK) costs more than
40GB memory on ResNet18, under B = 32, while Opacus
only costs 2.5GB. This curse of dimension grows from a
difficult issue on ImageNet to an impossible challenge on
videos or high-resolution images, e.g. GhostClip cannot
train ResNet18 with even one single CelebA-HQ image
(1024× 1024) using a 40GB GPU.

In short, the ghost norm trick is inefficient for large T and
the per-sample gradient instantiation is inefficient for large
model. Hence, we must hybridize the base implementations.
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Figure 6. Memory and speed by different implementations on
50000 images. Top is VGG11 (133M; (Simonyan & Zisserman,
2014)). Bottom is BEiT-large (304M; (Bao et al., 2021)). Memory
cost is measured with physical batch size 1. Throughput is mea-
sured with the maximum physical batch size on 40GB memory.

3.2 Hybrid implementations via layerwise decision

We adopt the same layerwise decision as (Bu et al., 2022a),
known as the mixed ghost norm technique: we use the ghost
norm trick on a layer if 2T 2

(l) < p(l)d(l), and instantiate
per-sample gradients otherwise. Therefore, the space com-
plexity of computing the per-sample gradient norm reduces
to min{2T 2

(l), p(l)d(l)}, which is significantly cheaper than
either the ghost norm or the per-sample gradient instantia-
tion in high dimension, as depicted in Table 4 and Figure 7.
Consequently, over all layers, the space complexity is lower
than both constituting methods, e.g. saving more than 10×
memory for the per-sample gradient clipping on ResNet18
(see more models in Table 10).

In contrast to the mixed ghost clipping (MixGhostClip)
in (Bu et al., 2022a), which hybridizes FastGradClip and
GhostClip, we boost the efficiency by hybridizing our BK
with the improved FastGradClip/Opacus in Section 2.4. We
propose BK-MixOpt (and BK-MixGhostClip as an interme-
diate product only for comparison) and use MixGhostClip
as a reference point,
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Output size Space complexity

Hout ×Wout

18-layer 34-layer 50-layer

Ghost norm
Per-sample grad

instantiation Ghost norm
Per-sample grad

instantiation Ghost norm
Per-sample grad

instantiation

2T 2
(l) = 2H2

outW
2
out p(l)d(l) = # params 2T 2

(l) p(l)d(l) 2T 2
(l) p(l)d(l)

conv1 112× 112 3.1× 108 9.4× 103 3.1× 108 9.4× 103 3.1× 108 9.4× 103

conv2 x 56× 56 [2.0× 107]× 4 [3.7× 104]× 4 [2.0× 107]× 6 [3.7× 104]× 6 [2.0× 107]× 9
[4.1× 103]× 1

[3.7× 104]× 3

[1.6× 104]× 5

conv3 x 28× 28 [1.2× 106]× 4
[7.4× 104]× 1

[1.5× 105]× 3
[1.2× 106]× 8

[7.4× 104]× 1

[1.5× 105]× 7

[2.0× 107]× 1

[1.2× 106]× 11

[3.3× 104]× 1

[6.6× 104]× 7

[1.5× 105]× 4

conv4 x 14× 14 [7.7× 104]× 4
[2.9× 105]× 1

[5.9× 105]× 3
[7.7× 104]× 12

[2.6× 105]× 1

[5.9× 105]× 11

[1.2× 106]× 1

[7.7× 104]× 17

[1.3× 105]× 1

[2.6× 105]× 11

[5.9× 105]× 6

conv5 x 7× 7 [4.8× 103]× 4
[1.2× 106]× 1

[2.4× 106]× 3
[4.8× 103]× 6

[1.2× 106]× 1

[2.4× 106]× 5
[4.8× 103]× 9

[5.2× 105]× 1

[1.0× 106]× 5

[2.4× 106]× 3

linear 1× 1 2 5.1× 105 2 5.1× 105 2 2.0× 106

Total complexity 399M 11.5M 444M 21.6M 528M 22.7M
Complexity by 1.0M 2.3M 2.8Mmixed ghost norm

Table 4. Space complexity of the per-sample gradient clipping (not the entire DP algorithm) for B = 1 on ImageNet 224×224. Layerwise
decision of hybrid BK algorithms is highlighted in bold.

Method Type Modification to previous variant Time complexity Space complexity
Non-DP 6BTpd pd+ 3BTd+BTp

Opacus

base

Instantiate per-sample gradient 8BTpd +Bpd

FastGradClip
Not store per-sample gradient

using a second back-propagation 8BTpd +Bpd

GhostClip
Not instantiate per-sample gradient

using ghost norm trick 10BTpd+ 2BT 2(p+ d) +2BT 2

BK (ours) Simplify the two back-propagations 6BTpd+ 2BT 2(p+ d) +2BT 2

MixGhostClip
hybrid Mix ways to compute grad norm 8BTpd+ ⟨2BTpd, 2BT 2(p+ d)⟩ +min{2BT 2, Bpd}

BK-MixGhostClip 6BTpd+ ⟨2BTpd, 2BT 2(p+ d)⟩ +min{2BT 2, Bpd}
BK-MixOpt Mix ways to compute weighted grad 6BTpd+ ⟨0, 2BT 2(p+ d)⟩ +min{2BT 2, Bpd}

Table 5. Complexity of DP implementations on one layer. Here ⟨⟩ means between two values. The exact time complexity of BK-MixOpt
is 6BTpd+ 2BT 2(p+ d) · I{2T 2 < pd} ≈ 6BTpd. The space complexity of DP algorithms is in addition to that of non-DP one.

• MixGhostClip = 1 + 2a + 2b +min
{

3 , 4
}
+ 2a +

2b ≈ min{GhostClip, FastGradClip},

• BK-MixGhostClip = 1 + 2a +min
{

3 , 4
}
+ 2b =

min{BK, improved FastGradClip in Section 2.4},

• BK-MixOpt = 1 + 2a +min
{

3 + 2b , 4 + 5

}
=

min{BK, improved Opacus in Section 2.4}.

The hybrid BK algorithms are presented in Algorithm 5. We
summarize the layerwise complexity in Table 5, from which
we derive the overall complexity in Table 8 and observe
that BK has almost the same complexity as non-DP training.
Note that in low dimension, the mixed ghost norm is equiv-
alent to the ghost norm, hence MixGhostClip/BK-MixOpt
is equivalent to GhostClip/BK, respectively.

3.3 Effect of model architecture & feature dimension
on hybridization

We dive deeper to understand when the hybridization favors
the ghost or non-ghost norm tricks.

From a model architecture viewpoint, transformers such
as ViT, RoBERTa, GPT tend to prefer the ghost norm: for
moderate-sequence text data and moderate-dimension im-
age data, hybrid BK algorithms are close or equivalent to
the base BK algorithm (see right-most plot in Figure 7).
However, CNN prefers the per-sample gradient instantiation
at top layers, and there exists a depth threshold below which
the ghost norm is more efficient. Hence the hybridization is
necessary to take advantages of both worlds.

From the feature dimension viewpoint, larger input enlarges
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Figure 7. Layerwise space complexity of computing the per-sample gradient norm. Left to right: ResNet18 (224 × 224), ResNet18
(512× 512), VGG11 (224× 224), and ViT-base (224× 224).

this depth threshold, e.g. from the 9-th layer of ResNet18 to
the 17-th layer in Figure 7, when the image size increases
from 224× 224 to 512× 512. We visualize this pattern on
various models in Appendix G. In particular, we observe
in Table 8 that when T is large, both per-sample gradient
instantiation (Opacus) and ghost norm trick (GhostClip) are
significantly dominated by our BK algorithms.

4 Instructions to use the codebase
In this section, we demonstrate how to modify a standard
training script to its DP variants4 by one piece of code.

from BK import PrivacyEngine
import torch.functional as F

optimizer =
torch.optim.Adam(model.parameters())↪→

privacy_engine = PrivacyEngine(
model,epochs,
batch_size,sample_size,
target_epsilon,target_delta)

privacy_engine.attach(optimizer)

logits = model(data)
loss = F.cross_entropy(logits, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()

We highlight that our codebase automatically modifies the
training for any network architecture and any optimizer.
Additionally, it is designed to work compatibly with large-
scale training techniques, such as the gradient accumulation,
the parameter-efficient fine-tuning (e.g. LoRA and BiTFiT
(Bu et al., b)), and the parallel distributed learning (e.g.
ZeRO (Bu et al., a)).

4That is, our codebase can easily adapt to any per-sample
gradient clipping function and privacy accouting methods.

5 Discussion
In this work, we propose the Book-Keeping (BK) algorithms
to effciently implement DP optimizers using three tricks:
ghost norm, book-keeping, and ghost differentiation. Our
BK reduces the time and space complexity of DP training
to the similar level of the standard training. Specially, we
develop hybrid BK to overcome the computational challenge
of training large models with high-dimensional data, and we
extend BK to parameter efficient fine-tuning such as LoRA
and Adapter.

One limitation of this work is that BK (and GhostClip) only
applies to the weights, not the biases, and only on the gen-
eralized linear layers, i.e. the embedding, the linear, and
the convolution layers. However, this is a minor concern be-
cause the weights in the generalized linear layers constitute
99.9% of the trainable parameters (see Table 7).

Implementation-wise, our codebase is automatic (allowing
any model to be DP optimized) and future-proof (allow-
ing any training setting, including the distributed learning).
However, although BK is theoretically as fast as the standard
training for small T , we observe some gap between the the-
oretical complexity and the hardware throughput in practice.
This gap is mainly due to the mechanism of Pytorch hooks
which can be possibly optimized by customizing the CUDA
kernel or using the symbolic programming. We expect this
gap to be closed by future research.
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A Background

A.1 Differential privacy

We formally introduce the differential privacy (DP).

Definition A.1 ((Dwork et al., 2006)). A randomized algorithm M is (ε, δ)-differentially private (DP) if for any two
neighboring5 datasets S, S′, and for any event E,

P[M(S) ∈ E] ⩽ eεP [M (S′) ∈ E] + δ. (3)

Clearly, stronger DP (smaller ϵ, δ) indicates the higher difficulty for privacy attackers to extract information from the training
data.

DP can be achieved by adding Gaussian noise to a bounded-sensitivity function (see Theorem A.1 of (Dwork et al., 2014)).
In deep learning, this function is the sum of per-sample gradients

∑
gi and the bounded sensitivity is R (that is guaranteed

through the gradient clipping after which the per-sample gradient norm is at most R). Note that the Gaussian noise magnitude
is proportional to the sensitivity: σDP = σR in Equation (1), and ϵ(δ) only depends on σ, not on R. The derivation from
(σ, T, p) in Algorithm 1 to ϵ can be done through various methods in Section 1.3.

A.2 Computation graph

We elaborate on the computation graph presented in Figure 1. For DP and the standard training, the forward pass is the
same: we pass through the layers

a(1) → s(1) → a(2) → s(2) → · · ·a(L) → s(L)

For the backward propagation, there are two sub-processes:

1. the computation of output gradient for all layers,

∂L
∂s(1)

← · · · ← ∂L
∂s(l)

=
∂L

∂s(l+1)
W(l+1) ◦ ReLU′(s(l))← · · · ←

∂L
∂s(L)

,

i.e. the output gradient meets with the weight W;

2. the computation of parameter gradient only for trainable parameters,

∂L
∂W(l)

=
∂L
∂s(l)

⊤ ∂s(l)

∂W(l)
=

∂L
∂s(l)

⊤
a(l),

i.e. the output gradient meets with the activation tensor a.

Note that foward pass, output gradient, and parameter gradient have the same time complexity of 2BTM (B being the batch
size, T being the feature dimension, e.g. the sequence length in texts, and M being the model size).

For example, GhostClip (Li et al., 2021) and MixGhostClip (Bu et al., 2022a), which use one forward pass and double
backward propagation, have a time complexity of 10BTM +O(BT 2), while the standard training which uses one forward
pass and a single backward propagation has a time complexity of 6BTM .

B Complexity analysis for one layer
Let us consider a layer without bias term for simplicity:

s = aW (4)

5S′ is a neighbor of S if one can obtain S′ by adding or removing one data point from S.

12
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where s ∈ RB×T×p is the output or the pre-activation, a ∈ RB×T×d is the input or the post-activation of previous layer, and
W ∈ Rd×p is the weight matrix. In a linear layer, d is the input dimension of the hidden feature, p is the output dimension of
the hidden feature, and T is the sequence length (or 1 if the data are non-sequential). In a convolution layer, d is the product
of the input channels and kernel sizes, p is the output channels, T is the height times width of the hidden representation.

We now break down the time and space complexities for each operation in the training. Notice that we focus on major
complexities, e.g. ignoring cubic terms like BTp when higher order terms like BTpd or BT 2p exist.

B.1 Forward pass

The complexity of forward pass is incurred by the standard matrix multiplication s = aW. Since a ∈ RB×T×d and
W ∈ Rd×p, the time complexity is 2BTpd and the space complexity is BTp+ pd.

B.2 Back-propagation: output gradient

The complexity to compute the output gradient is incurred by the chain rule: for a single sample,

∂L
∂s(l−1),i

=
∂L

∂s(l),i︸ ︷︷ ︸
RT×p

W⊤
(l)︸ ︷︷ ︸

Rp×d

◦ϕ′(s(l−1),i)︸ ︷︷ ︸
RT×d

where ϕ is the non-linear activation function. We compute the matrix multiplication ∂L
∂s(l),i

W(l) first, with time complexity
2BTpd and space complexity pd+BTd+BTp. Then the elementwise product uses time complexity 2BTd and space
complexity BTd.

B.3 Back-propagation: parameter gradient

This module could represent different operations in different DP implementations. In the first back-propagation of
GhostClip and the only back-propagation of Opacus, it computes ∂L

∂W =
∂
∑

i Li

∂W ; in the second back-propagation of
Ghost/FastGradClip/BK, it computes the clipped gradient ∂

∑
i CiLi

∂W . Regardless of the cases, the operation always takes the
same format as

∂L
∂W

= a︸︷︷︸
RB×T×d

⊤ ∂L
∂s︸︷︷︸

RB×T×p

.

In contrast to the per-sample gradient instantiation, this operation is a tensor multiplication instead of many matrix
multiplication, and the output is a single pair of gradient Rd×p instead of many per-sample gradients.

This tensor multiplication has time complexity 2BTpd and space complexity pd unless all per-sample gradients are stored.

B.4 Ghost norm

Ghost norm is the operation taking ai and ∂L
∂si

as the input and outputs the per-sample gradient norm. According to

Equation (2) and Appendix C.3 of (Bu et al., 2022b), this operation computes aia
⊤
i and ∂L

∂si

∂L
∂si

⊤
, taking the time

complexity 2BT 2d and 2BT 2p respectively, and the space complexity BT 2 for each variable. Hence total time complexity
is 2BT 2(p+ d) and total space complexity is 2BT 2.

B.4.1 PER-SAMPLE GRADIENT INSTANTIATION

Alternatively, one can instantiate the per-sample gradients and then compute their norms. This is different than the
computation of parameter gradient in the back-propagation: that computation is an efficient tensor multiplication while this
operation consists of B matrix multiplication.

∂Li

∂W
= ai︸︷︷︸

RT×d

∂L
∂si

⊤

︸ ︷︷ ︸
RT×p

for i ∈ [B].

13



Differentially Private Optimization on Large Model at Small Cost

This operation has time complexity 2BTpd and space complexity Bpd to store all per-sample gradients. Computing the
norms is cheap enough to be neglected.

B.5 Weighted sum of per-sample gradient

This operation simply takes per-sample clipping factor Ci ∈ R and ∂Li

∂W ∈ RB×d×p as the input, and outputs the clipped
gradient Rd×p as a weighted sum

∑
i Ci

∂Li

∂W . The time complexity is 2Bpd and the space complexity is 0 since the
summation happens in place.

In contrast to double back-propagation, which indirectly derives the clipped gradient by differentiating the reweighted loss∑
i CiLi at a cost of O(BTpd), this operation directly computes the clipped gradient under almost no time complexity.

Noticeably, this is only possible if per-sample gradients are readily instantiated and stored.

C Line-by-line comparison between different implementations

C.1 BK v.s. GhostClip

Algorithm 2 DP optimizer with BK or GhostClip

Parameters: l-th layer weights W(l), number of layers L, noise level σ.
1: # forward pass
2: for layer l ∈ 1, 2, · · · , L do
3: Get {a(l),i}
4: # backward propagation with loss L =

∑
i Li

5: for layer l ∈ L,L− 1, · · · , 1 do
6: Get output gradient { ∂L

∂s(l),i
}

7: Compute per-sample gradient norm: ∥ ∂Li

∂W(l)
∥2F = vec( ∂L

∂s(l),i

⊤ ∂L
∂s(l),i

) · vec(a⊤
(l),ia(l),i)

8: Compute non-private gradient: ∂L
∂W(l)

= a⊤
(l)

∂L
∂s(l)

9: Aggregate gradient norm across all layers: ∥ ∂Li

∂W∥
2
F =

∑
l ∥

∂Li

∂W(l)
∥2F

10: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)
11: for layer l ∈ L,L− 1, · · · , 1 do
12: Compute sum of clipped gradients Gl = a⊤

(l)diag(C) ∂L
∂s(l)

13: # 2nd backward propagation with loss L =
∑

i CiLi

14: Get output gradient {∂
∑

CiLi

∂s(l),i
}

15: Compute sum of clipped gradients Gl = a⊤
(l)

∂
∑

CiLi

∂s(l)

16: Delete {a(l),i}, { ∂L
∂s(l),i

} , {∂
∑

CiLi

∂s(l),i
}

17: Add Gaussian noise Ĝ = G+ σR · N (0, I)

18: Apply SGD/Adam/LAMB with the private gradient Ĝ on W

14
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C.2 BK v.s. Opacus

Algorithm 3 DP optimizer with BK or Opacus

Parameters: l-th layer’s weights W(l),t, number of layers L, noise scale σ.
1: for layer l ∈ 1, 2, · · · , L do
2: Get {a(l),i}
3: for layer l ∈ L,L− 1, · · · , 1 do
4: Get output gradient { ∂L

∂s(l),i
}

5: Compute per-sample gradient norm: ∥ ∂Li

∂W(l)
∥2F = vec( ∂L

∂s(l),i

⊤ ∂L
∂s(l),i

) · vec(a⊤
(l),ia(l),i)

6: Compute non-private gradient: ∂L
∂W(l)

= a⊤
(l)

∂L
∂s(l)

7: Compute per-sample gradients: ∂Li

∂W(l)
= a⊤

(l),i
∂L

∂s(l),i
and gradient norms ∥ ∂Li

∂W(l)
∥2F

8: Delete {a(l),i}, { ∂L
∂s(l),i

}

9: Aggregate gradient norm across all layers: ∥ ∂Li

∂W∥
2
F =

∑
l ∥

∂Li

∂W(l)
∥2F

10: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)
11: for layer l ∈ L,L− 1, · · · , 1 do
12: Compute sum of clipped gradients Gl = a⊤

(l)diag(C) ∂L
∂s(l)

13: Compute sum of clipped gradients Gl =
∑

Ci
∂Li

∂W(l)

14: Delete {a(l),i}, { ∂L
∂s(l),i

} , { ∂L
∂W(l)

}

15: Add Gaussian noise Ĝ = G+ σR · N (0, I)

16: Apply SGD/Adam/LAMB with the private gradient Ĝ on W

C.3 BK v.s. standard (non-DP)

Algorithm 4 DP optimizer with BK or Standard optimizer
Parameters: l-th layer’s weights W(l),t, number of layers L, noise scale σ.

1: for layer l ∈ 1, 2, · · · , L do
2: Get {a(l),i}
3: for layer l ∈ L,L− 1, · · · , 1 do
4: Get output gradient { ∂L

∂s(l),i
}

5: Compute per-sample gradient norm: ∥ ∂Li

∂W(l)
∥2F = vec( ∂L

∂s(l),i

⊤ ∂L
∂s(l),i

) · vec(a⊤
(l),ia(l),i)

6: Compute non-private gradient: ∂L
∂W(l)

= a⊤
(l)

∂L
∂s(l)

7: Delete {a(l),i}, { ∂L
∂s(l),i

}

8: Aggregate gradient norm across all layers: ∥ ∂Li

∂W∥
2
F =

∑
l ∥

∂Li

∂W(l)
∥2F

9: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)

10: for layer l ∈ L,L− 1, · · · , 1 do
11: Compute sum of clipped gradients Gl = a⊤

(l)diag(C) ∂L
∂s(l)

12: Delete {a(l),i}, { ∂L
∂s(l),i

}

13: Add Gaussian noise Ĝ = G+ σR · N (0, I)

14: Apply SGD/Adam/LAMB with Ĝ or G on W
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C.4 BK (base) v.s. hybrid BK

Algorithm 5 DP optimizer with BK, BK- MixGhostClip or BK- MixOpt

Parameters: l-th layer’s weights W(l), number of layers L, noise scale σ.
1: # forward pass
2: for layer l ∈ 1, 2, · · · , L do
3: Get {a(l),i}
4: # backward propagation with loss L =

∑
i Li

5: for layer l ∈ L,L− 1, · · · , 1 do
6: Get output gradient { ∂L

∂s(l),i
}

7: if ( MixGhostClip or MixOpt ) and 2T 2
(l) > p(l)d(l) then

8: Compute per-sample gradients: ∂Li

∂W(l)
= a⊤

(l),i
∂L

∂s(l),i
and gradient norms ∥ ∂Li

∂W(l)
∥2F

9: else
10: Compute per-sample gradient norm: ∥ ∂Li

∂W(l)
∥2F = vec( ∂L

∂s(l),i

⊤ ∂L
∂s(l),i

) · vec(a⊤
(l),ia(l),i)

11: Aggregate gradient norm across all layers: ∥ ∂Li

∂W∥
2
F =

∑
l ∥

∂Li

∂W(l)
∥2F

12: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)
13: for layer l ∈ L,L− 1, · · · , 1 do
14: if MixOpt and 2T 2

(l) > p(l)d(l) then
15: Compute weighted gradients Gl =

∑
Ci

∂Li

∂W(l)

16: else
17: Compute sum of clipped gradients Gl = a⊤

(l)diag(C) ∂L
∂s(l)

18: Delete {a(l),i}, { ∂L
∂s(l),i

}, { ∂Li

∂W(l)
}

19: Add Gaussian noise Ĝ = G+ σR · N (0, I)

20: Apply SGD/Adam/LAMB with the private gradient Ĝ on W

D Codebase README
Here we describe some designs in our codebase for BK algorithms.

D.1 Supported layers

• Linear: Ghost norm or per-sample gradient instantiation

• Embedding: Ghost norm

• Conv1d & Conv2d & Conv3d: Ghost or per-sample gradient instantiation

• GroupNorm & LayerNorm & InstanceNorm: per-sample gradient instantiation

D.2 Instruction of implementation

In this section, we will discuss the specific designs and tricks for our book-keeping technique. We illustrate through
Pytorch automatic differentiation package, known as torch.autograd or simply autograd6. It has two high-level
operators, autograd.backward (which is the major component of the commonly used loss.backward()) and
autograd.grad. We denote the model parameters as param.

On all trainable layers, i.e. layers with at least one trainable parameter such that param.requires grad=True, the
operator autograd.backward does three things, 1. compute the output gradient ∂L

∂s for this layer; 2. compute the
parameter gradient ∂L

∂W or ∂L
∂b ; 3. store the parameter gradient to param.grad attribute.

6See https://pytorch.org/docs/stable/autograd.html for an official introduction.
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In contrast, autograd.grad returns but does not store the parameter gradient in step 3. However, autograd.grad
still computes the parameter gradient in step 2 (or 2b ) unnecessarily.

Therefore the key idea is to only compute the output gradient without computing the parameter gradient. This goal can be
achieved by

1. registering the Pytorch backward hooks, which have free access to the output gradient ∂L
∂s , to store this output gradient

for 2a (Line 9 of Algorithm 1);

2. setting all parameters to not require gradients, through requires grad=False.

D.3 Work-around: origin parameters

Unfortunately, the back-propagation will not be executed if all parameters are set to not require gradients, since the
computation graph needs to be created at least on some trainable parameters. Therefore, while the above methodology
is certainly implementable through mild modification on the low level (like CUDA kernel), we provide a lightweight
work-around in Pytorch.

To make sure that the back-propagation indeed propagates through all trainable parameters, we set
param.requires grad=True on and only on the ancestor parameter nodes of all output nodes, termed as
the origin parameters. Specifically, we define the origin parameters as the subset of parameter nodes, whose descendant
nodes cover all the output nodes. This is visualized in Figure 8 for a 3-layer MLP, using the same symbols as Figure 1.

loss 

loss 

Figure 8. Forward pass (upper panel) and back-propagation (lower panel) of a 3-layer MLP.

Here, s(i) are the output nodes (in squares) from the trainable layers. The ancestor parameter nodes (in circles) of s(3)
are {b(3),b(2),b(1),W(3),W(2),W(1)}, those of s(2) are {b(2),b(1),W(2),W(1)}, and those of s(1) are {b(1),W(1)}.
Therefore, subsets including but not limited to {b(3),b(2),b(1),W(3),W(2),W(1)}, {b(1),W(1)}, and {b(1)} are qualified
as the origin parameters, since their descendants cover all output nodes. In fact, the smallest subsets are {b(1)} or {W(1)},
and either can serve as the optimal origin parameters.
Remark D.1. The origin parameters are usually within the embedding layer in language models and transformers, or within
the first convolution layer in vision models. Since the origin parameters only constitute a small fraction of all trainable
parameters (fewer than the parameters in the first layer) in deep neural networks (with hundreds of layers), the computational
overhead wasted on the regular gradient of origin parameters is negligible.
Remark D.2. Since we will waste the computation of regular gradient ∂L

∂origin parameters , it is preferred to use the bias
over the weight for minimum waste whenever possible. We note that sometimes the first layer contains no bias term. For
example, the embedding layer by torch.nn.Embedding has no bias by design, and so do all convolution layers in
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ResNets from torchvision (Marcel & Rodriguez, 2010), with reasons discussed at Section 3.2 of (Ioffe & Szegedy, 2015),
which generalizes to all batch-normalized CNN if the normalization is applied before the activation function.

In summary, we drive the back-propagation without computing the regular parameter gradient ∂
∑

i Li

∂W (by setting
param.requires grad=False), and use Pytorch backward hooks to access and store the output gradient ∂L

∂s .

non-DP training DP training (Book-Keeping)
trainable non-trainable trainable param trainable param non-trainable
param param (origin param) (not origin param) param

register hook ✗ ✗ ✓ ✓ ✗
param.requires grad ✓ ✗ ✓ ✗ ✗

Table 6. Origin parameter trick and implementation details.

D.4 How to use BK codebase

With a few lines of code, it is easy to use our BK codebase to change the standard training to the DP training. All you need
to do is to declare a privacy engine and attach it to the optimizer.

from BK import PrivacyEngine
from transformers import AutoModel

model = AutoModel.from_pretrained('roberta-base')

optimizer = torch.optim.Adam(params=model.parameters())

privacy_engine = PrivacyEngine(
model,batch_size=256,sample_size=50000,
epochs=3,target_epsilon=3,clipping_mode='MixOpt')

privacy_engine.attach(optimizer)

# Same training procedure, e.g. data loading, forward pass, logits...
loss = torch.nn.functional.cross_entropy(logits, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()

Notice that if clipping mode is set to default, then BK (base) is implemented; if
clipping mode==’MixGhostClip’, then BK-MixGhostClip is implemented; if clipping mode==’MixOpt’,
then BK-MixOpt is implemented.

We also allow the gradient accumulation in the same way as non-private training.

E Applicability of BK algorithm

E.1 Applying BK to full fine-tuning

We experiment with numerous vision and language models to show the strong applicability of BK. Notice that the ghost
norm trick only applies on weight parameters and in the generalized linear layers, i.e. embedding/convolutional/linear. The
vision models are imported from Pytorch Image Models library (Wightman, 2019) and the language models are imported
from Hugging Face Transformers library (Wolf et al., 2020)7.

7In Transformers library, layers with class name ‘Conv1D’ is actually a linear layer, different from 1D convolution
torch.nn.Conv1d.
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E.2 Applying BK to parameter efficient fine-tuning

We demonstrate that BK (base and hybrid) can be applied to DP LoRA and DP Adapter, where the rank r is usually 16-1024.
For the ease of presentation, we describe the BK base, similarly to Algorithm 1.

Adapter An adapter module is injected after a linear layer:

A(x) = τ(xD)U + x

where x ∈ RB×T×p, D ∈ Rp×r, U ∈ Rr×p. We decompose the module A into two sub-modules:

• x→ xD := u, activation x, output grad ∂L
∂u

• τ(u)→ τU := v, activation τ(xD), output grad ∂L
∂v

Hence BK can be implemented as follows.

1. Get activation tensors x and τ(xD) by Pytorch forward hook

2. Get output gradients { ∂L
∂xD} and { ∂L

∂τU } by Pytorch backward hook

3. Compute per-example gradient norm ∥∂Li

∂D ∥
2
F and ∥∂Li

∂U ∥
2
F by ghost norm trick

4. Aggregate gradient norm across all layers: ∥∂Li

∂D ∥
2
F + ∥∂Li

∂U ∥
2
F

5. Compute clipping factor Ci

6. Compute sum of clipped gradients GD = x⊤diag(C1, C2, · · · ) ∂L
∂xD and GU = τ⊤diag(C1, C2, · · · ) ∂L

∂τU

7. Add Gaussian noise ĜD = GD + σR · N (0, I) and ĜU = GU + σR · N (0, I)

8. Apply SGD/Adam/LAMB with the private gradient ĜD on D and ĜU on U

Existing implementation of DP Adapter 8 uses the per-sample gradient instantiation as in Opacus. It is not hard to see that
the layerwise space overhead (in addition to forward pass and output gradient) is 2Bpr and the time overhead is 4BTpr (c.f.
Table 3 4 ). With the BK implementation, the space overhead is 4BT 2 and the time overhead is 4BT 2(p+ r) (c.f. Table 3

3 ).

LoRA LoRA modifies
A(x) = x(W + LR) = xW + xLR

where x ∈ RB×T×d,W ∈ Rd×p, L ∈ Rd×r, R ∈ Rr×p. We decompose the module A into two sub-modules:

• x→ xL := u, activation x, output grad ∂L
∂u

• u→ uR := v, activation xL, output grad ∂L
∂v

Hence BK can be implemented on each sub-module, similar to the DP Adapter.

Existing implementation of DP LoRA 9 uses the per-sample gradient instantiation as in Opacus. It is not hard to see that
the layerwise space overhead (in addition to forward pass and output gradient) is Br(p + d) and the time overhead is
2BTr(p + d) (c.f. Table 3 4 ). With the BK implementation, the space overhead is 4BT 2 and the time overhead is

2BT 2(p+ d+ 2r) (c.f. Table 3 3 ).
8https://github.com/huseyinatahaninan/Differentially-Private-Fine-tuning-of-Language-Mo

dels/tree/main/Language-Understanding-RoBERTa/bert adapter
9https://github.com/huseyinatahaninan/Differentially-Private-Fine-tuning-of-Language-Mo

dels/tree/main/Language-Understanding-RoBERTa/bert lora
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Model
# param in

generalized linear layers # param in other layers % applicable to BK
weight bias weight+bias

ResNet18 11.7M 1000 9600 99.9%
ResNet34 21.8M 1000 17024 99.9%
ResNet50 25.5M 1000 53120 99.8%

ResNet101 44.4M 1000 105344 99.8%
ResNet152 60.2M 1000 151424 99.7%

DenseNet121 7.9M 1000 83648 98.9%
DenseNet161 28.5M 1000 219936 99.2%
DenseNet201 19.8M 1000 229056 98.9%

Wide ResNet50 68.8M 1000 68224 99.9%
Wide ResNet101 126.7M 1000 137856 99.9%

vit tiny patch16 224 5.6M 21928 9600 99.4%
vit small patch16 224 21.9M 42856 19200 99.7%
vit base patch16 224 86.3M 84712 38400 99.9%
vit large patch16 224 303.8M 223208 100352 99.9%

crossvit tiny 240 6.9M 30800 16128 99.3%
crossvit small 240 26.6M 59600 32256 99.7%
crossvit base 240 104.5M 117200 64512 99.8%
convnext small 50.1M 83656 30144 99.8%
convnext base 88.4M 111208 40192 99.8%
convnext large 197.5M 166312 60288 99.9%

deit tiny patch16 224 5.6M 21928 9600 99.4%
deit small patch16 224 21.9M 42856 19200 99.7%
deit base patch16 224 86.3M 84712 38400 99.9%
beit base patch16 224 86.3M 57064 38400 99.9%
beit large patch16 224 303.8M 149480 100352 99.9%

roberta-base 124.5M 83712 38400 99.9%
roberta-large 355.0M 222208 100352 99.9%

distilroberta-base 82.1M 42240 19968 99.9%
bert-base-uncased 109.4M 83712 38400 99.9%
bert-large-uncased 334.8M 222208 100352 99.9%

bert-base-cased 108.2M 83712 38400 99.9%
bert-large-cased 333.3M 222208 100352 99.9%

longformer-base-4096 148.5M 111360 38400 99.9%
longformer-large-4096 434.2M 295936 100352 99.9%

t5-small 60.5M 0 16384 99.9%
t5-base 222.9M 0 47616 99.98%
t5-large 737.5M 0 124928 99.98%

long-t5-local-base 222.9M 0 47616 99.98%
long-t5-local-large 750.1M 0 124928 99.98%

long-t5-tglobal-base 222.9M 0 56832 99.97%
long-t5-tglobal-large 750.1M 0 149504 99.98%

gpt2 124.3M 82944 38400 99.9%
gpt2-medium 354.5M 221184 100352 99.9%

gpt2-large 773.4M 414720 186880 99.9%

Table 7. Models and the percentage of trainable parameters in generalized linear layers.
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F Additional plots and tables
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Figure 9. Ablation study of MLP on CIFAR10/CIFAR100 (images are flattened into vectors). Default model: 10 layers, width 1000, batch
size 256.
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BK Non-DP GhostClip Opacus

Time complexity
6B

∑
l T(l)p(l)d(l)

6B
∑

l T(l)p(l)d(l)
10B

∑
l T(l)p(l)d(l)

+2B
∑

l T
2
(l)(p(l) + d(l))

8B
∑

l T(l)p(l)d(l)+2B
∑

l

(
I{2T 2

(l) < p(l)d(l)}

·T 2
(l)(p(l) + d(l))

)
RoBERTa-base 15.3 ∗ 1012 13.1 ∗ 1012(0.86×) 24.1 ∗ 1012(1.57×) 17.5 ∗ 1012(1.14×)
RoBERTa-large 52.3 ∗ 1012 46.5 ∗ 1012(0.89×) 83.3 ∗ 1012(1.59×) 62.0 ∗ 1012(1.18×)

ViT-base 11.2 ∗ 1012 10.1 ∗ 1012(0.90×) 18.0 ∗ 1012(1.60×) 13.5 ∗ 1012(1.20×)
ViT-large 38.8 ∗ 1012 35.8 ∗ 1012(0.92×) 62.7 ∗ 1012(1.61×) 47.7 ∗ 1012(1.23×)

BEiT-large 29.1 ∗ 1012 26.9 ∗ 1012(0.92×) 47.1 ∗ 1012(1.61×) 35.8 ∗ 1012(1.23×)
GPT2-small 7.7 ∗ 1012 7.5 ∗ 1012(0.96×) 12.7 ∗ 1012(1.64×) 10.0 ∗ 1012(1.28×)

GPT2-medium 22.1 ∗ 1012 21.4 ∗ 1012(0.96×) 36.2 ∗ 1012(1.64×) 28.4 ∗ 1012(1.29×)
GPT2-large 47.9 ∗ 1012 46.4 ∗ 1012(0.97×) 78.8 ∗ 1012(1.65×) 61.9 ∗ 1012(1.30×)
GPT2-small 9.3 ∗ 1013 7.5 ∗ 1013(0.80×) 15.5 ∗ 1013(1.66×) 9.9 ∗ 1012(1.07×)

GPT2-medium 28.2 ∗ 1013 21.4 ∗ 1013(0.76×) 43.4 ∗ 1013(1.54×) 28.4 ∗ 1013(1.01×)
GPT2-large 59.4 ∗ 1013 46.4 ∗ 1013(0.79×) 92.2 ∗ 1013(1.55×) 61.9 ∗ 1013(1.04×)

Space complexity
B
∑

l min{2T 2
(l), p(l)d(l)}

+B
∑

l T(l)(3d(l) + p(l))

∑
l p(l)d(l)

+B
∑

l T(l)(3d(l) + p(l))

2B
∑

l T
2
(l)

+B
∑

l T(l)(3d(l) + p(l))

B
∑

l p(l)d(l)
+B

∑
l T(l)(3d(l) + p(l))

RoBERTa-base 5.3 ∗ 109 4.5 ∗ 109(0.84×) 5.3 ∗ 109(1.00×) 16.7 ∗ 109(3.17×)
RoBERTa-large 13.3 ∗ 109 11.8 ∗ 109(0.88×) 13.3 ∗ 109(1.00×) 46.9 ∗ 109(3.52×)

ViT-base 3.3 ∗ 109 3.0 ∗ 109(0.91×) 3.3 ∗ 109(1.00×) 11.5 ∗ 109(3.47×)
ViT-large 8.5 ∗ 109 8.1 ∗ 109(0.95×) 8.5 ∗ 109(1.00×) 38.1 ∗ 109(4.46×)

BEiT-large 6.4 ∗ 109 6.1 ∗ 109(0.95×) 6.4 ∗ 109(1.00×) 28.6 ∗ 109(4.46×)
GPT2-small 1.7 ∗ 109 1.6 ∗ 109(0.94×) 1.7 ∗ 109(1.00×) 14.0 ∗ 109(8.19×)

GPT2-medium 4.5 ∗ 109 4.3 ∗ 109(0.96×) 4.5 ∗ 109(1.00×) 39.8 ∗ 109(8.82×)
GPT2-large 8.47 ∗ 109 8.17 ∗ 109(0.97×) 8.47 ∗ 109(1.00×) 85.5 ∗ 109(10.1×)
GPT2-small 2.3 ∗ 1010 1.5 ∗ 1010(0.68×) 2.5 ∗ 1010(1.10×) 2.8 ∗ 1010(1.20×)

GPT2-medium 5.7 ∗ 1010 4.0 ∗ 1010(0.70×) 6.0 ∗ 1010(1.04×) 7.6 ∗ 1010(1.32×)
GPT2-large 10.1 ∗ 1010 7.5 ∗ 1010(0.75×) 10.5 ∗ 1010(1.02×) 15.2 ∗ 1010(1.48×)

Table 8. Time (upper half) and space (lower half) complexity of implementations (B = 100). For text classification, T = 256 and we use
BK base (≡ BK-MixOpt). For vision transformers and ImageNet, T = 224× 224 and we use BK-MixOpt. For text generation (GPT2,
which has token length limit as 1024), we use T = 100 in black or 1000 in light cyan. We mark the ratio of an algorithm’s complexity to
BK’s inside the parenthesis. Note that neither per-sample gradient instantiation (Opacus) nor ghost norm trick (GhostClip) is satisfying
when T is large, and they are dominated by BK-MixOpt.
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Model Algorithm Maximum batch size Time/Epoch Maximum throughput Speedup by BK

RoBERTa-large
SST-2

BK (ours) 41 13:03 86 —
Non-private 51 9:50 114 0.75×
GhostClip 48 17:34 64 1.34×

Opacus 16 22:30 50 1.72×

RoBERTa-large
QNLI

BK (ours) 41 20:14 86 —
Non-private 51 15:33 112 0.77×
GhostClip 48 27:45 63 1.37×

Opacus 16 35:03 50 1.73×

RoBERTa-large
QQP

BK (ours) 41 70:04 87 —
Non-private 51 53:42 113 0.77×
GhostClip 48 95:09 64 1.36×

Opacus 16 137:00 44 1.96×

RoBERTa-large
MNLI

BK (ours) 41 77:07 85 —
Non-private 51 58:02 113 0.75×
GhostClip 48 103:30 63 1.34×

Opacus 16 134:30 49 1.75×

GPT2

BK (ours) 149 2:13 316 —
Non-private 157 1:47 393 0.80×
GhostClip 156 2:54 242 1.31×

Opacus 43 5:03 139 2.27×

GPT2-medium

BK (ours) 69 4:58 141 —
Non-private 70 4:05 172 0.82×
GhostClip 70 6:46 104 1.36×

Opacus 15 14:22 49 2.88×

GPT2-large

BK (ours) 29 10:01 70 —
Non-private 29 8:16 85 0.83×
GhostClip 29 13:56 50 1.36×

Opacus 5 44:05 16 4.41×

BEiT-large

BK (ours) 96 6:35 127 —
Non-private 98 4:55 169 0.76×
GhostClip 95 8:53 93 1.33×

Opacus 5 4:12:00 3 38.3×

Table 9. Extension of Table 1. Note that CIFAR means both CIFAR10 and CIFAR100. Performance of GPT2 on E2E dataset (same
setting as (Li et al., 2021; Bu et al., 2022b)).
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Model Mixed ghost norm (MGN) Per-sample grad instantiation Ghost norm∑
l min{2T 2

(l), p(l)d(l)} (
∑

l p(l)d(l); # param) Saving by MGN (
∑

l 2T
2
(l) = 2H2

outW
2
out) Saving by MGN

ResNet18 1.0M 11.5M 11.5× 399M 399×
ResNet34 2.3M 21.6M 9.4× 444M 194×
ResNet50 2.8M 22.7M 8.0× 528M 186×

ResNet101 6.8M 41.7M 6.2× 532M 79×
ResNet152 10.9 57.3M 5.3× 549M 51×

DenseNet121 4.1M 7.9M 1.9× 605M 147×
DenseNet161 9.0M 28.5M 3.2× 607M 67×
DenseNet201 7.0M 19.8M 2.8× 609M 87×

Wide ResNet50 5.6M 66.0M 11.7× 528M 93×
Wide ResNet101 9.6M 124.0M 13.0× 531M 56×

vit tiny patch16 224 3.3M 5.6M 1.7× 3.8M 1.1×
vit small patch16 224 3.8M 21.9M 5.8× 13.8M 1.0×
vit base patch16 224 3.8M 86.3M 22.7× 3.8M 1.0×
vit large patch16 224 7.5M 303.8M 40.4× 7.5M 1.0×

crossvit tiny 240 4.0M 6.9M 1.7× 10.4M 2.6×
crossvit small 240 5.9M 26.6M 4.5× 10.4M 1.8×
crossvit base 240 8.7M 104.5M 12.1× 10.4M 1.2×
convnext small 12.4M 50.1M 4.0× 214M 17×
convnext base 14.3M 88.4M 6.2× 214M 15×
convnext large 19.8M 197.5M 10.0× 214M 11×

deit tiny patch16 224 3.3M 5.6M 1.7× 3.8M 1.1×
deit small patch16 224 3.8M 21.9M 5.8× 3.8M 1.0×
deit base patch16 224 3.8M 86.3M 22.7× 3.8M 1.0×
beit base patch16 224 2.9M 86.3M 29.8× 2.9M 1.0×
beit large patch16 224 5.7M 303.8M 53.3× 5.7M 1.0×

Table 10. Space complexity of computing per-sample gradient norm, on ImageNet image (224× 224). The saving by the mixed ghost
norm, adopted in BK-MixGhostClip and BK-MixOpt, is substantial.
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G Effect of hybridization: layerwise space complexity
We demonstrate the effect of hybridization (i.e. mixed ghost norm (Bu et al., 2022a)) on the computation of per-sample
gradient norm. We consider the moderate feature dimension and the high feature dimension, respectively. We conclude
that ghost norm trick (adopted in GhostClip and BK) is favored closer to the input layer, whereas the per-sample gradient
instantiation (adopted in Opacus and FastGradClip) is favored closer to the output layer.

G.1 Effect by model achitecture (T = 224× 224)

Generally speaking, CNN can benefit from hybridization, but vision transformers may not (unless the feature dimension is
high, see next section for BEiT).
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Figure 10. Layerwise space complexity of computing the per-sample gradient norm. Left to right: ResNet 34/50/101/152.
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Figure 11. Layerwise space complexity of computing the per-sample gradient norm. Left to right: VGG 11/13/16/19.
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Figure 12. Layerwise space complexity of computing the per-sample gradient norm. Left to right: DenseNet 121/161/201.

G.2 Effect by feature dimension (T = 322/2242/5122)

Generally speaking, higher feature dimension requires a deeper threshold, after which the per-sample gradient instantiation
is not preferred. That is, high dimensional data does not prefer ghost norm. This pattern even holds for vision transformers,
on which MixGhostClip/BK-MixGhostClip is equivalent to GhostClip/BK for low feature dimension.
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Figure 13. Layerwise space complexity of computing the per-sample gradient norm. Left to right: ViT small/base/large, and BEiT-large.
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Figure 14. Layerwise space complexity of computing the per-sample gradient norm in VGG11.
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Figure 15. Layerwise space complexity of computing the per-sample gradient norm in ResNet18.
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Figure 16. Layerwise space complexity of computing the per-sample gradient norm in DenseNet121.
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Figure 17. Layerwise space complexity of computing the per-sample gradient norm in ConvNeXT.
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Figure 18. Layerwise space complexity of computing the per-sample gradient norm in Wide ResNet50.
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Figure 19. Layerwise space complexity of computing the per-sample gradient norm in BEiT-large.
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