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Abstract
Understanding how convolutional neural
networks (CNNs) can efficiently learn high-
dimensional functions remains a fundamental
challenge. A popular belief is that these models
harness the local and hierarchical structure of
natural data such as images. Yet, we lack a
quantitative understanding of how such structure
affects performance, e.g., the rate of decay of the
generalisation error with the number of training
samples. In this paper, we study infinitely-wide
deep CNNs in the kernel regime. First, we show
that the spectrum of the corresponding kernel
inherits the hierarchical structure of the network,
and we characterise its asymptotics. Then, we use
this result together with generalisation bounds to
prove that deep CNNs adapt to the spatial scale
of the target function. In particular, we find that
if the target function depends on low-dimensional
subsets of adjacent input variables, then the
decay of the error is controlled by the effective
dimensionality of these subsets. Conversely, if
the target function depends on the full set of input
variables, then the error decay is controlled by
the input dimension. We conclude by computing
the generalisation error of a deep CNN trained on
the output of another deep CNN with randomly-
initialised parameters. Interestingly, we find that,
despite their hierarchical structure, the functions
generated by infinitely-wide deep CNNs are too
rich to be efficiently learnable in high dimension.

1. Introduction
Deep convolutional neural networks (CNNs) are particu-
larly successful in certain tasks such as image classification.
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Such tasks generally entail the approximation of functions
of a large number of variables, for instance, the number
of pixels which determine the content of an image. Learn-
ing a generic high-dimensional function is plagued by the
curse of dimensionality: the rate at which the generalisa-
tion error ϵ decays with the number of training samples n
vanishes as the dimensionality d of the input space grows,
i.e., ϵ(n) ∼ n−β with β = O(1/d) (Wainwright, 2019).
Therefore, the success of CNNs in classifying data whose
dimension can be in the hundreds or more (Hestness et al.,
2017; Spigler et al., 2020) points to the existence of some
underlying structure in the task that CNNs can leverage. Un-
derstanding the structure of learnable tasks is arguably one
of the most fundamental problems in deep learning, and also
one of central practical importance—as it determines how
many examples are required to learn up to a certain error.
A popular hypothesis is that learnable tasks are local and
hierarchical: features at any scale are made of sub-features
of smaller scales. Although many works have investigated
this hypothesis (Biederman, 1987; Poggio et al., 2017; Kon-
dor & Trivedi, 2018; Zhou et al., 2018; Deza et al., 2020;
Kohler et al., 2020; Poggio et al., 2020; Schmidt-Hieber,
2020; Finocchio & Schmidt-Hieber, 2021; Giordano et al.,
2022), there are no available predictions for the exponent
β for deep CNNs trained on tasks with a varying degree of
locality or a truly hierarchical structure.

In this paper, we perform such a computation in the over-
parameterised regime, where the width of the hidden layer
of the neural networks diverges and the network output is
rescaled so as to converge to that of a kernel method (Jacot
et al., 2018; Lee et al., 2019). Although the deep networks
deployed in real scenarios do not generally operate in such
regime, the connection with the theory of kernel regression
provides a recipe for computing the decay of the generali-
sation error with the number of training examples. Namely,
given an infinitely wide neural network, its generalisation
abilities depend on the spectrum of the corresponding ker-
nel (Caponnetto & De Vito, 2007; Bordelon et al., 2020):
the main challenge is then to characterise this spectrum,
especially for deep CNNs whose kernels are rather cum-
bersome and defined recursively (Arora et al., 2019). This
characterisation is the main result of our paper, together
with the ensuing study of generalisation in deep CNNs.
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1.1. Our contributions

More specifically, this paper studies the generalisation prop-
erties of deep CNNs with non-overlapping patches and no
pooling (defined in Section 2, see Figure 1 for an illustra-
tion), trained on a target function f∗ by empirical minimi-
sation of the mean squared loss. We consider the infinite-
width limit (Section 3) where the model parameters change
infinitesimally over training, thus the trained network coin-
cides with the predictor of kernel regression with the Neural
Tangent Kernel (NTK) of the network. Due to the equiva-
lence with kernel methods, generalisation is fully charac-
terised by the spectrum of the integral operator of the kernel:
in simple terms, the projections on the eigenfunctions with
larger eigenvalues can be learnt (up to a fixed generalisation
error) with fewer training points (see, e.g., Bach (2021)).

Spectrum of deep hierarchical kernels (Theorem 3.1).
Due to the network architecture, the hidden neurons of
each layer depend only on a subset of the input variables,
known as the receptive field of that neuron (highlighted
by coloured boxes in Figure 1, left panel). We find that the
eigenfunctions of the NTK of a hierarchical CNN of depth
L+1 can be organised into sectors l=1, . . . , L associated
with the hidden layers of the network (Theorem 3.1).
The eigenfunctions of each sector depend only on the
receptive fields of the neurons of the corresponding hidden
layer: if we denote with deff(l) the size of the receptive
fields of neurons in the l-th layer, then the eigenfunctions
of the l-th sector are effectively functions of deff(l)
variables. We characterise the asymptotic behaviour of
the NTK eigenvalues with the degree of the corresponding
eigenfunctions (Theorem 3.1) and find that it is controlled
by deff(l). As a consequence, the eigenfunctions with the
largest eigenvalues—the easiest to learn—are those which
depend on small subsets of the input variables and have low
polynomial degree. This is our main technical contribution,
and all of our conclusions follow from it.

Adaptivity to the spatial structure of the target (Corol-
lary 4.1). We use the above result to prove that deep
CNNs can adapt to the spatial scale of the target function
(Section 4). More specifically, by using rigorous bounds
from the theory of kernel ridge regression (Caponnetto &
De Vito, 2007) (reviewed in the first paragraph of Section 4),
we show that when learning with the kernel of a CNN and
optimal regularisation, the decay of the error depends on the
effective dimensionality of the target f∗—i.e., if f∗ only
depends on deff adjacent coordinates of the d-dimensional
input, then ϵ ∼ n−β with β ≥ O(1/deff) (Corollary 4.1,
see Figure 1 for a pictorial representation). We find a similar
picture in ridgeless regression by using non-rigorous results
derived with the replica method (Bordelon et al., 2020;
Loureiro et al., 2021) (Section 5). Notice that for targets

that, if deff ≪ d, the rates achieved with deep CNNs are
much closer to the Bayes-optimal rates—realised when the
architecture is fine-tuned to the structure of the target—than
β = O(1/d) obtained with the kernel of a fully-connected
network. Moreover, we find that hierarchical functions
generated by the output of deep CNNs are too rich to be
efficiently learnable in high dimensions (Lemma 5.2). We
confirm these results through extensive numerical studies
and find them to hold even if the nonoverlapping patches
assumption is relaxed (Appendix G.4).

1.2. Related work

The benefits of shallow CNNs in the kernel regime have
been investigated by Bietti (2022); Favero et al. (2021);
Misiakiewicz & Mei (2021); Xiao & Pennington (2022);
Xiao (2022); Geifman et al. (2022). Favero et al. (2021),
and later (Misiakiewicz & Mei, 2021; Xiao & Pennington,
2022), studied generalisation properties of shallow CNNs,
finding that they are able to beat the curse of dimensionality
on local target functions. However, these architectures can
only approximate functions of single input patches or linear
combinations thereof. Bietti (2022), in addition, includes
generic pooling layers and begins considering the role of
depth by studying the approximation properties of kernels
which are integer powers of other kernels. We generalise
this line of work by studying CNNs of any depth with non-
analytic (ReLU) activations: we find that the depth and
nonanalyticity of the resulting kernel are crucial for under-
standing the inductive bias of deep CNNs. This result should
also be contrasted with the spectrum of the kernels of deep
fully-connected networks, whose asymptotics do not depend
on depth (Bietti & Bach, 2021). Furthermore, we extend the
analysis of generalisation to target functions that have a hier-
archical structure similar to that of the networks themselves.

Geifman et al. (2022) derive bounds on the spectrum of the
kernels of deep CNNs. However, they consider only filters
of size one in the first layer and do not include a theoretical
analysis of generalisation. Instead, we allow filters of gen-
eral dimension and give tight estimates of the asymptotic
behaviour of eigenvalues, which allow us to predict gener-
alisation properties. Xiao (2022) is the closest to our work,
as it also investigates the spectral bias of deep CNNs in the
kernel regime. However, it considers a different limit where
both the input dimension and the number of training points
diverge and does not characterise the asymptotic decay of
generalisation error with the number of training samples.

Paccolat et al. (2021); Malach & Shalev-Shwartz (2021);
Abbe et al. (2022) use sparse target functions which depend
only on a few of the input variables to prove sample com-
plexity separation results between networks operating in the
kernel regime and in the feature regime—where the change
in parameters during training can be arbitrarily large. In this
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Figure 1. Left: Computational skeleton of a convolutional neural network of depth L+ 1=4 (L=3 hidden layers). The leaves of the
graph (squares) correspond to input coordinates, and the root (empty circle) to the output. All other nodes represent (infinitely wide layers
of) hidden neurons. We define as ‘meta-patches’ (i.e., patches of patches) the sets of input variables that share a common ancestor node
along the tree (such as the squares within each coloured rectangle). Each meta-patch coincides with the receptive field of the neuron
represented by this common ancestor node, as indicated below the input coordinates. For each hidden layer l=1, . . . , L, there is a
family of meta-patches having dimensionality deff(l). Right: Sketches of learning curves ϵ(n) obtained by learning target functions of
varying spatial scale with the network on the left. More specifically, the target is a function of a 3-dimensional patch for the blue curve, a
6-dimensional patch for the orange curve, and the full input for the green curve. We predict (and confirm empirically) that both the decay
of ϵ with n (full lines) and the rigorous upper bound (dashed lines) are controlled by the effective dimensionality of the target.

respect, our work shows that when the few relevant input
variables are adjacent, i.e., the target function is spatially
localised, deep CNNs achieve near-optimal performances
even in the kernel regime.

2. Notation and setup
Our work considers CNNs with nonoverlapping patches and
no pooling layers. Although employed in common architec-
tures, these two elements do not affect the conclusions of
our study and are not crucial for learning1. These networks
are fully characterised by the depth L+1 (or number of hid-
den layers L) and a set of filter sizes {sl}l (one per hidden
layer). We call such networks hierarchical CNNs.

Definition 2.1 (L-hidden-layers hierarchical CNN). De-
note by σ the normalised ReLU function, σ(x) =√
2max(0, x). For each input x ∈ Rd 2 and s a divi-

sor of d, denote by xi the i-th s-dimensional patch of
x, xi =(x(i−1)×s+1, . . . , xi×s) for all i=1, . . . , d/s. The
output of a L-hidden-layers hierarchical neural network can

1To illustrate this point, we trained a modified LeNet archi-
tecture with nonoverlapping patches and no pooling layers on
CIFAR10, then compared the generalisation error with that of a
standard LeNet architecture (LeCun et al., 1998) trained with the
same hyperparameters. The modified architecture achieved a test
accuracy of 53%, reasonably close to the 62% accuracy of the
standard architecture. In addition, we show in subsection G.4
that, although our theory requires nonoverlapping patches, our
predictions remain true with overlapping patches.

2Notice that all our results can be readily extended to image-
like input signals {xij}i,j or tensorial objects with an arbitrary
number of indices.

be defined recursively as follows.

f
(1)
h,i (x) = σ

(
w

(1)
h · xi

)
, ∀h ∈ [1 . . H1], ∀i ∈ [1 . . p1];

f
(l)
h,i(x) = σ

 1√
Hl−1

∑
h′

w
(l)
h,h′ ·

(
f
(l−1)
h′

)
i√

sl

 ,

∀h ∈ [1 . . Hl], i ∈ [1 . . pl], l ∈ [2 . . L];

f(x) = f (L+1)(x) =
1√
HL

HL∑
h=1

pL∑
i=1

w
(L+1)
h,i f

(L)
h,i (x)√
pL

.

(1)

Hl denotes the width of the l-th layer, sl the filter size
(s1 = s), pl the number of patches (p1 ≡ p= d/s). w(1)

h ∈
Rs1 , w(l)

h,h′ ∈ Rsl , w(L+1)

h,i ∈ R.

Hierarchical CNNs are best visualised by considering their
computational skeleton, i.e., the directed acyclic graph ob-
tained by setting Hl =1 ∀ l (example in Figure 1, left, with
L=3 hidden layers and filter sizes (s1, s2, s3)= (3, 2, 2)).
Having nonoverlapping patches, the computational skeleton
is an ordered tree, whose root is the output (empty circle
at the top of the figure) and the leaves are the input coordi-
nates (squares at the bottom). All the other nodes represent
neurons and all the neurons belonging to the same hidden
layer have the same distance from the input nodes. The tree
structure highlights that the post-activations f l

i of the l-th
layer depend only on a subset of the input variables, also
known as the receptive field.

Since the first layer of a hierarchical CNN acts on s1-
dimensional patches of the input, it is convenient to consider
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each d-dimensional input signal as the concatenation of p
s-dimensional patches, with s= s1 and p × s= d. We as-
sume that each patch is normalised to 1 3, so that the input
space is a product of p s-dimensional unit spheres (called
multisphere in Geifman et al. (2022)):

MpSs−1 :=

p∏
i=1

Ss−1 ⊂ Sd−1. (2)

We call a function on MpSs−1 localised if it is constant on at
least 1 of the p patches. In other words, localised functions
only depend on some patches of the input. The neurons of
the first hidden layer are examples of localised functions,
as each of them depends on only one of the s-dimensional
patches (see the blue rectangle in Figure 1 for s=3).

In general, the receptive field of a neuron in the l-th hidden
layer with l > 1 is a group of

∏l
l′=2sl′ adjacent patches (as

in the orange rectangle of Figure 1 for l=2, s2 =2 or the
green rectangle for l=3, s3 = s2 =2), which we refer to as
a meta-patch. Due to the correspondence with the recep-
tive fields, each meta-patch is identified with one path on
the computational skeleton: the path which connects the
output node to the hidden neuron whose receptive field co-
incides with the meta-patch. If such hidden neuron belongs
to the l-th hidden layer, the path is specified by a tuple of
L−l+1 indices, il+1→L+1 := iL+1 . . . il+1, where each in-
dex indicates which branch to select when descending from
the root to the neuron node. With this notation, xil+1→iL+1

denotes one of the pl meta-patches of size
∏

l′≤l
sl′ . Be-

cause of the normalisation of the s1-dimensional patches,
i.e., xi2→L+1

∈ Ss1−1, each meta-patch has an effective
dimensionality which is lower than its size,{

deff(1) := dim(xi2→L+1
) = (s1 − 1),

deff(l) := dim(xil+1→L+1
) = (s1 − 1)

∏l
l′=2sl′ ,

(3)

for l ∈ [2 . . L]. Localised functions which depend on a
specific meta-patch inherit the latter’s effective dimension-
ality. In general, the effective dimensionality of a localised
function f coincides with that of the smallest meta-patch
which contains all the patches that f depends on.

3. Hierarchical kernels and their spectra
We turn now to the infinite-width limit Hl → ∞: because
of the aforementioned equivalence with kernel methods, this
limit allows us to deduce the generalisation properties of
the network from the spectrum of a kernel. In this section,
we present the kernels corresponding to the hierarchical
models of Definition 2.1 and characterise the spectra of the
associated integral operators.

3We show in Appendix G.4 that our predictions remain true if
the inputs are sampled uniformly in the d-dimensional hypercube
[0, 1]d or from a Gaussian distribution on Rd.

We consider specifically two kernels: the Neural Tangent
Kernel (NTK), corresponding to training all the network
parameters (Jacot et al., 2018); and the Random Feature
Kernel (RFK), corresponding to training only the weights
of the linear output layer (Rahimi & Recht, 2007; Daniely
et al., 2016). In both cases, the kernel reads:

K(x,y) =
∑

trained params θ

∂θf(x)∂θf(y). (4)

The NTK and RFK of deep CNNs have been derived pre-
viously by Arora et al. (2019). In Appendix B we report the
functional forms of these kernels in the case of hierarchical
CNNs. These kernels inherit the hierarchical structure of the
original architecture and their operations can be visualised
again via the tree graph of Figure 1. In this case, the leaves
represent products between the corresponding elements of
two inputs x and y., i.e., x1y1 to xdyd, and the root the ker-
nel output K(x,y). The output can be built layer by layer by
following the same recipe for each node: first sum the out-
puts of the previous layer which are connected to the present
node, then apply some nonlinear function which depends on
the activation function of the network. In particular, for each
couple of inputs x and y on the multisphere MpSs−1, hier-
archical kernels depend on x and y via the p dot products
between corresponding s-dimensional patches of x and y.
As a comparison, Bietti & Bach (2021) showed that the NTK
and RFK of a fully-connected network of any depth depend
on the full dot product x · y, whereas those of a shallow
CNN can be written as the sum of p kernels, each depending
on only one of the patch dot products (Favero et al., 2021).

Given the kernel, the associated integral operator reads

(TKf) (x) :=

∫
Ss−1

K(x,y)f(y)dp(y), (5)

with dp(x) denoting the uniform distribution of input points
on the multisphere. The spectrum of this operator provides,
via Mercer’s theorem (Mercer, 1909), an alternative repre-
sentation of the kernel K(x,y) and a basis for the space of
functions that the kernel can approximate. The asymptotic
decay of the eigenvalues, in particular, is crucial for the
generalisation properties of the kernel, as it will be clar-
ified at in Section 4. Since the input space is a product
of s-dimensional unit spheres and the kernel depends on
the p scalar products between corresponding s-dimensional
patches of x and y, the eigenfunctions of TK are prod-
ucts of spherical harmonics acting on the patches (see Ap-
pendix A for definitions and the relevant background). For
the sake of clarity, we limit the discussion in the main paper
to the case s=2, where, since each patch xi is entirely
determined by an angle θi, the multisphere MpSs−1 re-
duces to the p-dimensional torus and the eigenfunctions
to p-dimensional plane waves: eik·θ with θ := (θ1, . . . , θp)
and label k := (k1, . . . , kp). In this case, the eigenvalues

4



What Can Be Learnt With Wide Convolutional Neural Networks?

coincide with the p-dimensional Fourier transform of the
kernel K (cos θ1, . . . , cos θp) and the large-k asymptotics
are controlled by the nonanalyticities of the kernel (Widom,
1963). The general case with patches of arbitrary dimension
is presented in the appendix.

Theorem 3.1 (Spectrum of hierarchical kernels). Let TK
be the integral operator associated with a d-dimensional
hierarchical kernel of depth L + 1, L> 1 and filter sizes
(s1, . . . , sL) with s1 = 2. Eigenvalues and eigenfunctions
of TK can be organised into L sectors associated with the
hidden layers of the kernel/network. For each 1≤ l≤L,
the l-th sector consists of (

∏l

l′=1
sl′)-local eigenfunctions:

functions of a single meta-patch xil+1→L+1
which cannot

be written as linear combinations of functions of smaller
meta-patches. The labels k of these eigenfunctions are such
that there is a meta-patch kil+1→L+1

of k with no vanishing
sub-meta-patches and all the ki’s outside kil+1→L+1

are 0
(because the eigenfunction is constant outside xil+1→L+1

).
The corresponding eigenvalue is degenerate with respect
to the location of the meta-patch: we call it Λ(l)

kil+1→iL+1
.

When ∥kil+1→L+1
∥ → ∞, with k= ∥kil+1→L+1

∥,

Λ
(l)
kil+1→L+1

= C2,l k−2ν−deff (l) + o
(
k−2ν−deff (l)

)
, (6)

with νNTK = 1/2, νRFK = 3/2 and deff the effective di-
mensionality of the meta-patches defined in Equation (3).
C2,l is a strictly positive constant for l≥ 2 whereas for l=1
it can take two distinct strictly positive values depending on
the parity of ki2→L+1

.

The proof is in Appendix C, together with the extension
to the s ≥ 3 case (Theorem C.1). It is useful to compare
the spectrum in the theorem with the limiting cases of
a deep fully-connected network and a shallow CNN. In
the former case, the spectrum consists only of the L-th
sector with pL =1—the global sector. The eigenvalues
decay as ∥k∥−2ν−p, with ν depending ultimately on the
nonanalyticity of the network activation function (see Bietti
& Bach (2021) or Appendix C) and p= deff(L) the effective
dimensionality of the input. As a result, all eigenfunctions
with the same ∥k∥ have the same eigenvalue, even those
depending on a subset of the input coordinates. For example,
assume that all the components of k are zero but k1, i.e.
the eigenfunction depends only on the first 2-dimensional
patch: the eigenvalue is O(k−2ν−p

1 ). By contrast, for a
hierarchical kernel, the eigenvalue is O(k−2ν−1

1 ), much
larger than the former as p> 1.

In the case of a shallow CNN, the spectrum consists only
of the first sector, so that each eigenfunction depends only
on one of the input patches. In this case, only one of the k
can be non-zero, say k1, and the eigenvalue is O(k−2ν−1

1 ).
However, from (Favero et al., 2021), a kernel of this kind
is only able to approximate functions which depend on

one of the input patches or linear combinations of such
functions. Instead, for a hierarchical kernel with pL =1, the
eigenfunctions of the L-th sector are supported on the full
input space. Then, if Λk > 0 for all k, hierarchical kernels
are able to approximate any function on the multisphere,
dispensing with the need for fine-tuning the kernel to the
structure of the target function.

Overall, given an eigenfunction of a hierarchical kernel, the
asymptotic scaling of the corresponding eigenvalue depends
on the spatial structure of the eigenfunction support. More
specifically, the effective dimensionality of the smallest
meta-patch which contains all the variables that the eigen-
function depends on. In simple terms, the decay of an
eigenvalue with k is slower if the associated eigenfunc-
tion depends on a few adjacent patches—but not if the
patches are far apart! This is a property of hierarchical
architectures which use nonlinear activation functions at
all layers. Such a feature disappears if all hidden layers
apart from the first have polynomial (Bietti, 2022) or in-
finitely smooth (Azevedo & Menegatto, 2015; Scetbon &
Harchaoui, 2021) activation functions or if the kernels are as-
sumed to factorise over patches, as in Geifman et al. (2022).

4. Generalisation properties and adaptivity to
spatial structure

In this section, we study the implications of the peculiar
spectra of hierarchical NTKs and RFKs on the generali-
sation properties of and prove a form of adaptivity to the
spatial structure of the target function. We follow the clas-
sical analysis of Caponnetto & De Vito (2007) for kernel
ridge regression (see Bach (2021); Bietti (2022) for a mod-
ern treatment) and employ a spectral bias ansatz for the
ridgeless limit (Bordelon et al., 2020; Spigler et al., 2020).

Theory of kernel ridge regression and source-
capacity conditions. Given a set of n training points
{(xµ, yµ)}nµ=1

i.i.d.∼ p(x, y) for some probability density
function p(x, y) and a regularisation parameter λ> 0, the
kernel ridge regression estimate of the functional relation
between x’s and y’s, or predictor, is

fn
λ (x) = argmin

f∈H

{
1

n

n∑
µ=1

(f(xµ)− yµ)
2
+ λ ∥f∥H

}
,

(7)
where H is the Reproducing Kernel Hilbert Space (RKHS)
of a (hierarchical) kernel K. If f(x) denotes the model from
which the kernel was obtained via Equation (4), the space H
is contained in the span of the network features {∂θf(x)}θ
in the infinite-width limit. Alternatively, H can be defined
via the kernel’s eigenvalues Λk and eigenfunctions Yk:
denoting with fk the projections of a function f onto the
kernel eigenfunctions, then f belongs to H if it belongs to
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the span of the eigenfunctions and

∥f∥2H =
∑
k≥0

(Λk)
−1|fk|2 < +∞. (8)

The performance of the kernel is measured by the gener-
alisation error and its expectation over training sets of fixed
size n (denoted with En)

ϵ(fn
λ ) =

∫
dxdy p(x, y) (fn

λ (x)− y)
2
,

ϵ(λ, n) = En [ϵ(f
n
λ )] , (9)

or the excess generalisation error, obtained by sub-
tracting from ϵ(λ, n) the error of the optimal predictor
f∗(x)=

∫
dy p(x, y)y. The decay of the error with n can

be controlled via two exponents, depending on the details
of the kernel and the target function. Specifically, if α≥ 1
and r≥ 1− 1/α satisfy the following conditions,

capacity: Tr
(
T 1/α
K

)
=
∑
k≥0

(Λk)
1/α < +∞,

source:
∥∥∥T 1−r

2

K f∗
∥∥∥2
H

=
∑
k≥0

(Λk)
−r|f∗

k |2 < +∞, (10)

then, by choosing a n-dependent regularisation parameter
λn ∼ n−α/(αr + 1), one gets the following bound on
generalisation (Caponnetto & De Vito, 2007):

ϵ(λn, n)− ϵ(f∗) ≤ C′n− αr
αr+1 . (11)

Spectral bias ansatz for ridgeless regression. The bound
above is actually tight in the noisy setting, for instance
when having labels yµ = f∗(xµ) + ξµ with ξµ Gaussian.
In a noiseless problem where yµ = f∗(xµ) one expects to
find the best performances in the ridgeless limit λ → 0,
so that the rate of Equation (11) is only an upper bound.
In the ridgeless case—where the correspondence between
kernel methods and infinitely-wide neural networks actually
holds—there are unfortunately no rigorous results for the
decay of the generalisation error. Therefore, we provide a
heuristic derivation of the error decay based on a spectral
bias ansatz. Consider the projections of the target function
f∗ on the eigenfunctions of the student kernel Yk (f∗

k) 4

and assume that kernel methods learn only the n projections
corresponding to the highest eigenvalues. Then, if the decay
of f∗

k with k is sufficiently slow, one has (recall that both λ
and ϵ(f∗) vanish in this setting)

ϵ(n) ∼
∑

k s.t. Λk<Λ(n)

|f∗
k |2, (12)

with Λ(n) the value of the n-th largest eigenvalue of the ker-
nel. This result can be derived using the replica method of

4We are again limiting the presentation to the case s=2 but
the extension to the general case is immediate.

statistical physics (see Canatar et al. (2021); Loureiro et al.
(2021); Tomasini et al. (2022) and Appendix E) or by assum-
ing that input points lie on a lattice (Spigler et al., 2020).

These two approaches rely on the very same features of the
problem, namely the asymptotic decay of Λk and |f∗

k |2—see
also Cui et al. (2021). For instance, the capacity condition
depends only on the kernel spectrum: α ≥ 1 since Tr (TK)
is finite (Schölkopf et al., 2002); the specific value is deter-
mined by the decay of the ordered eigenvalues with their
rank, which in turn depends on the scaling of Λk with k.
Similarly, the power-law decay of the ordered eigenvalues
with the rank determines the scaling of the n-th largest eigen-
value, Λ(n) ∼ n−α. The source condition characterises the
regularity of the target function relative to the kernel and
depends explicitly on the decay of |f∗

k |2 with k, as does the
right-hand side of Equation (12). This condition was used
by Bach (2021) to prove that kernel methods are adaptive
to the smoothness of the target function: the projections
of smoother targets on the eigenfunctions display a faster
decay with k, thus allowing to choose a larger r and lead-
ing to better generalisation performances. The following
corollary of Theorem 3.1 (proof and extension to s1 ≥ 3 pre-
sented in Appendix D, Corollary D.1) shows that, since the
spectrum can be partitioned as in Theorem 3.1, hierarchical
kernels display adaptivity to targets which depend only on a
subset of the input variables. Specific examples of bounds
are considered explicitly in Section 5.

Corollary 4.1 (Adaptivity to spatial structure). Let TK
be the integral operator of the kernel of a hierarchical
deep CNN as in Theorem 3.1 with s=2. Then: i) the
capacity exponent α is controlled by the largest sector of
the spectrum, i.e.,

Tr
(
T 1/α
K

)
< +∞ ⇔ α < 1 + 2ν/deff(L); (13)

ii) the source exponent r is controlled by the structure of
the target function f∗, i.e., if there is l≤L such that f∗

depends only on some meta-patch xil+1→L+1
, then only

the first l sectors of the spectrum contribute to the source

condition, i.e.,
∥∥∥T 1−r

2

K f∗
∥∥∥2
H

reads

l∑
l′=1

∑
il′+1→L+1

∑
ki

l′+1→L+1

(
Λ
(l′)
ki

l′+1→L+1

)−r ∣∣∣f∗
ki

l′+1→L+1

∣∣∣2 .
(14)

The same holds if f∗ is a linear combination of such
functions.

As a result, when deff(L) is large and α → 1, the decay of
the error is controlled by the effective dimensionality of the
target deff(l).
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5. Examples and experiments
Source-capacity bound for functions of controlled
smoothness and deff . Consider a target function f∗ which
only depends on the meta-patch xil+1→L+1

as in Corol-
lary 4.1. Combining the source condition (Equation (14))
with the asymptotic scaling of eigenvalues (Equation (6)),
we get∥∥∥T 1−r

2

K f∗
∥∥∥2
H

< +∞ ⇔
∑
k

∥k∥r(2ν+deff(l)) |f∗
k |

2
< +∞,

(15)
where ν = 1/2 (3/2) for the NTK (RFK) and k denotes
the meta-patch kil+1→L+1

without the subscript to ease no-
tation. Since the eigenvalues depend on the norm of k,
Equation (15) is equivalent to a finite-norm condition for
all the derivatives of f∗ up to order m<r (2ν + deff(l))/2,
∥∆m/2f∗∥2 =

∑
k ∥k∥2m|f∗

k |2 < + ∞ with ∆ denoting
the Laplace operator. As a result, if f∗ has derivatives of
finite norm up to the m-th, then the source exponent can
be tuned to r = 2m/(2ν + deff(l)), inversely proportional
to the effective dimensionality of f∗. Since the exponent
on the right-hand side of Equation (11) is an increasing
function of r, the smaller the effective dimensionality of f∗

the faster the decay of the error—hence hierarchical kernels
are adaptive to the spatial structure of f∗. In particular, the
following generalisation bound holds.

Corollary 5.1 (Generalisation bound for hierarchical
kernels). Let K be the kernel of a deep hierarchical CNN
with s=2. Let f∗ be a function depending only on a meta-
patch xil+1→L+1

or a linear combination of such functions.
Furthermore, assume f∗ has finite-norm derivatives up
to order m, i.e., ∥∆m/2f∗∥2 < +∞. Then, there exists a
constant C′ > 0 such that optimally-regularised regression
with K achieves ϵ(λn, n)− ϵ(f∗) ≤ C′n−β with

β =
2m (2ν + deff(L))

2m (2ν + deff(L)) + (2ν + deff(l)) deff(L)
. (16)

As an illustration, let us consider the case pL =1 and
deff(L)= p= d/2 (the number of two-dimensional patches).
Remarkably, even when p≫ 1, if f∗ depends only on a
finite-dimensional meta-patch (or is a sum of such func-
tions) the exponent β in Equation 16 converges to the finite
value 2m/(2(m + ν) + deff(l)). In stark contrast, using
a fully-connected kernel to learn the same target results
in β=2m/(2m+ p)—vanishing as 1/p when p≫ 1, thus
cursed by dimensionality.

Rates from spectral bias ansatz. The same picture
emerges when estimating the decay of the error from Equa-
tion (12). Λ(n) ∼ n−α, whereas

∑
k ∥k∥2m|f∗

k |2 < +∞
implies |f∗

k |2 ≲ ∥k∥−2m−deff (l) for a target supported on
a deff(l)-dimensional meta-patch. Plugging such decays

in Equation (12) we obtain (details in Appendix F.1)

ϵ(n) ∼ n−β with β =
2m

2ν + deff(l)

2ν + deff(L)

deff(L)
. (17)

Again, with pL =1 and deff(L)= p, the exponent remains
finite for p≫ 1. Notice that we recover the results of
Favero et al. (2021) by using a shallow local kernel if the
target is supported on s-dimensional patches. These results
show that hierarchical kernels play significantly better with
the approximation-estimation trade-off than shallow local
kernels, as they are able to approximate global functions
of the input while not being cursed when the target function
has a local structure.

Numerical experiments. We test our predictions by train-
ing a hierarchical kernel (student) on a random Gaussian
function with zero mean and covariance given by another
hierarchical kernel (teacher). A learning problem is fully
specified by the depths, sets of filter sizes, and smoothness
exponents ν of teacher and student kernels. In particular,
the depth and the set of filter sizes of the teacher kernel con-
trol the effective dimension of the target function. Figure 2
shows the learning curves (solid lines) together with the
predictions from Equation (17) (dashed lines), confirming
the picture emerging from our calculations. Panel (a) of
Figure 2 shows a depth-four student learning depth-two,
depth-three, and depth-four teachers. This student is not
cursed in the first two cases and is cursed in the third one,
which corresponds to a global target function. Panel (b)
illustrates the curse of dimensionality with the effective in-
put dimension deff(L) by comparing the learning curves of
depth-three students learning global target functions with an
increasing number of variables. All our simulations are in
excellent agreement with the predictions of Equation (17).
The bounds coming from Equation (16) would display a
slightly slower decay, as sketched in Figure 1, right panel.
All the details of numerical experiments are reported in Ap-
pendix G, together with a comparison between the ridgeless
and optimally-regularised cases (Figure S3) and additional
results for: s1 ≥ 3 (Figure S2); kernels with overlapping
patches (Figure S1); different input spaces (Figure S0) and
the CIFAR-10 dataset (Figure S2).

Notice that when the teacher kernel is a hierarchical
RFK, the target is equivalent to the output of a randomly-
initialised, infinitely-wide CNN (Novak et al., 2019). Al-
though this target is highly structured, it leads to the same
rate obtained for a global non-hierarchical target:

Lemma 5.2 (Curse of dimensionality for hierarchical tar-
gets). The problem of regression of the output of a randomly-
initialised and infinitely-wide hierarchical network suffers
from the curse of dimensionality, in the sense that no meth-
ods using n examples can achieve a generalisation error
decaying faster than n−β with β=3/deff(L).
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103 104

n
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s1 deff
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(s1 1) s2 deff

T, S: (2, 2, 2)
= 1/deff

a
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n
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= 1/deff

b

Figure 2. Learning curves for deep convolutional NTKs in a teacher-student setting. a. Depth-four student learning depth-two, depth-three,
and depth-four teachers. b. Depth-three models cursed by the effective input dimensionality deff(L). The numbers inside brackets are
the sequence of filter sizes of the kernels. Solid lines are the results of experiments averaged over 16 realisations with the shaded areas
representing the empirical standard deviations. The predicted asymptotic scaling ϵ ∼ n−β are reported as dashed lines. Details on the
numerical experiments are reported in Appendix G.

This lemma builds on i) the aforementioned equivalence of
infinitely-wide networks with Gaussian random processes
and ii) the equivalence of the predictors of kernel ridgeless
regression and Bayesian inference. More specifically, since,
by i), the target function is to a Gaussian process, the opti-
mal method to learn it is Bayesian inference with a Gaussian
prior having the same covariance as the target (Kanagawa
et al., 2018). Therefore, by ii), the rate achieved by a kernel
method using the target’s covariance kernel is also optimal.
From Equation (17) with l=L and m= ν=3/2, the op-
timal rate is n−3/deff (L), cursed by dimensionality since
deff(L) is the full input space dimension. We conclude that,
despite their intrinsically hierarchical structure, these targets
cannot be good models of learnable tasks.

6. Conclusions and outlook
We have proved that deep CNNs can adapt to the spatial
scale of the target function, thus beating the curse of di-
mensionality if the target depends only on local groups of
variables. Yet, if considered as ‘teachers’, they generate
functions that cannot be learnt efficiently in high dimen-
sions, even in the Bayes-optimal setting where the student
is matched to the teacher. Thus, the architectures we con-
sidered are not good models of the hierarchical structure of
real data, which are efficiently learnable.

Enforcing a stronger notion of compositionality is an in-
teresting endeavour for the future. Following Poggio et al.
(2017), one may consider a much smaller family of func-
tions of the form, with the notation of Figure 1,

f∗(x1) = g(h1(x11), h2(x12)) (18)

where, for instance, g, h1, and h2 are scalar functions. From
an information theory viewpoint, Schmidt-Hieber (2020);
Finocchio & Schmidt-Hieber (2021) showed that it is pos-
sible to learn such functions efficiently. However, these
arguments do not provide guarantees for any practical al-
gorithm, such as stochastic gradient descent. Moreover,
preliminary results (not shown) assuming that the functions
g and h are random Gaussian functions suggest that these
tasks are not learnable efficiently by a hierarchical CNN in
the kernel regime—see also (Giordano et al., 2022). It is
unclear whether this remains true when the networks closely
resemble the structure of Equation (18) as in Poggio et al.
(2017), or when the networks are trained in a regime where
features can be learnt from data. Recently, for instance, In-
grosso & Goldt (2022) have observed that under certain
conditions locality can be learnt from scratch. It is not clear
whether compositionality can also be learnt, beyond some
very stylised settings (Abbe et al., 2022).

Finally, another direction to explore is the stability of the
task toward smooth transformations or diffeomorphisms.
This form of stability has been proposed as a key element to
understanding how the curse of dimensionality is beaten for
image datasets (Bruna & Mallat, 2013; Petrini et al., 2021).
Such a property can be enforced with pooling operations (Bi-
etti & Mairal, 2019; Bietti et al., 2021); therefore diagonal-
ising the NTK in this case as well would be of high interest.
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Supplementary material

A. Harmonic analysis on the sphere
This appendix collects some introductory background on spherical harmonics and dot-product kernels on the sphere (Smola
et al., 2000). See (Efthimiou & Frye, 2014; Atkinson & Han, 2012; Bach, 2017) for a complete description. Spherical
harmonics are homogeneous polynomials on the sphere Ss−1 = {x ∈ Rs | ∥x∥=1}, with ∥·∥ denoting the L2 norm. Given
the polynomial degree k ∈ N, there are Nk,s linearly independent spherical harmonics of degree k on Ss−1, with

Nk,s =
2k + s− 2

k

(
s+ k − 3

k − 1

)
,

{
N0,d = 1 ∀d,
Nk,d ∼ kd−2 for k ≫ 1.

(S1)

Thus, we can introduce a set of Nk,s spherical harmonics Yk,ℓ for each k, with ℓ ranging in 1, . . . ,Nk,s, which are
orthonormal with respect to the uniform measure on the sphere dτ(x),

⟨Yk,ℓ, Yk,ℓ′⟩Ss−1 :=

∫
Ss−1

dτ(x)Yk,ℓ(x)Yk,ℓ′(x) = δℓ,ℓ′ . (S2)

Because of the orthogonality of homogeneous polynomials with a different degree, the set {Yk,ℓ}k,ℓ is a complete orthonor-
mal basis for the space of square-integrable functions on the s-dimensional unit sphere. Furthermore, spherical harmonics
are eigenfunctions of the Laplace-Beltrami operator ∆, which is nothing but the restriction of the standard Laplace operator
to Ss−1.

∆Yk,ℓ = −k(k + s− 2)Yk,ℓ. (S3)

The Laplace-Beltrami operator ∆ can also be used to characterise the differentiability of functions f on the sphere via the
L2 norm of some power of ∆ applied to f .

By fixing a direction y in Sd−1 one can select, for each k, the only spherical harmonic of degree k which is invariant for
rotations that leave y unchanged. This particular spherical harmonic is, in fact, a function of x · y and is called the Legendre
polynomial of degree k, Pk,s(x · y) (also referred to as Gegenbauer polynomial). Legendre polynomials can be written as a
combination of the orthonormal spherical harmonics Yk,ℓ via the addition formula (Atkinson & Han, 2012)

Pk,s(x · y) = 1

Nk,s

Nk,s∑
ℓ=1

Yk,ℓ(x)Yk,ℓ(y). (S4)

Alternatively, Pk,s is given explicitly as a function of t=x · y ∈ [−1,+1] via the Rodrigues formula (Atkinson & Han,
2012),

Pk,s(t) =

(
−1

2

)k Γ
(
s−1
2

)
Γ
(
k + s−1

2

) (1− t2
) 3−s

2
dk

dtk
(
1− t2

)k+ s−3
2 . (S5)

Legendre polynomials are orthogonal on [−1,+1] with respect to the measure with density (1− t2)(s−3)/2, which is the
probability density function of the scalar product between two points on Ss−1.∫ +1

−1

dt
(
1− t2

) s−3
2 Pk,s(t)Pk′,s(t) =

|Ss−1|
|Ss−2|

δk,k′

Nk,s
, (S6)

with |Ss−1| denoting the surface area of the s-dimensional unit sphere.

To sum up, given x,y ∈ Ss−1, functions of x or y can be expressed as a sum of projections on the orthonormal spherical
harmonics {Yk,ℓ}k,ℓ, whereas functions of x · y can be expressed as a sum of projections on the Legendre polynomials
{Pk,s(x · y)}k. The relationship between the two expansions is elucidated in the Funk-Hecke formula (Atkinson & Han,
2012), ∫

Ss−1

dτ(y) f(x · y)Yk,ℓ(y) = Yk,ℓ(x)
|Ss−2|
|Ss−1|

∫ +1

−1

dt
(
1− t2

) s−3
2 f(t)Pk,s(t). (S7)
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If the function f has continuous derivatives up to the k-th order in [−1,+1], then one can plug Rodrigues’ formula in the
right-hand side of Funk-Hecke formula and get, after k integrations by parts,∫

Ss−1

dτ(y) f(x · y)Yk,ℓ(y) = Yk,ℓ(x)
|Ss−2|
|Ss−1|

Γ
(
s−1
2

)
2kΓ

(
k + s−1

2

) ∫ +1

−1

dt f (k)(t)
(
1− t2

)k+ s−3
2 , (S8)

with f (k)(t) denoting the k-th order derivative of f in t. This trick also applies to functions which are not k times
differentiable at ±1, provided the boundary terms due to integration by parts vanish.

A.1. Dot-product kernels on the sphere

Dot-product kernels are kernels which depend on the two inputs x and y via their scalar product x · y. When the inputs lie
on the unit sphere Ss−1, one can use the machinery introduced in the previous section to arrive immediately at the Mercer’s
decomposition of the kernel (Smola et al., 2000).

K(x · y) =
∑
k≥0

(
Nk,s

|Ss−2|
|Ss−1|

∫ +1

−1

dt
(
1− t2

) s−3
2 K(t)Pk,s(t)

)
Pk,s(x · y)

=
∑
k≥0

(
|Ss−2|
|Ss−1|

∫ +1

−1

dt
(
1− t2

) s−3
2 K(t)Pk,s(t)

)Nk,s∑
ℓ=1

Yk,ℓ(x)Yk,ℓ(y)

:=
∑
k≥0

Λk

Nk,s∑
ℓ=1

Yk,ℓ(x)Yk,ℓ(y).

(S9)

In the first line we have just decomposed K into projections onto the Legendre polynomials, the second line follows
immediately from the addition formula, and the third is just a definition of the eigenvalues Λk. Notice that the eigenfunctions
of the kernel are orthonormal spherical harmonics and the eigenvalues are degenerate with respect to the index ℓ. The
Reproducing Kernel Hilbert Space (RKHS) of K can be characterised as follows,

H =

f : Ss−1 → R s. t. ∥f∥H :=
∑

k≥0,Λk ̸=0

Nk,s∑
ℓ=1

⟨f, Yk,l⟩2Ss−1

Λk
< +∞

 . (S10)

A.2. Multi-dot-product kernels on the multi-sphere

Mercer’s decomposition of dot-product kernels extends naturally to the case considered in this paper, where the input space
is the Cartesian product of p s-dimensional unit sphere,

MpSs−1 = {x = (x1, . . . ,xp)
∣∣xi ∈ Ss−1 ∀ i = 1, . . . , p

}
=

p
ą

i=1

Ss−1 (S11)

which we refer to as the multi-sphere following the notation of (Geifman et al., 2022). After defining a scalar product
between functions on MpSs−1 by direct extension of Equation (S2), one can immediately find a set of orthonormal
polynomials by taking products of spherical harmonics. With the multi-index notation k=(k1, . . . , kp), ℓ=(ℓ1, . . . , ℓp),
for all x ∈ MpSs−1

Ỹk,ℓ(x) =

p∏
i=1

Yki,ℓi(xi), with ki ≥ 0, ℓi = 1, . . . ,Nki,s =
2ki + s− 2

ki

(
s+ ki − 3

ki − 1

)
. (S12)

These product spherical harmonics Ỹk,ℓ(x) span the space of square-integrable functions on MpSs−1. Furthermore, as
each spherical harmonic is an eigenfunction of the Laplace-Beltrami operator, Ỹk,ℓ is an eigenfunction of the sum of
Laplace-Beltrami operators on the p unit spheres,

∆p,sỸk,ℓ :=

(
p∑

i=1

∆i

)
p∏

i=1

Yki,ℓi =

(
p∑

i=1

((−ki)(ki + s− 2))

)
Ỹk,ℓ. (S13)
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We can thus characterise the differentiability of functions of the multi-sphere Xs,p via finiteness in L2 norm of some power
of ∆p,s.

Similarly, we can consider products of Legendre polynomials to obtain a set of orthogonal polynomials on [−1, 1]p (see (Geif-
man et al., 2022), appendix A). Then, any function f on MpSs−1 ×MpSs−1 which depends only on the p scalar products
between patches,

f(x,y) = g(x1 · y1, . . . ,xp · yp), (S14)

can be written as a sum of projections on products of Legendre polynomials

P̃k,s(t) :=

p∏
i=1

Pki,s(ti). (S15)

Following (Geifman et al., 2022), we call such functions multi-dot-product kernels. When fixing one of the two arguments
of f (say x), f becomes a function on MpSs−1 ×MpSs−1 and can be written as a sum of projections on the Ỹk,ℓ’s. The two
expansions are related by the following generalised Funk-Hecke formula,(

p∏
i=1

∫
Ss−1

dτ(yi)

)
g(x1 · y1, . . . ,xp · yp)Ỹk,ℓ(y) =

Ỹk,ℓ(y)

(
|Ss−2|
|Ss−1|

)p
(

p∏
i=1

∫ +1

−1

dti
(
1− t2i

) s−3
2 Pki,s(ti)

)
g(t1, . . . , tp).

(S16)

Having introduced the product spherical harmonics Ỹk,ℓ as basis of MpSs−1 and the product Legendre polynomials P̃k,s(t)
as basis of [−1,+1]p, the Mercer’s decomposition of multi-dot-product kernels follows immediately.

K ({xi · yi}i) =
∑
k≥0

(
p∏

i=1

Nki,s
|Ss−2|
|Ss−1|

∫ +1

−1

dti
(
1− t2i

) s−3
2 Pki,s(ti)

)
K ({ti}i)Pk,s ({xi · yi}i)

=
∑
k≥0

Λk

Nk,s∑
ℓ=1

Yk,ℓ(x)Yk,ℓ(y).

(S17)

B. RFK and NTK of deep convolutional networks
This appendix gives the functional forms of the RFK and NTK of hierarchical CNNs. We refer the reader to (Arora et al.,
2019) for the derivation.
Definition B.1 (RFK and NTK of hierarchical CNNs). Let x,y ∈ MpSs−1 =

∏p
i=1Ss−1. Denote tuples of the kind

ilil+1 . . . im with il→m for m≥ l. For m<l, il→m denotes the empty tuple. For each tuple i2→L+1, denote with ti2→L+1

the scalar product between the s-dimensional patches of x and y identified by the same tuple, i.e.

ti2→L+1
= xi2→L+1

· yi2→L+1
(S18)

For 1≤ l≤L + 1, denote with
{
ti2→L+1

}
i2→l

the sequence of t’s obtained by letting the indices of the tuple i2→l vary
in their respective range. Consider a hierarchical CNN with L hidden layers, filter sizes (s1, . . . , sL), pL ≥ 1 and all the
weights w(1)

h,i , w
(l)

h,h′,i
, w

(L+1)
h,i initialised as Gaussian random numbers with zero mean and unit variance.

RFK. The corresponding RFK (or covariance kernel) is a function K(L+1)

RFK of the p1 = d/s1 scalar products tiL...i1 which
can be obtained recursively as follows. With κ1(t)=

(
(π − arccos t) t+

√
1− t2

)
/π,

K(1)
RFK(ti2→L+1

) = κ1(ti2→L+1
);

K(l)
RFK

({
ti2→L+1

}
i2→l

)
= κ1

(
1

sl

∑
il

K(l−1)
RFK

({
ti2→L+1

}
i2→l−1

))
, ∀ l ∈ [2 . . L] if L> 1;

K(L+1)
RFK

({
ti2→L+1

}
i2→L+1

)
=

1

pL

pL∑
iL+1=1

K(L)
RFK

({
ti2→L+1

}
i2→L

)
. (S19)
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NTK. The NTK of the same hierarchical CNN is also a function of the p1 = d/s1 scalar products tiL...i2 which can be
obtained recursively as follows. With κ0(t)= (π − arccos t) /π,

K(1)
NTK

(
ti2→L+1

)
= κ1(ti2→L+1

) +
(
ti2→L+1

)
κ0(ti2→L+1

);

K(l)
NTK

({
ti2→L+1

}
i2→l

)
= K(l)

RFK(
{
ti2→L+1

}
i2→l

) +

(
1

sl

∑
il

K(l−1)
NTK

({
ti2→L+1

}
i2→l−1

))

× κ0

(
1

sl

∑
il

K(l−1)
RFK

({
ti2→L+1

}
i2→l−1

))
, ∀ l ∈ [2 . . L] if L> 1;

K(L+1)
NTK

({
ti2→L+1

}
i2→L+1

)
=

1

pL

pL∑
iL+1=1

K(L)
NTK

({
ti2→L+1

}
i2→L

)
. (S20)

C. Spectra of deep convolutional kernels
In this section we state and prove a generalised version of Theorem 3.1 which includes non-binary patches. Our proof
strategy is to relate the asymptotic decay of eigenvalues to the singular behaviour of the kernel, as it is customary in Fourier
analysis and was done in (Bietti & Bach, 2021) for standard dot-product kernel. In Appendix C.1 we perform the singular
expansion of hierarchical kernels, in Appendix C.2 we use this expansion to prove Theorem 3.1 with L=2 (2 hidden
layers) and s1 =2 (patches on the ring), which we then generalise to general s1 in Appendix C.3 and to general depth
in Appendix C.4.

Theorem C.1 (Spectrum of hierarchical kernels). Let TK be the integral operator associated with a d-dimensional
hierarchical kernel of depth L + 1, L> 1 and filter sizes (s1, . . . , sL). Eigenvalues and eigenfunctions of TK can be
organised into L sectors associated with the hidden layers of the kernel/network. For each 1≤ l≤L, the l-th sector
consists of (

∏l

l′=1
sl′)-local eigenfunctions: functions of a single meta-patch xil+1→L+1

which cannot be written as linear
combinations of functions of smaller meta-patches. The labels k of these eigenfunctions are such that there is a meta-patch
kil+1→L+1

of k with no vanishing sub-meta-patches and all the ki’s outside of kil+1→L+1
are 0 (because the eigenfunction is

constant outside of xil+1→L+1
). The corresponding eigenvalue is degenerate with respect to the location of the meta-patch:

we call it Λ(l)

kil+1→iL+1
. When ∥kil+1→L+1

∥ → ∞, with k= ∥kil+1→L+1
∥,

i. if s1 = 2, then

Λ
(l)
kil+1→L+1

= C2,l k−2ν−deff (l) + o
(
k−2ν−deff (l)

)
, (S21)

with νNTK = 1/2, νRFK = 3/2 and deff the effective dimensionality of the meta-patches defined in Equation (3). C2,l
is a strictly positive constant for l≥ 2 whereas for l=1 it can take two distinct strictly positive values depending on
the parity of ki2→L+1

.

ii. if s1 ≥ 3, then for fixed non-zero angles k/k,

Λ
(l)
kil+1→L+1

= Cs1,l
(
kil+1→L+1

k

)
k−2ν−deff (l) + o

(
k−2ν−deff (l)

)
, (S22)

where Cs1,l is a positive function for l≥ 2, whereas for l=1 it is a strictly positive constant which depends on the
parity of ki2→L+1

.

C.1. Singular expansion of hierarchical kernels

Both the RFK and NTK of ReLU networks, whether deep or shallow, are built by applying the two functions κ0 and κ1 (Cho
& Saul, 2009) (see also Definition B.1),

κ0(t) =
(π − arccos t)

π
, κ1(t) =

(π − arccos t) t+
√
1− t2

π
. (S23)
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The functions κ0 and κ1 are non-analytic in t= ± 1, with the following singular expansion (Bietti & Bach, 2021). Near
t=1, with u=1− t 

κ0(1− u) = 1−
√
2

π
u1/2 +O(u3/2),

κ1(1− u) = 1− u+
2
√
2

3π
u3/2 +O(u5/2).

(S24)

Near t= − 1, with u=1 + t, 
κ0(−1 + u) =

√
2

π
u1/2 +O(u3/2),

κ1(−1 + u) =
2
√
2

3π
u3/2 +O(u5/2).

(S25)

As a result, hierarchical kernels have a singular expansion when the ti2→L+1
’s are close to ±1. In particular, the following

expansions are relevant for computing the asymptotic scaling of eigenvalues.

Proposition C.2 (RFK when x=y). The RFK of a hierarchical network of depth L+1, filter sizes (s1, . . . , sL) and pL ≥ 1
has the following singular expansion when all ti2→L+1

→ 1. With ui2→L+1
=1− ti2→L+1

, c=2
√
2/(3π), and

∏
l∈I sl := 1

if I is the empty set,

K(L+1)
RFK

({
1− ui2→L+1

}
i2→L+1

)
= 1− 1 ∏

2≤l′≤L

sl′

 pL

∑
i2→L+1

ui2→L+1

+
c

pL

L∑
l′=1

1 ∏
l′<l′′≤L

sl′′


∑

il′+1→L+1


∑

i2→l′
ui2→L+1 ∏

2≤l′′≤l′

sl′′





3/2

+O(u
5/2
i2→L+1

)

(S26)

Proof. With L=1 one has (recall that i2→1+1 = i2→2 reduces to a single index)

K(1)
RFK(1− ui2) = 1− ui2 + cu

3/2
i2

+O(u
5/2
i2

) ⇒

K(1+1)
RFK

(
{1− ui2}i2

)
= 1− 1

p1

∑
i2

ui2 +
c

p1

∑
i2

u
3/2
i2

+O(u
5/2
i2

). (S27)

With L=2,

K(2)
RFK

(
{1− ui2}i2

)
= κ1

(
1− 1

s2

∑
i2

ui2,i3 +
c

s2

∑
i2

u
3/2
i2,i3

+O(u
5/2
i2,i3

)

)

= 1− 1

s2

∑
i2

ui2,i3 +
c

s2

∑
i2

u
3/2
i2,i3

+ c

(
1

s2

∑
i2

ui2,i3

)3/2

+O(u
5/2
i2,i3

), (S28)

therefore

K(2+1)
RFK

(
{1− ui2,i3}i2,i3

)
=1− 1

s2p2

∑
i2,i3

ui2,i3 +
c

p2

1

s2

∑
i2,i3

u
3/2
i2,i3

+
c

p2

∑
i3

(
1

s2

∑
i2

ui2,i3

)3/2

+O(u
5/2
i2,i3

). (S29)

The proof of the general case follows by induction by applying the function κ1 to the singular expansion of the kernel with
L− 1 hidden layers, then using Equation (S24).
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Proposition C.3 (RFK when x= − y). The RFK of a hierarchical network of depth L+1, filter sizes (s1, . . . , sL) and
pL ≥ 1 has the following singular expansion when all ti2→L+1

→ −1. With ui2→L+1
=1 + ti2→L+1

, c=2
√
2/(3π) and∏

l∈I sl := 1 if I is the empty set,

K(L+1)
RFK

({
−1 + ui2→L+1

}
i2→L+1

)
= bL +

cL ∏
2≤l′≤L

sl′

 pL

∑
i2→L+1

u
3/2
i2→L+1

+O(u
5/2
i2→L+1

),

(S30)

with bL =κ1(bL−1), b1 =0; and cL = cL−1κ
′
1(bL−1), c1 = c.

Proof. This can be proved again by induction. For L=1,

K(1)
RFK(−1 + ui2) = cu

3/2
i2

+O(u
5/2
i2

) ⇒

K(1+1)
RFK

(
{−1 + ui2}i2

)
=

c

p1

∑
i2

u
3/2
i2

+O(u
5/2
i2

). (S31)

Thus, for L=2,

K(2)
RFK

(
{−1 + ui2,i3}i2

)
= κ1

(
c

s2

∑
i2

u
3/2
i2,i3

+O(u
5/2
i2,i3

)

)

= κ1(0) + κ′
1(0)

(
c

s2

∑
i2

u
3/2
i2,i3

)
+O(u

5/2
i2,i3

), (S32)

so that

K(2+1)
RFK

(
{−1 + ui2,i3}i2,i3

)
= κ1(0) +

κ′
1(0)c

s2p2

∑
i2,i3

u
3/2
i2,i3

+O(u
5/2
i2,i3

). (S33)

The proof is completed by applying the function κ1 to the singular expansion of the kernel with L− 1 hidden layers.
Proposition C.4 (NTK when x=y). The NTK of a hierarchical network of depth L+1, filter sizes (s1, . . . , sL) and pL ≥ 1
has the following singular expansion when all ti2→L+1

→ 1. With ui2→L+1
=1− ti2→L+1

, c=
√
2π, and

∏
l∈I sl := 1 if I

is the empty set,

K(L+1)
NTK

({
1− ui2→L+1

}
i2→L+1

)
= L+ 1− c

pL

L∑
l′=1

l′ ∏
l′<l′′≤L

sl′′



×
∑

il′+1→L+1


1 ∏

2≤l′′≤l′

sl′′


∑
i2→l′

ui2→L+1



1/2

+O(u
3/2
i2→L+1

)

(S34)

Proposition C.5 (NTK when x= − y). The NTK of a hierarchical network of depth L+1, filter sizes (s1, . . . , sL)
and pL ≥ 1 has the following singular expansion when all ti2→L+1

→ −1. With ui2→L+1
=1 + ti2→L+1

, c=
√
2/π and∏

l∈I sl := 1 if I is the empty set,

K(L+1)
NTK

({
−1 + ui2→L+1

}
i2→L+1

)
= aL +

cL ∏
2≤l′≤L

sl′

 pL

∑
i2→L+1

u
3/2
i2→L+1

+O(u
5/2
i2→L+1

),

(S35)

with aL = bL + bL−1κ0(bL−1), bL =κ1(bL−1), b1 =0; and cL = cL−1κ0(bL−1), c1 = c. Notice that both κ1 and κ0 are
positive and strictly increasing in [0, 1] and κ1(1)=κ0(1)= 1, thus bL ∈ (0, 1) and cL <cL−1.

The proofs of the two propositions above are omitted, as they follow the exact same steps as the previous two proofs.
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C.2. Patches on the ring

In this section, we prove a restricted version of Theorem 3.1 for the case of 2-dimensional input patches, since the reduction
of spherical harmonics to the Fourier basis simplifies the proof significantly. We also consider, for convenience, hierarchical
kernels of depth 3 with the filter size of the second hidden layer set to p= d/2, the total number of 2-patches of the input.
Once this case is understood, extension to arbitrary filter size and arbitrary depth is trivial.

Theorem C.6 (Spectrum of depth-3 kernels on 2-patches). Let TK be the integral operator associated with a d-dimensional
hierarchical kernel of depth 3, (2 hidden layers), with filter sizes (s1 =2, s2) and p2 =1, such that 2s2 = d and s2 = p (the
number of 2-patches). Eigenvalues and eigenfunctions of TK can be organised into 2 sectors associated with the hidden
layers of the kernel/network.

i. The first sector consists of s1-local eigenfunctions, which are functions of a single patch xi for i=1, . . . , p. The labels
k, ℓ of local eigenfunctions are such that all the kj’s with j ̸= i are zero (because the eigenfunction is constant outside
xi). The corresponding eigenvalue is degenerate with respect to the location of the patch: we call it Λ(1)

ki
. When

ki → ∞,
Λ
(1)
ki

= C2,1 k−2ν−1 + o
(
k−2ν−1

)
, (S36)

with νNTK = 1/2, νRFK = 3/2. C2,l can take two distinct strictly positive values depending on the parity of ki;

ii. The second sector consists of global eigenfunctions, which are functions of the whole input x. The labels k, ℓ of global
eigenfunctions are such that at least two of the ki’s are non-zero. We call the corresponding eigenvalue Λ(2)

k . When
∥k∥ → ∞, with k= ∥k∥,

Λ
(2)
k = C2,2 k−2ν−p + o

(
k−2ν−p

)
, (S37)

Proof. If we consider binary patches in the first layer, the input space becomes the Cartesian product of two-dimensional
unit spheres, i.e. circles, X =

∏d
i=1 S1. Then, each patch xi corresponds to an angle θi and the spherical harmonics are

equivalent to Fourier atoms,

Y0(θ) = 1, Yk,1(θ) = eikθ, Yk,2(θ) = e−ikθ, ∀k ≥ 1. (S38)

Therefore, solving the eigenvalue problem for a dot-product kernel K(x · y) = K (cos(θx − θy)) with x, y ∈ S1 reduces to
computing its Fourier transform. With |S0|=2 and |S1|=2π,

1

2π

∫ π

−π

dθx K (cos(θx − θy)) e
±ikθx = Λke

±ikθy ⇒ Λk =
1

2π

∫ π

−π

dθK (cos θ) e±ikθ, (S39)

where we denoted with θ the difference between the two angles. Similarly, for a multi-dot-product kernel, the eigenvalues
coincide with the p-dimensional Fourier transform of the kernel, where p is the number of patches,

Λk =
1

(2π)p

∫ π

−π

(
p∏

i=1

dθi e
±ikiθi

)
K ({cos θi}pi=1)

=
1

(2π)p

∫ π

−π

dpθ e±ik·θK ({cos θi}pi=1) , (S40)

with k = (k1, . . . , kp)
⊤ the vector of the patch wavevectors and θ = (θ1, . . . , θp)

⊤ the vector of the patch angle differences
θi = θx,i − θy,i.

The nonanaliticity of the kernel at ti =1 for all i moves to θi =0 for all i, whereas those in ti = − 1 move to θi =π and
−π. The corresponding singular expansion is obtained from Equation (S26) after replacing ti with cos (θi) and expanding
cos (θi) as 1− θ2i /2, resulting in

K(2)
RFK({cos θi}

p
i=1) = 1− 1

2p

p∑
i=1

θ2i +
1

3πp

p∑
i=1

|θi|3 +
2
√
2

3π

(
1

p

p∑
i=1

θ2i
2

)3/2

+

p∑
i=1

O(θ4i ). (S41)
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The first nonanalytic terms are 1
3πp

∑p
i=1 |θi|3 and 2

√
2

3π

(
1
p

∑p
i=1

θ2
i

2

)3/2
. After recalling that the Fourier transform of

∥θ∥2ν with θ ∈ Rp decays asymptotically as ∥k∥−2ν−p (Widom, 1963), one has (ν=3/2)

1

(2π)p

∫ π

−π

dpθ e±ik·θ 1

3πp

p∑
i=1

|θi|3 ∼
p∑

i=1

k−4
i

∏
j ̸=i

δkj ,0, for ∥k∥ → ∞ (S42)

and

1

(2π)p

∫ π

−π

dpθ e±ik·θ∥θ∥3 ∼ ∥k∥−p−3, for ∥k∥ → ∞. (S43)

All the other terms in the kernel expansion will result in subleading contributions in the Fourier transform. Therefore, the
former of the two equations above yields the asymptotic scaling of eigenvalues of the local sector, whereas the latter yields
the asymptotic scaling of the global sector.

The proof for the NTK case is analogous to the RFK case, except that the singular expansion near θi =0 is given by

K(2)
NTK({cos θi}

p
i=1) = 3− 1

p

p∑
i=1

|θi|
2

−
√
2

π

(
1

p

p∑
i=1

θ2i
2

)1/2

+

p∑
i=1

O(θ
3/2
i ). (S44)

C.3. Patches on the s-dimensional hypersphere

In this section, we make an additional step towards Theorem 3.1 by extending Theorem C.6 to the case of s-dimensional
input patches. We still consider hierarchical kernels of depth 3 with the filter size of the second hidden layer set to p= d/s
(the total number of s-patches of the input) so as to ease the presentation. The extension to general depth and filter sizes is
presented in Appendix C.4.

Theorem C.7 (Spectrum of depth-3 kernels on s-patches). Let TK be the integral operator associated with a d-dimensional
hierarchical kernel of depth 3, (2 hidden layers), with filter sizes (s1 = s, s2) and p2 =1, such that 2s2 = d and s2 = p (the
number of s-patches). Eigenvalues and eigenfunctions of TK can be organised into 2 sectors associated with the hidden
layers of the kernel/network.

i. The first sector consists of s1-local eigenfunctions, which are functions of a single patch xi for i=1, . . . , p. The labels
k, ℓ of local eigenfunctions are such that all the kj’s with j ̸= i are zero (because the eigenfunction is constant outside
of xi). The corresponding eigenvalue is degenerate with respect to the location of the patch: we call it Λ(1)

ki
. When

ki → ∞,
Λ
(1)
ki

= Cs,1 k−2ν−(s−1) + o
(
k−2ν−(s−1)

)
, (S45)

with νNTK = 1/2, νRFK = 3/2. Cs,1 can take two distinct strictly positive values depending on the parity of ki;

ii. The second sector consists of global eigenfunctions, which are functions of the whole input x. The labels k, ℓ of global
eigenfunctions are such that at least two of the ki’s are non-zero. We call the corresponding eigenvalue Λ(2)

k . When
k ≡ ∥k∥ → ∞, for fixed non-zero angles k/k,

Λ
(2)
k = Cs,2

(
k

k

)
k−2ν−p(s−1) + o

(
k−2ν−p(s−1)

)
, (S46)

where Cs,2 is a positive function.

Proof. A hierarchical RFK/NTK is a multi-dot-product kernel, therefore its eigenfunctions are products of spherical
harmonics Ỹk,ℓ(x) =

∏p
i=1 Yki,ℓi(xi) and the eigenvalues of K are given by Equation (S17),

Λk =

(
p∏

i=1

|Ss−2|
|Ss−1|

∫ +1

−1

dti
(
1− t2i

) s−3
2 Pki,s(ti)

)
K ({ti}i) . (S47)

The proof follows the following strategy: first, we show that the infinitely differentiable part of K results in eigenvalues
which decay faster than any polynomial of the degrees ki. We then show that the decay is controlled by the most singular
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term of the singular expansion of the kernel and finally compute such decay by relating it to the number of derivatives of the
kernel having a finite l2 norm.

When K is infinitely differentiable in [−1,+1]p, we can plug Rodrigues’ formula Equation (S5) for each Pki,s(ti) and get

Λk =

(
p∏

i=1

|Ss−2|
|Ss−1|

(
−1

2

)ki Γ
(
s−1
2

)
Γ
(
ki +

s−1
2

))∫ +1

−1

dtK (t)

(
p∏

i=1

dki

dtki
i

(
1− t2i

)ki+
s−3
2

)
, (S48)

with
∫ +1

−1
dt denoting integration over the p-dimensional hypercube [−1,+1]p. We can simplify the integral further via

integration by parts, so as to obtain

Λk =

(
p∏

i=1

|Ss−2|
|Ss−1|

(
1

2

)ki Γ
(
s−1
2

)
Γ
(
ki +

s−1
2

))∫ +1

−1

dtK(k) (t)

(
p∏

i=1

(
1− t2i

)ki+
s−3
2

)
, (S49)

where K(k) denotes the partial derivative of order k1 with respect to t1, k2 with respect to t2 and so on until kp with respect
to tp. Notice that the function (1− t2)

d−3
2 is proportional to the probability measure of the scalar product t between two

points sampled uniformly at random on the unit sphere (Atkinson & Han, 2012),

|Sd−1| =
∫ +1

−1

dt (1− t2)
d−3
2

∫
Sd−2

dSd−2 ⇒ |Sd−1|
|Sd−2|

∫ +1

−1

dt (1− t2)
d−3
2 = 1. (S50)

This probability measure converges weakly to a Dirac mass δ(t) when d → ∞. Recall, in addition, that
|Sd−1|=2πd/2/Γ(d/2), where Γ denotes the Gamma function Γ(x)=

∫∞
0

dxxz−1e−x. Thus, with converges weakly to a
Dirac measure δ(t) as c → ∞, once properly rescaled. In particular, choosing ki such that ki + (s− 3)/2= (d− 3)/2, one
has

lim
ki→∞

Γ
(
ki +

s
2

)
√
πΓ
(
ki +

s−1
2

) (1− t2i
)ki+

s−3
2 = δ(ti). (S51)

As a result, when K is infinitely differentiable, one has the following equivalence in the limit where all ki’s are large,

Λk ∼

(
p∏

i=1

|Ss−2|
|Ss−1|

(
1

2

)ki Γ
(
s−1
2

)
Γ
(
ki +

s
2

))K(k) (0) , (S52)

which implies that, when K is infinitely differentiable, the eigenvalues decay exponentially or faster with the ki.

Let us now consider the nonanalytic part of K. There are three kinds of terms appearing in the singular expansion of depth-3
kernels (cf. Appendix C.1):

ia) c+
∑

i(1− ti)
ν near ti = + 1;

ib) c−
∑

i(1 + ti)
ν near ti = − 1;

ii) c+,all (
∑

i(1− ti)/p)
ν near ti = + 1 for all i;

where the exponent ν is 1/2 for the NTK and 3/2 for the RFK. We will not consider terms of the kind ib) explicitly, as
the analysis is equivalent to that of terms of the kind ia). After replacing ti with cos(θi), as in Appendix C.2, we get again∑

i |θi|2ν and ∥θ∥2ν as leading nonanalytic terms. Therefore, we can rewrite the nonanalytic part of the kernel as follows,

Kn.a.(θ) =
∑
i

f1(|θi|) + f2(∥θ∥) + K̃(θ), (S53)

where f1, f2 are single-variable functions which behave as θ2ν near zero and have compact support, whereas K̃ has a
singular expansion near θi =0 analogous to that of K but with leading nonanalyticities controlled by an exponent ν′ ≥ν + 1.
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Let us look at the contribution to the eigenvalue Λk due to the term f1(|θi|): p∏
j=1

|Ss−2|
|Ss−1|

∫ π

0

dθj (sin (θj))
s−2

Pkj ,s(cos (θj))

 f1(|θi|)

=

∏
j ̸=i

δkj ,0

 |Ss−2|
|Ss−1|

∫ π

0

dθ (sin (θ))
s−2

Pki,s(cos (θ))f1(|θ|) =

∏
j ̸=i

δkj ,0

 (f1)k1
,

(S54)

where we have introduced (f1)k as the projection of f1(θ) on the k-th Legendre polynomial. The asymptotic decay of (f1)k
is strictly related to the differentiability of f1, which is in turn controlled by action of the Laplace-Beltrami operator ∆ on f1.
As a function on the sphere Ss−1, f1 depends only on one angle, therefore the Laplace-Beltrami operator acts as follows,

∆f1(θ) =
1

sin (θ)
s−2

d

dθ

(
sin (θ)

s−2 df1
dθ

(θ)

)
= f ′′

1 (θ) + (d− 2)
cos (θ)

sin (θ)
f ′
1(θ). (S55)

In terms of singular behaviour near θ=0, f1(θ) ∼ |θ|2ν implies ∆f1(θ) ∼ |θ|2ν−2, thus ∆mf1(θ) ∼ |θ|2(ν−m). Given ν,
repeated applications of ∆ eventually result in a function whose l2 norm on the sphere diverges. On the one hand,

∥∆m/2f1∥2 =

∫ π

0

dθ sind−2 (θ)f1(θ)∆
mf1(θ). (S56)

The integrand behaves as |θ|d−2+4ν−2m near 0, thus the integral diverges for m ≥ 2ν + (d − 1)/2. On the other hand,
from Equation (S3),

∥∆m/2f1∥2 =
∑
k

Nk,s (k(k + s− 2))
m |(f1)k|2. (S57)

As Nk,s ∼ ks−2 and the sum must converge for m< 2ν + (d − 1)/2 and diverge otherwise, (f1)k ∼ k−2ν−(s−1). The
projections of all the other terms in K on Legendre polynomials of one of the p angles θi display a faster decay with k,
therefore the above results imply the asymptotic scaling of local eigenvalues. Notice that such scaling matches with the
result of (Bietti & Bach, 2021), which was obtained with a different argument.

Finally, let us look at the contribution to the eigenvalue Λk due to the term f2(∥θ∥): p∏
j=1

|Ss−2|
|Ss−1|

∫ π

0

dθj (sin (θj))
s−2

Pkj ,s(cos (θj))

 f2(∥θ∥) = (f2)k , (S58)

where we have introduced (f2)k as the projection of f2(∥θ∥) on the multi-Legendre polynomial with multi-degree k.
The asymptotic decay of (f2)k is again related to the differentiability of f2, controlled by action of the multi-sphere
Laplace-Beltrami operator ∆p,s in Equation (S13). As f2 depends only on one angle per sphere,

∆p,sf2(∥θ∥) =
p∑

i=1

(
∂2
θif2(∥θ∥) + (s− 2)

cos (θi)

sin (θi)
∂θif2(∥θ∥)

)
. (S59)

Further simplifications occur since f2 depends only on the norm of θ. In terms of the singular behaviour near ∥θ∥=0,
f2 ∼ ∥θ∥2ν implies ∆m

p,sf2 ∼ ∥θ∥2(ν−m), thus

∥∆m/2
p,s f2∥2 =

∫
[0,π]p

dpθ

p∏
i=1

(
sins−2 (θi)

)
f2(∥θ∥)∆m

p,sf2(∥θ∥) < +∞ (S60)

requires m < 2ν + p(s− 1)/2 (compare with m < 2ν + (s− 1)/2 for the local contributions). Therefore, one has

∥∆m/2
p,s f1∥2 =

∑
k

(
p∏

i=1

Nki,s

)(
p∑

i=1

ki(ki + s− 2)

)m

|(f2)k|2 < +∞ ∀m < 2ν + p(s− 1)/2, (S61)
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while the sum diverges for m ≥ 2ν + p(s − 1)/2. In addition, since f2 is a radial function of θ which is homogeneous
(or scale-invariant) near ∥θ∥=0, (f2)k can be factorised in the large-∥k∥ limit into a power of the norm ∥k∥α and a finite
angular part C(k/∥k∥). By plugging the factorisation into Equation (S61), we get

(f2)k ∼ C(k/∥k∥)∥k∥−2ν−p(s−1),
∑

k,∥k∥=k

((
p∏

i=1

(ki/k)
s−2

)
C(k/∥k∥)2

)
< +∞ (S62)

The projections of all the other terms in K on multi-Legendre polynomials display a faster decay with ∥k∥, therefore the
above results imply the asymptotic scaling of global eigenvalues.

C.4. General depth

The generalisation to arbitrary depth is trivial once the depth-3 case is understood. For global and s1-local eigenvalues,
the analysis of the previous section carries over unaltered. All the other intermediate sectors correspond to the other terms
singular expansion of the kernel: from Appendix C.1, these terms can be written as

c

pL

1 ∏
l′<l′′≤L

sl′′


∑

il′+1→L+1


1 ∏

2≤l′′≤l′

sl′′


∑
i2→l′

(
1− ti2→L+1

)


ν

, (S63)

for some l′ = 2, . . . , L− 1 and fractional ν. In practice, this term is a sum over the pl′ = pL
∏

l′<l′′≤L sl′′ meta-patches
of t having size s2→l′ :=

∏
2≤l′′≤l′ sl′′ . Each summand is the fractional power ν of the average of the ti’s within

a meta-patch. When plugging such term into Equation (S47), the integrals over the ti’s which do not belong to that
meta-patch yield Kronecker deltas for the corresponding ki’s. The integrals over the ti’s within the meta-patch, instead,
can be written as in Equation (S58) with the product and the norm restricted over the elements of that meta-patch, i.e.,

∥θ∥ →
(∑

i2→l′
θ2i2→L+1

)1/2
. Therefore, the scaling of the eigenvalue with k is given again by Equation (S63), but with p

replaced by the size of the meta-patch
∏

2≤l′′≤l′ sl′′ , so that the effective dimension of Equation (3) appears at the exponent.

D. Generalisation bounds for kernel regression and spatial adaptivity
This appendix provides an introduction to classical generalisation bounds for kernel regression and extends Corollary 4.1 to
patches on the hypersphere.

D.1. Classical generalisation bounds

Rademacher bound. Consider the regression setting detailed in Section 4 of the main text. First, assume that the target
function f∗ belongs to the RKHS H of the kernel K. Then, without further assumptions on K, we have the following
dimension-free bound on the excess risk, based on Rademacher complexity (Bach, 2021), (Bietti, 2022),

ϵ(λ, n)− ϵ(f∗) ≤ C ∥f∗∥H

√
Tr(TK)

n
, (S64)

where TK is the integral operator associated to K. For a hierarchical kernel, having a target with more power in the local
sectors can result in a smaller ∥f∗∥H, hence a smaller excess risk. However, this gain is only a constant factor in terms of
sample complexity and, more importantly, being in the RKHS requires an order of smoothness which typically is of the
order of the dimension, which is a very-restrictive assumption in high-dimensional settings.

Source-capacity bound. The previous result can be extended by including more details about the kernel and the target
function. In particular, Proposition 7.2 in (Bach, 2021) states that, for f∗ in the closure of H, regularisation λ ≤ 1 and
n ≥ 5

λ (1 + log(1/λ)), one has

ϵ(λ, n)− ϵ(f∗) ≤ 16
σ2

n
Tr
(
(TK + λI)−1TK

)
+ 16 inf

f∈H

{
∥f − f∗∥2L2

+ λ∥f∥2H
}
+

24

n2
∥f∗∥L∞ , (S65)
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where σ2 bounds the conditional variance of the labels, i.e. E(x,y)∼p

[
(y − f∗(x))

2 |x
]
< σ2.

Then, let us consider the following standard assumptions in the kernel literature (Caponnetto & De Vito, 2007),

capacity: Tr
(
T 1/α
K

)
=
∑
k≥0

∑
ℓ

(Λk)
1/α < +∞,

source:
∥∥∥T 1−r

2

K f∗
∥∥∥2
H

=
∑
k≥0

∑
ℓ

(Λk)
−r(f∗

k,ℓ)
2 < +∞. (S66)

In short, the first assumption characterises the ‘size’ of the RKHS (the larger α, the smaller the number of functions in the
RKHS), while the second assumption defines the regularity of the target function relative to that of the kernel (when r = 1,
f∗ ∈ H; when r < 1, f∗ is less smooth; when r > 1, f∗ is smoother). Combining these assumptions with Equation (S65),
one gets

ϵ(λ, n)− ϵ(f∗) ≤ 16
σ2

n
C1λ−1/α + 16 C2 λr +

24

n2
∥f∗∥L∞ . (S67)

Optimising for λ results in

λn =

(
C1σ2

α r C2 n

) α
αr+1

, (S68)

and the bound becomes

ϵ(λn, n)− ϵ(f∗) ≲ C
2

αr+1

2

(
C1σ2

n

) αr
αr+1

+
1

n2
∥f∗∥L∞ . (S69)

Finally, when r > (α− 1)/α, n ≥ 5
λn

(1 + log(1/λn)) is always satisfied for n large enough.

D.2. Comparison with norm-based guarantees

A recent line of research has introduced norm-based generalisation bounds for neural networks, which aim to bound the
Rademacher complexity by utilising the norm of the weight matrices, e.g., Neyshabur et al. (2015). Specifically, these
bounds apply standard O(1/

√
n) upper bounds of the generalisation gap via the Rademacher complexity (see, e.g, Mohri

et al. (2018)), followed by a norm-based bound on the Rademacher complexity. These results extend even outside the
kernel limit considered in our present work and have also been applied to convolutional architectures (Galanti et al., 2023).

However, in contrast to our analysis, these bounds notably yield vacuous predictions in the overparameterised regime—
which is the regime relevant for practical applications—and can even exhibit an anti-correlation with generalisation
performance (Jiang et al., 2019). Additionally, their application necessitates knowledge of the weight matrix norms
post-training, which currently remains analytically inaccessible.

D.3. Proof of Corollary 4.1 with patches on the hypersphere

Corollary D.1 (Adaptivity to spatial structure). Let TK be the integral operator of the kernel of a hierarchical deep CNN as
in Theorem 3.1. Then: i) the capacity exponent α is controlled by the largest sector of the spectrum, i.e.

Tr
(
T 1/α
K

)
< +∞ ⇔ α < 1 + 2ν/deff(L); (S70)

ii) the source exponent r is controlled by the structure of the target function f∗, i.e., if there is l≤L such that f∗ depends
only on some meta-patch xil+1→L+1

, then only the first l sectors of the spectrum contribute to the source condition,

∥∥∥T 1−r
2

K f∗
∥∥∥2
H

=

l∑
l′=1

∑
il′+1→L+1

∑
ki

l′+1→L+1

ℓi
l′+1→L+1

(
Λ
(l′)
ki

l′+1→L+1

)−r (
f∗
ki

l′+1→L+1
, ℓi

l′+1→L+1

)2
. (S71)

The same holds if f∗ is a linear combination of such functions. As a result, when deff(L) is large and α → 1, the decay of
the error is controlled by the effective dimensionality of the target deff(l).
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Proof. The capacity condition Tr
(
T 1/α
K

)
< +∞ is satisfied when the eigenvalues Λρ of TK decay with their rank as ρ−α.

Let’s start by computing this scaling for a depth-two kernel with filters of size s. The eigenvalues decay with k as

Λk ∼
p∑

i=1

k
−2νS−(s−1)
i

∏
j ̸=i

δkj ,0. (S72)

In order to take into account their algebraic multiplicity, we introduce the eigenvalue density D(Λ), whose asymptotic form
for small eigenvalues is

D(Λ) =
∑
k, ℓ

δ(Λ− Λk)

∼
∑
k

(
p∏

i=1

ks−2
i

)
δ

Λ−
p∑

i=1

k
−2ν−(s−1)
i

∏
j ̸=i

δkj ,0


∼

p∑
i=1

∑
ki

ks−2
i δ

(
Λ− k

−2ν−(s−1)
i

)
∼
∫ ∞

1

dk ks−2δ
(
Λ− k−2ν−(s−1)

)
∼ Λ−1− s−1

2ν+(s−1) . (S73)

Thus, the scaling of Λ(ρ) can be determined self-consistently,

ρ =

∫ Λ(1)

Λ(ρ)

dΛD(Λ) ∼ Λ(ρ)−
s−1

sν+(s−1) ⇒ Λ(ρ) ∼ ρ−1− 2ν
s−1 . (S74)

Consider now a kernel of depth L + 1 with filter sizes (s1, . . . , sL) and pL = 1. For each sector l, one can compute the
density of eigenvalues D(l)(Λ). Depending on s1, there are two different cases.

If s1 = 2,

D(l)(Λ) =
∑
k

δ(Λ− Λ
(l)
k )

∼
∑

il+1→L+1

∑
kil+1→L+1

δ
(
Λ− C2,l ∥kil+1→L+1

∥−2ν−deff (l)
)

∼
∫ ∞

1

dk kdeff (l)−1δ
(
Λ− C2,l k−2ν−deff (l)

)
∼ Λ

−1− deff (l)

2ν+deff (l) . (S75)

If s1 ≥ 3,

D(l)(Λ) =
∑
k, ℓ

δ(Λ− Λ
(l)
k )

∼
∑

il+1→L+1

∑
kil+1→L+1

,

ℓil+1→L+1

δ

(
Λ− Cs1,l

(
kil+1→L+1

∥kil+1→L+1
∥

)
∥kil+1→L+1

∥−2ν−deff (l)

)

∼ Λ
−1− deff (l)

2ν+deff (l) . (S76)

When summing over all layers l’s, the asymptotic behaviour of the total density of eigenvalues D(Λ) =
∑

l D(l)(Λ) is
dictated by the density of the sector with the slowest decay, i.e. the last one. Hence,

D(Λ) ∼ Λ
−1− deff (L)

2ν+deff (L) . (S77)
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Therefore, similarly to the shallow case, one finds self-consistently that the ρ-th eigenvalue of the kernel decays as

Λ(ρ) ∼ ρ
−1− 2ν

deff (L) . (S78)

This proves that the capacity condition is controlled by the largest sector of the spectrum and α < 1 + 2ν/deff(L).

Finally, we notice that, if f∗ depends only on a meta-patch xil+1→L+1
, all projections on eigenfunctions belonging to higher

sectors are zero and hence

∥∥∥T 1−r
2

K f∗
∥∥∥2
H

=

l∑
l′=1

∑
il′+1→L+1

∑
ki

l′+1→L+1

ℓi
l′+1→L+1

(
Λ
(l′)
ki

l′+1→L+1

)−r (
f∗
ki

l′+1→L+1
, ℓi

l′+1→L+1

)2
. (S79)

Therefore, only the first l sectors contribute to the source condition and the proof is concluded.

E. Statistical mechanics of generalisation in kernel regression
In (Bordelon et al., 2020; Canatar et al., 2021), the authors derived a heuristic expression for the average-case mean-squared
error of kernel (ridge) regression with the replica method of statistical physics (Mézard et al., 1987). Denoting with
{ϕρ(x), Λρ}ρ≥1 the eigenfunctions and eigenvalues of the kernel and with cρ the coefficients of the target function in this
basis, i.e. f∗(x) =

∑
ρ≥1 cρϕρ(x), one has

ϵ(λ, n) = ∂λ

(
κλ(n)

n

)∑
ρ

κλ(n)
2

(nΛρ + κλ(n))
2 E[c2ρ], (S80)

where λ is the ridge and κ(n) satisfies the implicit equation

κλ(n)

n
= λ+

1

n

∑
ρ

Λρκλ(n)/n

Λρ + κλ(n)/n
. (S81)

In short, the replica calculation used to obtain these equations consists in defining an energy functional E(f) related to the
empirical MSE and assigning to the predictor f a Boltzmann measure, i.e. P (f) ∝ e−βE(f). When β → ∞, the measure
concentrates around the minimum of E(f), which coincides with the minimiser of the empirical MSE. Then, since E(f)
depends only quadratically on the projections cρ, computing the average over data that appears in the definition of the
generalisation error, reduces to computing Gaussian integrals. While non-rigorous, this method has been successfully used
in physics—to study disordered systems—and in machine learning theory. In particular, the predictions obtained with
Equation (S80) and Equation (S81) have been validated numerically for both synthetic and real datasets.

In Equation (S80), κλ(n)/n plays the role of a threshold: the modal contributions to the error tend to 0 for ρ such that
Λρ ≫ κλ(n)/n, and to E[c2ρ] for ρ such that Λρ ≪ κλ(n)/n. This is equivalent to saying that kernel regression can capture
only the modes corresponding to the eigenvalues larger than κλ(n)/n (see also (Jacot et al., 2020a;b)).

In the ridgeless limit λ → 0+, this threshold asymptotically tends to the n-th eigenvalue of the student, resulting in the
intuitive picture presented in the main text. Namely, given n training points, ridgeless regression learns the n projections
corresponding to the highest eigenvalues. In particular, assume that the kernel spectrum and the target function projections
decay as power laws. Namely, Λρ ∼ ρ−a and E[cρ2] ∼ ρ−b, with 2a> b − 1. Furthermore, we can approximate the
summations over modes with an integral by using the Euler-MacLaurin formula. Hence, we substitute the eigenvalues
with their asymptotic limit Λρ = Aρ−a. Since, κ0(n)/n → 0 as n → ∞, these two operations result in an error which is
asymptotically independent of n. In particular,

κ0(n)

n
=

κ0(n)

n

1

n

(∫ ∞

0

Aρ−a

Aρ−a + κ0(n)/n
dρ+O(1)

)
=

κ0(n)

n

1

n

((
κ0(n)

n

)− 1
a
∫ ∞

0

σ
1
a−1A

1
a a−1

1 + σ
dσ +O(1)

)
. (S82)
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Since the integration over σ is finite and independent of n, we obtain that κ0(n)/n = O(n−a). Similarly, we find that the
mode-independent prefactor ∂λ (κλ(n)/n) |λ=0 = O(1).

As a result, we have

ϵ(n) ∼
∑
ρ

n−2a

(Aρ−a + n−a)
2 E[c2ρ]. (S83)

Following the intuitive argument about the thresholding action of κ0(n)/n ∼ n−a, we can split the summation in
Equation (S83) into modes where Λρ ≫ κ0(P )/n, Λρ ∼ κ0(n)/n and Λρ ≪ κ0(n)/n,

ϵ(n) ∼
∑
ρ≪n

n−2a

(Aρ−a)
2E[c

2
ρ] +

∑
ρ∼n

1

2
E[c2ρ] +

∑
ρ≫n

E[c2ρ]. (S84)

Finally, Equation (12) is obtained by noticing that, under the assumption on the decay of E[c2ρ], the contribution of the
summation over ρ ≪ n is subleading in n, whereas the other two can be merged together.

F. Examples
F.1. Rates from spectral bias ansatz

Consider a target function f∗ which only depends on the meta-patch xil+1→L+1
and with square-integrable derivatives up

to order m, i.e. ∥∆m/2f∗∥2 < +∞, with ∆ denoting the Laplace operator. Moreover, consider a hierarchical kernel of
depth L + 1 with filter sizes (s1, . . . , sL) and pL = 1. We want to compute the asymptotic scaling of the error by using
Equation (12), i.e.

ϵ(n) ∼
∑

k,ℓ s.t. Λk<Λ(n)

|f∗
k,ℓ|2. (S85)

In Appendix D, we showed that the n-th eigenvalue of the kernel Λ(n) decays as

Λ(n) ∼ n
−1− 2ν

deff (L) . (S86)

Since by construction the target function depends only on a meta-patch of the l-th sector, the only non-zero projections will
be the ones on eigenfunctions of the first l sectors. Thus, all the k’s corresponding to the sectors of layers with l′ > l do not
contribute to the sum. In particular, the sum is dominated by the k’s of the largest sector and the set {k s.t. Λk < Λ(n)} is

the set of kil+1→L+1
’s with norm larger than n

2ν+deff (L)

(2ν+deff (l)) deff (L) .

Finally, we notice that the finite-norm condition on the derivatives,

∥∆m/2f∗∥2 =
∑
k

(
p∏

i=1

Nki,s

)(
p∑

i=1

ki(ki + s− 2)

)m

|f∗
k,ℓ|2 < +∞, (S87)

implies |f∗
k,ℓ|2 ≲ ∥k∥−2m−deff (L) (see Appendix C.3).

Hence, plugging everything in Equation (S85) we find

ϵ(n) ∼ n
− 2m

2ν+deff(l)
2ν+deff (L)

deff (L) . (S88)

G. Numerical experiments
G.1. Experimental setup

Experiments were run on a high-performance computing cluster with nodes having Intel Xeon Gold processors with 20
cores and 192 GB of DDR4 RAM. All codes are written in PyTorch (Paszke et al., 2019). The repository containing all
codes used to obtain the reported results can be found at https://github.com/pcsl-epfl/convolutional neural kernels.
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Figure S1. Learning curves for deep convolutional NTKs (ν = 1/2) in a teacher-student setting. a. Depth-two teachers learned by
depth-two (matched) and depth-three (mismatched) students. Both these students are not cursed by the input dimension. b. Depth-three
students learning depth-two and depth-three teachers. These students are cursed only in the second case. The numbers inside brackets are
the sequence of filter sizes of the kernels. Solid lines are the results of experiments averaged over 16 realisations with the shaded areas
representing the empirical standard deviations. The predicted asymptotic scaling ϵ ∼ n−β are reported as dashed lines.

G.2. Teacher-student learning curves

In order to obtain the learning curves, we generate n + ntest random points uniformly distributed on the product of
hyperspheres over the patches. We use n ∈ {128, 256, 512, 1024, 2048, 4096, 8192} and ntest = 8192. For each value
of n, we sample a Gaussian random field with zero mean and covariance given by the teacher kernel. Then, we compute the
kernel regression predictor of the student kernel, and we estimate the generalisation error as the mean squared error of the
obtained predictor on the ntest unseen example. The expectation over the teacher randomness is obtained by averaging over
16 independent sets of random input points and realisations of the Gaussian random fields. As teacher and student kernels,
we use the analytical forms of the neural tangent kernels of hierarchical convolutional networks, with different combinations
of depths and filter sizes.

Depth-two and depth-three architectures. Figure S1 reports the learning curves of depth-two and depth-three kernels
with binary filters at all layers. Depth-three students defeat the curse of dimensionality when learning depth-two teachers,
achieving a similar performance of depth-two students matched to the teacher’s structure. However, as we predict, these
students encounter the curse of dimensionality when learning depth-three teachers.

Ternary filters. Figure S2 reports the learning curves for kernels with 3-dimensional filters and confirms our predictions
in the s1 ≥ 3 case.

Comparison with the noisy and optimally-regularised case. Panel (a) of Figure S3 compares the learning curves
obtained in the optimally-regularised and ridgeless cases for noisy and noiseless data, respectively. The first case corresponds
to the setting studied in (Caponnetto & De Vito, 2007), in which the source-capacity formalism applies. In contrast with
the second setting—which is the one used in the teacher-student scenarios and where it holds the correspondence between
kernel methods and neural networks—i) we add to the labels a Gaussian random noise with standard deviation σ = 0.1, ii)
for each n, we select the ridge resulting in the best generalisation performance. We observe that the decay obtained in the
bound derived from the source-capacity conditions is exactly the one found numerically, i.e. the rate of the bound is tight.
As a further check, panel (b) shows that the optimal ridge decays as prescribed.

G.3. Illustration of different teacher-student scenarios

In this subsection, we comment on the results obtained in the different teacher-student scenarios of Figure 2, panel (a), and
Figure S1, panel (a). To ease notation, in the following we always consider the NTK for both teacher and student kernels,
i.e. smoothness exponent νT = νS = 1/2. However, we point out that when the teacher kernel is a hierarchical RFK
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Figure S2. Learning curves for deep convolutional NTKs (ν = 1/2) with filters of size 3 in a teacher-student setting. a. Depth-three
students learning depth-two and depth-three teachers. These students are cursed only in the second case. b. Depth-three models are
cursed by the effective input dimensionality. The numbers inside brackets are the sequence of filter sizes of the kernels. Solid lines are the
results of experiments averaged over 16 realisations with the shaded areas representing the empirical standard deviations. The predicted
asymptotic scaling ϵ ∼ n−β are reported as dashed lines.
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Figure S3. Noisy (optimally-regularised) vs noiseless (ridgeless) learning curves for depth-three deep convolutional NTKs (ν = 1/2) in
a teacher-student setting. a. Comparison between the learning curves in the noisy and noiseless case. Dashed lines represent the rates
predicted with source-capacity bounds and replica calculations, respectively. Shaded areas represent the empirical standard deviations. b.
Decay of the optimal ridge with the number of training points.
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(νT = 3/2), the target function corresponds to the output of an infinitely-wide, deep hierarchical network at initialisation5.
The error rates are obtained from Equation (17), after setting the smoothness exponent m = νT (the smoothness exponent
of the teacher covariance kernel).

The first case we consider consists of one-hidden-layer convolutional teacher (left) and student (right) kernels.

x1 x2 x3 x4 xd x1 x2 x3 x4 xd

ϵ(n) ∼ n− 1
s1−1

As highlighted in blue, the output of the teacher is a linear combination (dashed lines indicate the linear output weights)
of s1-dimensional functions of the input patches. If the structure of the student is matched to the one of the teacher, the
learning problem becomes effectively (s1 − 1)-dimensional and the error decays as n−1/(s1−1), instead of n−1/deff , with
deff the total input dimension with the number of spherical constraints subtracted (one per patch). Notice that the role of the
student’s structure, i.e. the algorithm, is as crucial as the role of the teacher, i.e. the task. Indeed, using a fully-connected
student with no prior on the task’s locality would result in an error’s decay cursed by dimensionality. However, in contrast to
fully-connected students, shallow convolutional students are only able to learn tasks with the same structure. In particular,
any task entailing non-linear interactions between patches—which are arguably crucial in order to learn image data—belongs
to their null space.

As we illustrated in the main text, to solve this strong constraint on the hypothesis space, one has to consider deep
convolutional architectures. In particular, consider the same shallow teacher of the previous paragraph (left) learnt by a
depth-four convolutional student (right).

x1 x2 x3 x4 xd x1 x2 x3 x4 xd

ϵ(n) ∼ n
− 1

s1

1+deff (3)

deff (3)

Remarkably, this student is able to learn the teacher without being cursed by input dimensionality. Indeed, as the number of
patches diverges, the error decay asymptotes to n−1/s1 . This rate is slightly worse than the one obtained by the student
matched with the teacher, which is proven to be the Bayes-optimal case, but far from being cursed. Intuitively, this fast rate
is obtained because the student eigenfunctions of the first sector, i.e. constant outside a single patch, correspond to large
eigenvalues and bias the learning dynamics towards s1-local functions. Yet, this student is also able to represent functions
which are considerably more complex.

5See, e.g, Lee et al. (2017) for the equivalence between infinitely-wide networks and Gaussian random fields with covariance given by
the RFK.
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Now consider a depth-three teacher (left) learned by a depth-four student (right).

x1 x2 x3 x4 xd x1 x2 x3 x4 xd

ϵ(n) ∼ n
− 1

1+deff (2)

1+deff (3)

deff (3)

As highlighted in orange, the output of the teacher is a linear combination of a composition of non-linear functions acting on
patches and coupling them. In this setting, the error decay is controlled by the effective dimension of the second layer. In
fact, when the number of patches diverges, the error decay asymptotes to n−1/deff (2). In general, this behaviour is a result of
what we called ‘adaptivity to the spatial structure’ of the target.

Finally, consider both teacher and student with the complete hierarchy, i.e. the receptive fields of the neurons in the
penultimate layers coincide with the full input.

x1 x2 x3 x4 xd x1 x2 x3 x4 xd

ϵ(n) ∼ n
− 1

deff (3)

In this case, we show that the error decays as n−1/deff (3), i.e. the rate is cursed by the input dimension. The physical
meaning of this result is that the hierarchical structure we are considering is still too complex and cannot be learnt efficiently.
In other words, these hierarchical convolutional networks are excellent students, since they can adapt to the spatial structure
of the task, but bad teachers, since they generate global functions which are too complex to be learnt efficiently.

G.4. Extensions to different normalisations and overlapping patches

This section investigates the robustness of our results to changes in the input distribution, i.e., for data outside the multisphere
MpSs−1, and relaxes the non-overlapping patches assumption.

Inputs in Rd. While our analysis requires that each patch of the input data is normalised to lie on a unit sphere, this
normalisation is not the standard one used for neural networks. Therefore, in this section we investigate the robustness of
our predictions to the data distribution. In particular, we consider data uniformly distributed in the unit hypercube, i.e.,
x ∈ [0, 1]d, and data with standard Gaussian distribution, i.e., x ∼ N (0, Id). First, we extend the definition of the RFK and
NTK to inputs in Rd.

Definition G.1 (RFK and NTK of hierarchical CNNs for inputs in Rd). Let x,y ∈ Rd. Denote tuples of the kind
ilil+1 . . . im with il→m for m≥ l. For m<l, il→m denotes the empty tuple. For each tuple i2→L+1 and s a divisor of d,
denote with ti2→L+1

the angle between the s-dimensional patches of x and y identified by the same tuple, i.e.

ti2→L+1
=

xi2→L+1
· yi2→L+1

∥xi2→L+1
∥∥yi2→L+1

∥
(S89)

For 1≤ l≤L+ 1, denote with
{
xi2→L+1

, yi2→L+1

}
i2→l

the sequence of patches obtained by letting the indices of the tuple
i2→l vary in their respective range. Consider a hierarchical CNN with filter sizes (s1, . . . , sL), pL ≥ 1 and all the weights
w

(1)
h,i , w

(l)

h,h′,i
, w

(L+1)
h,i initialised as Gaussian random numbers with zero mean and unit variance.
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RFK. The corresponding RFK (or covariance kernel) can be obtained recursively as follows. With
κ1(t)=

(
(π − arccos t) t+

√
1− t2

)
/π,

K(1)
RFK(xi2→L+1

, yi2→L+1
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. (S90)

NTK. The NTK of the same hierarchical CNN can be obtained recursively as follows. With κ0(t)= (π − arccos t) /π,

K(1)
NTK

(
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, yi2→L+1

)
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. (S91)

Figure S0 reports the learning curve of different teacher-student scenarios with the kernels defined in Definition G.1 and
inputs i) on the multisphere MpSs−1, ii) uniformly-distributed in the unit d-hypercube [0, 1]d, and iii) with standard Gaussian
distribution N (0, Id). Remarkably, our predictions are in excellent agreement with the different input normalisations.

Overlapping patches. Figure S1 shows the comparison between convolutional kernels with non-overlapping patches,
i.e., stride corresponding to the filter size, and overlapping patches, i.e., stride 1, for inputs uniform in the d-dimensional
hypercube. Despite our theoretical analysis requiring the patches to be non-overlapping, our predictions are still confirmed
for architectures with overlapping patches.

G.5. CIFAR-2 learning curves

Figure S2 shows the learning curves of the neural tangent kernels of different architectures applied to pairs of classes of the
CIFAR-10 dataset. In particular, the task is built by selecting two CIFAR-10 classes, e.g. plane and car, and assigning label
+1 to the elements belonging to one class and label −1 to the remaining ones. Learning is again achieved by minimising the
empirical mean squared error using a ‘student’ kernel. We find that the kernels with the worst performance are the ones
corresponding to shallow fully-connected and convolutional architectures. Instead, for all the pairs of classes considered
here, deep hierarchical convolutional kernels achieve the best performance.
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Figure S0. Learning curves for deep convolutional NTKs (ν = 1/2) in a teacher-student setting with different input normalisations. In
particular, we consider inputs on the multisphere MpSs−1 (MS.), uniformly-distributed in the unit d-hypercube [0, 1]d (Cb.), and with
standard Gaussian distribution N (0, Id) (Ga.). The numbers inside brackets are the sequence of filter sizes of the kernels. Solid lines
are the results of experiments averaged over 16 realisations with the shaded areas representing the empirical standard deviations. The
asymptotic scaling ϵ ∼ n−β predicted for inputs on the multisphere are reported as dashed lines.
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Figure S1. Learning curves for deep convolutional NTKs (ν = 1/2) with non-overlapping (NO.) and overlapping (Ov.) patches in a
teacher-student setting with inputs normalised in the d-hypercube. The numbers inside brackets are the sequence of filter sizes of the
kernels. Solid lines are the results of experiments averaged over 16 realisations with the shaded areas representing the empirical standard
deviations. The asymptotic scaling ϵ ∼ n−β predicted for kernels with non-overlapping patches are reported as dashed lines.

32



What Can Be Learnt With Wide Convolutional Neural Networks?

103 104

n

0.30

0.40

0.50

0.60

C-NTK fsz=(8)
C-NTK fsz=(8, 2)
C-NTK fsz=(8, 2, 2)
F-NTK (L=2)
F-NTK (L=3)

a

103 104

n

0.60

0.70

0.80

0.90

C-NTK fsz=(8)
C-NTK fsz=(8, 2)
C-NTK fsz=(8, 2, 2)
F-NTK (L=2)
F-NTK (L=3)

b

Figure S2. Learning curves of the neural tangent kernels of fully-connected (F-NTK) and convolutional (C-NTK) networks with various
depths learning to classify two CIFAR-10 classes in a regression setting. Deep hierarchical convolutional kernels achieve the best
performance. Shaded areas represent the empirical standard deviations obtained averaging over different training sets. a. Plane vs car. b.
Cat vs bird.
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