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Abstract
In this paper, we propose a novel tree-based algo-
rithm named Extrapolated Random Tree for Re-
gression (ERTR) that adapts to arbitrary smooth-
ness of the regression function while maintain-
ing the interpretability of the tree. We first put
forward the homothetic random tree for regres-
sion (HRTR) that converges to the target function
as the homothetic ratio approaches zero. Then
ERTR uses a linear regression model to extrap-
olate HRTR estimations with different ratios to
the ratio zero. From the theoretical perspective,
we for the first time establish the optimal conver-
gence rates for ERTR when the target function re-
sides in the general Hölder space Ck,α for k ∈ N,
whereas the lower bound of the convergence rate
of the random tree for regression (RTR) is strictly
slower than ERTR in the space Ck,α for k ≥ 1.
This shows that ERTR outperforms RTR for the
target function with high-order smoothness due to
the extrapolation. In the experiments, we compare
ERTR with state-of-the-art tree algorithms on real
datasets to show the superior performance of our
model. Moreover, promising improvements are
brought by using the extrapolated trees as base
learners in the extension of ERTR to ensemble
methods.

1. Introduction
Ensemble of trees methods (Breiman, 2001; Friedman,
2002; Chen & Guestrin, 2016) are powerful and well-known
methods that are successfully adopted for regression prob-
lems in many applications and machine learning compe-
titions (Yu et al., 2021; Basak et al., 2022; Künzel et al.,
2022; Amini et al., 2022). In fact, the success of ensemble
methods stems from the advantages inherited from the tree
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methods. That is, the wide applicability of tree methods
due to weak distributional assumption on data, the compu-
tational efficiency, as well as the interpretability after we
build the model.

Despite their empirical success, the merit of regression trees
is also addressed from theoretical perspectives. For instance,
Gao & Zhou (2020) considered the convergence rate for
random trees which attains a mini-max optimal rate for
Lipschitz functions. Mourtada et al. (2020) derived sim-
ilar results for Mondrian trees. As another line of work,
bayesian additive regression trees (Chipman et al., 2010) im-
pose prior distribution on the parameters of the partitioning
process and are shown to achieve optimal convergence rate
for Lipschitz functions (Ročková & Saha, 2019; Ročková
& van der Pas, 2020). These works imply that standard
regression trees, which are based on piece-wise constant
functions, can only adapt to functions that are at most Lips-
chitz smooth. Therefore, they may be difficult to adapt to
the high-order smoothness of the target function.

To overcome this issue, researchers seek to improve re-
gression trees. Most works focus on employing smooth
estimations, which are achieved by attributing data by soft
assignment instead of hard assignment. Several closely re-
lated works, including Suárez & Lutsko (1999); Da Rosa
et al. (2008); Irsoy et al. (2012); Frosst & Hinton (2017);
Alkhoury et al. (2020), assign each data point to all leaves
with a certain class membership, and the final prediction
is a smooth combination of the prediction at each node.
Despite their contribution from the methodology perspec-
tive, none of the works above managed to explain how their
smooth/flexible tree structures facilitate adaption to high-
order smoothness theoretically. A recent work (Linero &
Yang, 2018) on Bayesian additive regression tree utilized
the soft tree ensembles and derived mini-max rate for ar-
bitrary smoothness. However, its Bayesian nature yields a
heavy computational burden. Besides, the choice of priors
is strongly restricted to achieve theoretical optimality and
computation efficiency.

Under such background, borrowing the extrapolation tech-
niques from Brezinski & Zaglia (2013); Okuno & Shi-
modaira (2020), we propose a novel tree-based algorithm
called Extrapolated Random Tree for Regression (ERTR)
that is adaptive to high order smoothness of the target func-
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tion while maintaining the interpretability. First, we intro-
duce the random tree partition that divides the input space
recursively by cutting the longest edge of the cell. Then
we apply the homothetic transformation to shrink the cell
by a scale factor that is the same in all directions, called
homothetic ratio, according to a center point. Based on
the transformations, we put forward the homothetic random
tree for regression (HRTR) that represents the average of
the response variable on these homothetic cells. Then, by
using Taylor’s expansion concerning the homothetic ratio,
we show that HRTR converges to the target function as the
ratio approaches zero. Finally, we propose extrapolated
random tree for regression (ERTR) that extrapolates HRTR
estimations with a series of pre-specified ratios to the ratio
zero. More specifically, we train a linear regression model
regarding the ratios as covariates and the corresponding
HRTR estimations as responses to estimate the value at the
ratio zero. Two advantages of ERTR are listed as follows.
First, the extrapolation procedure eradicates the dominant
terms in approximation error, which leads to the adaptivity
to the target function with high-order smoothness. More-
over, ERTR inherits the interpretability from the tree model
and linear regression model, which can tell us how impor-
tant different input data are in prediction. Our contributions
are summarized as follows.

(i) We propose a tree-based algorithm called extrapolated
random tree for regression (ERTR) that is adaptive to
the high-order smoothness of the target function while
preserving the interpretability of the tree.

(ii) From the learning theory perspective, we establish opti-

mal convergence rate O(n− 2(k+α)
2(k+α)+d ) for ERTR when

the target function resides in the general Hölder space
Ck,α, k ∈ N, whereas the lower bound of the conver-
gence rates of the random tree for regression (RTR) is
mere of the order O(n− 2

2+d ) in the space Ck,α, k ≥ 1.
This shows that ERTR outperforms RTR for the tar-
get function with high-order smoothness due to the
extrapolation.

(iii) From the experimental perspective, we first conduct
synthetic experiments to illustrate the power of extrapo-
lation, which coincides with the established theoretical
results. Moreover, we demonstrate that ERTR outper-
forms other state-of-the-art tree methods on almost
real-world data sets. Furthermore, we extend ERTR to
ensemble methods including random forest and gradi-
ent boosting. Promising improvements are brought by
using the extrapolated trees as base learners.

2. Methodology
We dedicate this section to the methodology of ERTR. In
Section 2.1, we first present preliminaries related to regres-

sion problems. Then we introduce the standard random
tree for regression in Section 2.2. Next, in Section 2.3, we
propose the homothetic random tree for regression. Finally,
we apply the extrapolation method to these estimations to
obtain the ERTR algorithm in Section 2.4.

2.1. Preliminaries

Regression is to predict the value of an unobserved output
variable Y based on the observed input variable X , based
on a dataset D := {(X1, Y1), . . . , (Xn, Yn)} consisting
of i.i.d. observations drawn from an unknown probability
measure P on X × Y . Throughout this paper, we assume
that X = [0, 1]d ⊂ Rd and that Y ⊂ [−M,M ] are compact
and non-empty.

Recall that for 1 ≤ p < ∞, the Lp-norm of x =
(x1, . . . , xd) is defined by ∥x∥p := (|x1|p+ · · ·+ |xd|p)1/p,
and the L∞-norm is defined by ∥x∥∞ := maxi=1,...,d |xi|.
Throughout this paper, we use the notation an ≲ bn and
an ≳ bn to denote that there exist positive constant c and c′

such that an ≤ cbn and an ≥ c′bn, for all n ∈ N. In addi-
tion, we denote an ≍ bn if there hold an ≲ bn and bn ≲ an.
Moreover, for any x ∈ R, let ⌊x⌋ denote the largest inte-
ger less than or equal to x. In the sequel, the following
multi-index notations are used frequently. For any vector
x = (xi)

d
i=1 ∈ Rd, we write ⌊x⌋ := (⌊xi⌋)di=1, x−1 :=

(x−1
i )di=1, log(x) := (log xi)

d
i=1, x = maxi=1,...,d xi,

and x = mini=1,...,d xi. In addition, for any matrix R,
let R⊤ denote the transpose of the matrix R. Besides,
for any set A ⊂ Rd, the dimameter of A is defined by
diam(A) := supx,x′∈A ∥x− x′∥2.

It is legitimate to consider the least square loss L : X ×Y ×
Y → [0,∞) defined by L(x, y, f(x)) := (y − f(x))2 for
our target of regression. Then, for a measurable decision
function f : X → Y , the risk is defined by RL,P(f) :=∫
X×Y L(x, y, f(x)) dP(x, y) and the empirical risk is de-

fined by RL,D(f) := 1
n

∑n
i=1 L(Xi, Yi, f(Xi)). The

Bayes risk, which is the smallest possible risk with respect
to P and L, is given by R∗

L,P := inf{RL,P(f)|f : X →
Y measurable}. The function that achieves the Bayes risk is
called Bayes function, namely, f∗

L,P(x) := E
(
Y |X = x

)
.

2.2. Random Tree for Regression

Breiman’s original algorithm (Li et al., 1984) is difficult
to analyze as a result of the complexity of the partitioning
procedure. Nevertheless, grown independently of the sam-
ples, random trees are amenable to theoretical analysis. In
this paper, we investigate the random tree partitions with
the mid-point splitting rule on the max edges suggested by
Gao & Zhou (2020). To be specific, let A1

0 := [0, 1]d be
the initial rectangular cell and π0 := {A1

0} be the initialized
cell partition. In addition, let p ∈ N represent the depth of
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the tree, which is fixed beforehand by the user, and possibly
depending on n.

In the first step, we choose one of the coordinates X =
(X1, . . . , Xd) with the ℓ-th feature Xℓ having a probability
1/d of being selected and then split A1

0 into two rectangular
cells along the midpoint of the chosen side. In this way,
we get a partition with two rectangular cells denoted as
π1 := {A1

1, A
2
1}. Suppose after i− 1 steps of the recursion,

1 ≤ i ≤ p, we have obtained a partition πi−1 of X with
2i−1 rectangular cells. In the i-th step, further partitioning
of the region is defined as follows:

(i) For each rectangular cell Aj
i−1, 1 ≤ j ≤ 2i−1.

Let eℓi−1,j denote the length of edge of Aj
i−1 along

the ℓ-th coordinate for 1 ≤ l ≤ d and ei−1,j =
max1≤ℓ≤d e

ℓ
i−1,j . Then a coordinate of X =

(X1, . . . , Xd), namely Zi,j is uniformly selected
among the coordinates with maximal side length,

P(Zi,j = ℓ) =
1(eℓi−1,j = ei−1,j)∑d
ℓ=1 1(e

ℓ
i−1,j = ei−1,j)

. (1)

(ii) For each rectangular cell Aj
i−1, 1 ≤ j ≤ 2i−1, once

the coordinate is selected, the split is at the midpoint of
the chosen side. Then, each cell Aj

i−1 is divided into
two new ones, namely A2j−1

i and A2j
i . We denote the

set of all these cells {Aj
i , 1 ≤ j ≤ 2i} by πi.

p=0 p=3p=2p=1

Figure 1. Illustration of random tree partition.

After p recursive steps, we obtain the partition of [0, 1]d, i.e.

πp := {Aj
p}j∈Ip

:= {Aj
p, 1 ≤ j ≤ 2p}. (2)

We call it a random tree partition with the maximal edge
(max-edge) splitting rule of depth p. The complete process
is presented in Algorithm 1 with an illustration in Figure 1.

For any x ∈ [0, 1]d, there exists j ∈ Ip such that x ∈
Aj

p. Then we denote the cell containing x as A(x) := Aj
p.

With these preparations, we introduce the random tree for
regression (RTR) based on the random tree partition πp.

Algorithm 1 Random Tree Partition
Input: Depth of the random tree p;

Initial partition π0 = {A1
0 := [0, 1]d}.

for i = 1 to p do
for j = 1 to 2i−1 do

For rectangular cell Aj
i−1, randomly choose one co-

ordinate Zi,j among the longest edges as in (1);
Divide the cell Aj

i−1 into two subregions, that is,
Aj

i−1 = A2j−1
i ∪ A2j

i , along the midpoint of the
dimension Zi,j ;

end for
Get πi = {Aj

i , 1 ≤ j ≤ 2i}.
end for
Output: Partition πp.

Definition 2.1. Let Q be a probability measure and πp :=
{Aj

p}j∈Ip
be a random tree partition with depth p as in

(2). Then, the random tree for regression (RTR), namely,
fQ : [0, 1]d → R is defined by

fQ(x) :=

∫
A(x)×Y Y dQ∫
A(x)×Y dQ

. (3)

Taking Q := P, we get the population RTR as

fP(x) :=

∫
A(x)

f∗
L,P(x

′) dPX(x′)∫
A(x)

dPX(x′)
. (4)

From the above definition, fP(x) represents the average of
the Bayes function f∗

L,P(x
′) on A(x). Since P is inaccessi-

ble, we need to estimate it from the data. When Q is taken
as the empirical measure D := 1

n

∑n
i=1 δ(xi,yi) given the

data set D = {(X1, Y1), . . . , (Xn, Yn)}, the empirical RTR
is expressed as

fD(x) :=

∑n
i=1 1{Xi ∈ A(x)}Yi∑n
i=1 1{Xi ∈ A(x)}

. (5)

The denominator on the right-hand side of (5) counts the
number of observations falling in A(x) and thus fD(x) is
the average of the responses in the cell A(x).

2.3. Homothetic Random Tree for Regression

In this section, we put forward the homothetic random tree
for regression and present Taylor’s expansion concerning
the homothetic ratio.

In mathematics, a homothetic transformation of an affine
space is determined by a point x called its center and a
nonzero number r called its ratio, which sends point z to
a point z′ by the rule z′ = x + r(z − x). Recall that for
x ∈ [0, 1]d, we use A(x) to represent the cell of the partition
πp containing x. Then for any 0 ≤ r ≤ 1, we define the
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homothetic transformation Tx,r : A(x) → Rd with the
center x and the ratio 0 ≤ r ≤ 1 as

Tx,r(z) := x+ r(z − x), z ∈ A(x). (6)

Tx,3/4(z)
Tx,1/2(z)

Tx,1/4(z)
x

z

Figure 2. Illustration of homothetic transformations. The back dots
between x and z denote the images of homothetic transformation
Tx,1/4(z), Tx,1/2(z), and Tx,3/4(z).

Then we define Ar(x) as the image of Tx,r, that is,

Ar(x) := {Tx,r(z) : z ∈ A(x)}. (7)

Ar(x) defines a collection of rectangles that is parametrized
by r. For r = 1, A1(x) remains A(x). As r approaches
0, Ar(x) gradually shrinks and degenerates to x in the end.
With these preparations, we can define a broader class of
estimations as below.

Definition 2.2. Let Q be a probability measure and πp :=
{Aj

p}j∈Ip be a random tree partition with depth p as in (2).
Moreover, let Ar(x) be defined by (7), then the homothetic
random tree for regression (HRTR) with the ratio r, namely,
fQ,r : [0, 1]d → [0,∞) is defined by

fQ,r(x) :=

∫
Ar(x)×Y Y dQ∫
Ar(x)×Y dQ

. (8)

Taking Q := P, we get the population HRTR as

fP,r(x) :=

∫
Ar(x)

f∗
L,P(x

′) dPX(x′)∫
Ar(x)

dPX(x′)
. (9)

Clearly, fP,r(x) is the average of f∗
L,P(x

′) on Ar(x). Simi-
lar to (5), we can estimate HRTR from the data by

fD,r(x) :=

∑n
i=1 1{Xi ∈ Ar(x)}Yi∑n
i=1 1{Xi ∈ Ar(x)}

. (10)

To make HRTR converge to f(x) as r approaches 0, we
need the following definition of Hölder continuity space.

Definition 2.3. Let k ∈ N, α ∈ (0, 1]. We say that a
function f : X → R is (k, α)-Hölder continuous, if there
exists a finite constant cL > 0 such that ∥∇ℓf∥ ≤ cL for all
ℓ ∈ {1, . . . , k} and ∥∇kf(x)−∇kf(x′)∥ ≤ cL∥x− x′∥α
for all x, x′ ∈ X . The set of such functions is denoted by
Ck,α(X ).

We remark that k decides the order of smoothness for f ∈
Ck,α, and larger k indicates that f enjoys a higher order
of smoothness. For the special case k = 0, the function
space C0,α coincides with the commonly used α-Hölder
continuous function space Cα.

With these preparations, the next proposition shows that
when the Bayes function f∗

L,P ∈ Ck,α. HRTR can be ap-
proximated by the Taylor series concerning the homothetic
ratio whose degree depends on the smoothness of the Bayes
function.

Proposition 2.4. Suppose that PX has upper and lower
bounded function over [0, 1]d and the Bayes function f∗

L,P ∈
Ck,α Moreover, let fP,r be defined by (9). Then we have

fP,r(x)− f∗
L,P(x) =

k∑
j=1

bjr
j + δr,A, (11)

where the remainder δr,A ≲ diam(A(x))k+α and
b1, · · · bk < B are constants that depends on x.

(11) tells us that HRTR converges to the target function as
the ratio converges to zero. The theorem above directly
indicates that

fD,r(x)− f∗
L,P(x) =

k∑
j=1

bjr
j + εr, (12)

where εr = δr,A + fD,r(x) − fP,r(x). This implies that
the fD,r(x) behaves similar to fP,r(x) with additional error
fD,r(x)− fP,r(x) due to the empirical measure D.

2.4. Extrapolated Random Tree for Regression

We dedicate this section to the extrapolation procedure. To
be specific, we first fix a ratio sequence {ri}Vi=1 with ri =
i/V and a pre-specified order parameter L ≤ V − 1. Then,
we compute the HRTR estimation for r = ri, 1 ≤ i ≤
V . Motivated by (12), we consider the following linear
regression model to extrapolate these estimations to r = 0,

fD,ri(x) = b0 +

L∑
j=1

bjr
j
i + ϵi, 1 ≤ i ≤ V, (13)

where ϵi := δri,A + fD,ri(x) − fP,ri(x), and b =
(b0, . . . , bL)

⊤ is the regression coefficient vector to be esti-
mated. For 1 ≤ i ≤ k, bi is specified in Proposition 2.4 and
bi = 0 for k+1 ≤ i ≤ L. Note that the regression function
is a polynomial of ri. Therefore, it can be solved efficiently
through the standard least square method.

b̂ := argmin
b∈RL+1

V∑
i=1

(
fD,ri(x)− b0 −

L∑
j=1

bjr
j
i

)2

. (14)
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(a) ERTR estimation

0.0 0.2 0.4 0.6 0.8 1.0
r

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

f D
,r

(x
)

(b) Extrapolation at (5π/32, 1)

0.0 0.2 0.4 0.6 0.8 1.0
r

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

f D
,r

(x
)

Samples for Regression
Regression Curve

(c) Extrapolation at (π/8, 0)

Figure 3. Illustration of extrapolation. In (a), the blue line stands for the target function and the orange line stands for ERTR estimation.
In (b) and (c), the blue points are (ri, fD,ri(x)) with V = 10 for extrapolation. The green line represents the linear regression of the
extrapolation. The Bayes function value at two points is represented by the horizontal dashed line.

The estimation can be explicitly expressed as

b̂ = (R⊤R)−1R⊤(fD,r1(x), · · · , fD,rV (x))
⊤ (15)

where R = (Rij) is a V × (L + 1) matrix with Rij =

rj−1
i . Then we propose the extrapolated random tree for

regression (ERTR) as

fD,E(x) = b̂0. (16)

The complete algorithm is presented in Algorithm 2.

Algorithm 2 Extrapolated Random Tree for Regression
Input: Depth of the random tree p, order L, and number
of estimations V .
Generate random tree partition πp by Algorithm 1;
for i = 1 to V do

Compute Ari(x) with ri = i/V by (7);
Compute fD,ri(x) by (10);

end for
Compute the coefficient estimation b̂ by (14);
Output: Extrapolated random tree for regression fD,E(x)
by (16).

ERTR first randomly splits the input space by the max-edge
rule introduced in Algorithm 1. Then, for the test instance x,
ERTR computes several HRTRs with a sequence of homoth-
etic ratios ri, 1 ≤ i ≤ V . Finally, we obtain the estimation
by using the linear regression model to extrapolate these
estimations to r = 0.

Since ERTR eradicates the dominant terms in Taylor’s ex-
pansion, i.e. rj , 1 ≤ j ≤ k, ERTR adapts to the high-order
smoothness of the target function. Moreover, fD,E(x) is ac-
tually a weighted average of fD,ri(x), 1 ≤ i ≤ V from (15)
and (16). This implies that ERTR is a well-interpretable
model, which can not only tell us which node of the tree is
taken for the prediction but also quantify the contributions
of these data points in the prediction.

An explanation of ERTR is presented in Figure 3 for the
following synthetic model employed in Cai et al. (2020),

Y = sin(16X) + ε, (17)

where X ∼ Unif[0, 1] and ε ∼ N (0, 1). We generate
2000 samples from this model for training and set p = 3,
L = 1, and V = 10 for our algorithm. Figure 3(a) displays
the target function and the estimation. To visualize the
regression model in (14), we plot the curve of (r, fD,r(x)) in
blue for two fixed points x = 5π/32 and π/8 which reside
in the same cell (0.375, 0.5), respectively. The samples
selected for the regression model (13) are colored in orange.
It is clear to see that RTR predicts both points by an identical
value of around 0.5. On the contrary, from Figure 3(b) and
3(c), we see that the curve of HRTR can be approximated
by a polynomial function. As a result, ERTR can make a
more precise prediction thanks to the extrapolation method.

3. Theoretical Results
In this section, we present the theoretical results and related
comments. To demonstrate the benefits of extrapolation,
we establish optimal convergence rates of ERTR and the
lower bound of the convergence rates for RTR in section 3.1
and 3.2, respectively. Finally, in Section 3.3, we conduct
complexity analysis for ERTR.

3.1. Convergence Rates for ERTR in Ck,α

Theorem 3.1. Suppose that PX has upper and lower
bounded density over [0, 1]d and the Bayes function f∗

L,P ∈
Ck,α. Let fD,E(x) be the random tree extrapolation for
regression defined by (16). Moreover, let pn, V , and L
be chosen as pn ≍ log(n/ log n) and V − 1 ≥ L ≥ k.
Then for all sufficiently large n, with probability Pn at least
1− 2/n2, we have

RL,D(fD,E)−R∗
L,P ≲ (log n/n)

2(k+α)
2(k+α)+d . (18)

Theorem 3.1 shows that when the Bayes function lies in the
function space Ck,α, our ERTR achieves optimal conver-
gence rates with properly chosen depth p and a sufficiently
large V . Although Linero & Yang (2018) established sim-
ilar convergence rates, their conclusion is derived from a
bayesian perspective. To the best of our knowledge, we for
the first time establish the optimal convergence rates for the
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smooth regression tree from the learning theory perspective.

3.2. Convergence Rates for RTR in Ck,α

The following theorem presents the lower bound of the
excess risk of the random tree for regression with some mild
conditions on the gradients.

Theorem 3.2. Let the regression model be defined by
Y := f(X) + ε, where PX is the uniform distribution over
[0, 1]d , E(ε|X = x) = 0, and Var(ε|X = x) = σ2 < ∞
for x ∈ [0, 1]d. Moreover, assume that f ∈ Ck,α, k ≥
1 and there exists a constant cf ∈ (0,∞) such that√

(12d− 7)/(12d− 9) · ∥∇f(x)∥2 ≥ ∥∇f(x)∥1 ≥ cf
for all x ∈ [0, 1]d. Then for all n > N1, there holds

RL,P(fD)−R∗
L,P ≳ n−2/(2+d) (19)

in expectation with respect to Pn, where the constant N1 is
specified in the proof.

The theorem above shows that in the space Ck,α with k ≥ 1
and 0 < α ≤ 1, the lower bound of the convergence rates
RTR is merely of the order O(n−2/(2+d)). This together
with 3.1 implies that for any k ≥ 1 and α ∈ (0, 1], the upper
bound of the convergence rate (18) for ERTR will be strictly
smaller than the lower bound (19) for RTR, which explains
the benefits of the extrapolation in our method for the target
function with high-order smoothness. In fact, as pointed out
in Theorem A.3 in Appendix A.1.2, RTR only achieves the
optimal convergence rates in the space C0,α.

Since the edges of each cell are parallel to the axes, it is
more convenient to use the conditions on the derivatives to
derive the lower bound of RTR. The condition on the gra-
dients in Theorem 3.2 can be satisfied in the general space
Rd with d ≥ 1. Let us consider the following example,
where f(x) =

∑d
i=1 aixi + 1 with ai = (12d − 8)i−1

for x = (x1, . . . , xd) ∈ Rd. It is clear to verify that√
(12d− 7)/(12d− 9)∥∇f(x)∥2 ≥ ∥∇f(x)∥1. In fact,

this condition is satisfied for a large class of functions whose
derivatives along different directions vary widely.

3.3. Complexity Analysis

We consider the computation complexity of ERTR includ-
ing both the training and testing stages. The training stage
consists of only the Algorithm 1, whose average cost is
O(n log n). Then for each test sample, computation of

fD,ri , 1 ≤ i ≤ V takes O
(
dn

2(k+α)
2(k+α)+d

)
time since the

number of samples in each cell is around O(n/2p) =

O
(
n

2(k+α)
2(k+α)+d

)
, where we use 2p ≍

(
(n/ log n)

d
2(k+α)+d

)
by Theorem 3.1. Therefore, the test complexity of ERTR

is O
(
dn

2(k+α)
2(k+α)+d

)
. Thus, ERTR is an efficient method with

sub-linear complexity.

In comparison, we discuss the complexities of several other
tree models. For the standard decision tree, the training com-
plexity is O(n log n) and the testing complexity is O(log n).
For PR tree (Alkhoury et al., 2020), the training stage in-
volves solving the weight matrix for all training samples
which yields computation cost of O(nK2d) where K is
the number of cells. To ensure consistency, K needs to
grow with some order of n, which yields the super-linear
cost of the PR tree. Soft Bayesian additive trees (Linero &
Yang, 2018) require MCMC sampling which brings a heavy
computation burden. For soft trees (Irsoy et al., 2012), its
optimization relies on first-order methods, and thus their
complexities are not comparable to ours. In short, though
ERTR requires additional computation compared to the de-
cision tree, it is still an efficient method compared to other
regression trees. Therefore, an extension of ERTR to ensem-
ble methods appears to be computationally feasible.

4. Experiments
In experiments, we first conduct experiments on synthetic
datasets in Section 4.1 to illustrate theoretical findings in
Section 3. Then, in Section 4.2, we compare ERTR, as well
as its ensemble extensions, with other tree-based regression
models to show its superior performance.

4.1. Synthetic Experiments

In synthetic experiments, we first investigate the power of
extrapolation in Section 4.1.1 and demonstrate the inter-
pretability of ERTR in Section 4.1.2. Then, we conduct
parameter analysis in Section 4.1.3.

4.1.1. POWER OF EXTRAPOLATION

We first conduct experiments to show that the extrapolation
method helps to improve the accuracy and the smoothness.
To this end, we investigate the choice of the extrapolation
order L. We fit RTR and ERTR with L = 0, 1, 3 on 2000
training samples from the synthetic model in (17). The
depth of partition p for both methods is set to 3. The re-
gression curves as well as the ground truth are plotted in
Figure 4. As in Figure 4(a), RTR using piece-wise constant
functions fails to capture the variation of smooth functions
and has poor performance. By contrast, ERTR is adaptive
to the smoothness of the target function. From Figure 4(b),
4(c), and 4(d), we see that the choice of order L affects the
smoothness of the regressor. ERTR is under-fitting with
a small L due to poor approximation ability. In this case,
ERTR can not benefit from high-order smoothness as in Fig-
ure 4(b). On the other hand, when the order L is chosen too
large, there are only a few samples in the cell. As a result,
ERTR tends to overfit the model as shown in Figure 4(d).
A proper extrapolation order can lead to a stable regressor
with adequate approximation ability, as is shown in 4(c) for
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Figure 4. The estimated regression curve of RTR and ERTR with
L = 0, 1, 2. The blue curves and the orange curves stand for
ground truth and estimated target function respectively.

L = 1. These observations are compatible with Theorem
A.3 that extrapolation brings a faster convergence rate with
a suitably chosen order L for a smoother target function.

4.1.2. INTERPRETABILITY

We illustrate the interpretability of ERTR in prediction as
mentioned in Section 2.4. (15) and (16) tell us that ERTR
is the weighted average of the responses in the cell of the
random tree partition. Therefore, to demonstrate the inter-
pretability, we visualize the weights versus r for L = 0, 1, 2
and RTR under the same simulation setting in Section 4.
In contrast to RTR, which assigns equal weight to each
sample, ERTR assigns larger weights to samples close to x
and smaller weights to samples far from x. Moreover, as
L increases, ERTR becomes overfitting as it puts too much
weight on the nearby points. This implies that ERTR is
interpretable in the sense that, we can not only recognize
the points in the cell that influence the estimation but also
quantify the influence of each data point.

0.0 0.2 0.4 0.6 0.8 1.0
r

0.00

0.01

0.02

0.03

0.04

we
ig

ht
s

RTR
L = 0
L = 1
L = 2

Figure 5. The weights of samples versus r for RTR and ERTR with
L = 0, 1, 2 at x = 5π/32.

We mention that the parameters V and L should be care-
fully chosen in terms of balancing the convergence rate and

interpretability. (i) According to the parameter choices in
Theorem 3.1, a smaller V yields a smaller L. In particular,
if V ≤ k, we can show that the convergence rate of ERTR
becomes (n/ log n)−2L/(2L+d). In this case, ERTR can not
fully use the target function’s smoothness to achieve the
optimal convergence rate. (ii) Both the choices of V and L
affect the interpretability of the model. More specifically,
L controls the pattern of the weights and V affects the val-
ues of these weights. As shown in Figure 5, ERTR with
larger L assigns larger weights to samples close to x and
smaller weights to samples far from x, while ERTR with
smaller L assigns close weights to the samples in the cell
A(x). This implies that small V and L help to enhance the
interpretability of the model. Therefore, we need to choose
appropriate V and L to balance the convergence rate and
interpretability.

4.1.3. PARAMETER ANALYSIS

In this section, we conduct experiments to investigate the se-
lections of p and L in terms of MSE. We pick p ∈ {1, 2, 3}
and plot MSE versus L for L ∈ {0, 1, 2, 3, 4} on (17). For
each pair of (p, L), we set λ = 10−4 as the regularized
parameter for ridge regression and choose V ∈ {15, 20, 25}
by cross-validation. We take 10 times averaged MSE with
1000 training samples in each repetition. The result is dis-
played in Figure 6(a). Apparently, for each p, as L increases,
MSE first decreases until L reaches a certain value. Then
MSE begins to increase as L grows. This further confirms
the trade-off observed in Section 4.1.1. Moreover, Figure
6(a) shows that the order L at which the test error achieves
the minimum decreases as p increases. Intuitively, both the
increasing of p and L enhance the approximation ability of
the model. Therefore, a small L is demanded to achieve the
best performance for large p.

Next, we investigate the relation between depth p and MSE
under different L under analogous settings. We also plot
the MSE-p curve for the RTR estimation. The result is
displayed in Figure 6(b). The relation between MSE and p
is U-shaped under each L. This illustrates that a properly
chosen p is needed as explained in Theorem 3.1.
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Figure 6. 6(a) MSE versus L with different p. 6(b) MSE versus p
under different L.
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Table 1. Average MSE over real data sets for tree methods. The best results are bolded and the second best results are underlined. The
best results with significance are marked with ∗. Running of ST is corrupted on three data sets that are marked with -.

Random Partition Variance Reduction Partition
ERTR RTR STRT PRT ERTR DT ST STRT PRT

ABA 5.60* 8.01 7.33 6.11 5.20 5.75 4.59* 5.53 5.89
AIR 2.79e+1* 3.92e+1 3.31e+1 3.56e+1 1.13e+1* 1.43e+1 1.22e+1 2.02e+1 3.49e+1
ALG 9.27e-2* 1.87e-1 1.51e-1 9.66e-2 3.03e-2* 3.44e-2 2.77e-1 3.21e-2 3.30e-2
BIAS 3.87 4.38 4.55 2.45* 1.60* 1.75 - 2.01 2.09
CBM 1.52e-1* 1.53 1.70e-1 3.61e-1 2.31e-10 4.24e-27* 3.70 9.08e-4 1.89e-1
CCP 3.95e+1 6.33e+1 3.60e+1 4.93e+1 3.92e+1 1.82e+1 2.93e+2 2.07e+1 2.56e+1
CPU 5.01e+1* 3.18e+2 3.23e+2 2.77e+2 1.36e+1* 1.54e+1 3.38e+2 1.63e+1 3.00e+1
IST 1.20e-4 1.58e-4 6.55e-5 2.71e-5* 3.69e-5 4.43e-5 - 5.57e-5 3.98e-5
FOR 4.56e+3 4.15e+3 4.70e+3 4.39e+3 4.25e+3 5.14e+3 4.08e+3 4.35e+3 4.11e+3
MG 1.90e-2 2.09e-2 2.75e-2 1.58e-2* 1.63e-2* 1.83e-2 2.15e-2 1.85e-2 2.58e-2
WR 5.72e-1 6.02e-1 5.85e-1 4.46e-1* 4.63e-1 4.64e-1 5.12e-1 4.29e-1* 4.63e-1
SPA 1.89e-2* 2.83e-2 2.25e-2 2.18e-2 1.72e-2 1.84e-2 1.72e-2 1.88e-2 2.46e-2
WW 5.95e-1* 7.59e-1 7.36e-1 7.62e-1 5.46e-1* 5.57e-1 - 5.50e-1 5.82e-1

rank sum 21 45 37 27 22 37 50 38 48

4.2. Real Data Performance

In this section, we conduct experiments on real-world data
sets to show the promising performance of ERTR compared
with other regression trees in Section 4.2.1. In Section 4.2.2,
we further investigate the extension of extrapolated trees to
ensemble methods.

Splitting Rule Note that most popular tree methods design
their partition rules utilizing the information gained from the
data. For a fair comparison, we also introduce the variance
reduction scheme (Breiman, 2001) to the tree construction.
To be more specific, we replace the random partition rule in
Algorithm 2 with the variance reduction splitting rule. Each
current region will be decomposed into two sub-regions with
respect to a coordinate and a splitting point that minimizes
the weighted sum of variances in the resulting sub-regions.

Comparison Methods Under the variance reduction split-
ting rule, the comparison methods include DT, ST (Ir-
soy et al., 2012), STRT (Da Rosa et al., 2008), and PRT
(Alkhoury et al., 2020). Under the random splitting rule
in Section 2.2, the comparison methods include RTR, PRT,
and STRT. For forest methods, we compare the extension
of ERTR, called ERF, with RF, PRRF, and SBART (Linero
& Yang, 2018). For boosting methods, we compare the
extension of ERTR, called GBERTR, with GBRT, GBPRT,
and GBSTRT. The variance reduction splitting rule is used
when ERTR is extened to the ensemble methods. All imple-
mentation details are presented in Appendix C.1.

Experiment Setup We conduct experiments on 12 real data
sets. To ensure significance, we adopt the Wilcoxon signed-
rank test (Wilcoxon, 1992) to check if the best result is
significant. For ERTR, regression in (14) is ridge regular-
ized with shrinkage parameter λ. We summarize the data
sets and pre-processing details in Appendix C.1.

4.2.1. COMPARISON OF TREE METHODS

Results on the comparison of tree methods are presented
in Table 1. For models with the random splitting rule,
ERTR shows superior performance over the other models by
achieving 7 best results and rank sum 21. Especially, ERTR
outperforms RTR on most of the data sets. For models with
the variance reduction splitting rule, ERTR outperforms
DT on 11 out of 13 data sets. Moreover, ERTR performs
promisingly compared to the other popular tree methods
by achieving 8 best results and rank sum 22. In both set-
tings, extrapolated methods greatly improve the regression
performance compared to their ordinary counterparts.

Table 2. Average MSE over real data sets for forest methods. The
best results are bolded and the second best results are underlined.
The best results with significance are marked with ∗. Running of
SBART is corrupted on one data set which is marked with -.

ERF RF PRRF SBART
ABA 4.64* 4.71 4.87 4.91
AIR 6.35 6.11 2.00e+1 3.90*
ALG 1.76e-2* 2.13e-2 4.83e-2 2.59e-2
BIAS 1.12 1.19 1.90 8.67e-1*
CBM 5.88e-9 1.21e-27* 3.11e-4 -
CCP 1.27e+1* 1.41e+1 1.96e+1 1.55e+1
CPU 9.79 9.87 2.02e+1 7.67*
IST 3.45e-5 3.40e-5 3.03e-5 2.93e-5
FOR 3.24e+3 3.52e+3 5.14e+3 3.81e+3
MG 1.39e-2 1.42e-2 1.88e-2 1.43e-2
WR 3.89e-1 3.69e-1 3.97e-1 3.90e-1
SPA 1.36e-2 1.37e-2 1.94e-2 1.07e-2*
WW 4.55e-1* 4.62e-1 5.40e-1 4.93e-1

rank sum 23 28 50 30

4.2.2. COMPARISON OF ENSEMBLE METHODS

Extending our estimator to a forest method that adopts
ERTR as base learners is straightforward. We compare
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the arising forest method, which we refer to as ERF, with
other forest approaches using different base learners. The
results for forest methods are presented in Table 2. ERF not
only achieves much smaller MSE than single tree methods
in Table 1 but also outperforms other competitors. ERF has
the best performance on 6 data sets and the lowest rank sum
22. The promising performance of ERF comes from the
complementary property of random forest and extrapolation.
Random forests aim at reducing the variance with a small
cost of increasing the bias, whereas extrapolation intends to
reduce the bias. Therefore, base learners with low bias are
averaged to have low variance, which leads to a method that
significantly outperforms RF. Similarly, ERTR is extended
to gradient boosting with results displayed in Table 4, Ap-
pendix C.3, where GBERTR attains the best ranking sum
25. These results show that the application of extrapolated
trees enhances the performance of ensemble methods.

5. Conclusion
In this paper, we propose a novel tree-based algorithm
called Extrapolated Random Tree for Regression (ERTR)
that adapts to the high-order smoothness of the target func-
tion while maintaining the interpretability of the tree. On
the theoretical side, we for the first time establish optimal
convergence rates for ERTR when the target function re-
sides in the general Hölder space and the lower bound of
the convergence rates of the RTR, which shows that ERTR
outperforms RTR for the target function with high-order
smoothness by taking advantage of extrapolation. In experi-
ments, we empirically demonstrate the power of the extrapo-
lation method. Moreover, we show the experimental prepon-
derance of ERTR compared to state-of-the-art regression
trees. Furthermore, we extend ERTR to ensemble methods
including random forest and gradient boosting. Promising
improvements are brought by using the extrapolated trees as
base learners. The application of the extrapolation method
to enhance the performance of learning algorithms can be
served as future works.

Acknowledgements
The authors would like to thank the reviewers for their con-
structive comments, which led to a significant improvement
in this work. This work was supported in part by the Na-
tional Key R&D Program of China (2022YFB2702401).
This research was supported by Public Computing Cloud,
Renmin University of China.

References
Abid, F. and Izeboudjen, N. Predicting forest fire in algeria

using data mining techniques: Case study of the decision
tree algorithm. In International Conference on Advanced

Intelligent Systems for Sustainable Development, pp. 363–
370. Springer, 2020.

Akbilgic, O., Bozdogan, H., and Balaban, M. E. A novel hy-
brid rbf neural networks model as a forecaster. Statistics
and Computing, 24(3):365–375, 2014.

Alkhoury, S., Devijver, E., Clausel, M., Tami, M., Gaussier,
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The appendix consists of supplementary for both theoretical analysis and experiments. In Appendix A, we present the error
analysis for both RTR and ERTR. The proofs for theoretical results in the main content and Appendix A are presented in
Appendix B. In Appendix C, we show the supplementary for numerical experiments, including implementation details, data
set details and additional real data results.

A. Error Analysis
In this section, we present the error analysis of RTR and ERTR in Section A.1 and A.2, respectively.

A.1. Error Analysis of RTR

In this section, we present the error decompositions for the lower bound and upper bound of the convergence for RTR in
Section A.1.1 and A.1.2, respectively.

A.1.1. LOWER BOUND FOR THE CONVERGENCE RATES OF RTR

For the base regressor RTR, we are concerned with the lower bound for fD. We make the error decomposition

Eνn

(
RL,P(fD)−R∗

L,P

)
= EνnEPX

(
fD(X)− f∗

L,P(x)
)2

= Eνn
EPX

(
fD(X)− fP(X)

)2
+ Eνn

EPX

(
fP(X)− f∗

L,P(x)
)2
. (20)

It is important to note that the two terms on the right-hand side of (20) are data- and partition-independent due to the
expectation with respect to D and Z. Loosely speaking, the first error term corresponds to the expected estimation error of
the estimator fD, while the second one demonstrates the expected approximation error.

The following two propositions present the lower bound of approximation error and sample error of RTR respectively.

Proposition A.1. Let the random tree for regression fP be defined as in (4) and the regression model be defined by

Y := f(X) + ε, (21)

where PX is the uniform distribution over [0, 1]d, E(ε|X) = 0 and Var(ε|X) = σ2 < ∞. Moreover, assume that f ∈ Ck,α,
k ≥ 1 and there exists a constant cf ∈ (0,∞) such that ∥∇f(x)∥2 ≥ c∥∇f(x)∥1 ≥ cf for all x ∈ [0, 1]d with the constant
c :=

√
(12d− 9)/(12d− 7). Then for all n ≥ 1, there holds

RL,P(fP)−R∗
L,P ≥ d · c2f (384d− 288)−1 · 2−2p/d.

in expectation with respect to PZ .

Proposition A.2. Let the random tree for regression fP and its empirical estimate fD be defined by (4) and (5), respectively.
Moreover, let the regression model be defined as in (21) with f ∈ Ck,α, k ≥ 1. Moreover, assume that PX is the uniform
distribution over [0, 1]d , E(ε|X = x) = 0, and Var(ε|X = x) = σ2 < ∞ for x ∈ [0, 1]d. Then there holds

RL,P(fD)−RL,P(fP) ≥ σ2 · 2p(1− 2e−1) · n−1

in expectation with respect to Pn.

A.1.2. UPPER BOUND FOR THE CONVERGENCE RATES OF RTR

In addition to the lower bound of RTR, we also provide the following upper bound.

Theorem A.3. Suppose that PX has upper and lower bounded density over [0, 1]d and the Bayes function f∗
L,P(x) ∈ Ck,α.

Let fD(x) be the random tree for regression defined by (5) and pn ≍ log(n/ log n). Then for all sufficiently large n, with
probability Pn at least 1− 2/n2, we have

RL,D(fD)−R∗
L,P ≲ (n/ log n)−

2((α+k)∧1)
2((α+k)∧1)+d . (22)

The theorem above implies that when the Bayes function lies in the function space Ck,α, under mild assumptions, RTR has
the convergence rates of the order O(n− 2α

2α+d ). This rate is optimal only when the target function lies in the space C0,α. In
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other words, RTR can not take full advantage of the smoothness of the Bayes function and thus have slower convergence
rates.

The proof relies on the following error decomposition.

∥fD − f∗
L,P∥∞ ≤ ∥fD − fP∥∞ + ∥f∗

L,P − fP∥∞.

The two terms are bounded by the following two propositions.

Proposition A.4. Let πp be a random tree partition of [0, 1]d as in (2). Let fP(x) be defined by (4) and f∗
L,P(x) be the

Bayes function. Then we have

∥fP − f∗
L,P∥∞ ≤ cL(2

√
d)(k+α)∧12−

(
p(k+α)∧1

)
/d.

Proposition A.5. Let πp be a random tree partition of [0, 1]d as in (2). Let fP(x) and fD(x) be defined by (4) and (5),
respectively. Assume that PX has uppper and lower bounded density over [0, 1]d and Y ⊂ [−M,M ]. Then for all n ≥ 1,
with probability Pn ⊗ PZ at least 1− 2/n2, there holds

∥fD − fP∥∞ ≲ 2M

√
2p+1(4d+ 5) log n

n
+

2p+2 ·M(4d+ 5) log n

3n
+

2p+3 ·M
n

.

A.2. Error Analysis of ERTR

Let e1 denote the vector (1, 0, · · · , 0)⊤. The definition of ERTR in (16) can be reformalized as

fD,E(x) = e⊤1 (R
⊤R)−1R⊤(fD,r1(x), · · · , fD,rV (x))

⊤.

We also define

fP,E(x) = e⊤1 (R
⊤R)−1R⊤(fP,r1(x), · · · , fP,rV (x))

⊤ (23)

which stands for the population version of the extrapolated estimator. Then we have the following error decomposition

∥fD,E − f∗
L,P∥∞ ≤ ∥fD,E − fP,E∥∞ + ∥f∗

L,P − fP,E∥∞.

Proposition A.6. Let fP,E(x) be defined by (23) and f∗
L,P(x) be the Bayes function. If we choose V − 1 ≥ L ≥ k, there

holds

∥fP,E − f∗
L,P∥∞ ≤ cV,L(2

√
d)k+α2−p(k+α)/d

for constant cV,L depending only on V and L.

Proposition A.7. Let fP,E(x) and fD,E(x) be defined by (23) and (16), respectively. Suppose that PX has upper and lower
bounded density over [0, 1]d and Y ⊂ [−M,M ]. Then for all n ≥ 1, with probability Pn ⊗ PZ at least 1 − 2/n2, there
holds

∥fD,E − fP,E∥∞ ≲ 2cV,LV
dM

√
2p+1(4d+ 5) log n

n
+

2p+2 · cV,LV dM(4d+ 5) log n

3n
+

2p+3 · cV,LV dM

n

for constant cV,L depending only on V and L.

B. Proofs
B.1. Fundamental Results on the Properties of the Random Tree

Lemma B.1. Let πp := {Aj
p, j ∈ Ip} be the random tree partition as in (2). Then for any Aj

p := ×d
i=1[ai, bi], j ∈ Ip, we

have
√
d/2 · 2−p/d ≤ diam(Aj

p) ≤ 2
√
d · 2−p/d. Moreover, for any 1 ≤ i ≤ d, there holds

diam(Aj
p)

2 ≤ (4d− 3)(bi − ai)
2. (24)

13
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Proof of Lemma B.1. According to the random tree partition rule, when the depth of the tree p is a multiple of dimension
d, each cell of the random tree partition is a high-dimensional cube with side length of 2−p/d. On the other hand, when
the depth of the tree p is not a multiple of dimension d, we consider the random tree partition with depth ⌊p/d⌋ and ⌈p/d⌉,
whose corresponding side length of the higher dimensional cube is 2−⌊p/d⌋ and 2−⌈p/d⌉. Note that under the splitting
criterion of random tree, the side length of each sub-rectangle decreases monotonically with the increase of p, so the side
length of a random tree partition cell is between 2−⌈p/d⌉ and 2−⌊p/d⌋. This implies that

√
d · 2−⌈p/d⌉ ≤ diam(Aj

p) ≤
√
d · 2−⌊p/d⌋

Since p/d− 1 ≤ ⌊p/d⌋ ≤ ⌈p/d⌉ ≤ p/d+ 1, we immediately get
√
d/2 · 2−p/d ≤ diam(Aj

p) ≤ 2
√
d · 2−p/d. This shows

the first assertion.

Since the random tree partition rule divides the rectangles along the midpoint of the coordinate with maximal length, for
every 1 ≤ i ≤ d, there holds

|bj − aj | ≤ 2|bi − ai|, 1 ≤ j ≤ d, j ̸= i.

This implies that

diam(Aj
p)

2 ≤
d∑

ℓ=1

(bℓ − aℓ)
2 ≤ 4(d− 1)(bi − ai)

2 + (bi − ai)
2 = (4d− 3)(bi − ai)

2.

This completes the proof.

B.2. Proofs of the Results for RTR

B.2.1. PROOFS RELATED TO SECTION A.1.1

Proof of Proposition A.1. Recall that the regression model is defined as Y = f(X) + ε with X following the uniform
distribution. Let πp = {Aj

p, j ∈ Ip} be the random tree partition in (2). Then we have

RL,P(fP)−R∗
L,P = EPX

(
fP(X)− f∗

L,P(x)
)2

=
∑
j∈Ip

∫
Aj

p

(
fP(x)− f∗

L,P(x)
)2

dx. (25)

Since PX is the uniform distribution over [0, 1]d, for any x ∈ Aj
p, we have

fP(x) =
1

PX

(
Aj

p

) ∫
Aj

p

f∗
L,P(x

′) dx′ =
1

µ
(
Aj

p

) ∫
Aj

p

f∗
L,P(x

′) dx′.

where µ is the Lesbugue measure. Since the Bayes function f∗
L,P(x) is continuous on Aj

p, the mean value theorem implies
that there exists an ξ ∈ Aj

p such that fP(x) = f∗
L,P(ξ). Consequently, we get∫

Aj
p

(
fP(x)− f∗

L,P(x)
)2

dx =

∫
Aj

p

(
f∗
L,P(ξ)− f∗

L,P(x)
)2

dx. (26)

For every fixed x ∈ Aj
p, we define h(t) := f∗

L,P((1− t)x+ tξ) for 0 ≤ t ≤ 1. It is clear to see that h(0) = f∗
L,P(x) and

h(1) = f∗
L,P(ξ). Then by Lagrange’s mean value theorem, there exists 0 ≤ tx,ξ ≤ 1 such that

f∗
L,P(x)− f∗

L,P(ξ) = h(1)− h(0) = h′(tx,ξ) = ∇f∗
L,P((1− tx,ξ)x+ tx,ξξ)

⊤(ξ − x).

For the sake of notation simplicity, we write η := ∇f∗
L,P((1− tx,ξ)x+ tx,ξξ). Then, we obtain∫

Aj
p

(
f∗
L,P(ξ)− f∗

L,P(x)
)2

dx =

∫
Aj

p

(
η⊤(ξ − x)

)2
dx =

∫
Aj

p

( d∑
i=1

ηi(ξi − xi)

)2

dx

=

∫
Aj

p

d∑
i=1

(
ηi(ξi − xi)

)2
dx+ 2

∫
Aj

p

∑
1≤i<l≤d

ηiηl(ξi − xi)(ξl − xl) dx := (I) + (II). (27)

14
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Therefore, to derive the lower bound of (26), it suffices to calculate the upper bound and the lower bound of (I) and |(II)|
respectively. Let us first consider the lower bound of (I). Assume that Aj

p := ×d
i=1[ai, bi]. Then, a simple calculation yields

that

(I) =

d∑
i=1

∫
Aj

p

(
ηi(ξi − xi)

)2
dx =

d∑
i=1

η2i

∫
Aj

p

(ξi − xi)
2 dx =

d∑
i=1

η2i

∫ bi

ai

(ξi − xi)
2 dxi ·

∏
l ̸=i

(bl − al). (28)

Minimizing the following quadratic function with respect to ξi, we obtain∫ bi

ai

(ξi − xi)
2 dxi = ξ2i ·

∫ bi

ai

dxi − 2ξi ·
∫ bi

ai

xi dxi +

∫ bi

ai

x2
i dxi ≥

(bi − ai)
3

12
.

This together with (28) and Lermma B.1 implies that

(I) ≥
µ
(
Aj

p

)
12

d∑
i=1

η2i (bi − ai)
2 ≥

µ
(
Aj

p

)
· ∥η∥22

12(4d− 3)
· diam

(
Aj

p

)2
. (29)

Next, let us consider the upper bound of (II). Assume that Aj
p := ×d

i=1[ai, bi]. Then, a simple calculation yields that

(II) = 2
∑

1≤i<l≤d

∫
Aj

p

ηiηl · (ξi − xi)(ξl − xl) dx

= 2
∑

1≤i<l≤d

ηiηl ·
∫ bi

ai

(ξi − xi) dxi ·
∫ bl

al

(ξl − xl) dxl ·
∏
k ̸=i,l

(bk − ak)

≤ 2
∑

1≤i<l≤d

ηiηl ·
∫ bi

ai

|ξi − xi| dxi ·
∫ bl

al

|ξl − xl| dxl ·
∏
k ̸=i,l

(bk − ak)

≤
µ
(
Aj

p

)
8

∑
1≤i<l≤d

ηiηl(bi − ai)(bl − al) ≤
µ
(
Aj

p

)
· diam

(
Aj

p

)2 · (∥η∥21 − ∥η∥22
)

16
. (30)

Recall that η = ∇f∗
L,P((1 − tx,ξ)x + tx,ξξ). Therefore, the condition

√
(12d− 7)/(12d− 9) · ∥∇f(x)∥2 ≥ ∥∇f(x)∥1

implies that

∥η∥21 − ∥η∥22/16 ≤ ∥η∥22/(16d− 12).

This together with (29) and (30) yields that

(I) + (II) ≥ (I)− |(II)| ≥ µ
(
Aj

p

)
· ∥η∥22 · diam

(
Aj

p

)2
/
(
24(4d− 3)

)
.

On combining this with (27) and the condition ∥η∥22 ≥ c2f , we have∫
Aj

p

(
f∗
L,P(ξ)− f∗

L,P(x)
)2

dx ≥
µ
(
Aj

p

)
· ∥η∥22

24(4d− 3)
· diam

(
Aj

p

)2 ≥
c2f · µ

(
Aj

p

)
24(4d− 3)

· diam
(
Aj

p

)2 ≥
d · c2f · µ

(
Aj

p

)
96(4d− 3) · 22p/d

,

where the last inequality follows from Lemma B.1. This together with (25) implies that

RL,P(fP)−R∗
L,P ≥

∑
j∈Ip

d · c2f · µ
(
Aj

p

)
96(4d− 3) · 22p/d

=
d · c2f

96(4d− 3) · 22p/d
.

This completes the proof.

Proof of Proposition A.2. Let πp = {Aj
p, 1 ≤ j ≤ 2p} be the random tree partition as in (2). Then for any fixed 1 ≤ j ≤ 2p,

we define the random variable Zj by

Zj :=

n∑
i=1

1Aj
p
(Xi).

15
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Since the random variables {1Aj
p
(Xi)}ni=1 are i.i.d. Bernoulli distributed with parameter P(X ∈ Aj

p), elementary probability
theory implies that the random variable Zj is Binomial distributed with parameters n and P(X ∈ Aj

p). Therefore, for any
j ∈ Ip, we have

E(Zj) = n · P(X ∈ Aj
p).

Moreover, the RTR regressor fD can be defined by

fD(x) =


∑n

i=1 Yi1Aj
p
(Xi)∑n

i=1 1Aj
p
(Xi)

· 1Aj
p
(x) if Zj > 0,

0 if Zj = 0.

By the law of total probability, we get

EPX

(
fD(X)− fP(X)

)2
=
∑
j∈Ip

EPX

((
fD(X)− fP(X)

)2∣∣X ∈ Aj
p

)
· P(X ∈ Aj

p)

=
∑
j∈Ip

EPX

((
fD(X)− fP(X)

)2∣∣X ∈ Aj
p, Zj > 0

)
· P(Zj > 0) · P(X ∈ Aj

p) (31)

+
∑
j∈Ip

EPX

((
fD(X)− fP(X)

)2∣∣X ∈ Aj
p, Zj = 0

)
· P(Zj = 0) · P(X ∈ Aj

p). (32)

For the term (31), we have∑
j∈Ip

EPX

(
(fD(X)− fP(X))2

∣∣X ∈ Aj
p, Zj > 0

)
· P(Zj > 0)P(X ∈ Aj

p)

=
∑
j∈Ip

(∑n
i=1 Yi1Aj

p
(Xi)∑n

i=1 1Aj
p
(Xi)

− E(f∗
L,P(X)|X ∈ Aj

p)

)2

· P(Zj > 0)P(X ∈ Aj
p)

=
∑
j∈Ip

( n∑
i=1

1Aj
p
(Xi)

(
Yi − E(f∗

L,P(X)|X ∈ Aj
p)
))2

·
P(X ∈ Aj

p)

(
∑n

i=1 1Aj
p
(Xi))2

· P(Zj > 0),

which yields that for a fixed j ∈ Ip, there holds

E
(∑

j∈Ip

( n∑
i=1

1Aj
p
(Xi)

(
Yi − E(f∗

L,P(X)|X ∈ Aj
p)
))2

·
P(X ∈ Aj

p)

(
∑n

i=1 1Aj
p
(Xi))2

∣∣∣∣Xi ∈ Aj
p

)

=
∑
j∈Ip

n∑
i=1

12
Aj

p
(Xi)E

((
Y − fP(X)

)2∣∣X ∈ Aj
p

)
·

P(X ∈ Aj
p)

(
∑n

i=1 1Aj
p
(Xi))2

=
∑
j∈Ip

P(X ∈ Aj
p)∑n

i=1 1Aj
p
(Xi)

· E
((
Y − fP(X))2

∣∣X ∈ Aj
p

)
. (33)

Obviously, for any fixed j ∈ Ip, there holds

E(fP(X)|X ∈ Aj
p) = E(f∗

L,P(X)|X ∈ Aj
p)

and consequently we obtain

E
(
(Y − fP(X))2

∣∣X ∈ Aj
p

)
= E

(
(Y − f∗

L,P(X))2
∣∣X ∈ Aj

p

)
+ E

(
(f∗

L,P(X)− fP(X))2
∣∣X ∈ Aj

p

)
= σ2 + E

(
(f∗

L,P(X)− fP(X))2
∣∣X ∈ Aj

p

)
.
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Taking expectation over both sides of (33) with respect to Pn, we get

ED∼PnEPX

(
fD(X)− fP(X)

)2
= ED∼Pn

(
E
(
EPX

(
fD(X)− fP(X))2

∣∣Xi ∈ Aj
p

))
=
∑
j∈Ip

(
P(X ∈ Aj

p)ED∼Pn

(( n∑
i=1

1Aj
p
(Xi)

)−1∣∣∣∣Zj > 0

))
·
(
σ2 + E(f∗

L,P(X)− fP(X))2
)
· P(Zj > 0)

=
(
σ2 + E(f∗

L,P(X)− fP(X))2
)
·
∑
j∈Ip

(
P(X ∈ Aj

p)ED∼Pn(Z−1
j |Zj > 0)

)
P(Zj > 0)

= n−1
(
σ2 + E(f∗

L,P(X)− fP(X))2
)
·
∑
j∈Ip

(
E(Zj) · E(Z−1

j |Zj > 0)
)
P(Zj > 0).

Clearly, x−1 is convex for x > 0. Therefore, by Jensen’s inequality, we get

E(Zj) · E(Z−1
j |Z > 0)P(Zj > 0) ≥ E(Zj) · E(Zj |Zj > 0)−1P(Zj > 0) = E(Z) · E(Z1{Z>0})

−1P(Z > 0)P(Z > 0)

= P(Z > 0)2 = (1− P(Z = 0))2 =
(
1− (1− P(X ∈ Aj

p))
n
)2 ≥ 1− 2e−nP(X∈Aj

p),

where the last inequality follows from (1− x)n ≤ e−nx, x ∈ (0, 1).

We now turn to estimate the term (32). By the definition of fD, we have∑
j∈Ip

EPX

((
fD(X)− fP(X))2

∣∣X ∈ Aj
p, Zj = 0

)
· P(Zj = 0) · P(X ∈ Aj

p)

=
∑
j∈Ip

EPX

((
fP(X)

)2∣∣X ∈ Aj
p

)
· P(Zj = 0) · P(X ∈ Aj

p) ≥ 0.

Then we obviously have P(X ∈ Aj
p) = µ

(
Aj

p

)
≥ 2−p−d for all j ∈ Ip. Combing the above results, we obtain

ED∼PnEPX

(
fD(X)− fP(X)

)2
=
∑
j∈Ip

EPX

(
(fD(X)− fP(X))2|X ∈ Aj

p, Zj > 0
)
· P(Zj > 0) · P(X ∈ Aj

p)

+
∑
j∈Ip

EPX

(
(fD(X)− fP(X))2

∣∣X ∈ Aj
p, Zj = 0

)
· P(Zj = 0) · P(X ∈ Aj

p)

≥
∑
j∈Ip

EPX

(
(fD(X)− fP(X))2

∣∣X ∈ Aj
p, Zj > 0

)
· P(Zj > 0) · P(X ∈ Aj

p)

≥ 1

n

∑
j∈Ip

(
1− 2e−nP(X∈Aj

p)
)
·
(
E(f∗

L,P(X)− fP(X))2 + σ2
)

≥ σ2

n

(
|Ip| −

∑
j∈Ip

2e−nP(X∈Aj
p)

)
.

Therefore, we have

ED∼PnEPX

(
fD(X)− fP(X))2 ≥ σ2

n

(
|Ip| −

∑
j∈Ip

2e−nP(X∈Aj
p)

)
=

σ2

n

(
|Ip| − 2|Ip| exp

(
−n2−p−d

))
≥ σ2 · 2p(1− 2e−1) · n−1. (34)

Taking expectation with respect to PZ , we obtain the desired assertion.

B.2.2. PROOFS RELATED TO SECTION 3.2

Proof of Theorem 3.2. By Proposition A.1 and A.2, the error decomposition in (20) tells us that

EPZ

(
RL,P(fD)−R∗

L,P

)
= EPZ

EPX

(
fD(X)− f∗

L,P(x)
)2

≥ d · c2f (384d− 288)−1 · 2−2p/d + σ2 · 2p(1− 2e−1) · n−1 ≳ n− 2
2+d ,

where the last inequality holds if and only if 2p ≍ nd/(2+d). This yields the desired assertion.
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B.2.3. PROOFS RELATED TO SECTION A.1.2

proof of Proposition A.4. By the definition of fP, we have

|fP(x)− f∗
L,P(x)| =

∣∣∣∣
∫
A(x)

f∗
L,P(x

′)dPX(x′)∫
A(x)

dPX(x′)
− f∗(x)

∣∣∣∣ ≤
∫
A(x)

|f∗
L,P(x

′)− f∗
L,P(x)| dPX(x′)∫

A(x)
dPX(x′)

Since f∗
L,P(x) ∈ Ck,α, we have |f∗

L,P(x
′) − f∗

L,P(x)| ≤ cL∥x′ − x∥(k+α)∧1. Then, by Lemma B.1, we get |f∗
L,P(x

′) −
f∗
L,P(x)| ≤ cLdiam(A(x))(k+α)∧1. Consequently, we have

|fP(x)− f∗
L,P(x)| ≤

cLdiam(A(x))(k+α)∧1
∫
A(x)

PX(x′)∫
A(x)

PX(x′)
≤ cLdiam(A(x))(k+α)∧1.

This together with Lemma B.1 yields the desired assertion.

To conduct our analysis, we first need to recall the definitions of VC dimension (VC index) and covering number, which are
frequently used in capacity-involved arguments and measure the complexity of the underlying function class (van der Vaart
& Wellner, 1996; Kosorok, 2008; Giné & Nickl, 2021).

Definition B.2 (VC dimension). Let B be a class of subsets of X and A ⊂ X be a finite set. The trace of B on A is defined
by {B ∩A : B ⊂ B}. Its cardinality is denoted by ∆B(A). We say that B shatters A if ∆B(A) = 2#(A), that is, if for every
A′ ⊂ A, there exists a B ⊂ B such that A′ = B ∩A. For n ∈ N, let

mB(n) := sup
A⊂X ,#(A)=n

∆B(A). (35)

Then, the set B is a Vapnik-Chervonenkis class if there exists n < ∞ such that mB(n) < 2n and the minimal of such n is
called the VC dimension of B, and abbreviate as VC(B).

Since an arbitrary set of n points {x1, . . . , xn} possess 2n subsets, we say that B picks out a certain subset from {x1, . . . , xn}
if this can be formed as a set of the form B ∩ {x1, . . . , xn} for a B ∈ B. The collection B shatters {x1, . . . , xn} if each of
its 2n subsets can be picked out in this manner. From Definition B.2 we see that the VC dimension of the class B is the
smallest n for which no set of size n is shattered by B, that is,

VC(B) = inf
{
n : max

x1,...,xn

∆B({x1, . . . , xn}) ≤ 2n
}
,

where ∆B({x1, . . . , xn}) = #{B ∩ {x1, . . . , xn} : B ∈ B}. Clearly, the more refined B is, the larger is its index.

To further bound the capacity of the function sets, we need to introduce the following fundamental descriptions of covering
number which enables an approximation of an infinite set by finite subsets.

Definition B.3 (Covering Number). Let (X , d) be a metric space and A ⊂ X . For ε > 0, the ε-covering number of A is
denoted as

N (A, d, ε) := min

{
n ≥ 1 : ∃x1, . . . , xn ∈ X such that A ⊂

n⋃
i=1

B(xi, ε)

}
,

where B(x, ε) := {x′ ∈ X : d(x, x′) ≤ ε}.

To prove Lemma B.4, we need the following fundamental lemma concerning with the VC dimension of random partitions in
Section 2.2, which follows the idea put forward by Gao & Zhou (2020) of the construction of random forest. To this end, let
p ∈ N be fixed and πp be a partition of X with number of splits p and π(p) denote the collection of all partitions πp.

Lemma B.4. Let Ã be the collection of all cells ×d
i=1[ai, bi] in Rd. The VC index of Ã equals 2d+ 1. Moreover, for all

0 < ε < 1, there exists a universal constant C such that

N (1Ã, ∥ · ∥L1(Q), ε) ≤ C(2d+ 1)(4e)2d+1(1/ε)2d.
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Proof of Lemma B.4. The first result of VC index follows from Example 2.6.1 in van der Vaart & Wellner (1996). The
second result of covering number follows directly from Theorem 9.2 in Kosorok (2008).

Before we proceed, we list the well-known Bernstein’s inequality that will be used frequently in the proofs. Lemma B.5 was
introduced in Bernstein (1946) and can be found in many statistical learning textbooks, see e.g., Massart (2007); Cucker &
Zhou (2007); Steinwart & Christmann (2008).

Lemma B.5 (Bernstein’s inequality). Let B > 0 and σ > 0 be real numbers, and n ≥ 1 be an integer. Furthermore, let
ξ1, . . . , ξn be independent random variables satisfying EP ξi = 0, ∥ξi∥∞ ≤ B, and EP ξi

2 ≤ σ2 for all i = 1, . . . , n. Then
for all τ > 0, we have

P

(
1

n

n∑
i=1

ξi ≥
√

2σ2τ

n
+

2Bτ

3n

)
≤ e−τ .

Proof of Proposition A.5. Let πp = {Aj
p, j ∈ Ip} be the random tree partition of [0, 1]d as in (2). Then by the definition of

fP(x) and fD(x) and the triangle inequality, we have

∥fP − fD∥∞ = sup
j∈Ip

∣∣∣∣
∑n

i=1 1Aj
p
(Xi)Yi∑n

i=1 1Aj
p
(Xi)

−

∫
Aj

p
f∗
L,P(x

′)dPX(x′)∫
Aj

p
dPX(x′)

∣∣∣∣
= sup

j∈Ip

∣∣∑n
i=1 1Aj

p
(Xi)Yi ·

∫
Aj

p
dPX(x′)−

∑n
i=1 1Aj

p
(Xi) ·

∫
Aj

p
f∗
L,P(x

′)dPX(x′)
∣∣∑n

i=1 1Aj
p
(Xi) ·

∫
Aj

p
dPX(x′)

≤ sup
j∈Ip

∑n
i=1 1Aj

p
(Xi) ·

∣∣∫
Aj

p
f∗
L,P(x

′)dPX(x′)−
∑n

i=1 1Aj
p
(Xi)Yi

∣∣∑n
i=1 1Aj

p
(Xi) ·

∫
Aj

p
dPX(x′)

+ sup
j∈Ip

∑n
i=1 1Aj

p
(Xi)Yi ·

∣∣∫
Aj

p
dPX(x′)−

∑n
i=1 1Aj

p
(Xi)

∣∣∑n
i=1 1Aj

p
(Xi) ·

∫
Aj

p
dPX(x′)

.

For the notation simplicity, we write

(I) := sup
j∈Ip

∣∣∣∣ n∑
i=1

1Aj
p
(Xi)−

∫
Aj

p

dPX(x′)

∣∣∣∣, (II) := sup
j∈Ip

∣∣∣∣ n∑
i=1

1Aj
p
(Xi)Yi −

∫
Aj

p

f∗
L,P(x

′)dPX(x′)

∣∣∣∣
Then the estimation error in L∞-norm is bounded by

∥fP − fD∥∞ ≲ (I) · 2p · sup
j∈Ip

·
∑n

i=1 1Aj
p
(Xi)Yi∑n

i=1 1Aj
p
(Xi)

+ (II) · 2p.

Since Y ⊂ [−M,M ], we have |Yi| ≤ M for 1 ≤ i ≤ n. Consequently, there holds

∥fP − fD∥∞ ≲
(
M · (I) + (II)

)
· 2p. (36)

Therefore, it suffice to bound (I) and (II) respectively. Let us first consider the term (I). Let Ã be the collection of all cells
×d

i=1[ai, bi] in Rd. Applying Lemma B.4 with Q := (DX + PX)/2, there exists an ε-net {Ãk}Kk=1 ⊂ Ã with

K ≤ C(2d+ 1)(4e)2d+1(1/ε)2d (37)

such that for any j ∈ Ip, there exist some k ∈ {1, . . . ,K} such that

∥1Aj
p
− 1Ãk

∥L1((DX+PX)/2) ≤ ε,

Since ∥1Aj
p
− 1Ãk

∥L1((DX+PX)/2) = 1/2 · ∥1Aj
p
− 1Ãk

∥L1(DX) + 1/2 · ∥1Aj
p
− 1Ãk

∥L1(PX), we get

∥1Aj
p
− 1Ãk

∥L1(DX) ≤ 2ε, ∥1Aj
p
− 1Ãk

∥L1(PX) ≤ 2ε. (38)
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Consequently, by the definition of the covering number and the triangle inequality, for any j ∈ Ip, there holds∣∣∣∣ 1n
n∑

i=1

1Aj
p
(Xi)− PX

(
Aj

p

)∣∣∣∣ ≤ ∣∣∣∣ 1n
n∑

i=1

1Ãk
(Xi)− PX(Ãk)

∣∣∣∣+ ∥1Aj
p
− 1Ãk

∥L1(DX) + ∥1Aj
p
− 1Ãk

∥L1(PX)

≤
∣∣∣∣ 1n

n∑
i=1

1Ãk
(Xi)− PX(Ãk)

∣∣∣∣+ 4ε.

Therefore, we get

(I) = sup
j∈Ip

∣∣∣∣ 1n
n∑

i=1

1Aj
p
(Xi)− PX

(
Aj

p

)∣∣∣∣ ≤ sup
1≤k≤K

∣∣∣∣ 1n
n∑

i=1

1Ãk
(Xi)− PX(Ãk)

∣∣∣∣+ 4ε. (39)

For any fixed 1 ≤ k ≤ K, let the random variable ξi be defined by ξi := 1Ãk
(Xi)− PX(Ãk). Then we have EPX

ξi = 0,
∥ξ∥∞ ≤ 1, and EPX

ξ2i ≤ PX(Ãk). Since PX has upper and lower bounded density over [0, 1]d, there holds EPX
ξ2i ≲ 2−p.

Applying Bernstein’s inequality in Lemma B.5, we obtain∣∣∣∣ 1n
n∑

i=1

1Ãk
(Xi)− PX(Ãk)

∣∣∣∣ ≲
√

21−p · τ
n

+
2τ log n

3n

with probability Pn at least 1− 2e−τ . Then the union bound together with the covering number estimate (37) implies that

sup
1≤k≤K

∣∣∣∣ 1n
n∑

i=1

1Ãk
(Xi)− PX(Ãk)

∣∣∣∣ ≲
√

21−p(τ + log(2K))

n
+

2(τ + log(2K)) log n

3n

with probability Pn at least 1− e−τ . Let τ = 2 log n and ε = 1/n. Then for any n > N1 := (2C) ∧ (2d+ 1) ∧ (4e), we
have τ + log(2K) = 2 log n+ log(2C)+ log(2d+1)+ (2d+1) log(4e)+ 2d log n ≤ (4d+5) log n. Therefore, we have

sup
1≤k≤K

∣∣∣∣ 1n
n∑

i=1

1Ãk
(Xi)− PX(Ãk)

∣∣∣∣ ≲
√

21−p(4d+ 5) log n

n
+

2(4d+ 5) log n

3n
(40)

with probability Pn at least 1− 1/n2. This together with (39) yields that

(I) ≲

√
21−p(4d+ 5) log n

n
+

2(4d+ 5) log n

3n
+

4

n
. (41)

Next, let us consider the term (II). Let Ã be the collection of all cells ×d
i=1[ai, bi] in Rd. Then there exists an ε-net

{Ãk}Kk=1 ⊂ Ã with K bounded by (37) such that for any j ∈ Ip, (38) holds for some k ∈ {1, . . . ,K}. Consequently, by
the definition of the covering number and the triangle inequality, for any j ∈ Ip, there holds∣∣∣∣ n∑

i=1

1Aj
p
(Xi)Yi −

∫
Aj

p

f∗
L,P(x

′)dPX(x′)

∣∣∣∣ ≤ ∣∣∣∣ n∑
i=1

1Ãk
(Xi)Yi −

∫
Ãk

f∗
L,P(x

′)dPX(x′)

∣∣∣∣
+

∫
Rd

∣∣1Aj
p
(x′)− 1Ãk

(x′)
∣∣∣∣f∗

L,P(x
′)
∣∣dPX(x′) +

n∑
i=1

∣∣1Ãk
(Xi)− 1Aj

p
(Xi)

∣∣∣∣Yi

∣∣.
Consequently, we have∣∣∣∣ n∑

i=1

1Aj
p
(Xi)Yi −

∫
Aj

p

f∗
L,P(x

′)dPX(x′)

∣∣∣∣
≤
∣∣∣∣ n∑
i=1

1Ãk
(Xi)Yi −

∫
Ãk

f∗
L,P(x

′)dPX(x′)

∣∣∣∣+ max
1≤i≤n

|Yi| · ∥1Aj
p
− 1Ãk

∥L1(DX) + ∥f∗
L,P∥∞ · ∥1Aj

p
− 1Ãk

∥L1(PX)

≤
∣∣∣∣ n∑
i=1

1Ãk
(Xi)Yi −

∫
Ãk

f∗
L,P(x

′)dPX(x′)

∣∣∣∣+ 4Mε. (42)

20



Extrapolated Random Tree for Regression

where the last inequality follow from the condition Y ⊂ [−M,M ].

For any fixed 1 ≤ k ≤ K, let the random variable ξ̃i be defined by ξ̃i := 1Ãk
(Xi)Yi −

∫
Ãk

f∗
L,P(x

′) dPX(x′). Then we
have EPξ̃i = 0, ∥ξ∥∞ ≤ 1, and EPξ̃

2
i ≤ M2PX(Ãk). Since PX has upper and lower bounded density over [0, 1]d, there

holds EPξ̃
2
i ≲ M2 · 2−p. Applying Bernstein’s inequality in Lemma B.5, we obtain∣∣∣∣ n∑

i=1

1Ãk
(Xi)Yi −

∫
Ãk

f∗
L,P(x

′)dPX(x′)

∣∣∣∣ ≲
√

M2 · 21−p · τ
n

+
2Mτ log n

3n

with probability Pn at least 1− 2e−τ . Similar to (40), one can show that for any n ≥ N1, there holds

sup
1≤k≤K

∣∣∣∣ n∑
i=1

1Ãk
(Xi)Yi −

∫
Ãk

f∗
L,P(x

′)dPX(x′)

∣∣∣∣ ≲ M

√
·21−p · τ

n
+

2Mτ log n

3n

with probability Pn at least 1− 1/n2. This together with (42) yields that

(II) ≲ M

√
21−p(4d+ 5) log n

n
+

2M(4d+ 5) log n

3n
+

4M

n
. (43)

On combining (41) and (43) with (36), we get

∥fP − fD∥∞ ≲ 2M

√
2p+1(4d+ 5) log n

n
+

2p+2 ·M(4d+ 5) log n

3n
+

2p+3 ·M
n

.

This completes the proof of Proposition A.5.

Proof of Theorem A.3. By Proposition A.4 and A.5, the triangle inequality tells us that

∥fD − f∗
L,P∥∞ ≤ ∥fD − fP∥∞ + ∥fP − f∗

L,P∥∞

≲ cL(2
√
d)(k+α)∧12−(p(k+α)∧1)/d + 2M

√
2p+1(4d+ 5) log n

n
+

2p+2 ·M(4d+ 5) log n

3n
+

2p+3 ·M
n

holds with probability Pn ⊗ PZ at least 1− 2/n2. By choosing 2p ≍ (n/ log n)d/(2((k+α)∧1)+d), i.e. p ≍ log(n/ log n),
we obtain the desired assertion.

B.3. Proofs of the Results for ERTR

B.3.1. PROOFS RELATED TO SECTION 2.4

Lemma B.6. Suppose that g(x) : [0, 1] → R ∈ Ck,α with the constant cL. Let g(i)(x) be the i-th order derivative of g(x).
Then for 0 ≤ r ≤ 1, we have ∣∣∣∣g(r)− k∑

i=1

g(i)(0)ri

i!

∣∣∣∣ ≤ cL
k!

.

Proof of Lemma B.6. Let

h(x) = g(x)−
k−1∑
i=1

g(i)(0)

i!
xi − xk

rk

(
g(r)−

k−1∑
i=1

g(i)(0)

i!
ri
)
.

A simple calculation yields that h(0) = h(r) = 0. Therefore, Rolle’s theorem tells us that there exists an 0 ≤ ξ1 ≤ r such
that h(1)(ξ1) = 0. Note that h(i)(0) = 0 for 1 ≤ i ≤ k − 1, applying Rolle’s theorem k − 1 times again implies that there
exists an ξk ∈ [0, r] such that h(k)(ξk) = 0. This yields that

g(r)−
k−1∑
i=1

g(i)(0)

i!
ri =

rkg(k)(ξk)

k!
.
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Consequently, we have∣∣∣∣g(r)− k∑
i=1

g(i)(0)ri

i!

∣∣∣∣ = ∣∣∣∣g(r)− k−1∑
i=1

g(i)(0)

i!
ri +

k−1∑
i=1

g(i)(0)

i!
ri −

k∑
i=1

g(i)(0)ri

i!

∣∣∣∣
=

rk|g(k)(ξk)− g(k)(0)|
k!

≤ cLr
kξαk
k!

≤ cL
k!

.

where the last inequality follows from ∥g(k)(x)− g(k)(x′)∥ ≤ cL∥x− x′∥α and ξk ≤ r ≤ 1. This completes the proof.

Proof of Proposition 2.4. From the definition of fP,r(x) in (9), we get

fP,r(x) =

∫
Ar(x)

f∗
L,P(x

′) dPX(x′)∫
Ar(x)

dPX(x′)
.

Since PX has the upper and lower bounded density over [0, 1]d, we have

fP,r(x) =

∫
Ar(x)

f∗
L,P(x

′)fX(x′) dx′∫
Ar(x)

fX(x′) dx′ ,

where fX(x) represents the density function of PX . From (6), we have x′ = x+ r(z − x) with z ∈ A(x). Therefore, by
the substitution x′ = x+ r(z − x), we get

fP,r(x) =

∫
A(x)

f∗
L,P(x+ r(z − x)) · fX(x+ r(z − x)) dz∫

A(x)
fX(x+ r(z − x)) dz

. (44)

For fixed x, z ∈ Rd, we define g : [0, 1] → R by g(r) = f∗
L,P(x + r(z − x)). Then we have g(r) ∈ Ck,α since

f∗
L,P(x) ∈ Ck,α. Moreover, for 0 ≤ ℓ ≤ k, the l-th order derivative of g(r) at r = 0 is

g(j)(0) =
∑

i1+···+id=j

j! · ∂jf∗
L,P(x)

∂xi1
1 · · · ∂xid

d

d∏
ℓ=1

(zℓ − xℓ)
iℓ

iℓ!
≤ djA(x) ·

∑
i1+···+id=ℓ

j! · ∂ℓf∗
L,P(x)

∂xi1
1 · · · ∂xid

d

≤ cLj! · (j + 1)ddℓA(x) < ∞.

where the last inequality follows from ∥∇ℓf∥ ≤ cL. Furthermore, for 0 ≤ r ≤ r′ ≤ 1, we have

|g(k)(r)− g(k)(r′)| ≤ cL(k + 1)! · (k + 1)ddk+α
A (x)|r − r′|α.

Consequently, by Lemma B.6, we get∣∣∣∣g(r)− k∑
j=0

g(j)(0)rj

j!

∣∣∣∣ ≤ cL(k + 1)d+1dk+α
A (x).

Therefore, we have∣∣∣∣f∗
L,P(x+ r(z − x)) · fX(x+ r(z − x))−

k∑
j=0

b′jr
j · fX(x+ r(z − x))

∣∣∣∣ ≤ cL(k + 1)d+1dk+α
A (x) · fX(x+ r(z − x)).

with b′j expressed as

b′j =
∑

i1+···+id=j

∂jf∗
L,P(x)

∂xi1
1 · · · ∂xid

d

d∏
ℓ=1

(zℓ − xℓ)
iℓ

iℓ!
.
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Consequently, we get∣∣∣∣∫
A(x)

f∗
L,P(x+ r(z − x)) · fX(x+ r(z − x)) dz −

k∑
j=0

rj ·
∫
A(x)

b′jfX(x+ r(z − x)) dz

∣∣∣∣
≤
∫
A(x)

cL(k + 1)d+1dk+α
A (x) · fX(x+ r(z − x)) dz

≤ cL(k + 1)d+1dk+α
A (x) ·

∫
A(x)

fX(x+ r(z − x)) dz (45)

On combining (44) with (45), we get ∣∣∣∣fP,r(x)−
k∑

j=0

bjr
j

∣∣∣∣ ≤ cL(k + 1)d+1dk+α
A (x).

with

bj :=

∫
A(x)

b′jfX(x+ r(z − x)) dz∫
A(x)

fX(x+ r(z − x)) dz
.

This completes the proof.

B.3.2. PROOFS RELATED TO SECTION A.2

Lemma B.7. Let ri = i/V for i = 1, · · · , V for V > 0. For V ≥ L+ 1, let R be a V × (L+ 1) matrix whose i, j-th entry
is rj−1

i . Then we have

∥e⊤1 (R⊤R)−1R⊤∥1 ≤ cV,L

for some constant cV,L depending only on V and L.

Proof of Lemma B.7. Note that R is a Vandermonde matrix (Horn & Johnson, 2012). Then, for V ≥ L + 1 and ri ̸= rj
for any i ̸= j, R has rank L+ 1 and its eigenvalues are strictly positive. Thus, the operator norm of ∥(R⊤R)−1∥2 can be
bounded by some constant c′V,L depending only on V and L. Then, there holds

∥e⊤1 (R⊤R)−1R⊤∥1 ≤
√
V ∥e⊤1 (R⊤R)−1R⊤∥2 =

√
V
√
e⊤1 (R

⊤R)−1e1 ≤
√

V c′V,L := cV,L.

This completes the proof.

Proof of Proposition A.6. By Proposition 2.4, there exists b1, · · · , bk such that
fP,r1

fP,r2
...

fP,rV

 =


1 r11 · · · rL1
1 r12 · · · rL2
...

...
. . .

...
1 , r1V · · · rLV


︸ ︷︷ ︸

R


f∗
L,P(x)

b1
...
bV


︸ ︷︷ ︸

b

+


δr1,A
δr2,A

...
δrV ,A


︸ ︷︷ ︸

δ

(46)

where δri,A ≤ dk+α
A for i = 1, · · · , V . For notation simplicity, let b denote the vector (f∗

L,P(x), b1, · · · , bV )⊤ and δ denote
the vector (δr1,A, · · · , δrV ,A)

⊤. Combining (46) and (23), we have

fP,E(x)− f∗(x) = e⊤1 (R
⊤R)−1R⊤ (R b+ δ)− f∗

L,P(x) ≤ e⊤1 (R
⊤R)−1R⊤δ.

Then, by Lemma B.7, there holds

|fP,E(x)− f∗(x)| ≤ ∥e⊤1 (R⊤R)−1R⊤∥1∥δ∥∞ ≤ cV,Ld
k+α
A

for all x ∈ X . Applying Lemma B.1 completes the proof.
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Proof of Proposition A.7. Note that fD,r and fP,r consider the rectangles Ai/V (x) for i = 1, · · · , V . Since the collection
of Ai/V (x) is a subset of all cells in X , as a direct corollary of Proposition A.5, we have

∥fP,r − fD,r∥∞ ≲ 2V dM

√
2p+1(4d+ 5) log n

n
+

2p+2 · V dM(4d+ 5) log n

3n
+

2p+3 · V dM

n

with probability Pn ⊗ PZ at least 1 − 2/n2. There is an additional constant V d since now
∫
Ar(x)

dPX(x′) ≥ 2−pV −d.
Then, by Lemma B.7, there holds

|fP,E(x)− fD,E(x)| ≤ ∥e⊤1 (R⊤R)−1R⊤∥1∥fP,r − fD,r∥∞

≲ cV,L

(
2V dM

√
2p+1(4d+ 5) log n

n
+

2p+2 · V dM(4d+ 5) log n

3n
+

2p+3 · V dM

n

)

for all x ∈ X , which completes the proof.

B.3.3. PROOFS RELATED TO SECTION 3.1

Proof of Theorem 3.1. By Proposition A.6 and A.7, the triangle inequality tells us that

∥fD,E − f∗
L,P∥∞ ≤ ∥fD,E − fP,E∥∞ + ∥fP,E − f∗

L,P∥∞

≲ cV,L(2
√
d)k+α2−p(k+α)/d + 2cV,LV

dM

√
2p+1(4d+ 5) log n

n
+

2p+2cV,LV
dM(4d+ 5) log n

3n
+

2p+3cV,LV
dM

n

holds with probability Pn ⊗ PZ at least 1− 2/n2. By choosing 2p ≍ (n/ log n)d/(2(k+α)+d), i.e. p ≍ log(n/ log n), we
obtain the desired assertion.

C. Experiments
C.1. Implementation Details

All experiments are conducted on a machine with 72-core Intel Xeon 2.60GHz and 128GB main memory. All code is
available on GitHub1. For ERTR, we use the parameter grids p ∈ {2, 3, 4, 5, 6, 7, 8}, C ∈ {0, 1} and λ ∈ {0.001, 0.01, 0.1}.
V is fixed to be max(⌊n · 2−(p+2)⌋, 5). For each node, if the number of samples in the node is less than 5, then we stop the
recursive partition process of the current node. The grids for each base learner in ERF and GBERTR are set similarly. For
ERF, we set the number of trees to 200 and subsample {⌈0.5d⌉, ⌈0.75d⌉, d} features in each split procedure to look for the
best cut. In addition, each base learner is trained on a {⌈0.8n⌉, n, ⌈1.2n⌉} samples bootstrapped with replacement from D.
For GBERTR, we set the number of trees to 100 and the learning rate to 0.01. {⌈0.5d⌉, ⌈0.75d⌉, d} features are sub-sampled
in each split procedure to look for the best cut. In addition, each base learner is trained on a {⌈0.8n⌉, n, ⌈1.2n⌉} samples
bootstrapped with replacement from D.

The implementation details for deterministically partitioned tree methods are as follows.

• Decision Tree (DT). For standard decision trees, we use the implementation by Scikit-Learn (Pedregosa et al., 2011).
We select max depth in {2, 4, 6, 8} and other parameters by default.

• Soft Tree (ST) is proposed by Irsoy et al. (2012). We use the implementation in C++2. The implementation provides a
self-contained validation procedure that requires an additional validation set. We take 30% of the training data as the
validation set.

• Smooth Transition Tree (STRT) is proposed by Da Rosa et al. (2008). We use the implementation in R3. We set the
depth d max in {2, 4, 6, 8} and choose the ratio of samples considered in each cell split p to be 0.5.

1https://github.com/Karlmyh/ERTR
2https://github.com/oir/soft-tree
3https://github.com/gabrielrvsc/BooST
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• Probabilistic Regression Tree (PRT) is proposed by Alkhoury et al. (2020). We use the implementation in Python 4.
We set σ ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} and min leaf percentage=0.1. Their implementation is not compatible
with cross-validation tools provided by Scikit-Learn. Thus, we take 30% of the training data as the validation set.

The implementation details for random partitioned tree methods are as follows.

• Random Tree for Regression (RTR) is defined in (5). We pick p ∈ {2, 3, 4, 5, 6, 7, 8}.

• Smooth Transition Tree with max-edge partition (STRT) replace the partition procedure in Da Rosa et al. (2008)
with max-edge random partition. We modify the implementation on GitHub5. We set the depth d max in {2, 4, 6, 8}.

• Probabilistic Regression Tree with max-edge partition (PRT) replace the partition procedure in Alkhoury et al. (2020)
with max-edge random partition. We set σ ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} and min leaf percentage=0.1.

The implementation details for other forest methods are as follows. All methods are ideally paralleled.

• Random forest (RF). For the standard random forest, the Scikit-Learn package in python is applied with n estimators=
200 and max depth ∈ {2, 4, 6, 8}.

• Soft Bayesian Additive Regression Tree (SBART) is proposed by Linero & Yang (2018) and is implemented in R6.
To avoid unacceptable running time, we set num tree= 50 and let other parameters be default.

• Probabilistic Regression Random Forest (PRRF) is an direct extension of PRT in Alkhoury et al. (2020). We set
n estimators = 200 and min leaf percentage=0.1. σ is fixed to 1.

The implementation details for other boosting methods are as follows.

• Gradient Boosting Regression Tree (GBRT). For the standard gradient boosting proposed by Friedman (2002), the
Scikit-Learn package in python is applied with n estimators= 100 and max depth ∈ {2, 4, 6, 8}.

• Gradient Boosted Smooth Transition (GBSTRT) utilize smooth transition tree (Da Rosa et al., 2008) as base learner.
We set the depth to 4 and the number of trees to 100.

• Probabilistic Regression Boosting (GBPRT) is an direct extension of PRT in Alkhoury et al. (2020). We set
n estimators = 100 and min leaf percentage=0.1.

C.2. Details of Real Data Sets

We summarize the details of real data sets in Table 3, with the number of instances and features after pre-processing reported.
Each feature is min-max scaled to the range [0, 1] individually. We also present additional information of the data sets
including the data source and the preprocessing details.

ABA: The Abalone dataset originally comes from biological research (Nash et al., 1994) and now it is accessible on UCI
Machine Learning Repository (Dua & Graff, 2017). ABA contains 4177 observations of one target variable and 8 attributes
related to the physical measurements of abalone.

AIR: The Airfoil Self-Noise dataset on UCI Machine Learning Repository records the result of a series of aerodynamic
and acoustic tests of airfoil blade sections conducted in an anechoic wind tunnel (Brooks et al., 1989). It comprises 1503
instances of 6 attributes including wind tunnel speeds and angles of attack.

ALG: The Algerian Forest Fires dataset on UCI Machine Learning Repository contains 244 instances of 11 attributes and 1
output attribute. The task is to predict the condition of forest fires in Algeria (Abid & Izeboudjen, 2020). The attribute date
is omitted when conducting regression in our experiments.

4https://gitlab.com/sami.kh/pr-tree
5https://github.com/gabrielrvsc/BooST
6https://github.com/theodds/SoftBART
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Table 3. Description of real datasets
DATASET n d DATASET n d

ABA 4177 8 CPU 8192 12
AIR 1503 6 IST 536 8
ALG 244 12 FOR 517 13
BIAS 7750 25 MG 1385 6
CBM 11934 16 WR 4898 12
CCP 9568 4 SPA 3107 6
WW 4898 12

BIAS: The Bias correction of numerical prediction model temperature forecast dataset on UCI Machine Learning Repository
is for the purpose of bias correction of next-day maximum and minimum air temperatures forecast of the model operated by
Korea Meteorological Administration over Seoul (Cho et al., 2020). It contains 7750 instances of 23 input attributes and 2
output attributes. We chose the output attribute minimum air temperature as the target variable of our regression model.

CBM: The Condition Based Maintenance of Naval Propulsion Plants dataset (Altosole et al., 2009) on UCI Machine
Learning Repository was generated from a sophisticated simulator of Gas Turbines. It contains 11934 instances of 16
features.

CCP: The Combined Cycle Power Plant Data Set dataset (Tüfekci, 2014) on UCI Machine Learning Repository contains
9568 data points. There are 4 features that can be used to predict the net hourly electrical energy output of the power plant.

CPU: The cpusmall dataset is from LIBSVM(Chang & Lin, 2011). It contains 8192 instances, each with 12 attributes.

IST: The Istanbul Stock Exchange dataset (Akbilgic et al., 2014) on UCI Machine Learning Repository contains returns of
the Istanbul Stock Exchange together with seven other international indexes. It has 536 instances and the time range is from
January 5, 2009, to February 22, 2011. The date column in the dataset is dropped before constructing the regression models.

FOR: The Forest Fires dataset(Cortez & Morais, 2007) on UCI Machine Learning Repository comprises 517 instances of 13
attributes. The task is to predict the burned area of forest fires. In our experiments, two attributes, the month of the year and
the day of the week were not used in the regression models.

MG: This dataset can be traced back to (Flake & Lawrence, 2002). It consists of 1385 observations of dimension 6.

WR: This dataset contains the information on red wine of the Wine Quality dataset (Cortez et al., 2009) on UCI Machine
Learning Repository. There are 11 input variables to predict the output variable wine quality. 4898 instances are collected in
the dataset.

SPA: The Geographical Analysis Spatial dataset is accessible in Libstat of CMU, originally uploaded by (Pace & Barry,
1997). It comprises 3107 observations of dimension 6.

WW: This dataset also originates from the Wine Quality dataset (Cortez et al., 2009) on UCI Machine Learning Repository.
There are 11 features related to white wine to predict the corresponding wine quality.

C.3. Additional Experiment Results for GBERTR

We present the results for boosting methods in Table 4.

C.4. Additional Experiment Results for Efficiency

In section 3.3, we justified that ERTR is efficient enough for adaption to ensemble methods. As evidence, we provide
the computation time of forest methods. As we can see in Table 5, ERF achieves stably the second computation time on
each data set and often outperforms PRRF and SBART by magnitudes. It is reasonable that ERF is always worse than RF.
Also, we argue that ERF is implemented in pure python while RF is implemented by cython. This can also result in some
performance gaps.

We argue that the test stage of ERTR is highly parallelizable since the computation of fD,r(x) only involves samples in
A(x). Thus, we can use the divide and conquer strategy to distribute the computation tasks on each cell to t different
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Table 4. Average MSE over real data sets for boosting methods.
GBERTR GBRT GBSTRT GBPRT

ABA 4.64 4.82 4.47 4.72
AIR 2.88* 3.53 8.01 1.34e+1
ALG 2.13e-2 2.18e-2 3.32e-2 3.30e-2
BIAS 7.28e-1* 7.40e-1 1.33 1.67
CBM 2.71e-8 4.85e-9* 9.40e-6 4.70e-5
CCP 1.76e+1 1.06e+1 1.65e+1 1.77e+1
CPU 8.37 7.79 7.52 1.29e+1
DAK 3.40e-5 3.27e-5 3.09e-5 3.01e-5
FOR 4.13e+3 6.84e+3 8.66e+3 4.89e+3
MG 1.43e-2* 1.51e-2 1.47e-2 1.62e-2
WR 3.81e-1 3.73e-1 4.03e-1 3.90e-1
SPA 1.15e-2 1.25e-2 1.07e-2 1.36e-2
WW 4.20e-1 4.05e-1* 4.74e-1 5.05e-1

ranking sum 25 28 33 44

Table 5. Average running time (s) over real data sets for forest meth-
ods.

ERF RF PRRF SBART
ABA 1.01e+1 1.15 2.31e+2 5.94e+2
AIR 2.12 3.05e-1 8.07e+1 3.02e+2
ALG 9.28e-1 2.36e-1 1.09e+1 4.06e+1
BIAS 2.76e+1 6.23 4.45e+2 2.71e+3
CBM 2.78e+2 4.33 9.66e+2 -
CCP 5.17e+2 2.13 5.94e+2 1.61e+3
CPU 2.93e+1 3.80 5.65e+2 1.71e+3
DAK 8.74e-1 4.00e-1 2.79e+1 9.89e+1
FOR 1.15 2.98e-1 3.41e+1 6.12e+1
MG 2.49 5.62e-1 7.35e+1 2.46e+2
WR 4.18 9.56e-1 9.75e+1 2.16e+2
SPA 5.82 1.09 1.66e+2 4.50e+2
WW 1.85e+1 1.90 2.87e+2 9.19e+2

† The best results are bolded and the second best results are underlined. The best results with significance are marked with ∗.
‡ The running of SBART is corrupted on three data sets that are marked with -.

machines. Since no additional storage is needed, the space complexity remains O(nd) and the prediction computation time
is divided by t. In comparison, k nearest neighbors-based methods, if paralleled, require O(ndt) memory to achieve the
same computation time. Similarly, paralleled PR tree also has O(Kdt) storage. This means that, for large data sets, the
overhead of parallel computing caused by memory bandwidth restrictions is significantly smaller for ERTR than for PR tree.
Hence, ERTR is suitable for parallelism to promote computation speed.
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