
Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

Ruisi Cai 1 Zhenyu Zhang 1 Zhangyang Wang 1

1VITA Group, University of Texas at Austin

https://github.com/VITA-Group/Robust_Weight_Signatures

Abstract
Given a robust model trained to be resilient to one
or multiple types of distribution shifts (e.g., nat-
ural image corruptions), how is that “robustness”
encoded in the model weights, and how easily can
it be disentangled and/or “zero-shot” transferred
to some other models? This paper empirically sug-
gests a surprisingly simple answer: linearly - by
straightforward model weight arithmetic! We
start by drawing several key observations: (i) as-
suming that we train the same model architecture
on both a clean dataset and its corrupted version,
a comparison between the two resultant models
shows their weights to mostly differ in shallow
layers; (ii) the weight difference after projection,
which we call “Robust Weight Signature” (RWS),
appears to be discriminative and indicative of dif-
ferent corruption types; (iii) perhaps most strik-
ingly, for the same corruption type, the RWSs
obtained by one model architecture are highly con-
sistent and transferable across different datasets.

Based on those RWS observations, we propose a
minimalistic model robustness “patching” frame-
work that carries a model trained on clean data
together with its pre-extracted RWSs. In this
way, injecting certain robustness to the model
is reduced to directly adding the corresponding
RWS to its weight. We experimentally verify
our proposed framework to be remarkably (1)
lightweight. since RWSs concentrate on the shal-
lowest few layers and we further show they can be
painlessly quantized, storing an RWS is up to 13
× more compact than storing the full weight copy;
(2) in-situ adjustable. RWSs can be appended
as needed and later taken off to restore the intact
clean model. We further demonstrate one can

1Department of Electrical and Computer Engineering, Univer-
sity of Texas at Austin. Correspondence to: Zhangyang Wang
<atlaswang@utexas.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

linearly re-scale the RWS to control the patched
robustness strength; (3) composable. Multiple
RWSs can be added simultaneously to patch more
comprehensive robustness at once; and (4) trans-
ferable. Even when the clean model backbone is
continually adapted or updated, RWSs remain as
effective patches due to their outstanding cross-
dataset transferability.

1. Introduction
1.1. Background and Related Work

The robustness and safety of machine learning models have
become prevailing concerns for practitioners. Among many
other possible forms of safety risks such as adversarial at-
tacks (Madry et al., 2017; Zhang et al., 2019) and backdoor
attacks (Goldblum et al., 2022), one concern of particular
significance is the model’s resilience against various dis-
tribution shifts from training data (Koh et al., 2021). For
example, a computer vision model for autonomous driving
or video surveillance could be trained on relatively “clean”
and constrained data to achieve high performance on stan-
dard benchmarks. However, they are vulnerable to unfore-
seen distributional changes including natural corruptions
(e.g., due to camera noise, motion blur, adverse weather),
sensory perturbations (e.g., sensor transient error, electro-
magnetic interference), and larger domain shift forms (e.g.,
summer → winter, daytime → night) - hence jeopardizing
their trustworthiness and safe deployment.

Many solutions have since been examined to strengthen the
models’ robustness against unforeseen distribution shifts,
in particular natural image corruptions - which would be
the focus of this paper. Examples include data augmen-
tation (Hendrycks et al., 2021; 2019b; Rusak et al., 2020;
Wang et al., 2021), stability-aware training (Hein & An-
driushchenko, 2017; Zheng et al., 2016), leveraging pre-
trained models (Hendrycks et al., 2019a; Chen et al., 2020;
Jiang et al., 2020; Sun et al., 2021; Wortsman et al., 2022b)
or training on larger and more diverse datasets (Taori et al.,
2020; Nguyen et al., 2022). Among them, data augmenta-
tion is perhaps the most popular practice, as it is easy to

1

https://github.com/VITA-Group/Robust_Weight_Signatures


Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

implement and plug in. It also remains as the most empiri-
cally effective approach to gain comprehensive robustness to
various natural corruptions (Hendrycks et al., 2019b; Wang
et al., 2021), though at the cost of training time overhead.

Further complicating the problem is the inherent “trade-off”
between model standard accuracy and robustness, infor-
mally: the more “comprehensive” robustness that a model
strives to cover, the less “focused” it can fit the standard
clean data distribution. Firstly observed in (Tsipras et al.,
2019), the authors pointed out that adversarial training (AT)
(Madry et al., 2018), which utilizes adversarial samples as
a special data augmentation method, has also shown to im-
prove model robustness yet sacrificing the standard accuracy
on clean images. The same trade-off observation holds gen-
erally true for other data augmentation and stability-aware
training methods (Wang et al., 2021), essentially reflect-
ing the “bias-variance” trade-off. Practically, most defense
methods determine their accuracy-robustness trade-off by
some empirically hyper-parameter pre-chosen at training,
such as the coefficient weight between the standard and
robust classification losses for AT, or the strength of data
augmentations. Such methods will hence “pre-fix” achiev-
able standard and robust accuracies at training time, leaving
no flexibility to adjust for testing even if there is a demand.

In practical AI platforms especially at the edge, the de-
sired trade-off between standard and robust accuracies of-
ten varies adaptively depending on contexts, which are not
always met by the pre-fixed “default” settings. For exam-
ple, an autonomous agent might perceive using its “stan-
dard” mode for normal-environment operations (most of
the time), but switch to behaving more conservatively such
as when placed in less familiar or adverse environments.
Re-training the model, especially robustly, is notoriously
resource-consuming and impossible for in-situ adjustment.
Hence practitioners look for convenient means to explore
and flexibly calibrate the accuracy-robustness trade-off at
the testing time. Test-time adaption (Fleuret et al., 2021;
Croce et al., 2022) or ensembling (Liu et al., 2018) meth-
ods, though effective, will turn impractical when memory
and storage are in limited supply or the inference latency
is sensitive. The recent “once-for-all” AT methods (Wang
et al., 2020; Kundu et al., 2023) enable the network to adjust
to different input distributions nearly free of overheads, by
input-conditioning. However, all aforementioned methods
would compromise the achievable clean accuracy more or
less, in exchange for encapsulating more robustness in the
same model. Also most of them focus on adversarial attacks.

1.2. Our Aim and Contributions

This paper targets the “in-situ” adaptive robustness similarly
as defined in (Wang et al., 2020; Kundu et al., 2023), i.e., to
painlessly calibrate on the accuracy-robustness trade-off at

...
Standard
Model 

(I) Extract Robust
Weight Signatures

(II) Apply Robust
Weight Signatures

Orthogonal

Compress

Robust
Model +

Package 

Figure 1. Overview of our pipeline: Step (I): Extract Robust
Weight Signatures (RWSs) by comparing the difference between
robust models and standard models of shallow layers in the weight
space. Step (II): Patch non-robust models by RWSs as needed.

the test time, with minimal overhead in latency or memory.
Our problem setting and goal will yet differ in (1) focusing
on the comprehensive robustness against unforeseen natural
image corruptions (not adversarial attacks); and (2) not
impairing the standard accuracy on clean test images at all.

Our proposal is a minimalistic model robustness “patching”
framework that differs remarkably from the aforementioned
efforts. We are inspired by the recent findings on the linear
interpolatability between model weights (such as pre-trained
and fine-tuned) (Wortsman et al., 2022a;b; Li et al., 2022;
Ilharco et al., 2022a). Contrary to the common wisdom
of model output ensembling, (Wortsman et al., 2022a) pio-
neered averaging the weights of multiple fine-tuned models
directly, without incurring any additional inference or mem-
ory costs, that yield significantly improved “zero-shot” and
out-of-distribution generalization performance. Most rele-
vantly, (Ilharco et al., 2022a) demonstrated that such model
weight “arithmetic” can go beyond averaging: by comput-
ing the weight difference between a pre-trained model and
its downstream-task fine-tuned version (called a “task vec-
tor”); the resulting task vectors are noted to meaningfully
steer the behavior of neural networks: they can be modified
and combined together through arithmetic operations such
as negation and addition, e.g., adding multiple task vectors
together can improve performance on multiple tasks at once.

In view of those, we ask: in a robust model, how is that ”ro-
bustness” encoded in the model weight space, and how can
it be decoded, combined, or transferred? How would that
further help our in-situ adaptive robustness goal? Given a
standard model (trained on clean data) and its robust counter-
part (trained on corrupted versions of the same dataset), we
compare their difference to extract the “Robust Weight Sig-
nature” (RWS). It turns out that RWS lends a surprisingly

2



Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer Index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

 
2 

N
or

m
 (×

10
2 )

VGG-16, Tiny-ImageNet

Figure 2. On TinyImageNet and VGG-16, we visualize ℓ2 norms
of RWSs for each convolutional layer, indicating the non-robust
models and robust models mainly differ in the shallow layers.

effective, elegantly simple and flexible means to achieve
in-situ robustness, due to the following novel findings:

• Assuming a model trained on clean data together with
its pre-extracted RWSs to multiple image corruption
types, “patching” certain robustness to the model is
reduced to directly adding the corresponding RWS to
its weight. Any appended RWS can be later taken off
to switch back to the intact clean model: hence there is
no compromise of standard accuracy.

• RWSs are highly compressible since their large-
magnitude elements are dominantly in the lower layers.
We further show them to be robust to quantization as
well. Hence storing an RWS is up to 13× more com-
pact than the full weight copy, mitigating the storage
burden of carrying multiple pre-trained models.

• RWSs are extraordinarily controllable and combinable:
one can linearly re-scale an RWS to control the patched
robustness strength. Multiple RWSs can be added si-
multaneously to patch more comprehensive robustness
at once. Essentially, we demonstrate the task “arith-
metic” claims in (Ilharco et al., 2022a) to be generally
valid for multiple robustness types as well.

• Lastly and uniquely, we find that an RWS is not tied
with the standard model where it is subtracted. That
is, when the standard model is updated, continually
adapted, or even completely re-trained on a different
dataset, the RWS seems to be the same applicable to
the new model (same architecture). Such outstanding
cross-data transferability decouples the standard model
updating and robustness preservation, potentially sav-
ing training costs and boosting weight re-usability.

In what follows, we accompany our claims with experimen-
tal results, showing that RWSs extensively improve model
robustness to various natural image corruptions in a plug-
and-play manner, while demonstrating to be lightweight,
in-situ adjustable, composable, and transferrable.

2. Robust Weight Signatures: Concept Proofs
2.1. Definition and Notations

We compare non-robust and robust models in the weight
space, to investigate how robustness is encoded. To begin
with, model providers train a standard model θstd ∈ Rd on
a clean dataset, and multiple robust counterparts θcr ∈ Rd,
each with corruption type c, from the same initialization
θinit ∈ Rd used by θstd. We denote θstd − θinit as the base
direction vbase, which contains knowledge of fitting standard
dataset. For each corruption type c, we similarly compute
the robustifying direction vc = θcr − θinit, which is assumed
to contain the knowledge of resilience against corruption
c. We then disentangle the robustness-part knowledge with
the standard dataset-fitting knowledge, by subtracting vc’s
projection on vbase, from vc itself. We refer to the obtained
residual vector as a robust weight signature (RWS):

RWSc = vc − Pvbase
(vc), (1)

where Pvbase
(vc) denotes the projection operator from vc

onto the column space of vbase, implemented by matrix
pseudoinverse. The process of extracting RWS is also illus-
trated in the upper Figure 1.

Note that the projection-residual idea implies the (somewhat
gross) assumption that the “standard fitting knowledge” and
“robustness knowledge” are encoded nearly orthogonally
in the robust model weights. The use of projection Pvbase

also goes beyond the vanilla weight arithmetic regime in
(Ilharco et al., 2022a) who simply subtract one weight from
the other: we also tried the same and find it unable to extract
effective RWSs (especially poor in composition). We con-
jecture that is because the weight gap between {pre-trained,
fine-tuned} models (Ilharco et al., 2022a) is either smaller
or more linearly connected, compared to the weight gap
between {standard, robust} models in our case. We leave
the verification of these two open thoughts as future work.

Besides the above, we point out two other substantial differ-
ences between our RWSs and “task vectors” in (Ilharco et al.,
2022a). Firstly, RWSs exhibit a compact and compressible
structure (Sec. 2.2) which was not observed in task arith-
metic (Ilharco et al., 2022a). Secondly, we observe RWSs
to be consistent and transferrable across datasets (Sec 2.4),
echoing our conjecture that robustness is perhaps encoded
relatively independently of standard dataset content: the
finding has no counterpart in (Ilharco et al., 2022a) either.

Experimental Details. We use three datasets, CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and Tiny-ImageNet
(mnmoustafa, 2017), with two model architectures, VGG-16
(Simonyan & Zisserman, 2014) and ResNet-50 (He et al.,
2016). By default, we obtain a robust model, by training
with the corresponding type of data augmentations applied
to the clean dataset. All VGG-16 models use a learning rate

3



Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

(I) (V)(IV)(III)(II) (VI)

(VII) (XI)（X)(IX)(VIII) (XII)

Figure 3. Based on TinyImageNet and VGG-16, we visualize cosine similarities between different types of corruptions, at different layers.
Lighter colors indicate smaller cosine similarities. The roman numbers refer to the corresponding layer indexs. RWSs of different
corruption types are significantly more diverse in shallow layers.

of 0.01, while all ResNet-50 models use 0.001. We follow
the corruption types in (Hendrycks & Dietterich, 2019b)
and the corruption severity levels are set to be 5 (strongest)
for all experiments by default. Intentionally, neither adver-
sarial training nor more compositional augmentation was
involved, because we want to “purify” each RWS to cater
to one corruption type, facilitating our later experiments to
demonstrate their controllability and composition.

For the choice of common initialization θinit, we found that
the same random initialization did not suffice to manifest
the RWS phenomenon. That is understandable: compared
to fine-tuning the same pre-trained model (Ilharco et al.,
2022a), two models trained (standard or robustly) from
scratch could be far away in their weight space, even using
the same initialization and dataset, due to many randomness
factors in the much longer training process. To “anchor” the
standard and robust model weights to be meaningfully close
for RWS extraction, we explored two strategies: (1) use an
ImageNet pre-trained model1 as θinit, and train both standard
and robust models from there; (2) first train a standard model
from scratch, and use it as θinit to train all other robust
models from. Both are found to expose RWSs much better
and more stably, and we report results from the first option
by default due to its superior cross-dataset transferrability.

2.2. RWSs are Concentrated in Shallow Layers

Intuitively, many image corruption artifacts interfere with
the low-level features, inviting the natural guess: whether
the corruption fragility of standard models, and correspond-
ingly the robustness to them encoded by robust models, are
mainly encoded in shallow layers. Prior works have pre-
sented relevant findings. For example, (Huang et al., 2021)
observed that more parameters can improve robustness only

1https://pytorch.org/vision/stable/models.html

when added to the shallow layers. We experimentally vali-
date the hypothesis to be explicitly true.

Figures 2 and 3 visualize the norms (normalized to the same
layer’s standard weight norm, averaged across all corrup-
tion types) and diversities (cosine similarity across different
corruption types) of RWSs from each layer. Overall, RWSs
at shallower layers are (i) significantly larger in norm. For
example, the first five layers occupy more than 65% of total
norm energy for RWSs extracted from VGG-16 on Tiny-
Imagenet; (ii) significantly more diverse and discriminative
between corruption types. Both observations imply that
RWSs are more “informative” in shallow layers.

In all experiments hereinafter, we use RWSs in the shallow-
est five layers by default. This also leads us to aggressively
compress RWSs in Sec 3.1 for lightweight patching.

2.3. RWSs Recover Corruption Relationships

We now take a deeper dive from Figure 3, noting that dif-
ferent natural corruption types are not irrelevant. Instead,
corruptions are roughly categorized into four groups: noise,
blur, weather and digital (Hendrycks & Dietterich, 2019b).
(Yin et al., 2019) also found that different corruptions related
to different frequency domains. Corruptions within the same
group category or frequency range are more similar, and the
robustness against one corruption tends to help defend its
similar ones too. On the contrary, different categories of
corruptions may even offset each other’s robustness.

Interestingly, RWSs successfully recover the relations of
different corruption types. Figure 4 (left) visualizes the
cosine similarities between RWS of different corruption
types, which reflect the grouping identified in (Hendrycks
& Dietterich, 2019b). We also visualize the robust accuracy
gains to all other corruptions, when a robust model is trained

4



Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

solely on one corruption type and then directly tested on
other types: the results in Figure 4 (right) echo the former.

Figure 4. Left: cosine similarities between RWSs of different cor-
ruption types. Right: the robust accuracy gains to all other cor-
ruptions, between a robust model trained solely on one corruption
type and then tested on other types, and a standard model directly
applied. For example, each element in the row ‘defocus blur’ de-
notes the robust model trained with defocus blur and tested on
other corruption types (column) - how much accuracy improve-
ment or loss it will exhibit compared to the standard model. We
use TinyImageNet with VGG-16.

Elastic

Transform
Zoom

Blur
MotionBlur GlassBlur

G
aussian

Blur

D
efocus
B

lur

Sa
tu

ra
te

Sp
att

er

Brightness

SnowFrost

Fog
Spe

ck
le Nois

eSh
ot No

ise

Im
pu

lse

N
oi

se

G
au

ss
ia

n
N

oi
se

Jp
eg

Co
m

pr
es

sio
n

Pixelate 

Con
tra

st 

Elastic

Transform
Zoom

Blur
MotionBlur GlassBlur G

aussian

Blur

D
efocus
B

lur

Sa
tu

ra
te

Sp
att

er

Brightness

SnowFrost

Fog
Spe

ck
le Nois

eSh
ot No

ise

Im
pu

lse

N
oi

se

G
au

ss
ia

n
N

oi
se

Jp
eg

Co
m

pr
es

sio
n

Pixelate 

Con
tra

st 

Elastic

Transform
Zoom

Blur
MotionBlur GlassBlur G

aussian

Blur

D
efocus
B

lur

Sa
tu

ra
te

Sp
att

er

Brightness

SnowFrost

Fog
Spe

ck
le Nois

eSh
ot No

ise

Im
pu

lse

N
oi

se

G
au

ss
ia

n
N

oi
se

Jp
eg

Co
m

pr
es

sio
n

Pixelate 

Con
tra

st 

 CIFAR-10 & CIFAR-10  CIFAR-10 & Tiny-ImageNet CIFAR-10 & CIFAR-100

Figure 5. Same-corruption (orange circles) and cross-corruption
cosine similarities (green circles) between RWSs extracted from:
(left) CIFAR-10 & CIFAR-10; (middle) CIFAR-10 & CIFAR-
100; (right) CIFAR-10 & TinyImageNet. The same-corruption
similarity is computed between RWSs found on two datasets but
of the same corruption type. The cross-corruption similarity is
computed as the average of cosine similarities between the current
corruption type’s RWS, and every other type’s RWS.

2.4. RWSs are Relatively Consistent across Datasets

Now one more step further: we compare RWSs generated
from different datasets. We are hopeful because of the
(gross) assumption made back in Sec. 2.1: the standard fit-
ting and the robustness are relatively independent in weights.
Figure 5 partially confirms our hypothesis that RWS found
from different datasets are relatively consistent.

We first notice the same-corruption RWS cosine similari-
ties across datasets to be consistently high. For example,
between CIFAR-10 and CIFAR-100 (Figure 5 middle sub-
figure), all same-corruption similarities are larger than 0.5,
and some reach 0.8. Even comparing CIFAR-10 and Tiny-
ImageNet (right) whose dataset statistics vary a lot, the
same-corruption similarities are still all above 0.3 and some-
times reach 0.5. That implies the potential existence of

“universal model robustifying directions” which is even ag-
nostic to standard model weights.

On the other hand, the cross-corruption similarities remain
consistent in the value range (most between 0.1 and 0.2), and
more importantly, seem to preserve the relative similarity
“ranking” to some extent. For example, ‘Impulse noise’
and ‘Saturate’ have constantly the lowest cross-corruption
similarities with others, while ‘Zoom blur’ ‘Forst’ ‘Defocus
Blur’‘Gaussian Blur’ and ‘JPEG compression” are some of
the consistent top rankers. We should note that this ranking
consistency is imperfect: for example, ‘Gaussian Noise’ is
a high-ranker in the left and middle subfigures, but low on
the right; while ‘Contrast’ makes a vice versa case.

3. An In-Situ Robustness Patching Framework
Back to the main problem: how to achieve in-situ robust-
ness? The aforementioned characteristics indicate the RWS
involves discriminative and generalizable robust features,
lending itself a promising option for direct weight patching
on non-robust standard models. Given a standard model
(trained on clean data) and its multiple robust counterparts
(each trained on a corrupted version of the same dataset), we
can store a single standard model and multiple RWSs. When
needed, the robustness patching could be done immediately,
by adding an RWS on standard model weight to create a
patched model θcpatch with extra robustness on corruption c:

θcpatch = θstd + α ∗ RWSc (2)

The appended RWS can be taken off any time to switch
back to the intact standard model: hence there is no compro-
mise of standard accuracy. α is a coefficient to adjust the
“strength” of the added robustness (Sec. 3.2), and the above
equation could be extended to the weighted composition of
multiple θcpatchs with different corruptions c (Sec. 3.3).

More Related Work on “Patching” We shall credit ex-
isting literature that has studied model patching or similar
notions. In general, many efforts have been invested to ef-
ficiently for altering a model’s behavior with post-training
interventions, but without re-training. This stream of work
may bear various names, such as patching (Goel et al., 2020;
Ilharco et al., 2022b; Murty et al., 2022), editing (Mitchell
et al., 2021; 2022; Santurkar et al., 2021), aligning (Askell
et al., 2021; Kasirzadeh & Gabriel, 2022; Ouyang et al.,
2022), debugging (Geva et al., 2022; Ribeiro & Lundberg,
2022; Ilyas et al., 2022), steering (Subramani et al., 2022),
or reprogramming (Elsayed et al., 2018; Tsai et al., 2020;
Hambardzumyan et al., 2021; Zhang et al., 2022). Those
can operate on input, output, or weight levels, and many will
take extra training or optimization steps. Several of them
explored weight interpolation between a pre-trained model
and its fine-tuned version, to either improve the fine-tuned
model’s distributional shift robustness (Wortsman et al.,

5



Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

2022b), or learn new specific tasks better without affecting
other learned tasks (Ilharco et al., 2022b).

The most relevant work to us is the task vector arithmetic
(Ilharco et al., 2022a), which uniquely adds, scales, deletes
or composes model capabilities, by applying vectors in the
weight space of pre-trained models. Their method is mod-
ular and efficient by re-using fine-tuned models, and does
not modify the standard fine-tuning procedure. However,
(Ilharco et al., 2022a) as well as (Wortsman et al., 2022b; Il-
harco et al., 2022b) focus on the fine-tuning setting and rely
on large pre-trained models, while ours dig into a brand-new
context. In Sec. 2.1, we have also explained a few more
differences between RWSs and task vectors in (Ilharco et al.,
2022a), in both methodology and key findings.

Next, we present a series of experiments to demonstrate
the key advantages of our patching, namely, lightweight,
in-situ adjustable, composable, and transferrable.

3.1. Lightweight

The first sanity check question is: why not store multiple
robust models directly, but their weight differences? The
answer: those differences are much more compressible and
incur much less storage overhead. The storage efficiency of
RWS is achieved by two aspects: (1) as analyzed in Sec 2.2,
we only use RWSs shallow layers, which usually contain
much fewer parameters than latter layers; (2) we verify that
RWS can further be compressed by quantization.

We follow the same setting in Sec 2.1 to construct RWSs
and then follow Equation 2 to robustify the model. We set
α as 1 by default. Our results are presented in Table 1. We
provide several RWS options for patching standard mod-
els, including: (1) RWSfull: RWSs from all layers are used.
(2) RWSshallow: RWSs are only kept from the shallowest
five layers (default). (3) RWSshallow,16bit: RWSshallow fur-
ther quantized to 16 bit. (4) RWSshallow,8bit: RWSshallow
further quantized to 8 bit. We also include three baselines:
‘Standard’ is the model trained on clean data only; ‘Data
Augmentation’ is the robust model trained with all 19 cor-
ruption types seen as training data augmentations; and ‘All
Models’ denotes the ensemble option, i.e., storing the stan-
dard model as well as 19 robust models (each dedicatedly
trained with one corruption type) together. Note that ‘All
Models’ baseline assumes always using the right dedicated
model in each situation (clean, or one of the 19 corrupted).
Hence it effectively makes the performance “upper bound”
for all methods, though at the heaviest storage overhead.
Meanwhile, ‘Data Augmentation’ substantially boosts the
corruption robustness without any storage overhead, but
sacrifices the clean data performance meanwhile.

All RWS variations show significant effectiveness in ro-
bustifying standard models while retaining/recovering the
standard accuracy when taking off RWSs. RWSshallow,16bit

achieve a decent trade-off between storage cost and robust-
ness; with only 20% ∼ 40% storage cost increment than
‘Standard’ or ‘Data Augmention’, the method is able to
(1) improve 30% ∼ 88% averaged robustness gain across
four cases, compared to the standard baseline; and (3) con-
sistently outperform the “Data Augmentation’ baseline in
achievable TA-RA trade-offs, RWSshallow,8bit further boosts
the storage efficiency with small RA losses from 16-bit (es-
pecially, negligible on ResNet-50 + Tiny-ImageNet). More
detailed comparisons and baseline results are in Appendix.

VGG-16, CIFAR-10 VGG-16, CIFAR-100

VGG-16, Tiny-ImageNet ResNet-50, Tiny-ImageNet

Figure 6. Robustness trends (we select a few representative corrup-
tions types) when altering the number of shallowest layers used
for RWS construction. We also plot the used parameter ratios.
We further alter the number of layers used for construct-
ing RWS and plot the average robust accuracy of patched
models (left bar of each subfigure), accompanied by the
corresponding ratio of parameters participated (right bar).
Figure 6 shows that: (1) the robustness of patched VGG
models does not benefit from using more layers in extracting
RWSs, and actually will be “backfired” when more latter
layers are included; (2) ResNet models also see saturation
effects on the robustness of most corruption types, after
more than 5 layers are used. Both imply the high-level fea-
tures have little to do with robustness encoding, and justify
our design choice of using only the shallowest few layers.

3.2. In-Situ Adjustable

RWSs can be not only applied to patch a single robust model
per corruption: they can even adapt to any corruption lev-
els (e.g. different visibility in the fog weather) by linearly
re-scaling, easily achieving the smooth trade-off between
standard and robustness performances in one same model
(note this is different from adding/taking off an RWS, which
is essentially switching between two models). This can be
achieved by adjusting the coefficient α ∈ [0, 1] in Equa-
tion 2: essentially, that is interpolating the (shallow layers’)

6



Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

Table 1. Comparison of RWS-based methods and other options. We consider 19 corruption types in (Hendrycks & Dietterich, 2019b).
“RA” refers to averaged accuracy on all kinds of corrupted data, while “TA” refers to the test accuracy in the standard setting. Nparam

denotes the total model storage size (in MBs). Note that in the RWS-based pipeline, we report “TA” for the model when the RWSs are
taken off (hence fully recovering the standard model); and report “RA” when the corresponding RWS is patched per corruption. This is an
ideal case of using RWS patching - and its rationale and limitations will be both discussed in Sec. 4. Similarly, as a fair comparison, the
‘All Models’ baseline assumes we always use the right dedicated standard/robust model in each clean/corrupted situation, too.

Methods
CIFAR-10 CIFAR-100 Tiny-ImageNet

VGG-16 VGG-16 VGG-16 ResNet-50

Nparam (MB) TA (%) RA (%) Nparam (MB) TA (%) RA (%) Nparam (MB) TA (%) RA (%) Nparam (MB) TA (%) RA (%)

Standard 58.8 92.59 65.44 58.8 71.44 36.76 59.2 61.28 23.58 95.7 65.72 29.65

Data Augmentation 58.8 89.58 84.34 58.8 67.34 56.95 59.2 52.11 43.64 95.7 59.17 47.96
All Models 1177.6 (20×) 92.59 88.97 1177.6 (20×) 71.44 64.72 1184.0 (20×) 61.28 51.55 1913.6 (20×) 65.72 55.97

Standard+RWSFull 1177.6 (20×) 92.59 75.35 1177.6 (20×) 71.44 52.58 1184.0 (20×) 61.28 43.63 1913.6 (20×) 65.72 53.64
Standard+RWSShallow 101.0 (1.7×) 92.59 84.86 101.0 (1.7×) 71.44 58.78 101.4 (1.7×) 61.28 44.66 131.4 (1.4×) 65.72 52.84
Standard+RWSShallow,16bits 79.9 (1.4×) 92.59 84.76 79.9 (1.4×) 71.44 58.62 80.3 (1.4×) 61.28 44.25 113.6 (1.2×) 65.72 52.81
Standard+RWSShallow,8bits 69.4 (1.2×) 92.59 82.99 69.4 (1.2×) 71.44 53.52 69.7 (1.2×) 61.28 39.40 104.7 (1.1×) 65.72 52.79

Figure 7. Effect of α on the robustness of the patched model under
different types and severity levels of corrupted data. Green bars,
brown bars, dark brown bars represent clean accuracy, robust accu-
racy under the corruption of severity level 3, and robust accuracy
under the corruption of severity level 5, respectively.

weights between the standard and robust models.

To validate, we test the patched model on corrupted data
with different severity levels (as defined in (Hendrycks &
Dietterich, 2019a)). As in Figure 7, for instance on CIFAR-
10 and VGG-16, patched models always achieve the best
performance at the severity level 5 (strongest corruptions)
when α = 0.9 or 1. When the severity level is set to 3, the
patched model performs the best when α = 0.6. Meanwhile,
the standard accuracy gracefully decays as α increases.

3.3. Composable

Usually, images do not just suffer from a single type of
corruption. To resist compound natural corruptions, RWSs
can also be linearly composed to form a model of multi-
corruption robustness, by extending Equation 2 to adding
multiple RWSs, each with their own αs. The previous in-

0.4

Gaussia
n

Blur

0.3
C

ontrast 

0.3Fog 

0.
4 

M
ot

io
n

B
lu

r 

Clean Others
 

0.2

Gaussia
n

Blur

0.5
C

ontrast 

0.5Fog 

0.
2 

M
ot

io
n

B
lu

r 

Clean Others
 

0.25

Gaussia
n

Blur

0.4
C

ontrast 

0.5Fog 

0.
3 

M
ot

io
n

B
lu

r 

Clean Others
 

0.3

Gaussia
n

Blur

0.3
C

ontrast 

0.3Fog 

0.
75

 M
ot

io
n

B
lu

r 
Clean Others

 

Figure 8. Visualization of robustness improvements when adding
multiple RWSs together. On VGG-16 and Tiny-ImageNet, we add
4 different RWSs of “motion blur”, “gaussian blur”, “fog” and
“contrast” together. By changing their coefficients, we can obtain
robust models with different specialties, with minimal loss of clean
accuracy and robustness on other corruption types.

situ adjustment could also be seen as a special case. We
can even control the linear combination coefficient to obtain
models with different “robustness specialties”. Figure 8
shows that by composing RWSs with different coefficients,
one can construct a wide range of models with different
strengths at simultaneously tackling diverse corruptions.
That leads us to an “infinite pool” of possible models, by
just re-composing a small pool of RWSs and no re-training.

The composable property of RWSs reminds the weight in-
terpolation between two different models (Izmailov et al.,
2018; Zhao et al., 2020; Ilharco et al., 2022b; Wortsman
et al., 2022a;b; Choshen et al., 2022), yet composing natural
corruption robustness seems a new theme. Note that though,
the construction of RWSs needs to first remove the robust
weight’s projection onto the standard weight column space,

7



Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

St
an

da
rd

Pa
tc

he
d 

St
an

da
rd

Pa
tc

he
d 

Layer I Clean Image Layer II 

Layer I w. Contrast Layer II 

St
an

da
rd

Pa
tc

he
d 

St
an

da
rd

Pa
tc

he
d 

Layer I w. Impulse Noise Layer II 

Layer I Clean Image Layer II 

Figure 9. The comparison of the patched model and the standard model’s feature maps given the same input sample shows our RWS
patching method meaningfully equips the model with resistance to different types of corruptions.

Table 2. Robustness gains when applying RWSs extracted from
small datasets (CIFAR-10, CIFAR-100, Tiny-ImageNet) to full
ImageNet models. Robust accuracy is evaluated on ImageNet
and averaged on all kinds of corrupted data. All models use the
VGG-16 architecture. DataAugmentation1 use the same FLOPS
as the overhead of extracting RWS based on CIFAR-10 models,
while DataAugmentation2 use the same FLOPS as the RWS
extraction based on TinyImageNet models.

Method Robust Accuracy (%)

Standard 11.14

DataAugmentation1 11.01 (↓ 0.13)
DataAugmentation2 14.52 (↑ 3.38)

Standard + RWSCIFAR−10 13.47 (↑ 2.33)
Standard + RWSCIFAR−100 14.55 (↑ 3.41)
Standard + RWSTiny−Imagenet 17.53 (↑ 6.39)

hence composing RWSs does not naively equal interpolating
their source robust model weights.

3.4. Transferable

Lastly, the cross-dataset consistency of RWSs as analyzed
in Sec 2.4 motivates us to study if an RWS found from
one dataset can be reused for the same architecture trained
on a different dataset, to transfer robustness to the latter
“for free”. Table 3 confirms this possibility. Despite the
training data domain shift of the standard model, RWSs
stay effective for patching robustness in a “zero-shot” man-
ner. Unsurprisingly also, smaller gaps will render the RWS

transfer more effective. For example, the robustness gain of
CIFAR-100 by patching CIFAR-10 RWSs is clearly larger
than the Tiny-ImageNet gain by patching the same.

In addition, the strong transferability implies the tantalizing
possibility of gaining robustness efficiently by “transferring”
RWSs from small to large datasets. Specifically, direct ro-
bust training with data augmentations on large datasets such
as ImageNet can be resource-demanding. Instead, one can
first extract RWSs by robust-training over smaller datasets
(e.g. CIFAR-10 or TinyImageNet), and subsequently, trans-
fer them to “patching” the same model architecture standard-
trained on the target large dataset. The results, as presented
in Table 2, demonstrate that the “out of the box” application
of RWS can lead to significant gains in ImageNet robust-
ness, especially when RWS is obtained from TinyImageNet
(whose distribution is the most similar to ImageNet).

Table 3. Transferring RWSs across datasets. For three non-robust
models trained on CIFAR-10, CIFAR-100 and Tiny-ImageNet (by
columns), we patch RWSs generated from CIFAR-10, CIFAR-100,
and Tiny-ImageNet (by rows), respectively, for injecting zero-
shot robustness. The robust accuracies are averaged across 19
corruptions/19 RWSs. We use the VGG-16 model here.

Methods Robust Accuracy (%)

CIFAR-10 CIFAR-100 Tiny-ImageNet

Standard 65.44 36.76 23.58

Standard + RWSCIFAR−10 84.76 (↑ 19.32) 55.65 (↑ 18.89) 32.23 (↑ 8.65)
Standard + RWSCIFAR−100 83.01 (↑ 17.57) 58.62 (↑ 21.86) 33.17 (↑ 9.59)
Standard + RWSTiny−ImageNet 71.43 (↑ 5.99) 44.94 (↑ 8.18) 44.25 (↑ 20.67)

8



Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

3.5. Feature Map Visualization

Besides, we compare feature maps of standard and patched
models in Figure 9, to understand what information is actu-
ally patched. Using TinyImageNet and VGG-16, we visu-
alize feature maps after the second and third convolutional
layers (denoted as “Layer I” and “Layer II”, respectively).
The visualizations show that RWSs bring in meaningful
feature adjustments to be resilient to corruption types. For
example, to tackle reduced contrast, the patched model be-
comes more sensitive to edges, while the model patched for
impulse noise picks up less high-frequency outlier features.

4. Conclusion and Limitations
Our work is dedicated to investigating how natural corrup-
tion “robustness” is encoded in weights and how to disen-
tangle/transfer them. We introduce “Robust Weight Signa-
ture”(RWS), which nontrivially generalizes the prior wis-
dom in model weight interpolation and arithmetic, to ana-
lyzing standard/robust models, with both methodological
innovations and new key findings. RWSs lead to a pow-
erful in-situ model patching framework to easily achieve
on-demand robustness towards a wide range of corruptions.

Current RWS patching faces one limitation that we must
point out: in Table 1, the superior TA/RA trade-offs
achieved by RWS methods are based on the perfect “or-
acle” knowledge: (1) the type of corruption is being han-
dled, i.e., when to add or take off the “correct” RWSs. (2)
the corruption severity is being handled, i.e., the choice of
hyperparameter α when applying RWSs. This assumption
is in line with the “once-for-all” AT methods (Wang et al.,
2020; Kundu et al., 2023), which requires a human oracle
to control a test-time hyperparameter to implicitly state the
desired RA-TA trade-offs in contexts. Practically, that can
be implemented by referring to environment sensors or other
domain classification change or detection methods. We also
ensure our fair comparison with “All Models” baseline in
Table 1 by using the same ideal oracle.

One future work of immediate interest would be to examine
RWS patching under a practical imperfect oracle (e.g., a
trained corruption domain classifier that might predict in-
correctly, hence applying inexact RWSs). We hypothesize
the overall performance drop will be mild though, since an
RWS trained for one corruption type can boost robustness
against other “similar” corruptions too (see Sec. 2.3).

References
Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D.,

Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma,
N., et al. A general language assistant as a laboratory for
alignment. arXiv preprint arXiv:2112.00861, 2021.

Chen, T., Liu, S., Chang, S., Cheng, Y., Amini, L.,

and Wang, Z. Adversarial robustness: From self-
supervised pre-training to fine-tuning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 699–708, 2020.

Choshen, L., Venezian, E., Slonim, N., and Katz, Y. Fusing
finetuned models for better pretraining. arXiv preprint
arXiv:2204.03044, 2022.

Croce, F., Gowal, S., Brunner, T., Shelhamer, E., Hein,
M., and Cemgil, T. Evaluating the adversarial robust-
ness of adaptive test-time defenses. arXiv preprint
arXiv:2202.13711, 2022.

Elsayed, G. F., Goodfellow, I., and Sohl-Dickstein, J. Adver-
sarial reprogramming of neural networks. arXiv preprint
arXiv:1806.11146, 2018.

Fleuret, F. et al. Test time adaptation through perturbation
robustness. In NeurIPS 2021 Workshop on Distribution
Shifts: Connecting Methods and Applications, 2021.

Geva, M., Caciularu, A., Dar, G., Roit, P., Sadde, S., Shlain,
M., Tamir, B., and Goldberg, Y. Lm-debugger: An inter-
active tool for inspection and intervention in transformer-
based language models. arXiv preprint arXiv:2204.12130,
2022.

Goel, K., Gu, A., Li, Y., and Ré, C. Model patching: Closing
the subgroup performance gap with data augmentation.
arXiv preprint arXiv:2008.06775, 2020.

Goldblum, M., Tsipras, D., Xie, C., Chen, X.,
Schwarzschild, A., Song, D., Madry, A., Li, B., and
Goldstein, T. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2022.

Hambardzumyan, K., Khachatrian, H., and May, J. Warp:
Word-level adversarial reprogramming. arXiv preprint
arXiv:2101.00121, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hein, M. and Andriushchenko, M. Formal guarantees on the
robustness of a classifier against adversarial manipulation.
Advances in neural information processing systems, 30,
2017.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. arXiv preprint arXiv:1903.12261, 2019a.

9



Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and pertur-
bations. Proceedings of the International Conference on
Learning Representations, 2019b.

Hendrycks, D., Lee, K., and Mazeika, M. Using pre-training
can improve model robustness and uncertainty. In Interna-
tional Conference on Machine Learning, pp. 2712–2721.
PMLR, 2019a.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer,
J., and Lakshminarayanan, B. Augmix: A simple data
processing method to improve robustness and uncertainty.
In International Conference on Learning Representations,
2019b.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F.,
Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M.,
et al. The many faces of robustness: A critical analysis of
out-of-distribution generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 8340–8349, 2021.

Huang, H., Wang, Y., Erfani, S., Gu, Q., Bailey, J., and
Ma, X. Exploring architectural ingredients of adversar-
ially robust deep neural networks. Advances in Neural
Information Processing Systems, 34:5545–5559, 2021.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururangan, S.,
Schmidt, L., Hajishirzi, H., and Farhadi, A. Editing mod-
els with task arithmetic. arXiv preprint arXiv:2212.04089,
2022a.

Ilharco, G., Wortsman, M., Gadre, S. Y., Song, S., Hajishirzi,
H., Kornblith, S., Farhadi, A., and Schmidt, L. Patching
open-vocabulary models by interpolating weights. arXiv
preprint arXiv:2208.05592, 2022b.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Understanding predictions with data and
data with predictions. In International Conference on
Machine Learning, pp. 9525–9587. PMLR, 2022.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G. Averaging weights leads to
wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Jiang, Z., Chen, T., Chen, T., and Wang, Z. Robust pre-
training by adversarial contrastive learning. Advances
in Neural Information Processing Systems, 33:16199–
16210, 2020.

Kasirzadeh, A. and Gabriel, I. In conversation with artifi-
cial intelligence: aligning language models with human
values. arXiv preprint arXiv:2209.00731, 2022.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on
Machine Learning, pp. 5637–5664. PMLR, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kundu, S., Sundaresan, S., Pedram, M., and Beerel, P. A.
Float: Fast learnable once-for-all adversarial training for
tunable trade-off between accuracy and robustness. In
Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pp. 2349–2358, 2023.

Li, M., Gururangan, S., Dettmers, T., Lewis, M., Althoff, T.,
Smith, N. A., and Zettlemoyer, L. Branch-train-merge:
Embarrassingly parallel training of expert language mod-
els. arXiv preprint arXiv:2208.03306, 2022.

Liu, X., Cheng, M., Zhang, H., and Hsieh, C.-J. Towards
robust neural networks via random self-ensemble. In
Proceedings of the European Conference on Computer
Vision (ECCV), pp. 369–385, 2018.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Man-
ning, C. D. Fast model editing at scale. arXiv preprint
arXiv:2110.11309, 2021.

Mitchell, E., Lin, C., Bosselut, A., Manning, C. D., and
Finn, C. Memory-based model editing at scale. In Inter-
national Conference on Machine Learning, pp. 15817–
15831. PMLR, 2022.

mnmoustafa, M. A. Tiny imagenet, 2017. URL
https://kaggle.com/competitions/
tiny-imagenet.

Murty, S., Manning, C. D., Lundberg, S., and Ribeiro, M. T.
Fixing model bugs with natural language patches. arXiv
preprint arXiv:2211.03318, 2022.

Nguyen, T., Ilharco, G., Wortsman, M., Oh, S., and Schmidt,
L. Quality not quantity: On the interaction between
dataset design and robustness of clip. arXiv preprint
arXiv:2208.05516, 2022.

10

https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet


Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., et al. Training language models to fol-
low instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Ribeiro, M. T. and Lundberg, S. Adaptive testing and debug-
ging of nlp models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 3253–3267, 2022.

Rusak, E., Schott, L., Zimmermann, R. S., Bitterwolf, J.,
Bringmann, O., Bethge, M., and Brendel, W. A simple
way to make neural networks robust against diverse image
corruptions. In European Conference on Computer Vision,
pp. 53–69. Springer, 2020.

Santurkar, S., Tsipras, D., Elango, M., Bau, D., Torralba, A.,
and Madry, A. Editing a classifier by rewriting its predic-
tion rules. Advances in Neural Information Processing
Systems, 34:23359–23373, 2021.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Subramani, N., Suresh, N., and Peters, M. E. Extracting
latent steering vectors from pretrained language models.
In Findings of the Association for Computational Linguis-
tics: ACL 2022, pp. 566–581, 2022.

Sun, J., Cao, Y., Choy, C., Yu, Z., Xiao, C., Anandkumar,
A., and Mao, Z. M. Improving adversarial robustness
in 3d point cloud classification via self-supervisions. In
International Conference on Machine Learning Workshop
(ICMLW), volume 1, 2021.

Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., and
Schmidt, L. Measuring robustness to natural distribu-
tion shifts in image classification. Advances in Neural
Information Processing Systems, 33:18583–18599, 2020.

Tsai, Y.-Y., Chen, P.-Y., and Ho, T.-Y. Transfer learning
without knowing: Reprogramming black-box machine
learning models with scarce data and limited resources.
In International Conference on Machine Learning, pp.
9614–9624. PMLR, 2020.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy. In
International Conference on Learning Representations,
number 2019, 2019.

Wang, H., Chen, T., Gui, S., Hu, T., Liu, J., and Wang, Z.
Once-for-all adversarial training: In-situ tradeoff between
robustness and accuracy for free. Advances in Neural
Information Processing Systems, 33:7449–7461, 2020.

Wang, H., Xiao, C., Kossaifi, J., Yu, Z., Anandkumar, A.,
and Wang, Z. Augmax: Adversarial composition of ran-
dom augmentations for robust training. Advances in neu-
ral information processing systems, 34:237–250, 2021.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned mod-
els improves accuracy without increasing inference time.
In International Conference on Machine Learning, pp.
23965–23998. PMLR, 2022a.

Wortsman, M., Ilharco, G., Kim, J. W., Li, M., Kornblith,
S., Roelofs, R., Lopes, R. G., Hajishirzi, H., Farhadi, A.,
Namkoong, H., et al. Robust fine-tuning of zero-shot
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7959–
7971, 2022b.

Wu, H., Judd, P., Zhang, X., Isaev, M., and Micikevi-
cius, P. Integer quantization for deep learning infer-
ence: Principles and empirical evaluation. arXiv preprint
arXiv:2004.09602, 2020.

Yin, D., Gontijo Lopes, R., Shlens, J., Cubuk, E. D., and
Gilmer, J. A fourier perspective on model robustness
in computer vision. Advances in Neural Information
Processing Systems, 32, 2019.

Zhang, G., Zhang, Y., Zhang, Y., Fan, W., Li, Q., Liu, S.,
and Chang, S. Fairness reprogramming. arXiv preprint
arXiv:2209.10222, 2022.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.

Zhao, P., Chen, P.-Y., Das, P., Ramamurthy, K. N., and Lin,
X. Bridging mode connectivity in loss landscapes and
adversarial robustness. arXiv preprint arXiv:2005.00060,
2020.

Zheng, S., Song, Y., Leung, T., and Goodfellow, I. Im-
proving the robustness of deep neural networks via sta-
bility training. In Proceedings of the ieee conference on
computer vision and pattern recognition, pp. 4480–4488,
2016.

11



Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?

A. More Experimental Results
A.1. Detailed Results on All 19 Corruption Types

To supplement Table 1, we provide the detailed experimental results of all corruption types in Table 4, which shows
our consistent improvements in the RAs of all corruption types. We use RWSshallow,16bit for model patching: RWS are
constructed by the shallowest five layers with 16-bit quantization.

Table 4. Detailed experimental results showing robustness improvements on all 19 corruption types in (Hendrycks & Dietterich, 2019b).

Corruptions
CIFAR-10 CIFAR-100 Tiny-ImageNet

VGG-16 VGG-16 VGG-16 ResNet-50

w.o. RWS (%) w. RWS (%) Diff. w.o. RWS (%) w. RWS (%) Diff. w.o. RWS (%) w. RWS (%) Diff. w.o. RWS (%) w. RWS (%) Diff.

Brightness 88.41 90.87 ↑ 2.46 60.85 67.06 ↑ 6.21 30.33 49.41 ↑ 19.08 37.96 56.61 ↑ 18.65
Contrast 41.29 78.77 ↑ 37.48 16.11 60.72 ↑ 44.61 1.88 19.30 ↑ 17.42 1.88 28.55 ↑ 26.67

Defocus Blur 66.92 87.14 ↑ 20.22 37.55 61.51 ↑ 23.96 7.01 34.91 ↑ 27.90 26.09 51.03 ↑ 24.94
elastic Transform 78.38 81.93 ↑ 3.55 49.74 56.01 ↑ 6.27 35.06 48.15 ↑ 13.09 41.60 56.12 ↑ 14.52

Fog 61.40 80.57 ↑ 19.17 30.18 62.33 ↑ 32.15 27.59 53.51 ↑ 25.92 20.51 56.23 ↑ 35.72
Frost 70.65 84.89 ↑ 14.24 40.73 56.80 ↑ 16.07 38.40 51.22 ↑ 12.82 42.23 56.47 ↑ 14.24

Gaussian Blur 56.63 86.71 ↑ 30.08 30.80 60.91 ↑ 30.11 8.82 40.75 ↑ 31.93 29.28 54.07 ↑ 24.79
Gaussian Noise 50.92 82.08 ↑ 31.16 24.79 52.83 ↑ 28.04 12.37 42.38 ↑ 30.01 15.29 51.86 ↑ 36.57

Glass Blur 56.36 78.55 ↑ 22.19 25.54 48.48 ↑ 22.94 5.92 20.89 ↑ 14.97 15.39 39.11 ↑ 23.72
Impulse Noise 39.82 77.24 ↑ 37.42 12.01 49.35 ↑ 37.34 6.36 37.77 ↑ 31.41 7.98 46.22 ↑ 38.24

Jpeg Compression 80.72 84.26 ↑ 3.54 51.18 53.71 ↑ 2.53 51.23 54.16 ↑ 2.93 57.80 60.47 ↑ 2.67
Motion Blur 68.98 86.88 ↑ 17.90 40.88 61.42 ↑ 20.54 23.63 47.35 ↑ 23.72 34.59 57.58 ↑ 22.99

Pixelate 63.92 87.24 ↑ 23.32 36.09 62.05 ↑ 25.96 48.84 53.41 ↑ 4.57 53.48 60.51 ↑ 7.03
Saturate 85.27 91.30 ↑ 6.03 53.55 66.47 ↑ 12.92 23.97 46.37 ↑ 22.40 29.70 52.73 ↑ 23.03

Shot Noise 54.38 84.97 ↑ 30.59 27.57 54.81 ↑ 27.24 16.17 46.38 ↑ 30.21 18.74 53.98 ↑ 35.24
Snow 78.42 87.49 ↑ 9.07 48.18 59.75 ↑ 11.57 34.92 50.94 ↑ 16.02 37.98 56.06 ↑ 18.08

Spatter 74.36 88.18 ↑ 13.82 41.22 62.98 ↑ 21.76 40.99 55.31 ↑ 14.32 46.07 57.04 ↑ 10.97
Speckle Noise 55.86 85.26 ↑ 29.40 27.81 54.82 ↑ 27.01 18.31 47.48 ↑ 29.17 20.28 54.39 ↑ 34.11

Zoom Blur 70.63 86.02 ↑ 15.39 43.60 61.81 ↑ 18.21 16.20 41.13 ↑ 24.93 26.45 54.34 ↑ 27.89

Average 65.44 84.76 ↑ 19.32 36.76 58.62 ↑ 21.86 23.58 44.25 ↑ 20.67 29.65 52.81 ↑ 23.16

A.2. Compressibility: Full models versus RWSs under Quantization

As is shown in Table 5, full model weights are less compressible compared to RWSs, which suggests RWS-based methods
to more easily achieve better storage efficiency. When applying the linear 16-bit quantization (Wu et al., 2020) to the full
model weights, both the standard accuracy and natural corruption robustness have already degraded heavily. This is in stark
contrast to RWSs which can retain most of their performance under the same quantization (16-bit) or even heavier (8-bit).

Note that we focus our study to provide the proof of concept that “RWSs are more easily amendable to quantization”. We
do not exclude the possibility that more sophisticated, robustness-aware quantization methods will sustain the robustness
performance under heavy quantization, but further testing or developing such algorithms is out of this paper’s scope.

Table 5. The standard and robust accuracy changes when applying different levels of quantization, showing the superior compressiblity of
RWS-based methods.

Methods
CIFAR-10 CIFAR-100 Tiny-ImageNet

VGG-16 VGG-16 VGG-16 ResNet-50

Nparam (MB) TA (%) RA (%) Nparam (MB) TA (%) RA (%) Nparam (MB) TA (%) RA (%) Nparam (MB) TA (%) RA (%)

Standard (32 bit) 58.8 92.59 65.44 58.8 71.44 36.76 59.2 61.28 23.58 95.7 65.72 29.65
Standard (16 bit) 29.4 (0.5×) 88.05 58.12 29.4 (0.5×) 53.60 21.17 29.6 (0.5×) 51.66 16.87 47.9 (0.5×) 40.27 20.26

Data Augmentation (32 bit) 58.8 (1×) 89.58 84.34 58.8 (1×) 67.34 56.95 59.2 (1×) 52.11 43.64 95.7 (1×) 59.17 47.96
Data Augmentation (16 bit) 29.4 (0.5×) 83.18 74.93 29.4 (0.5×) 60.58 51.19 29.6 (0.5×) 46.66 35.01 47.9 (0.5×) 39.19 26.03

All Models (32 bit) 1177.6 (20×) 92.59 88.97 1177.6 (20×) 71.44 64.72 1184.0 (20×) 61.28 51.55 1913.6 (20×) 65.72 55.97
All Models (16 bit) 588.8 (10×) 88.05 82.05 588.8 (10×) 53.60 52.96 592.0 (10×) 51.66 36.72 956.8 (10×) 40.27 23.00

Standard+RWSFull 1177.6 (20×) 92.59 75.35 1177.6 (20×) 71.44 52.58 1184.0 (20×) 61.28 43.63 1913.6 (20×) 65.72 53.64
Standard+RWSShallow 101.0 (1.7×) 92.59 84.86 101.0 (1.7×) 71.44 58.78 101.4 (1.7×) 61.28 44.66 131.4 (1.4×) 65.72 52.84
Standard+RWSShallow,16bits 79.9 (1.4×) 92.59 84.76 79.9 (1.4×) 71.44 58.62 80.3 (1.4×) 61.28 44.25 113.6 (1.2×) 65.72 52.81
Standard+RWSShallow,8bits 69.4 (1.2×) 92.59 82.99 69.4 (1.2×) 71.44 53.52 69.7 (1.2×) 61.28 39.40 104.7 (1.1×) 65.72 52.79

12


