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Abstract
A large body of the “Inverse Reinforcement
Learning” (IRL) literature focuses on recovering
the reward function from a set of demonstrations
of an expert agent who acts optimally or noisily
optimally. Nevertheless, some recent works move
away from the optimality assumption to study the
“Learning from a Learner (LfL)” problem, where
the challenge is inferring the reward function of a
learning agent from a sequence of demonstrations
produced by progressively improving policies. In
this work, we take one of the initial steps in ad-
dressing the multi-agent version of this problem
and propose a new algorithm, MA-LfL (Multi-
agent Learning from a Learner). Unlike the state-
of-the-art literature, which recovers the reward
functions from trajectories produced by agents in
some equilibrium, we study the problem of infer-
ring the reward functions of interacting agents in
a general sum stochastic game without assuming
any equilibrium state. The MA-LfL algorithm is
rigorously built on a theoretical result that ensures
its validity in the case of agents learning accord-
ing to a multi-agent soft policy iteration scheme.
We empirically test MA-LfL and we observe high
positive correlation between the recovered reward
functions and the ground truth.

1. Introduction
The “Inverse Reinforcement Learning (IRL)” problem cor-
responds to inferring the reward function of a reinforcement
learning (RL) agent from a set of trajectories. Learning the
reward function, as compared to directly learning the policy
of the demonstrator, allows to have a more succinct descrip-

*Equal contribution 1Department of Computer Science, Univer-
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Figure 1. Two autonomous cars from different companies might
optimize different reward functions which are not directly accessi-
ble. For example, one company might prioritize speed and another
one safety or energy efficiency. They share the same environment
(road) and learning the reward function of each other can help
them to predict the other agent behaviour.

tion of the task performed by the agent and this knowledge is
better suited to be transferred to new environments. This is
even more important when the demonstrator is not an expert,
especially when it is under an ongoing policy learning pro-
cess. Learning the reward functions, which do not change
during the learning process, is also crucial in a multi-agent
setting. Consider for instance the case of lane change in a
highway for autonomous cars (Fig. 1). Here the environ-
ment contains multiple private agents, which can observe
each others’ states and actions but cannot access any other
information such as the policies and rewards of others. In-
ferring the reward functions of other agents can be useful to
model and predict their behaviour.

Initial work on IRL typically assumes the reward function
to be linear w.r.t. a set of features (Abbeel & Ng, 2004).
However recent approaches to IRL have been relaxing this
assumption (Ho & Ermon, 2016; Fu et al., 2017). Early
IRL literature also assumes the observed agent to be an
expert, i.e., to behave optimally or noisy optimally (Ng
et al., 2000; Ziebart et al., 2008). Recent work has relaxed
the optimality assumption (Brown et al., 2019), (Tangkaratt
et al., 2020) and in (Jacq et al., 2019), the authors have
introduced the “Learning from a Learner (LfL)” problem,
where the challenge is to infer the reward function of a
learning agent from trajectories produced by a sequence of
progressively improving policies. For another approach to
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the LfL problem see also (Ramponi et al., 2020).

The IRL problem has also been studied in the multi-agent
case (Natarajan et al., 2010), where the goal is to recover the
reward functions of a set of agents interacting in a stochastic
game. In this setting, the agents are usually assumed to be in
a certain equilibrium, such as Nash or correlated equilibrium
(Reddy et al., 2012). This is quite restrictive considering that
in many real-world applications, such as autonomous cars,
multi-agent systems will likely not be in any equilibrium.

Here we introduce and study the multi-agent version of
the LfL problem. We address the problem of recovering
the reward functions of agents learning in a general-sum
stochastic game. We do not assume the agents to be in
any equilibrium but rather to be independently learning
according to a multi-agent soft policy iteration scheme. To
address this problem, we propose a new algorithm, MA-
LfL (Multi-agent Learning from a Learner), which builds
upon the single agent LfL algorithm (Jacq et al., 2019).
Our algorithm, which we present both in offline and online
settings, allows each agent to recover the reward functions
of other agents while improving its own policy with respect
to its own reward function. Moreover the recovered reward
functions can be used by the agents to predict the next policy
improvements of the other agents. We include error bounds
both for the reward recovery and the policy improvement
predictions. These are novel contributions even in the single
agent case.

2. Related Work
Our work stems from (Jacq et al., 2019), where the authors
introduce the LfL framework. The framework enables an
Observer to learn the reward function of a Learner, who
learn to solve a Markov Decision Process. The motiva-
tion there is to train the Observer with the recovered re-
ward in order to potentially outperform the Learner. In our
multi-agent setting all agents are Observers and Learners
simultaneously. Our motivation is not to make the agents
imitate (Yu et al., 2019; Torabi et al., 2018) or outperform
each other (Jacq et al., 2019). Rather, we focus on modeling
the agents during an ongoing learning process and we allow
the agents to be heterogeneous, namely to have different
action spaces and different reward functions.

The majority of the state-of-the-art research assumes spe-
cific reward structures, ranging from fully cooperative
games (Natarajan et al., 2010; Barrett et al., 2017; Le et al.,
2017; Šošić et al., 2017), to zero-sum games (Lin et al.,
2017). We do not assume any of these restrictions as we al-
low the agents to interact in a general-sum stochastic game.

Multi-agent Adversarial Inverse Reinforcement Learning
(MA-AIRL) (Yu et al., 2019) and Multi-Agent Generative
Adversarial Imitation Learning (MA-GAIL) (Song et al.,

2018) are frameworks with adversarial learning and they
estimate policies and reward functions. In both works there
are no strong assumptions on the reward structure. How-
ever in (Song et al., 2018) the agents are assumed to be
in a Nash equilibrium. In (Yu et al., 2019) the agents are
assumed to be in a logistic stochastic best response equilib-
rium (LSBRE), an equilibrium concept which is a stochastic
generalization of Nash and correlated equilibrium. This
reflects the assumption that the agents act sub-optimally,
significantly relaxing the assumptions of early works on
multi-agent IRL (Natarajan et al., 2010; Reddy et al., 2012).
We take a step further by assuming the agents to be in a
learning process rather than in an equilibrium.

3. Problem Setting
We consider the problem of N agents with a entropy-
regularized objective acting in a Markov Game.

Definition 3.1. A Markov game (Littman, 1994)M for N
agents is a tuple (S, {Ai}Ni=1, T, {Ri}Ni=1, P0, γ) , where
S is the state space, Ai is the action set of agent i ∈
{1, · · · , N}, T : S × A1 × . . .AN → P(S) is the tran-
sition function, Ri : S × A1 × . . .AN → R is the reward
function of agent i ∈ {1, · · · , N}, P0 ∈ P(S) is the initial
state distribution, and 0 ≤ γ < 1 is the discount factor.

Definition 3.2. A policy for agent i is a map πi : S →
P(Ai), where P(Ai) denotes the set of probability mea-
sures over Ais. Given policies π1, . . . , πN , we use π
to denote the joint policy π : S → P

(
A1 × · · · × AN

)
,

where π
(
a1, . . . , aN |s

)
=

∏N
i=1 π

i
(
ai|s

)
. Moreover,

a =
(
a1, . . . , aN

)
is the the joint action profile of all

agents. Besides, a−i =
(
a1, . . . , ai−1, ai+1, . . . , aN

)
and

π−i (a−i|s
)

=
∏
j ̸=i π

j
(
aj |s

)
respectively denote the

joint action and the joint policy of the opponents of agent i.

Remark 3.3. Note that we do not assume the existence of a
centralized actor. The symbol π only denotes the product
of N individual policies.

Assumption 3.4. In our setting, agents have access to states
s and actions a of all agents. However each agent i can only
observe its own reward Ri.

3.1. Entropy-regularized objective

In a standard stochastic game, the objective of each agent
i is to find a policy πi that maximizes the expected total
discounted reward. Formally,

J (πi) = E
ai∼πi

a−i∼π−i

∑
t≥0

γtRi
(
st,a

−i
t , ait

) .

Remark 3.5. Note that the reward of every agent i, Ri,
depends also on the actions of other agents. Consequently,
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also the objective depends on the joint policy π−i of other
agents.

Assumption 3.6. We assume that the objective is entropy
regularized; i.e., each agent i maximizes

Jsoft(π
i) = E

πi,π−i

∑
t≥0

γt
(
Rit + αHt

) , (1)

where Rit = Ri (st,at), Ht = H
(
πi(·|st)

)
=

− E
ai∼π(·|s)

[
lnπi(ai|s)

]
is the Shannon entropy and α > 0

is a coefficient that controls the the degree of regularization.

Entropy regularization has been introduced in the RL liter-
ature as an approach to tackle the exploration-exploitation
dilemma (Haarnoja et al., 2017; 2018).

Definition 3.7. Given a joint policy π, the soft Q-value
function for agent i is defined as

Qπ,i
soft (s,a) = Ri0 + E

π

[∑
t>0

γt
(
Rit + αHt

)]
, (2)

for every s ∈ S,a ∈ A1 × · · · × AN , Rit = Ri (st,at),
Ht = H

(
πi(·|st)

)
.

Remark 3.8. It is straightforward to show that Qπ,i
soft satisfies

the following Bellman equation

Qπ,i
soft (s,a) = Ri (s,a)

+ γE
π
[Qπ,i

soft (s
′,a′) + αH

(
πi (·|s′)

)
]. (3)

4. Multi-agent Soft Policy Iteration
Our MA-LfL algorithm is built on the assumption that the
agents are learning according to a multi-agent soft policy
iteration (MA-SPI), which we derive from SPI in the sin-
gle agent case. Before introducing the proposed MA-LfL
algorithm, in this section we explain in detail the MA-SPI al-
gorithm. Similar to many policy iteration algorithms (Sutton
& Barto, 2018), it consists of a policy evaluation step and a
policy improvement one and is an on-policy algorithm.

4.1. Reducing a Markov Game to a Single Agent
Markov Decision Process

Let us recall here the statement of the theorem that underlies
the single agent SPI algorithm, which guarantees that it
improves policies monotonically.

Theorem 4.1 (Theorem 4 in Appendix A of (Haarnoja et al.,
2017)). Given a policy π in a entropy regularized Markov
Decision Process, define a new policy πnew as

πnew(·|s) ∝ exp

(
Qπ

soft(s, ·)
α

)
, (4)

for every state s, where α is the entropy coefficient. Then it
follows that Qπnew

soft (s, a) ≥ Qπ
soft(s, a), for every state-action

pair (s, a).

We report here the statement of the theorem that underlies
the single agent LfL algorithm of Jacq et al. (2019).

Theorem 4.2 (Theorem 2 in (Jacq et al., 2019)). Let π
and πnew two consecutive policies in an entropy regularized
Markov Decision Process, with entropy coefficient α, such
that πnew is the single agent soft policy improvement given
by (4). Then the following reward function

R(s, a) = α lnπnew(a|s)
+ αγ E

s′∼P
[DKL (π(·|s′)∥πnew(·|s′))]

coincides with the actual reward function R, up to a shaping
-which will be defined in Section 4.4. Namely,

R(s, a) = R(s, a) + g(s)− γ E
s′∼P

[g(s′)],

where g is a function defined on the state space.

Definition 4.3. LetM = (S, {Ai}Ni=1, T, {Ri}Ni=1, P0, γ)
be a Markov game and let π−i a joint policy for all agents
except for agent i. We define the single agent Markov
decision process M̃i =

(
S̃, Ã, P̃ , R̃, P̃0, γ̃

)
, where

• S̃ = S;

• Ã = Ai;

• P̃ (s′|s, a) = P (s′|s,a−i, a)π−i(a−i);

• R̃(s, a) = E
a−i∼π−i

[Ri(s,a−i, a)];

• γ̃ = γ.

For agent i, a policy πi defines a policy for the MDP M̃i.
Moreover, if π−i remains fixed, then the entropy regularized
objective in Eq 1 is equal to the entropy regularized objective
for M̃i, i.e.,

J̃soft(π
i) = E

πi

∑
t≥0

γt
(
R̃(st, at) + αH

(
πi(·|st)

)) .

4.2. Policy Evaluation

Given a joint policy π =
∏N
i=1 π

i, each agent i learns the
expectation of Qπ,i

soft with respect to π−i during the run of
some episodes. From the perspective of agent i, during the
evaluation phase, the other agents can be thought of being
part of the environment, by absorbing the policy π−i into
the dynamics. Therefore, during the evaluation phase, the
Markov game is equivalent to a Markov Decision Process
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M̃i for agent i and the expectation of Qπ,i
soft is in fact the

soft Q function Q̃πi

soft w.r.t. to M̃i. Hence, agent i learns

Q̃πi

soft(s, a
i) = E

a−i∼π−i

[
Qπ,i

soft(s,a
−i, ai)

]
via temporal dif-

ference learning based on the Bellman equation Eq (3):

Q̃πi

soft(s, a
i) = R̃i

(
s, ai

)
+ γE

π

[
Q̃πi

soft(s
′, ainew) + αH

(
πi (·|s′)

)]
(5)

where R̃i
(
s, ai

)
= E

a−i∼π−i
[Ri(s,a−i, ai)].

4.3. Policy Improvement

Definition 4.4. Given a policy πi for agent i and π−i for
the opponents, the soft policy improvement for agent i is
defined as

πinew(a
i|s) ∝ exp

(
1

α
Q̃πi

soft(s, a
i)

)
, (6)

where Q̃πi

soft(s, a
i) = E

a−i∼π−i

[
Qπ,i

soft

(
s,a−i, ·

)]
. In the fol-

lowing we will will use the notation SPIπ−i(πi) to denote
the soft policy improvement πinew.
Assumption 4.5. We assume all the agent to update their
policies simultaneously

πnew =

N∏
i=1

SPIπ−i(πi).

Lemma 4.6. Let Q̃πi

soft be the soft Q-value function for a

policy πi as a policy for the MDP M̃i. Formally,

Q̃πi

soft(s, a
i) = R̃(s, ai) + E

πi

[∑
t>0

γt
(
R̃t + αHt

)]
,

where R̃t = R̃(st, at) and Ht = H
(
πi(·|st

)
. Then we

have

Q̃πi

soft(s, a
i) = E

a−i∼π−i

[
Qπ,i

soft (s,a
−i, ai)

]
,

where π = π−iπi and Qπ,i
soft is the soft Q-value function of

π for agent i in the Markov gameM.

Proof. The proof follows immediately from the definition
of M̃i given above.

Theorem 4.7 (Soft-policy Improvement Theorem). Let πi

be a policy for agent i and π−i a joint policy for other
agents and let πinew = SPIπ−i(πi) as defined in (6).

Then for every ai ∈ Ai, we have

Q̃πnew,i
soft (s, ai) ≥ Q̃π,i

soft(s, a
i)

where Q̃π,i
soft(s, a

i) = E
a−i∼π−i

[
Qπ,i

soft

(
s,a−i, ai

)]
and

πnew = πinewπ
−i.

Proof. As explained above, when the policies π−i for the
other agents are held fixed, which is guaranteed by Assump-
tion 4.5, the Markov game reduces to a MDP M̃i for agent
i. Therefore the proof follows directly from (6) and Theo-
rem 4.1.

Remark 4.8. As a consequence of Theorem 4.7 below,
πinew(a

i|s) is the greedy improvement for agent i w.r.t. the
opponents joint policy π−i, namely

πinew(a
i|s) = argmax

πi
new

 E
a−i∼π−i

ai∼πi
new

[
Qπ,i

soft(s,a
−i, ai)

] .

In other words the soft policy update is guaranteed to be an
improvement for agent i in the case where the other agents
do not change their policy π−i. However in our setting we
assume all the agents to update their policies simultaneously,
therefore there is no guarantee that the policy update is an
actual improvement.

4.4. Invariance Under Reward Shaping

The classical IRL problem is ill-posed (Ng et al., 2000); that
is, the solution is not unique, as several different reward
functions explain the behavior of an optimal agent. Similar
difficulties arise in the LfL setting (Jacq et al., 2019) because
the single-agent Soft Policy Iteration algorithm is invariant
under reward shaping. Naturally, the multi-agent setting
inherits the same issue. More precisely, if we transform
the reward function of an agent i by adding a shaping, then
the soft policy improvement Eq (6) is still the same. A
function sh : S × A1 × · · · × AN → R is called shaping
if there exists a function g : S → R such that sh(s,a) =
g(s)− γ E

s′∼P (s,a)
[g(s′)] .

Lemma 4.9 (SPI invariance under shaping). Let Ri1 : S ×
A1 × · · · × AN → R and Ri2 : S × A1 × · · · × AN → R
two reward functions for agent i such that for every s ∈
S, a = (a1, . . . , aN ) ∈ A1 × · · · × AN : Ri1 (s,a) =
Ri2 (s,a) + sh(s,a). Let SPI1π−i and SPI2π−i be the soft
policy improvement operators induced respectively by Ri1
and Ri2. Then for every policy πi

SPI1π−i(πi) = SPI2π−i(πi).

Proof. The proof is a simple extension of the proofs of
Lemma 1 and Theorem 1 in (Jacq et al., 2019).

5. Multi-Agent Learning from Learners
In this section, we explain how each agent i can recover
an estimation Rji of the reward function Rj of each other
agent after a certain number of MA-SPI steps, as described
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Algorithm 1 Multi-agent Soft Policy Iteration (MA-SPI)
Initialization πi ← Uniformly random policy, for i =
1, . . . , N .
for h = 1 to H do

Initialize Q̃πi

soft ← 0, for i = 1, . . . , N
for each episode do
t← 0
s0 ∼ P0

while st not terminal do
Each agent i chooses ait ∼ πi(·|st)
Each agent i observes Ri(st,at)
st+1 ∼ P (st,at)
Each agent i chooses ait+1 ∼ πi(·|st+1)

Each agent i updates Q̃πi

soft according to Eq (5)
t← t+ 1

end while
Each agent simultaneously i updates πi ← SPI(πi)
using Eq (6)

end for
end for

in Section 4. We call this algorithm Multi Agent Learning
from a Learner (MA-LfL), as it is a multi-agent extension
of the LfL algorithm developed in (Jacq et al., 2019). The
pseudocode is given in Algorithm 2.

The core of the proposed MA-LfL algorithm is the theorem
below, which states the following: From the observation
of one soft policy improvement for an agent i, namely ob-
serving two consecutive policies πi and SPIπ−i(πi), it is
possible to recover the expectation w.r.t. π−i of the reward
function Ri, up to a shaping.

Theorem 5.1 (Recovering reward up to shaping). Let π−i

be a joint policy for all the agents except i. Besides, πi is
a policy for i and πinew = SPIπ−i(πi) is the soft policy
improvement given by Eq (6). Then

E
a−i∼π−i

[
Ri(s,a−i, ai)

]
= α lnπinew(a

i|s)+

αγ E
a−i∼π−i

s′∼P (·|s,a−i,ai)

[
DKL(π

i(·|s′)|πinew(·|s′))
]
, (7)

where Ri(s,a−i, ai) = Ri(s,a−i, ai) + sh(s,a−i, ai) ,
sh : S ×A1 × · · · × AN → R is a shaping.

Proof. As in the proof of Theorem 4.7, if π−i remains fixed,
for agent i, the Markov gameM reduces to the Markov deci-
sion process M̃i as defined in Section 4.1. From Lemma 4.6,
we have that πinew(·|s) ∝ exp

(
1
α Q̃

πi

soft(s, ·)
)

. Therefore, us-

ing Theorem 4.2, we can recover the reward R̃ of M̃i up to

a shaping. Formally,

R̃(s, ai) =α lnπinew(a
i|s)+

αγ E
s′∼P̃

[
DKL

(
πi(·|s′)∥πinew(·|s′)

)]
,

(8)

where

R̃(s, ai) = R̃(s, ai) + g(s)− γ E
s′∼P̃

[g(s′)] , (9)

for some function g : S → S.

From the definition of the Markov decision process M̃i in
Section 4.1, and Eq (9), we rewrite Eq (8) as

E
a−i∼π−i

[
Ri(s,a−i, ai)

]
= α lnπinew(a

i|s)

+ αγ E
a−i∼π−i

s′∼P (·|s,a)

[
DKL

(
πi(·|s′)∥πinew(·|s′)

)]
.

Remark 5.2. As mentioned in Remark 4.8, the MA-SPI
algorithm is not guaranteed to improve agents’ policies.
However our reward recovering MA-LfL algorithm only
relies on the way agents are updating their policies and it is
not affected on whether the agents are actually improving.

5.1. Estimating Other Agent Policies

Theorem 5.1 allows each agent to extract information about
the reward functions of each other agents given their policies.
In practice, agents can only observe the actions of each
other; therefore, to apply Theorem 5.1, they must learn the
policies from the observed trajectories. Every agent uses the
entropy regularized maximum likelihood estimation (MLE)
method to estimate other agents’ policies from the observed
trajectories.

Let π =
∏N
i=1 π

i be a joint policy for the agents, and D
represent a set of trajectories D = {τ1, . . . , τK} produced
by π. Each trajectory τk is a sequence of states and actions
τk = {sk,0,ak,0, sk,1,ak,1, . . . }. Each agent j learns a
parameterized approximation π̂ij = π̂i

θij
of the policy πi of

agent i by maximizing the entropy regularized likelihood
L(θij). Formally,

L(θij) = −
K∑
k=1

∑
(s,ai)∈τk

ln
(
π̂ij(a

i|s)
)
+ λH

(
π̂ij(·|s)

)
,

(10)
where λ > 0 is the entropy regularization parameter.

5.2. Estimating Rewards from Trajectories

Now we discuss how each agent learns the rewards of
other agents after a specific number of MA-SPI steps. Let
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{π0,π1, . . . ,πH} be the H +1 joint policies for N agents
obtained while performing the MA-SPI algorithm (Algo-
rithm 1) for H rounds; i.e., for every for h = 1, . . . H , let
πh = SPI(πh−1). Moreover, let Dh be the set of trajecto-
ries produced by the agents with the joint policy πh during
the h-th MA-SPI.

π0 π1 . . . πH

D0 D1 . . . DH

SPI SPI SPI

Let R̂ij = R̂i
ϕi
j

be a parametrization of reward Ri that agent
j is attempts to learn. As explained in Section 5.1, agent
j can learn {πi0, πi1, . . . , πiH} from {D0,D1, . . . ,DH} re-
spectively. From those learned policies, agent j computes
H targets {Y1, . . . , YH} according to Theorem 5.1, defined
as

Y i
h(s, a

i) = α lnπih
(
ai|s

)
+

αγ E
a−i∼π−i

s′∼P (·|s,a)

[
DKL

(
πih−1(·|s′)∥πih(·|s′)

)]
, (11)

for every h = 1, . . . ,H .

Recall that from each improvement πih
SPI−−−→ πih+1, Theo-

rem 5.1 allows inferring the expectation of Ri+ shh, where
shh is a shaping function. Observe that we use the index
h because for different improvements, we might have dif-
ferent shapings. Since shh is a shaping, by definition (see
Section 4.4), there exists a function gh : S → R such that

shh(s,a) = gh(s)− E
s′∼P (·|s,a)

[gh(s
′)] .

Definition 5.3. Let gψh
be a parametrization of gh. We

define the loss function for the parameters ϕij of R̂ij =

R̂i
ϕi
j
(s,a−i, ai) as

Lij(ϕij) = min
ψ0,...,ψH

H∑
h=1

∑
(s,a,s′)∈Dh

(R̂ij+shψh
(s, s′)−Yh)2,

(12)
where shψh

(s, s′) = gψh
(s)− γgψh

(s′).

Remark 5.4. The optimization of the loss function above is
directly affected by the policy inference success, because
the target values Yh’s are produced by the inferred policies.

5.3. Semi-online MA-LfL

In the previous section, we explained how agents learn the
reward functions of other agents in a offline manner from a
collection of sets of trajectories generated during a number

Algorithm 2 Multi-agent Learning from a Learner (MA-
LfL)

Run Algorithm 1 and generate sets of trajectories
{Dh}Hh=1 using {πh}Hh=1

for h = 1 to H do
for each agent j, i = 1, . . . , N , j ̸= i do

Agent j learns estimate π̂ih from Dh via Eq (10)
Agent j computes targets Y i

h using Eq (11)
end for

end for
Each agent j computes R̂ij via Eq (12)
Return R̂ij for each j, i = 1, . . . , N , j ̸= i.

of MA-SPI iterations. However, MA-LfL can also be per-
formed semi-online, meaning that each agent maintains an
estimation of the reward functions of the opponent which
is updated after each MA-SPI step. Since entropy regu-
larized maximum likelihood estimation can be performed
online, each agent can learn the policies of the opponents in
a streaming manner, during each MA-SPI step.

Now, consider the h-th MA-SPI step. Then agent j updates
the parameters ϕij of R̂ij using the gradient ∇Ljh, as in a
mini-batch gradient descent, where Ljh is the following loss
function

Ljh(ϕ
i
j) =

∑
(s,a,s′)∈Dh

(
R̂ij(s,a

−i, ai) + shψh
(s, s′)− Yh

)2

,

where shψh
(s, s′) = gψh

(s)− γgψh
(s′).

After the h-th iteration of MA-SPI, to predict the next soft
policy improvement of the opponents using (6), each agent
j has to estimate Q̃πi

soft(s, a
i) = E

a−i∼π−i

[
Qπ,i

soft(s,a
−i, ai)

]
for each other agent i. That is doable with an off-line version
of TD-learning or Monte Carlo (Sutton & Barto, 2018) from
the trajectories in Dh, using the current estimations R̂ij and
π̂i instead of Ri and πi.
Remark 5.5. When performing MA-LfL online, the agents
must assess the quality of their current estimations of other
agents’ reward functions. One way to do so is to use the
current rewards estimations to predict future soft policy
improvements followed by observing the actual ones. If the
agents have valid estimations of the reward functions, their
predictions of the soft policy improvements will be close
to the actual ones. We will provide more details on how to
bound the reward estimation error in the next Section 6.

6. Error Bound Analysis
In this section we provide a bound on the error on the recov-
ered reward functions in terms of the policies improvement
prediction error in Theorem 6.3 and Theorem 6.1. Con-
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versely, we also provide a bound on the policy improvement
prediction error in terms of the error on the recovered re-
wards in Theorem 6.5. In Appendix A we state and prove
the single-agent version of these results for the LfL frame-
work of (Jacq et al., 2019) and in Appendix B we extend
the proofs to our multi-agent setting.

6.1. Reward Recovery Error Bound

Theorem 6.1. Let Ri be the reward function for agent i
and let R̂ij be the reward estimation of Ri learned by agent
j. Let πi a policy for agent i and π−i a joint policy for
the other agents. Let πinew = SPIπ−i(πi) be the soft policy
improvement as defined in Theorem 4.7 and let π̂inew be
the soft policy improvement predicted by agent j using R̂ij ,

namely π̂inew ∝ exp

(
1
αEπ−i [Q

π,i,R̂i
j

soft ]

)
. If

sup
ai∈Ai s∈S

| lnπinew(a
i|s)− ln π̂inew(a

i|s)| < δ,

then there exists a shaping sh such that for every s ∈ S and
ai ∈ Ai

|Ea−i∼π−i

[
R̂ij(s,a

−i, ai)− (Ri + sh)(s,a−i, ai)
]
| < ε,

where
ε = δα(1 + γ),

and α is the entropy coefficient and γ is the discount factor.

Proof. See Appendix B.

Corollary 6.2. Consider the case in which Ri and R̂i are
state-only dependent reward functions. If

sup
ai∈Ais∈S

∣∣lnπinew(a
i|s)− ln π̂inew(a

i|s)
∣∣ < δ

there exists a shaping sh : S ×Ai → S such that depends
only on the state and the actions of agent i such that

sup
s∈Sai∈Ai

∣∣∣R̂ij(s)− (
Ri(s) + sh(s, ai)

)∣∣∣ < ε,

where ε = δα(1 + γ), and α is the entropy coefficient and
γ is the discount factor.

Proof. Follows directly from Theorem 6.1.

In the special case of state-only dependent reward function,
we can provide another error bound that depends on the
KL-divergence between the predicted and the actual soft
policy improvement.

Theorem 6.3. Let us assume the reward function Ri for
agent i and its estimation R̂ij maintained by agent j to be
state-only dependent. Let πi be a policy for the agent i,
πinew = SPIπ−i(πi) its soft policy improvement and let π̂inew
be the soft policy improvement predicted by the agent j. Let
us assumeAi to be a finite set and let |Ai| be its cardinality.
If

sup
s

DKL(π
i
new(·|s)∥π̂inew(·|s)) < δ,

then there exists a shaping sh : S ×Ai → R, that depends
only on states and on the actions of agent i, such that

sup
s∈S
|R̂i(s)− Eai∼πi(·|s)(R

i(s) + sh(s, ai))| < ε,

where

ε = δ

(
1 + γ|Ai|e

∆i

α(1−γ)

)
,

α is the entropy coefficient, γ is the discount factor and ∆i

is the maximum gap for Ri, namely ∆i = sups∈S Ri(s)−
infs∈S Ri(s).

Proof. See Appendix B.

Remark 6.4. The assumptions in Theorem 6.3 on the finite-
ness of the action spaceAi and the fact that Ri is a function
only of the state are not so restrictive. Moreover the error
bound on the estimation error for the reward is express in
terms of the bound on the KL-divergence, which can be
learned in practice by agent j.

6.2. Policy Improvement Prediction Error Bound

The recovered rewards allow the agents to predict the soft
policy improvements of each other agents. The following
theorem provides a bound on the KL-divergence between
the actual improvement and the predicted improvement.

Theorem 6.5. Let Ri be the reward function for agent i and
let R̂ij be an estimation recovered by agent j. Let πinew =

SPIπ−i(πi) be the actual policy improvement of the policy
πi, and π̂inew the soft policy improvement predicted by agent
j using R̂ij . Let δ > 0 be such that for all s ∈ S, ai ∈ Ai∣∣∣Ea−i∼π−i

[
R̂(s, a)− (R+ sh)(s, a)

]∣∣∣ < δ

for a shaping sh. Then

sup
s∈S

DKL(π
i
new(·|s)|π̂inew(·|s)) < ε,

where

ε = δ

(
1

α(1− γ)
+
|Ai|
e

inf Ri

α

)
,

and α is the entropy coefficient and γ is the discount factor.

Proof. See Appendix B.
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7. Experiments
We test MA-LfL experimentally in a 3 × 3 deterministic
grid world environments. The agents always start at the
top-left cell and try to reach to the bottom-right cell. Our
experimental setting involves two agents, i.e., N = 2. We
emphasize that our theoretical results hold regardless of the
number of agents. We assume the transition function is
deterministic and known. The action space includes five
actions: move up, down, left, and right, or stay.

We use two different reward functions in order to demon-
strate our algorithm achieves reward recovery in general-
sum games: Mhom: Homogeneous reward function as a
combination of Manhattan disjoint distance Eq (13) and
Mhet: Heterogenous reward function as a combination of
Manhattan joint and disjoint distance Eq (14).

Definition 7.1. Let pg = (xg, yg) be a goal location and
pi(t) = (xi, yi), pj(t) = (xj , yj) be the positions of agent
i and agent j at time t. Then we define

M i
hom(t) = −∥pi(t)− pg∥1 + ∥pi(t)− pj∥1 (13)

and

M i
het(t) =

{
−∥pi(t)− pg∥1 − ∥pi(t)− pj(t)∥1 A#1
−∥pi(t)− pg∥1 + ∥pi(t)− pj(t)∥1 A#2

(14)
for both agents i = 1, 2.

(a) The grid world. (b) Example reward calcu-
lation.

Figure 2. (a) Agents start at the top-left grid and the goal location
is the bottom-right. Every time agents arrive to the goal location,
their states are reset as the start cell. (b) Purple lines indicates the
Manhattan distance between two agents and green lines indicates
the Manhattan distance between Agent #2 and the goal location.

In the Mhom setting, the agents try to minimize the distance
between themselves and the goal while at the same time
trying to stay as far away from each other as possible. In
Mhet, similarly, both agents try to minimize the distance
between themselves and the goal, however, while one agent
tries to stay as close to the other as possible the other agent
tries to stay away.

We measure the performance of MA-LfL by computing the
correlation between the recovered rewards with the ground-
truth ones. In all cases in our experiments, agents have no
access to the other agents’ policies or rewards, and they
use state-action models for estimating the reward functions.
However, since all the experiments consist of simulations,
we have access to the ground-truth reward functions that
we use for the evaluation. We use statistical correlation
metrics Pearson’s correlation coefficient (PCC) for linear
correlation and Spearman’s correlation coefficient (SCC) for
rank correlation to compare the estimated reward functions
with the actual rewards. In our experiments, we demonstrate
recovery of rewards MA-LfL achieves using MA-SPI in
both the heterogeneous and the homogeneous reward cases.
We present our results in Table. 1.

Metric Mhom Mhet

PCC #1 0.48 ± 0.06 0.45 ± 0.04
PCC #2 0.59 ± 0.02 0.42 ± 0.02

P̂ 0.54 ± 0.03 0.44 ± 0.01
SCC #1 0.44 ± 0.14 0.51 ± 0.02
SCC #2 0.60 ± 0.04 0.43 ± 0.03

Ŝ 0.52 ± 0.06 0.47 ± 0.01

Table 1. Pearson’s correlation coefficients (PCC) and Spearman’s
correlation coefficients (SCC) of Agent 1 and Agent 2 between
true reward functions and estimated reward functions. P̂ and Ŝ
are the averaged scores of PCC and SCC over both agents. Mean
and variance are taken from the experiments with different random
seeds.

Figure 3. The quality of recovered rewards has a logarithmic
growth rate as the agents improve their policies. In our exper-
iments, we observed that agents were able to recover rewards
using only 10 iterations in a 3× 3 grid world.

As a baseline for correlation coefficients, we calculated
correlation between estimated joint and disjoint rewards to
disjoint and joint ground truths respectively. Results are
given in Table 2.
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Estimated Reward Manh. Disjoint Manh. Joint

Manhattan Disjoint
PCC: 0.55
SCC: 0.57

PCC: 0.4
SCC: 0.37

Manhattan Joint
PCC: 0.32
SCC: 0.33

PCC: 0.47
SCC: 0.51

Table 2. Cross-correlation between ground truths and estimations
of two reward functions. All correlations are positive due to their
very similar structure, however the correlations between the recov-
ered rewards and their correspondent ground truths are higher.

8. Discussion on Generalization to Different
Frameworks

Even though reward recovering in MA-LfL is based on the
assumption of agents are using MA-SPI to optimize their
policies, MA-LfL could potentially be used when agents op-
timize their policies with different models as demonstrated
in single-agent case (Jacq et al., 2019).

We expect MA-LfL to perform well with learning frame-
works that have similar characteristics to SPI. SPI is an
on-policy algorithm which it makes it easier for an observ-
ing agent to infer the policies from trajectories generated
with a fixed policy. Off-policy algorithms such as SAC for
continuous environments and Soft Q-learning for discrete
environments might be desirable by practitioners because of
sample efficiency, but the fact that constant updates of the
policies after each step requires some care to compensate po-
tential errors in inferring the policy of other agents from the
generated trajectories. Another important characteristic of
SPI is that it optimizes a stochastic policy which encourages
exploration while agents optimize their own policy, espe-
cially in the sparse reward cases. Since PPO maintains both
characteristics, it would be reasonable to expect MA-LfL to
perform well under this learning framework as an alternative
to SPI, in continuous and high-dimensional environments.

9. Conclusion
We propose MA-LfL, a multi-agent algorithm that allows
inverse reinforcement learning in an entropy-regularized
reinforcement learning setting. The input data of our al-
gorithm are trajectories produced by agents that are not
assumed to be in any equilibrium, but rather are learning ac-
cording to a multi-agent soft policy iteration (MA-SPI). The
reward functions recovered by MA-LfL in our experiments
show high correlation with the ground truth ones.

Some of the potential applications of our MA-LfL algorithm
are: imitation learning from multi-agent systems which have
not yet reached an equilibrium, allowing the use of MARL
algorithms that explicitly use the knowledge of all the agents
reward functions in scenarios where those are not accessible,
the promotion of fairness or to further collaboration in social

dilemmas such as the Prisoner’s Dilemma by letting each
agent being aware of other agents’ rewards. However, since
MA-LfL allows agents to recover rewards only up to a
shaping, some care is required, especially in scenarios with
many agents.

As a future work, it would be valuable to study general-
ization of MA-LfL over different learning frameworks and
more experimental investigations would provide useful in-
sights. Investigating the scalability and performance on
partially observable scenarios would also be worthful.
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A. Proofs of the error bounds for the single-agent case
For the sake of clarity, we start by presenting a single agent version of the theorems in Section 6. In Appendix B, we will
discuss how to extend them to the multi-agent case. In this section, we use terminology of Learner and Observer as in (Jacq
et al., 2019), where the Learner is the RL agent and the Observer is the IRL algorithm.

A.1. Single-agent setting

In the single-agent LfL setting (Jacq et al., 2019), an agent, called the Learner, is learning to solve a Markov Decision
Process M = (S,A, P,R, P0, γ) via soft-policy iteration. Namely, the Learner starts with a policy π0 and it subsequantially

improves to π1 ∝ exp
Q

π0
soft (s,a)

α , then π1 will be improved to π2 ∝ exp
Q

π1
soft (s,a)

α and so on. The Observer, namely the IRL
algorithm, perceives trajectories generated by the policies π0, π1, . . . , πK of the Learner agent and infers its reward function
R.

A.2. Reward recovery error bounds

Let π be a policy for the Learner and let R̂ an estimation of the reward R maintained by the Observer. In the following we
denote by Qπ,R

soft the actual soft Q function for π, and Qπ,R̂
soft the soft Q function for π computed w.r.t. R̂. Namely

Qπ,R
soft (s, a) = R(s, a) + γEπ

[ ∞∑
t=0

γt(R(st, at) + αH(π(·|st))

]

and

Qπ,R̂
soft (s, a) = R̂(s, a) + γEπ

[ ∞∑
t=0

γt(R̂(st, at) + αH(π(·|st))

]
.

Note that the Observer can learn Qπ,R̂
soft from the trajectories produced by the policy π of the Learner using its R̂ of R. The

Observer can then use Qπ,R̂
soft to predict the future soft policy improvement of the Learner. Theorem A.2 and Theorem A.1

quantify the error of the reward estimation in terms of the soft policy improvement prediction error.

Theorem A.1. Let R be the actual reward and let R̂ be an estimation recovered by the Observer. Then if

sup
a∈A,s∈S

|lnπnew(a|s)− ln π̂new(a|s)| < δ,

then there exists a shaping sh such that

sup
a∈A,s∈S

∣∣∣R̂(s, a)− (R+ sh)(s, a)
∣∣∣ < ε,

where ε = δα(1 + γ).

Proof. From the definition of soft policy improvement, we have that for every s ∈ S and a ∈ A

lnπnew(a|s)− ln π̂new(a|s) =
1

α

(
Qπ,R

soft (s, a)−Qπ,R̂
soft (s, a) + f(s)

)
,

where f(s) = ln Ẑ(s) − lnZ(s), and Z(s) and Ẑ(s) are the normalizing terms Z(s) =
∑
ã∈A e

Q
π,R
soft (s,ã)

α and Ẑ(s) =∑
ã∈A e

Q
π,R̂
soft (s,ã)

α . From Lemma 1 in (Jacq et al., 2019), we have that there exists a shaping sh : S ×A → R such that

lnπnew(a|s)− ln π̂new(a|s) =
1

α

(
Qπ,R+sh

soft (s, a)−Qπ,R̂
soft (s, a)

)
.

11
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From the soft Bellman equations for Qπ,R+sh
soft and Qπ,R̂, we have

∣∣∣R̂(s, a)− (R+ sh)(s, a)
∣∣∣ =

∣∣∣∣∣∣
Qπ,R̂

soft (s, a)−Qπ,R+sh
soft (s, a)]− γ E

s′∼P
a′∼π

[Qπ,R̂
soft (s

′, a′)−Qπ,R+sh
soft (s′, a′)

∣∣∣∣∣∣
= α

∣∣∣∣∣∣ln π̂new(a|s)− lnπnew(a|s)− γ E
s′∼P
a′∼π

[ln π̂new(a
′|s′)− lnπnew(a

′|s′)]

∣∣∣∣∣∣
≤ αδ (1 + γ) .

Therefore

sup
a,s

∣∣∣R̂(s, a)− (R+ sh)(s, a)
∣∣∣ ≤ αδ (1 + γ) .

In the same spirit as Theorem A.1, the following theorem provides an error bound on the recovered reward function in terms
on the soft policy prediction error. Here the error bound does depend also on the size of the action space |A| and on the gap
∆ = supR− inf R. However, instead of assuming a strong bound on the difference between the logarithm of the predicted
improvement and the logarithm of the actual one, here it is enough to use a bound on the KL-divergence.

Theorem A.2 (Single-agent LfL). Let R be the actual reward and let R̂ be an estimation recovered by the Observer. Let
us assume A to be finite and let ∆ = supa∈A,s∈S R(s, a) − infa∈A,s∈S R(s, a). Let π be a policy for the Learner. Let

π̂new ∝ exp
Qπ,R̂

soft

α be the soft policy improvement predicted by the Observer. Let δ > 0 be such that

sup
s∈S

DKL(πnew(·|s)|π̂new(·|s)) < δ,

then there exists a shaping sh : S ×A → R such that for every s ∈ S

|Ea∼πnew

[
R̂(s, a)

]
− Ea∼πnew [(R+ sh)(s, a)] | < ε,

where

ε = δ
(
1 + |A|e

∆
α(1−γ)

)
.

Proof. From the definition of soft policy improvement, we have that for every s ∈ S and a ∈ A

lnπnew(a|s)− ln π̂new(a|s) =
1

α

(
Qπ,R

soft (s, a)−Qπ,R̂
soft (s, a) + f(s)

)
,

where f(s) = ln Ẑ(s) − lnZ(s), and Z(s) and Ẑ(s) are the normalizing terms Z(s) =
∑
ã e

Q
π,R
soft (s,ã)

α and Ẑ(s) =∑
ã e

Q
π,R̂
soft (s,ã)

α . From Lemma 1 in (Jacq et al., 2019), we have that there exists a shaping sh : S ×A → R such that

lnπnew(a|s)− ln π̂new(a|s) =
1

α

(
Qπ,R+sh

soft (s, a)−Qπ,R̂
soft (s, a)

)
12
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From the Bellman equation for the soft Q function, we have∣∣∣∣ E
a∼πnew

[R̂(s, a)− (R+ sh)(s, a)]

∣∣∣∣
=

∣∣∣∣∣ E
a∼πnew

[
Qπ,R+sh

soft (s, a)−Qπ,R̂
soft (s, a)− γEs′∼P (·|s,a)

a′∼π(·|s′)

[
Qπ,R̂

soft (s
′, a′)−Qπ,R+sh

soft (s′, a′)
]]∣∣∣∣∣

≤
∣∣∣∣ E
a∼πnew

[
Qπ,R̂

soft (s, a)−Qπ,R+sh
soft (s, a)

]∣∣∣∣+ γ

∣∣∣∣∣∣∣E a∼πnew
s′∼P (·|s,a)
a′∼π(·|s′)

[
Qπ,R+sh

soft (s′, a′)−Qπ,R̂
soft (s, a)

]∣∣∣∣∣∣∣
=

∣∣∣∣ E
a∼πnew

[lnπnew(a|s)− ln π̂new(a|s)]
∣∣∣∣+ γ

∣∣∣∣∣∣∣E a∼πnew
s′∼P (·|s,a)
a′∼π(·|s′)

[lnπnew(a
′|s′)− ln π̂new(a

′|s′)]

∣∣∣∣∣∣∣
= DKL (πnew(·|s)∥π̂new(·|s)) + γ

∣∣∣∣∣∣∣E a∼πnew
s′∼P (s,a)
a′∼π(·|s′)

[lnπnew(a
′|s′)− ln π̂new(a

′|s′)]

∣∣∣∣∣∣∣
Let us now analyze the second term on right-hand side. Our goal is to bound it with the expectation w.r.t. to πnew so we can
use our assumption on the KL-divergence between πnew and π̂new.

∣∣Ea′∼π(·|s′)[lnπnew(a
′|s′)− ln π̂(a′|s′)]

∣∣ = ∣∣∣∣∣∑
a′∈A

π(a′|s′) (lnπnew(a
′|s′)− ln π̂new(a

′|s′))

∣∣∣∣∣
=

∣∣∣∣∣∑
a′∈A

πnew(a
′|s′)(lnπnew(a

′|s′)− ln π̂new(a
′|s′))

(
π(a′|s′)

πnew(a′|s′)

)∣∣∣∣∣
(∗)
≤ |A|e

∆
α(1−γ) sup

s

∣∣∣∣∣∑
a′∈A

πnew(a
′|s′)(lnπnew(a

′|s′)− ln π̂new(a
′|s′))

∣∣∣∣∣
≤ |A|e

∆
α(1−γ) δ.

The inequality (∗) follows from the following observation. Observe that

π(a′|s′)
πnew(a′|s′)

= π(a′|s′)
∑
ã∈A

e
Q

π,R
soft (s′,ã)−Q

π,R
soft (s′,a′)

α ≤ |A|e
∆

α(1−γ) .

The last inequality follows from the fact that Qπ,R
soft (s, a)−Qπ,R

soft (s
′, a′) ≤ 1

1−γ∆, for every s, s′ ∈ S and a, a′ ∈ A.

A.3. Soft Policy Improvement prediction error bound

As discuss in the previous section, the Observer can use the recovered reward to predict the next soft policy improvements
of the Learner. Here we prove an error bound of the prediction in terms of the reward estimation error.

Theorem A.3 (Single agent LfL.). Let R be the actual reward and let R̂ be an estimation recovered by the Observer. Let
πnew is the actual policy improvement of the policy π and π̂new is the predicted policy improvement of the actual policy π
using recovered reward R̂. If there exist δ > 0 and a shaping sh : S ×A → R such that

sup
s∈S,a∈A

∣∣∣R̂(s, a)− (R+ sh)(s, a)
∣∣∣ < δ

then
sup

s∈S,a∈A
DKL(πnew|π̂new) < ε

where

ε = δ

(
1

α(1− γ)
+
|A|
einf R

)
.

13
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Proof. For every s ∈ S

|DKL (πnew(·|s)|π̂new(·|s))| = E
a∼πnew

[lnπnew(a|s)− ln π̂(a|s)]

=
1

α
E

a∼πnew

[
QR+sh,π

soft (s, a)− α lnZ(s)−QR̂,π
soft (s, a) + α ln Ẑ(s)

]
=

1

α
E

a∼πnew

[
Eπ

[ ∞∑
t=0

γt((R+ sh)(st, a)− R̂(st, at))

]]
− (lnZ(s)− ln Ẑ(s)),

where Z(s) and Ẑ(s) are the normalizing factors

Z(s) =
∑
ã∈A

e
Q

R+sh,π
soft (s,ã)

α Ẑ(s) =
∑
ã∈A

e
Q

R̂,π
soft (s,ã)

α .

Therefore, using the assumption and the property that ln
(
x
y

)
= ln

(
x−y
y + 1

)
≤ x−y

x , we have

|DKL (πnew(·|s)|π̂new(·|s))| ≤
δ

α(1− γ)
+

Ẑ(s)− Z(s)

Z(s)

≤ δ

(
1

α(1− γ)
+
|A|
e

inf R
α

)
.

B. Proofs of the error bounds in the multi-agent case
Here we include the proofs of Theorem 6.1, Theorem 6.3 and Theorem6.5 which are the multi-agent extensions of
Theorem A.1, Theorem A.2 and Theorem A.3 in Appendix A.

Proof of Theorem 6.1. Similar to the proof of Theorem A.1, we can write

lnπnew(a
i|s)− ln π̂new(a

i|s) = 1

α

(
Ea−i∼π−i

[
Qπ,Ri+sh

soft (s,a−i, ai)−Qπ,R̂
soft (s,a

−i, ai)
])

, (15)

for a certain shaping sh : S ×A1 × . . .AN → R.

Using (15) and the Bellman equation (3), we can write

∣∣∣∣ E
a−i∼π−i

[
R̂ij(s,a

−i, ai)− (Ri + sh)(s,a−i, ai)
]∣∣∣∣

= α
∣∣∣ ln π̂inew(a

i|s)− lnπnew(a
i|s)− γ E

a−i∼π−i

s′∼P (·|s,a)
ãi∼πi(·|s′)

[
ln π̂inew(ã

i|s′)− lnπnew(ã
i|s′)

] ∣∣∣ ≤ αδ(1 + γ). (16)

Proof of Theorem 6.3. As in the proof of Theorem A.2, there exists a shaping sh : S ×Ai → R, that depends only on the
state and on the action of agent i, such that

lnπnew(a
i|s)− ln π̂new(a

i|s) = 1

α

(
E

a−i∼π−i

[
Qπ,Ri+sh

soft (s,a−i, ai)−Qπ,R̂
soft (s,a

−i, ai)
])

.

14
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Therefore, following the same idea as in the proof of Theorem A.2, we can write∣∣∣∣ E
ai∼πi

new

[R̂i(s)− (Ri + sh)(s, ai)]

∣∣∣∣
≤

∣∣∣∣ E
ai∼πi

new

[
lnπinew(a

i|s)− ln π̂inew(a
i|s)

]∣∣∣∣+ γ

∣∣∣∣∣∣∣∣∣∣
E

ai∼πi
new

E
a−i∼π−i(·|s)
s′∼P (·|s,a)
ãi∼πi(·|s′)

[lnπinew(ã
i|s′)− ln π̂inew(ã

i|s′)]

∣∣∣∣∣∣∣∣∣∣
= DKL(π

i
new(·|s)∥π̂new(·|s)) + γ

∣∣∣∣∣∣∣ E
ai∼πi

new

 E
a−i∼π−i

s′∼P (·|s,a−i,ai)

[
E

ãi∼πi

[
lnπinew(ã

i|s′)− ln π̂new(ã
i|s′)

]]
∣∣∣∣∣∣∣ . (17)

As in the proof of Theorem A.2, we would like the most inner expectation of the second term in the right-hand side to be
w.r.t. πinew, in order to express it in terms of the KL-divergence. To achieve that, we can similarly bound the ratio πi

πi
new

as
follows

πi(ai|s′)
πinew(a

i|s′)
= π(ai|s′)

∑
ai∈Ai

e
E
a−i∼π−i [Q

π,Ri

soft (s′,a−i,ai)−Q
π,Ri

soft (s′,a−i,ai)]

α ≤ |Ai|e
∆i

α(1−γ) ,

where ∆i = sups∈S Ri(s)− infs∈S Ri(s). This allows us to conclude that∣∣∣∣ E
ai∼πi

new

[
R̂i(s)− (Ri + sh)(s, ai)

]∣∣∣∣ ≤ δ

(
1 + γ|Ai|e

∆i

α(1−γ)

)
.

Proof of Theorem 6.5. Similarly to the proof of Theorem A.3, we have

DKL
(
πinew(·|s)|π̂inew(·|s)

)
= E
ai∼πi

new

[
lnπinew(a

i|s)− ln π̂i(ai|s)
]

=
1

α
E

ai∼πi
new

[
E

a−i∼π−i

[
Qπ,Ri+sh

soft (s,a−i, ai)−Qπ,R̂i

soft (s,a−i, ai)
]]

+ α ln Ẑ(s)− α lnZ(s)

=
1

α
E

ai∼πi
new

[
E

a∼π

[ ∞∑
t=0

γt((Ri + sh)(st,at)− R̂(st,at))

]]
− (lnZ(s)− ln Ẑ(s)),

where Z(s) and Ẑ(s) are the normalizing terms.

Following the same argument in the proof of Theorem A.3 we get

DKL
(
πinew(·|s)|π̂inew(·|s)

)
≤ δ

(
1

α(1− γ)
+
|Ai|

e
minRi

α

)
.

C. Experiments
In this section, we provide the details of our experimental evaluations. We execute all experiments under a Conda
environment using Python with a computation unit GPU-2080i and the source code is available at GitHub 1.

In Fig. 4 and Fig. 5 we present the visualizations of heterogeneous and homogeneous reward cases respectively.

1https://github.com/melodiCyb/multiagent-learning-from-learners
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Parameter Value
Alpha 3
Beta 0.1

Gamma 0.9
Episode Length 1000

Iteration # 10
Episode # 3000

Entropy Coefficient 0.3
Adam Learning Rate 0.1

Adam Epoch # 10
Reward Adam Epoch # 1000

Reward Adam Learning Rate 0.01

Table 3. Parameters to reproduce results for MA-LfL in Grid World scenario in Section 7 Table 1.

(a) Normalized true rewards w.r.t Mhet. (b) Normalized recovered rewards w.r.t Mhet.

Figure 4. Mhet case for Agent #1 with MA-SPI.

(a) Normalized true rewards w.r.t Mhom. (b) Normalized recovered rewards w.r.t Mhom.

Figure 5. Mhom case for Agent #1 with MA-SPI.
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