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Abstract
To achieve scalable and accurate inference for
latent Gaussian processes, we propose a varia-
tional approximation based on a family of Gaus-
sian distributions whose covariance matrices have
sparse inverse Cholesky (SIC) factors. We com-
bine this variational approximation of the pos-
terior with a similar and efficient SIC-restricted
Kullback-Leibler-optimal approximation of the
prior. We then focus on a particular SIC order-
ing and nearest-neighbor-based sparsity pattern
resulting in highly accurate prior and posterior
approximations. For this setting, our variational
approximation can be computed via stochastic gra-
dient descent in polylogarithmic time per iteration.
We provide numerical comparisons showing that
the proposed double-Kullback-Leibler-optimal
Gaussian-process approximation (DKLGP) can
sometimes be vastly more accurate for station-
ary kernels than alternative approaches such as
inducing-point and mean-field approximations at
similar computational complexity.

1. Introduction
Gaussian process (GP) priors are popular models for un-
known functions in a variety of settings, including geo-
statistics (e.g., Stein, 1999; Banerjee et al., 2004; Cressie
& Wikle, 2011), computer model emulation (e.g., Sacks
et al., 1989; Kennedy & O’Hagan, 2001; Gramacy, 2020),
and machine learning (e.g., Rasmussen & Williams, 2006;
Deisenroth, 2010). Latent GP (LGP) models, such as gener-
alized GPs, assume a Gaussian or non-Gaussian distribution
for the data conditional on a GP (e.g., Diggle et al., 1998;
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Chan & Dong, 2011). LGPs extend GPs to a large class of
settings, including noisy, categorical, and count data. How-
ever, LGP inference is generally analytically intractable and
hence requires approximations. In addition, direct GP in-
ference is prohibitive for large datasets due to cubic scaling
in the data size. There are two main challenges for (L)GPs
in many applications: One is to specify or learn a suitable
kernel for the GP, and the other is carrying out fast inference
for a given kernel. In this paper, we make no contributions
to the former and instead focus on the latter challenge: We
assume that a parametric kernel form is given and propose
an efficient approximation method for LGP inference via
structured variational learning.

Many approaches to scaling GPs to large datasets were
reviewed in Heaton et al. (2019) and Liu et al. (2020), in-
cluding low-rank approaches with a small number of pseudo
points that are popular in machine learning. Such low-rank
GP approximations have been combined with variational
inference for GPs (e.g., Titsias, 2009; Hensman et al., 2013)
and LGPs (e.g., Hensman et al., 2015; Leibfried et al., 2020).

A highly promising approach to achieve GP scalability is
given by nearest-neighbor Vecchia approximations from spa-
tial statistics (e.g., Vecchia, 1988; Stein et al., 2004; Datta
et al., 2016; Katzfuss & Guinness, 2021), which are optimal
with respect to forward Kullback-Leibler (KL) divergence
under the restriction of sparse inverse Cholesky (SIC) fac-
tors of the covariance matrix (Schäfer et al., 2021a). Such
SIC approximations have several attractive properties (e.g.,
as reviewed by Katzfuss et al., 2022). They result in a valid
joint density function given by the product of univariate
conditional Gaussians, each of which can be independently
computed in cubic complexity in the number of neighbors.
This allows straightforward mini-batch subsampling with
unbiased gradient estimators (Cao et al., 2022). For the or-
dering and sparsity pattern used here, the number of neigh-
bors needs to grow only polylogarithmically with the data
size to achieve ϵ-accurate approximations for Matérn-type
kernels up to boundary effects (Schäfer et al., 2021a) due
to the screening effect (Stein, 2011). Many existing GP ap-
proximations, including low-rank and partially-independent
conditional approaches, can be viewed as special cases of
SIC approximations corresponding to particular orderings
and sparsity patterns (Katzfuss & Guinness, 2021). SIC
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Figure 1. Double KL minimization for approximating the posterior
distribution of a latent Gaussian field f given data y: Based on
a forward-KL-optimal SIC approximation p̂(f) of the prior, we
obtain an SIC-restricted reverse-KL-optimal variational approxi-
mation q̂(f) to the posterior.

approximation using our ordering and sparsity pattern does
not exhibit the same limitations as low-rank approximations
(Stein, 2014) and can hence be significantly more accurate
for non-latent (i.e., directly observed) GPs (Cao et al., 2022).

SIC approximations of LGPs are more challenging. For
LGPs with Gaussian noise, applying SIC approximations to
the noisy responses reduces accuracy, and SIC approxima-
tions of the latent field may not be scalable (e.g., Katzfuss
& Guinness, 2021). Existing approaches addressing this
challenge (Datta et al., 2016; Katzfuss & Guinness, 2021;
Schäfer et al., 2021a; Geoga & Stein, 2022) do not consider
estimation using stochastic gradient descent (SGD). For
non-Gaussian LGPs, Laplace SIC approximations (Zilber &
Katzfuss, 2021) are straightforward but can be inaccurate.
Liu & Liu (2019) combined an SIC-type approximation to
the prior with variational inference based on a variational
family of Gaussians with a sparse Cholesky factor of the co-
variance matrix, but we are not aware of results guaranteeing
that the covariance-Cholesky factor exhibits (approximate)
sparsity under random ordering. Wu et al. (2022) combined
SIC-type approximations of LGPs with mean-field varia-
tional inference, but the latter may be inaccurate when there
are strong correlations in the GP posterior (MacKay, 1992).

To achieve scalable and accurate inference for LGPs, we
propose a variational family of SIC Gaussian distributions
and combine it with a SIC approximation to the GP prior
(see Figure 1). Our approach is double-KL-optimal in the
sense that variational approximation is reverse-KL-optimal
for a given log normalizer (i.e., evidence) and our prior
SIC approximation, which is available in closed form, is
forward-KL-optimal for a given sparsity pattern (Schäfer
et al., 2021a). Within our double-Kullback-Leibler-optimal
Gaussian-process framework (DKLGP), we then focus on a

particular ordering and nearest-neighbor-based sparsity pat-
tern resulting in highly accurate prior and posterior approx-
imations. We adopt a novel computational trick based on
the concept of reduced ancestor sets for achieving efficient
and scalable LGP inference. For this setting, our variational
approximation can be computed via SGD in polylogarithmic
time per iteration. While inducing-point methods assume
that unobserved points depend on data only through induc-
ing points (e.g., Frigola et al., 2014; Hensman et al., 2015),
our method allows fast and accurate KL-optimal prediction
based on the screening effect. Our numerical comparisons
show that DKLGP can be vastly more accurate than state-of-
the-art alternatives such as inducing-point and mean-field
approximations at a similar computational complexity.

2. Methodology
2.1. Model

Assume we have a vector y = (y1, . . . , yn)
⊤ of noisy

observations of a latent GP f(·) ∼ GP(µ,K) at inputs
x1, . . . ,xn ∈ Rd, such that p(y|f) =∏n

i=1 p(yi|fi), where

f = (f1, . . . , fn)
⊤ ∼ Nn(µ,K) (1)

with µi = µ(xi) and Kij = K(xi,xj). Throughout, we
view the inputs xi as fixed (i.e., non-random) and hence do
not explicitly condition on them.

Unless y|f follows a Gaussian distribution, inference (such
as computing the posterior p(f |y)) generally cannot be car-
ried out in closed form. In addition, even for Gaussian
likelihoods, direct inference scales as O(n3) and is thus
computationally infeasible for large n. To address these
challenges, we propose an approximation based on double
KL minimization.

2.2. Variational Sparse Inverse Cholesky Approximation

Consider a lower-triangular sparsity pattern Sq ⊂
{1, . . . , n}2, with {(i, i) : i = 1, . . . , n} ⊂ Sq and such
that i ≥ j for all (i, j) ∈ Sq. Our preferred choice of Sq

will be discussed in Section 2.5, but typically we will have
(i, j) ∈ Sq if xi and xj are “close.” Corresponding to Sq,
define the family of distributions Q = {Nn(ν, (VV⊤)−1) :
ν ∈ Rn,V ∈ Rn×n,V ∈ Sq}, where we write V ∈ Sq if
(i, j) ∈ Sq for all Vij ̸= 0. It is straightforward to show that
any q ∈ Q can be represented in ordered conditional form as
q(f) =

∏n
i=1 q(fi|fsqi ), where sqi = {j > i : (j, i) ∈ Sq}

for i = 1, . . . , n− 1 and sqn = ∅.

We approximate the posterior p(f |y) by the closest distribu-
tion in Q in terms of reverse KL divergence:

q̂(f) = argmin
q∈Q

KL
(
q(f)

∥∥p(f |y)).
We have KL(q(f)∥p(f |y)) = log p(y)− ELBO(q), where
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p(y) does not depend on q, and so q̂ satisfies

q̂(f) = argmax
q∈Q

ELBO(q). (2)

Proposition 2.1. The ELBO in (2) can be written up to an
additive constant of n/2 as

ELBO(q) =

n∑
i=1

(
E
q
log p(yi|fi)− ((ν − µ)⊤L:,i)

2/2

+ log(V−1
ii Lii)− ∥V−1L:,i∥2/2

)
, (3)

where L is the inverse Cholesky factor of K such that
K−1 = LL⊤, and L:,i denotes its ith column.

All proofs can be found in Appendix C.

2.3. Approximating the Prior via a Second KL
Minimization

Even for a sparse V, computing the ELBO in (3) is pro-
hibitively expensive for large n, because computing L (or
any of its columns) from K generally requires O(n3) time.
To avoid this, we replace the prior p(f) defined in (1) by
a Gaussian distribution that minimizes a second KL diver-
gence under an SIC constraint.

Specifically, consider a second lower-triangular sparsity
pattern Sp ⊂ {1, . . . , n}2, which may be the same as
Sq. We define the corresponding set of distributions P =
{Nn(µ̃, (L̃L̃

⊤)−1) : µ̃ ∈ Rn, L̃ ∈ Rn×n, L̃ ∈ Sp}. We
approximate the prior p(f) by the closest approximation in
P in terms of forward KL divergence:

p̂(f) = argmin
p̃∈P

KL
(
p(f)

∥∥p̃(f)). (4)

By a slight extension of Schäfer et al. (2021a, Thm. 2.1),
we can show that this optimization problem has an efficient
closed-form solution.
Proposition 2.2. The solution to (4) is p̂(f) =

Nn(f |µ, (L̂L̂⊤)−1), where the nonzero entries of the ith
column of L̂ can be computed in O(|Sp

i |3) time as

L̂Sp
i ,i

= bi(bi,1)
−1/2, with bi = K−1

Sp
i ,S

p
i
e1, (5)

and Sp
i = {j : (j, i) ∈ Sp} is an ordered set with elements

in increasing order (i.e., the first element is i).

Throughout, we denote by ei a vector whose ith entry is
one and all others are zero, and we index matrices before
inverting so that K−1

Sp
i ,S

p
i

:= (KSp
i ,S

p
i
)−1.

The approximation in Proposition 2.2 is equivalent to an
ordered conditional approximation (Vecchia, 1988) of the
prior density p(f) =

∏n
i=1 p(fi|f(i+1):n) by:

p̂(f) =
∏n

i=1 p(fi|fspi ) =
∏n

i=1 N (fi|ηi, σ2
i ),

where ηi = µi − L̂⊤
spi ,i

(fspi − µspi
)/L̂i,i and σ2

i = L̂−2
i,i ,

with spi = Sp
i \ {i}.

2.4. Computing the ELBO based on Ancestor Sets

Plugging p̂(f) into (2), the ELBO in (3) becomes

ELBO(q) =

n∑
i=1

(
E
q
log p(yi|fi)− ((ν − µ)⊤L̂:,i)

2/2

+ log(V−1
ii L̂ii)− ∥V−1L̂:,i∥2/2

)
, (6)

with the ith summand depending on L̂ only via its ith
column L̂:,i, whose nonzero entries can be computed in
O(|Sp

i |3) time using (5).

We need to compute V−1L̂:,i and V−1ei, the latter of which
appears in Eq log p(yi|fi) (see Section 2.6). The nonzero
entry of ei (i.e., {i}) is a subset of the nonzero entries of L̂:,i

(i.e., Sp
i ), and hence we focus our discussion on computing

V−1L̂:,i. Solving this sparse triangular system in principle
requires O(|Sq|) time.

However, it is possible to speed up computation by omit-
ting rows and columns of V that do not correspond to
the ancestor set Ai of Sp

i with respect to Sq, which is
defined as Ai =

{
j ≥ i : there exists a path L =

{(j, l1), (l1, l2), . . . , (la−1, la), (la, l)} ⊂ Sq for some l ∈
Sp
i

}
. Ancestor sets are properties of the directed acyclic

graphs that can be used to represent our triangular sparsity
structures, as illustrated in Appendix B.

Proposition 2.3. (V−1L̂:,i)j = 0 for all j /∈ Ai.

Thus, we have

∥V−1L̂:,i∥ = ∥V−1
Ai,Ai

L̂Ai,i∥, (7)

where V−1
Ai,Ai

L̂Ai,i can be computed in O(|Ai||Sq
i |) time.

2.5. Maximin Ordering and Nearest-neighbor Sparsity

Schäfer et al. (2021a) proposed a sparsity pattern S based
on reverse-maximum-minimum-distance (r-maximin) or-
dering (see Figure 2 for an illustration). R-maximin or-
dering picks the last index in arbitrarily (often in the cen-
ter of the input domain), and then the previous indices
are sequentially selected for k = n − 1, n − 2, . . . , 1 as
ik = argmaxi /∈Ik

minj ∈Ik
dist(xi,xj), where Ik =

{ik+1, . . . , in}. Throughout, we assume that our indexing
follows r-maximin ordering (e.g., fk = fik ). We can then
define the sparsity pattern by Si = {j ≥ i : dist(xi,xj) ≤
ρℓi}, for some fixed ρ ≥ 1, where ℓi = minj>i dist(xi,xj).
We can compute dist(xi,xj) as Euclidean distance between
the inputs, potentially in a transformed input space (see Sec-
tion 2.6 for more details). The conditioning sets are all of
approximately size |Si| = O(ρd) ≈ m = |S|/n under mild
assumptions on the regularity of the inputs. Schäfer et al.
(2021a) proved that an ϵ-accurate approximation of the prior
can be obtained using Sp = S with ρ = O(log(n/ϵ)) for
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li

(a) i = n− 12 (b) i = n− 100 (c) i = n− 289

Figure 2. Reverse maximin ordering on a grid (small gray dots) of size n = 60× 60 = 3,600 on a square. For three different indices i,
we show the ith ordered input (▲), the subsequently ordered n− i inputs (�), the distance ℓi to the nearest neighbor (−), the neighboring
subsequent inputs Si (■) within a (yellow) circle of radius ρℓi (here, ρ = 2), the reduced ancestors Ãi (+), and the ancestors Ai (×).

kernels K that are Green’s functions of elliptic boundary-
value problems (similar to Matérn kernels up to bound-
ary effects) and demonstrated high numerical accuracy of
the posterior using Sq = S for Gaussian likelihoods. For
non-Gaussian likelihoods, this implies highly accurate ap-
proximations to the posterior when a second-order Taylor
expansion can adequately approximate the posterior.

While this means that our DKLGP can achieve high accu-
racy by choosing Sp = Sq = S, the resulting ancestor
sets can grow roughly linearly with n (e.g., see Figure 3a).
Hence, even evaluating the ELBO based on the ancestor sets
would often be prohibitively expensive for large n. How-
ever, it is possible to ignore most ancestors in (7) and only
incur a small approximation error. Specifically, consider
reduced ancestor sets Ãi = {j ≥ i : dist(xi,xj) ≤ ρℓj},
where the last subscript is now a j, not an i. As illustrated in
Figure 2, we have Si ⊂ Ãi (because ℓj ≥ ℓi for j ≥ i) and
approximately Ãi ⊂ Ai. The reduced ancestor sets are of
size |Ãi| = O(ρd log n) = O(m log n) and can all be com-
puted together in O(nm log2 n) time (Schäfer et al., 2021b).
Hence, reduced ancestor sets can be orders of magnitude
smaller than full ancestor sets (see Figures 3a and 6).
Claim 2.4. For Matérn-type LGPs with exponential-family
likelihoods, (V−1L̂:,i)j ≈ 0 for all j /∈ Ãi, where V mini-
mizes the ELBO in (6), under mild conditions.

We provide a non-rigorous justification for this claim in
Appendix C. Together, Proposition 2.3 and Claim 2.4 imply
that ∥V−1L̂:,i∥ ≈ ∥V−1

Ãi,Ãi
L̂Ãi,i

∥ (as illustrated in Fig-
ure 3b), and so replacing the former by the latter in the
ELBO causes negligible error (Figure 3c). Similar numer-
ical results were obtained for two other popular kernels in
Figures 7 and 8 in Appendix A, suggesting that our approach
is applicable to beyond the Matérn family.

2.6. Optimization of the ELBO

The class of distributions Q = {Nn(ν, (VV⊤)−1) : ν ∈
Rn,V ∈ Rn×n,V ∈ Sq} has n parameters in ν and |S|
parameters in V. We propose to find the optimal q̂ ∈ Q by
minimizing our approximation of −ELBO(q) with respect
to these O(nm) unknown parameters via minibatch stochas-
tic gradient descent. For each minibatch B, this requires
computing the gradient of∑

i∈B

(
E
q
log p(yi|fi)− ((ν − µ)⊤L̂:,i)

2/2

+ log(V−1
ii L̂ii)− ∥V−1

Ãi,Ãi
L̂Ãi,i

∥2/2
) (8)

using automatic differentiation.

For Gaussian observations with yi|fi ∼ N (fi, τ
2
i ), we

have −2Eq log p(yi|fi) =
(
(yi − νi)

2 + ∥V−1ei∥2
)
/τ2i +

log τ2i + log 2π. For more general distributions p(yi|fi),
we can use the Monte Carlo gradient estimator (Kingma
& Welling, 2014) and approximate Eq log p(yi|fi) ≈
(1/L)

∑L
l=1 p(yi|f

(l)
i ), where f

(l)
i = νi + (V−1ei)

⊤z(l),

z(l)
iid∼ Nn(0, In), and In is the n× n identity matrix.

Evaluating each summand in (8) requires O(|Si|3) =

O(m3) time for obtaining L̂:,i and O(m2 log n) time
for solving V−1

Ãi,Ãi
L̂Ãi,i

, because |Ãi| = O(m log n).

The O(m3) cost dominates, as we typically need m =
O(logd n) for accurate approximations (Schäfer et al.,
2021a); for example, in Figure 3a, |Ãi||Si| is smaller than
|Si|3. Also, L̂ does not need to be pre-computed and stored,
as each column L̂:,i can be computed “on-the-fly”; this is
especially useful for hyperparameter estimation, for which
p(f) and hence L̂ changes with the hyperparameters at each
gradient-descent iteration.
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Figure 3. Reduced ancestor sets are much smaller than full ancestor sets, as shown in (a), and hence greatly reduce computational cost, but
result in negligible approximation error in the ELBO, as shown in (b) and (c). Specifically, (a) shows average sizes of the sparsity sets Si,
reduced ancestor sets Ãi, and full ancestor sets Ai as a function of n with d = 5; for n = 32,000, we have |Si| = 30, |Ãi| = 293, and
|Ai| = 8,693. (b) compares ∥V−1

Ãi,Ãi
L̂Ãi,i

∥ with reduced ancestor sets versus ∥V−1L̂:,i∥ for i = 1, . . . , n, where n = 500 and d = 2.
(c) compares ELBO curves based on full (6) and reduced (8) ancestor sets, as functions of the range parameter with true value 0.1, for
n = 500 and d = 2. In all plots, we set ρ = 2 and the n inputs are sampled uniformly on [0, 1]d.

We initialize the optimization using an estimate of ν and V
based on a Vecchia-Laplace approximation (Zilber & Katz-
fuss, 2021) of p(f |y) combined with an efficient incomplete
Cholesky (IC0) approximation (Schäfer et al., 2021a) of the
posterior SIC factor. While this initialization itself provides
a reasonable approximation to the posterior, hyperparameter
estimation for this approach is more difficult, and it is less
accurate than DKLGP even for known hyperparameters as
shown in Figure 9 in Appendix A.

The ordering and sparsity pattern in Section 2.5 depend
on a distance metric, dist(xi,xj), between inputs. We
have found that the accuracy of the resulting approxima-
tion can be improved substantially by computing the Eu-
clidean distance between inputs in a transformed input
space in which the GP kernel is isotropic, as suggested
by Katzfuss et al. (2022); Kang & Katzfuss (2023). For
example, consider an automatic relevance determination
(ARD) kernel of the form K(xi,xj) = Ko(q(xi,xj)),
where Ko is an isotropic kernel (e.g., a Matérn kernel
with smoothness 1.5 is used throughout this paper) and
q(xi,xj) = ∥xλ

i − xλ
j ∥ is a Euclidean distance based on

scaled inputs xλ = (x1/λ1, . . . , xd/λd) with individual
ranges or length-scales λ = (λ1, . . . , λd) for the d input di-
mensions. In this example, we take dist(xi,xj) = q(xi,xj)
when computing the sparsity pattern. When the scaled dis-
tance and hence the sparsity pattern depend on unknown
hyperparameters (e.g., λ in the ARD case), we carry out a
two-step optimization procedure: First, we run our ELBO
optimization for a few epochs based on the sparsity pattern
obtained using an initial guess of λ to obtain a rough esti-
mate of λ, which we then use to obtain the final ordering
and sparsity pattern and warm-start our ELBO optimization.

2.7. Prediction

An important task for (L)GP models is prediction at un-
observed inputs, meaning that we want to obtain the pos-
terior distribution of latent GP variables f∗ at new inputs
x∗
1, . . . ,x

∗
n∗ given the data y. To do so, we consider the joint

posterior distribution of f̃ = (f∗, f), from which any desired
marginal distribution can be computed. Since working with
the joint covariance matrix K̃ is again computationally pro-
hibitive, we make a joint SIC assumption on the posterior
distribution of f̃ (with the prediction variables ordered first)
that naturally extends the SIC assumption for f in q(f). For
the exact posterior, we have

p(f̃ |y) = p(f∗|f ,y)p(f |y) = p(f∗|f)p(f |y).
Similarly, we assume q(f̃) = q(f∗|f)q(f), where q(f) =
Nn(f |ν, (VV⊤)−1) was obtained as described in previous
sections, and q(f∗|f) is a sparse approximation of p(f∗|f).
For i = 1, . . . , n∗, let S∗

i ⊂ {i, i+ 1, . . . , n∗ + n} denote
the ith sparsity set relative to the joint posterior.

We define the approximation to the joint posterior by the
minimizer of the expected forward-KL divergence between
p(f∗|f) and q(f∗|f) for given ν and V, that is,

q̂(f̃) = argmin
q(f̃)∈Q̃(ν,V)

E
p

[
KL
(
p(f∗|f)

∥∥q(f∗|f))],
where

Q̃(ν,V) = {Nn∗+n((ν
∗⊤,ν⊤)⊤, (V∗, (0,V⊤)⊤)) :

ν∗ ∈ Rn∗
,V∗ ∈ R(n∗+n)×n∗

,V∗ ∈ S∗}

and S∗ =
⋃n∗

i=1{(j, i) : j ∈ S∗
i }. The resulting approxima-

tion can be obtained efficiently:
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Proposition 2.5. For given ν, V, and S∗, q̂(f̃) =
Nn∗+n(f̃ |ν̃, (ṼṼ⊤)−1), where ν̃ = (ν̂∗⊤,ν⊤)⊤, Ṽ =

(V̂∗, (0,V⊤)⊤), V̂∗ = (V̂∗∗⊤, V̂o∗⊤)⊤,

V̂∗
S∗
i ,i

= ci(ci,1)
−1/2, with ci = K(S∗

i ,S∗
i )

−1e1,

ν̂∗ = µ∗ − (V̂∗∗)−⊤V̂o∗⊤(ν − µ),

and µ∗ = (µ(x∗
1), . . . , µ(x

∗
n∗))⊤.

The posterior distribution of a desired summary, say a⊤f̃
can then be computed as q(a⊤f̃) = N (a⊤ν̃, ∥Ṽ−1a∥2).
In particular, the marginal posterior of f∗

i can be obtained
using a = ei as q(e⊤i f̃) = N (ν∗

i , ∥Ṽ−1ei∥2).
We again consider an r-maximin ordering and nearest-
neighbor sparsity pattern similar to above, but now con-
ditioned on the prediction points being ordered first, and
the training points ordered after (in the same ordering as
before). Once the prediction points are in this conditional
r-maximin ordering, we can define

ℓ∗i = min
i<j≤n∗

dist(x∗
i ,x

∗
j ) ∧ min

1≤j≤n
dist(x∗

i ,xj)

and

S∗
i = {j ≥ i : dist(x∗

i ,x
∗
j ) ≤ ρℓ∗i }

∪ {j + n∗ : dist(x∗
i ,xj) ≤ ρℓ∗i }.

This ordering and sparsity pattern can be computed rapidly
and was shown to lead to highly accurate approximations;
more details can be found in Schäfer et al. (2021a, Section
4.2.1). Note that while computing the prediction variances
can be expensive, we can again approximate ∥Ṽ−1ei∥ ≈
∥Ṽ−1

Ã∗
i ,Ã∗

i

ei;Ã∗
i
∥ using a reduced ancestor set

Ã∗
i = {j ≥ i : dist(x∗

i ,x
∗
j ) ≤ ρℓ∗j}

∪ {j + n∗ : dist(x∗
i ,xj) ≤ ρℓ∗j},

where the last subscript is a j, not an i.

3. Numerical Comparisons
3.1. Experimental Setup

We compared the following approaches:

DKLGP: Our method with r-maximin ordering and
nearest-neighbor sparsity pattern

DKL-G: Same as DKLGP but with global sparsity pattern
Sp
i = Sq

i = {1, . . . ,m}
DKL-D: Same as DKLGP but with diagonal sparsity pat-

tern Sq
i = {i}

SVIGP: Stochastic variational GP proposed by Hensman
et al. (2013)

VNNGP: Variational nearest neighbor GP proposed by Wu
et al. (2022)

In figures and tables, we use abbreviated acronyms DKL,
SVI, and VNN to save space. SVIGP and VNNGP are
two state-of-the-art variational GP methods, while DKL-
G and DKL-D are variants of our DKLGP that resemble
SVIGP and VNNGP, respectively. SVIGP assumes inde-
pendence in f conditional on m global inducing variables.
VNNGP scales up the inducing points to be equal to the
observed input locations, ensuring computational feasibility
by assuming that each conditions only on m others a priori,
combined with a mean-field approximation to the posterior.
We used the GPyTorch (Gardner et al., 2018) implementa-
tions of SVIGP and VNNGP. For DKL-G and DKL-D, one
can easily see that Ai = Sp

i , and so reduced ancestor sets
are not necessary. For all methods, computing a term in the
ELBO requires O(m3) time per sample. (Reusing Cholesky
factors for all samples in a minibatch is straightforward for
SVIGP; similar savings may also be possible for the other
methods based on the supernode ideas suggested by Schäfer
et al., 2021a.) Hence, m can be viewed as a comparable
complexity parameter that trades off computational speed
(for small m) against accuracy (large m). Thus, for our
numerical comparison, we aligned the m for all methods
with the average size of Si for a given ρ.

Throughout, we assumed f(·) ∼ GP(0,K), where K is a
Matérn1.5 ARD kernel whose variance (set to one for simu-
lations) and range (i.e., length-scale) parameters λ were es-
timated. We considered three different likelihoods p(yi|fi):

Gaussian: yi|fi ∼ N (fi, σ
2
ϵ )

Student-t: yi|fi ∼ T2(fi, σ2
ϵ ) with 2 degrees of freedom

Bernoulli-logit: yi|fi ∼ B((1 + e−fi)−1)

The noise variance σ2
ϵ was estimated from the data; for

simulations, we used σ2
ϵ = 0.12 except where specified

otherwise.

For estimation of hyperparameters, the initial values for λ,
σ2
ϵ , and the variance in K were all 0.25. DKLGP and its

variants ran the Adam optimizer for 35 epochs. SVIGP and
VNNGP used natural gradient descent and Adam, respec-
tively, as their optimizer for 500 epochs as suggested in
Wu et al. (2022). The minibatch size was 128 and a multi-
step scheduler with a scaling factor of 0.1 was used for all
methods.

3.2. Visual Comparison in One Dimension

Figure 4 provides a visual comparison of SVIGP, VNNGP,
and DKLGP predictions for a toy example in one dimension.
We also included predictions from the exact GP (DenseGP)
which cannot be obtained for large n. DKLGP approxi-
mated the DenseGP most closely, especially in terms of
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Figure 4. Comparison of exact GP predictions (DenseGP) to three variational GP approximations for simulated data with Gaussian noise
at n = 200 randomly sampled training inputs on [0, 1] with σϵ = 0.3 and true range λ = 0.1. We show the means (solid lines) and 95%
pointwise intervals of the posterior predictive distribution f∗|y at 200 regularly spaced test inputs. The right panel zooms into a smaller
region of the left panel to highlight the differences.

the prediction intervals. SVIGP oversmoothed heavily and
produced very wide prediction intervals. VNNGP assumes
a diagonal covariance in the variational distribution q(f),
which appears to have caused sharply fluctuating predictions
and narrow prediction intervals. Figure 11 in Appendix A
shows similar comparisons for Student-t and Bernoulli like-
lihoods.

3.3. Results on Synthetic Data

We also carried out a more comprehensive compari-
son for 10,000 inputs randomly distributed in the unit
hypercube, [0, 1]5, with true range parameters λ =
(0.25, 0.50, 0.75, 1.00, 1.25). We used n = 8,000 inputs
for training and 2,000 for testing. Performance was mea-
sured in terms of the variational inference of the latent field
f(·) at training and test inputs. For each scenario, results
over five replicates were produced and averaged.

Figure 5 compares root mean squared error (RMSE) and
negative log-likelihood (NLL) at test inputs. For the Gaus-
sian and Student-t likelihoods, DKLGP produced the most
accurate predictions, while for the Bernoulli-logit likelihood,
SVIGP and DKLGP appeared to be similarly accurate in
terms of RMSE. DKLGP outperformed the competing meth-
ods in terms of NLL. While DKLGP, DKL-G, and SVIGP
improved with increasing ρ as expected, the mean-field ap-
proximations (VNNGP and DKL-D) generally did not. We
performed the same comparison for the squared exponen-
tial and rational quadratic kernels in Figures 12 and 13 in
Appendix A, which resulted in the same rankings as for the

Matérn kernel, except that DKLGP was marginally outper-
formed by SVIGP in terms of RMSE for the Bernoulli-logit
likelihood at ρ = 2.0.

We also computed RMSE and NLL scores at training inputs
for the methods we considered in Figure 5, as presented in
Figure 10 in Appendix A. Consistent with the results from
Figure 5, DKLGP generally performed best, which is con-
sistent with the results from Figure 5. VNNGP performed
similarly to DKLGP for the Gaussian and Student-t likeli-
hoods, but underestimated the variance at test inputs and
so led to poor NLL scores. Note that variational methods
are generally known to underestimate the posterior variance
(Blei et al., 2017).

3.4. Results on UCI Data

To provide a more comprehensive comparison of SVIGP,
VNNGP and DKLGP, we considered datasets from the UCI
data repository widely used for benchmarking purposes. For
the UCI datasets we considered in this section, covariates
were first standardized to [0, 1] and removed from analysis if
the standard deviation after standardization was smaller than
0.01. Furthermore, inputs were filtered to ensure that the
minimum distance between inputs was greater than 0.001
to prevent numerical singularity. Approximately 20% of
each dataset was used for testing. We chose different ρ for
different datasets and computed the corresponding m. Since
Section 3.3 demonstrated the advantage of DKLGP over its
variants DKL-G and DKL-D, we excluded the two variants
here for ease of presentation. We included SVIGP with
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Figure 5. RMSE (top) and NLL (bottom) for predicting the latent field at test inputs for simulated data in a five-dimensional input domain,
as a function of the complexity parameter ρ, with Gaussian (left), Student-t (center) and Bernoulli-logit (right) likelihoods

m = 32 and m = 512 inducing points as benchmarks for
easier comparison with relevant works in the literature.

Table 1 summarizes the performance of the three methods
across nine UCI datasets. DKLGP had better scores than
VNNGP for all datasets except for COVTYPE, for which
VNNGP ran out of memory on a 64GB node despite having
reduced the data size to a subset of size 100K. Compared to
the SVIGP with similar computation cost, DKLGP provided
substantially better performance for the binary response
data COVTYPE and for low-dimensional (d < 10) settings,
and roughly similar performance for most high-dimensional
datasets except the KEGGU data, for which SVIGP pro-
duced much lower RMSE than DKLGP. However, this does
not appear to be due to DKLGP providing a less accurate ap-
proximation to the exact GP, but rather it appears to be due
to the exact GP (with its simple ARD kernel) being severely
misspecified for KEGGU. To explore this further, we fit-
ted the exact GP (DenseGP) to KEGGU. The DenseGP’s
RMSE was 0.14 (same as for DKLGP), and the root aver-
age squared distance between the DenseGP predictions and
the DKLGP and SVIGP predictions was 0.05 and 0.13, re-
spectively, which implies that the DKLGP predictions were
a much better approximation of the exact-GP predictions
than the SVIGP predictions. VNNGP provided better point
predictions than SVIGP for the low-dimensional datasets,

which is consistent with the results in Wu et al. (2022); how-
ever, VNNGP’s NLL was high due to its underestimation of
posterior variance.

Table 2 summarizes the wall-clock times on an Intel Xeon
E5-2680 v4 CPU with 14 cores and 28 threads for the meth-
ods under comparison, where the computation of sparsity
and ancestor sets is only applicable to DKLGP or DKL. The
DKL computation times were closer to those of SVI than to
those of SVI32, indicating that DKLGP and SVIGP should
be compared at the same m on the basis of comparable com-
putation times. While increasing m significantly improved
SVIGP’s performance on low-dimensional datasets, even
m = 512 inducing points made the training of SVIGP chal-
lenging on the workstation we used for comparison. The
performance of DKLGP can also be improved by using a
larger ρ; for example, DKLGP’s RMSE for the KIN40K
data was reduced to 0.27 for m = 21.

4. Conclusion
We have introduced a variational approach using a varia-
tional family and approximate prior based on SIC restric-
tions. The (r-)maximin ordering, nearest-neighbor sparsity
pattern, and a computational trick based on reduced ancestor
sets together result in efficient and accurate inference and
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Table 1. RMSE and NLL at held-out test points averaged over five splits for several UCI datasets, ordered from low to high dimension d.
The Student-t and Bernoulli-logit likelihoods were used for PRECIP and COVTYPE, respectively; a Gaussian likelihood was used for the
other datasets. The average sparsity-set size for DKL is denoted by m. SVI used m inducing points, while SVI32 and SVI512 used 32 and
512 points, respectively. While SVI32 and SVI512 are included for reference, they exhibit substantially higher computational complexity
and training time than the other approaches and are hence colored in grey.

3DROAD PRECIP KIN40K PROTEIN BIKE ELEVATORS KEGG KEGGU COVTYPE
n, d 65K, 3 85K, 3 40K, 8 44K, 9 17K, 17 17K, 18 16K, 20 18K, 26 100K, 53
m 2 5 7 8 12 22 19 21 3

SVI .80 .28 .91 .43 .61 .01 .81 0.29 .09 -1.85 .39 -.43 .08 -2.05 .06 -2.30 .50 NA
SVI32 .59 -.02 .83 .34 .37 -.47 .75 0.22 .06 -2.21 .39 -.45 .07 -2.16 .06 -2.29 .50 NA
SVI512 .38 -.44 .64 .11 .17 -1.2 .67 0.10 .03 -2.69 .37 -.49 .07 -2.22 .06 -2.28 .50 NA
VNN .28 2.16 .49 4.35 .56 24.19 .69 5.59 .49 7.60 .65 1.26 .13 1.22 .14 3.85 NA NA
DKL .27 -.83 .41 -.38 .37 -.55 .56 -.19 .11 -1.63 .43 -.37 .09 -1.97 .11 -2.08 .28 NA

Table 2. Comparison of wall-clock time (in seconds) for the datasets and methods in Table 1. S&A refers to computing the r-maximin
ordering, sparsity pattern and ancestor sets.

3DROAD PRECIP KIN40K PROTEIN BIKE ELEVATORS KEGG KEGGU COVTYPE
SVI 3,283 3,965 3,305 3,589 1,487 1,386 1,329 1,594 5,945

SVI32 8,879 9,207 5,460 5,941 3,082 2,952 3,159 3,387 7,722
SVI512 25,409 26,223 21,710 22,179 12,232 9,518 9,988 10,642 44,839
VNN 2,788 3,332 1,696 2,081 568 454 487 595 NA
DKL 1,591 3,948 1,859 2,736 3,129 807 1,285 1,536 4,932
S&A 90 268 2,866 440 170 577 171 207 1,277

prediction for LGPs. While the time complexity is cubic in
the number of neighbors, quadratic complexity for the prior
approximation can be achieved by grouping observations
and re-using Cholesky factors (Schäfer et al., 2021a); we
will investigate an extension of this idea to computing the
ELBO in our variational setting. Although we here assume
that the input domain is Euclidean, our method can be ap-
plied more generally; using a correlation-based distance
instead of Euclidean distance (Kang & Katzfuss, 2023), one
can use our method to perform LGP inference for large
data on complex domains (cf. Tibo & Nielsen, 2022). We
will also explore extensions to deep GPs (cf. Sauer et al.,
2022). An implementation of our method, along with code
to reproduce all results, is publicly available at https:
//github.com/katzfuss-group/DKL-GP.

Our approach is applicable to irregularly spaced observa-
tions and in principle to any desired covariance structure.
Our method provides state-of-the-art performance when
fine-scale structure in the function of interest can be dis-
cerned from the data; in contrast, if the data are highly
noisy or sparse or the covariance model is severely misspec-
ified, inducing-point methods such as SVIGP that produce
smooth predictions and wide uncertainty intervals may be
competitive with our approach.
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A. Additional numerical results
This section contains additional figures not shown in the main paper. Complementing Figure 3a, Figure 6 shows that reduced
ancestor sets Ãi are much smaller than full ancestor sets Ai across a range of ρ values.
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Figure 6. Average sizes of the sparsity sets Si, reduced ancestor sets Ãi, and full ancestor sets Ai as a function of ρ with n = 8,000. The
inputs are sampled uniformly on [0, 1]5.

Complementing Figure 3, Figures 7 and 8 show that the approximation error in computing the ELBO caused by using
reduced ancestor sets is negligible even for the squared-exponential and rational-quadratic kernels, respectively.
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Figure 7. The squared-exponential-kernel versions of Figures 3b (left) and 3c (right): The left figure compares ∥V−1

Ãi,Ãi
L̂Ãi,i

∥ with

reduced ancestor sets versus ∥V−1L̂:,i∥ for i = 1, . . . , n, where n = 500 and d = 2. The right figure compares ELBO curves based on
full (6) and reduced (8) ancestor sets, as functions of the range parameter with true value 0.1, for n = 500 and d = 2. In all plots, we set
ρ = 2 and the n inputs are sampled uniformly on [0, 1]d.

Figure 9 suggests that the initialization of ν using Vecchia-Laplace approximation and incomplete Cholesky (IC0) approxi-
mation provides reasonable starting values for ν, which can be further refined by optimizing the ELBO.

Figure 10 shows a comparison of RMSE and NLL scores for the posterior marginals of the entries of f at training inputs.
In contrast to Figure 5, VNNGP performed similarly to DKLGP and outperformed SVIGP for Gaussian and Student-t
likelihoods. Furthermore, the Vecchia-Laplace approximation with IC0 (used as the initialization for DKLGP) was usually
the third best model, indicating an advantage of using the SIC restriction for L and V.

Figure 11 shows one-dimensional toy examples for Student-t and Bernoulli-logit likelihoods. Note that the DenseGP is
available only for the Gaussian likelihood.

Similar to Figure 5, Figures 12 and 13 provide RMSE and NLL scores at test inputs but for the squared-exponential and
rational-quadratic kernels, respectively.
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Ãi,Ãi
L̂Ãi,i
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Figure 8. The rational-quadratic-kernel versions of Figures 3b (left) and 3c (right): The left figure compares ∥V−1

Ãi,Ãi
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∥ with reduced

ancestor sets versus ∥V−1L̂:,i∥ for i = 1, . . . , n, where n = 500 and d = 2. The right figure compares ELBO curves based on full (6)
and reduced (8) ancestor sets, as functions of the range parameter with true value 0.1, for n = 500 and d = 2. In all plots, we set ρ = 2
and the n inputs are sampled uniformly on [0, 1]d.
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Figure 9. Comparison of estimated and true posterior means: The left panel uses the estimated posterior means at the initialization step
(i.e., the IC0 solution) and right panel used the estimated posterior means after ELBO optimization for simulated Gaussian data. The
simulation setting is the same as in Figure 10.

B. Graph representation of sparsity patterns and ancestor sets
We here illustrate the sparsity and ancestor sets, using their graph representations. As pointed out by Katzfuss & Guinness
(2021), the sparsity patterns can be represented by directed acyclic graphs (DAGs), which also allows straightforward
visualization of ancestor sets. Figure 14 presents sparsity and ancestor sets for three selected points (i = 12, 4, 1) of 16
grid points in the unit square. For example, x1 =

(
1
3 , 1
)

and x16 =
(
2
3 ,

2
3

)
. One can easily see that ℓ16 = ∞, ℓ15 = 2

√
2

3 ,

ℓ14 = ℓ13 =

√(
1
3

)2
+
(
2
3

)2
, ℓ12 = ℓ11 =

√
2
3 and ℓ10 = · · · = ℓ1 = 1

3 . The edges of the graphs corresponding to
the ancestor sets A12, A4 and A1 are denoted by the black curved arrows. Specifically, the sparsity set S1 = {2, 7, 13},
the reduced ancestor set Ã1 = S1 ∪ {9, 11, 12} and the (full) ancestor set A1 = Ã1 ∪ {15, 16}. Note that A1 contains
Ã1, which is a desirable property for leveraging the screening effect in GPs (Stein, 2011; Bao et al., 2020). This is not
always the case for small-scale problems and it depends on distribution of the points, as shown in Figure 14b. Specifically,
A4 = {10, 11, 14, 15, 16}, but Ã4 \ A4 = {13} ≠ ∅. But our numerical studies suggest that Ãi \ Ai are typically empty
or very small for large-scale problems, for which computational issues are severe and hence our method is most likely to
be used. For relatively large i = 12, S12 = Ã12 = A12 = {16}. As illustrated here, all the reduced ancestor sets include
x16, since ℓ16 = ∞. Otherwise, unlike Ã4 and Ã1, Ã12 does not include x15 since dist(x15,x12) =

√
2 is larger than

ρℓ15 ≃ 1.226.
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Figure 10. RMSE (top) and NLL (bottom) for predicting the latent field at training inputs, as a function of the complexity parameter ρ,
with Gaussian (left), Student-t (center) and Bernoulli-logit (right) likelihoods, under the same experimental setting in Figure 5. The green
dotted lines are the scores of the model obtained only by initialization using Vecchia-Laplace approximation and IC0.
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Figure 11. Comparison of three variational approximations to the predictive GP posteriors for the Student-t (left) and Bernoulli-logit
likelihoods (right). We show the means (solid lines) and 95% pointwise intervals of the posterior predictive distribution f∗|y at 200
regularly spaced test inputs. Note that the noise variance σϵ = 0.3 and range (or length-scale) λ = 0.1 are used. The exact-GP result
(DenseGP) is available only for the Gaussian likelihood.
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Figure 12. RMSE (top) and NLL (bottom) for predicting the latent field at test inputs for simulated data with the squared exponential
kernel in a five-dimensional input domain, as a function of the complexity parameter ρ, with Gaussian (left), Student-t (center) and
Bernoulli-logit (right) likelihoods. In the bottom panels, some lines are truncated for clearer comparison.

C. Proofs
This section contains the postponed proofs of technical statements in the main paper. A non-rigorous justification for
Claim 2.4 can be also found here.

Proof of Proposition 2.1. We have

ELBO(q) = E
q
log p(y|f)−KL(q(f)∥p(f)),

where Eq log p(y|f) =
∑n

i=1 Eq log p(yi|fi). Using a well-known expression for the KL divergence between two Gaussian
distributions, we have

2KL(q(f)∥p(f)) = tr
(
(LL⊤)(VV⊤)−1

)
+ (ν − µ)⊤(LL⊤)(ν − µ) + log |VV⊤| − log |LL⊤| − n, (9)

where log |VV⊤| = 2
∑n

i=1 logVii, log |LL⊤| = 2
∑n

i=1 logLii, (ν − µ)⊤(LL⊤)(ν − µ) =
∑n

i=1((ν − µ)⊤L:,i)
2,

L:,i denotes the ith column of L, and

tr
(
(LL⊤)(VV⊤)−1

)
= tr

(
(V−1L)⊤(V−1L)

)
=

n∑
i=1

(V−1L:,i)
⊤(V−1L:,i) =

n∑
i=1

∥V−1L:,i∥2.

Proof of Proposition 2.2. Using a well-known formula for the KL divergence between two Gaussian distributions (e.g., see
(9)), we have

KL
(
p(f)

∥∥p̃(f)) = (µ̃− µ)⊤(L̃L̃⊤)(µ̃− µ)/2 + KL
(
Nn(0,K)

∥∥Nn(0, (L̃L̃
⊤)−1)

)
,
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Figure 13. RMSE (top) and NLL (bottom) for predicting the latent field at test inputs for simulated data with the rational quadratic
kernel in a five-dimensional input domain, as a function of the complexity parameter ρ, with Gaussian (left), Student-t (center) and
Bernoulli-logit (right) likelihoods

which is minimized with respect to µ̃ by µ̃ = µ, the exact prior mean. Plugging this in, the first summand is zero and the
second summand was shown in Schäfer et al. (2021a, Thm. 2.1) to be minimized by an inverse Cholesky factor L̂ whose ith
column can be computed in parallel for i = 1, . . . , n as

L̂Sp
i ,i

= bi/
√

bi,1, with bi = K−1
Sp
i ,S

p
i
e1.

Proof of Proposition 2.3.

V−1L̂:,i =

[
V1:i−1,1:i−1 0
Vi:n,1:i−1 Vi:n,i:n

]−1 [
0

L̂i:n,i

]
=

[
0

V−1
i:n,i:nL̂i:n,i

]
Let X be the inverse of Vi:n,i:n. Then,

(V−1L̂:,i)j =
1

Vj,j

L̂j,i − L̂j−1,i

j−1∑
r=j−1

Vj,rXr−i+1,j−i − · · · − L̂i,i

i∑
r=j−1

Vj,rXr−i+1,1


Since Sp

i ⊂ Ai, L̂j,i = 0 for j /∈ Ai. Also, from the definition of Ai, it can be shown for j /∈ Ai that
L̂j−1,i

∑j−1
r=j−1 Vj,rXr−i+1,j−i = . . . = L̂i,i

∑i
r=j−1 Vj,rXr−i+1,1 = 0. For instance, suppose j = i + 1 /∈ Ai.

Then, (V−1L̂:,i)i+1 = 1
Vi+1,i+1

[
L̂i+1,i − L̂i,iVi+1,iX1,1

]
= 0, since L̂i+1,i = Vi+1,i = 0. Therefore, (V−1L̂:,i)j = 0

for all j /∈ Ai.

Justification for Claim 2.4. We now provide theoretical justification for our claim that the entries of the vector V−1L̂:,i are
small outside of Ãi with magnitudes that decay exponentially as a function of ρ for each i = 1, . . . , n. In other words, our
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Figure 14. Reverse maximin ordering on a grid (small gray points) of size n = 4× 4 = 16 on a unit square, [0, 1]d with d = 2. The ith
ordered input (▲), the subsequently ordered n− i inputs (�), the distance ℓi to the nearest neighbor (−), the neighboring subsequent
inputs Si (■) within a (yellow) circle of radius ρℓi, with ρ = 1.3, the reduced ancestors Ãi (+), and the ancestors Ai (×). The directed
acyclic graphs of the sparsity patterns are denoted by arrows (↷↷↷).

claim is that for j ≥ i,
log
(∣∣∣(V−1L̂:,i)j

∣∣∣) ⪅ log(n)− dist (xj ,xi) /ℓj .

By the results on exponential screening in Schäfer et al. (2021b), the matrix L̂ satisfies the above decay property for
covariances that are Green’s functions of elliptic PDEs. It satisfies even the stronger property with ℓj replaced by ℓi.

For a Gaussian likelihood, the matrix V satisfies

VV⊤ = L̂L̂⊤ +R−1 =: Σ−1, (10)

where R is a diagonal covariance matrix of the likelihood. Interpreted as a PDE, the diagonal matrix R−1 corresponds to a
zero-order term. Thus, the associated covariance matrix (L̂L̂⊤)−1 behaves like a discretized elliptic Green’s function and
is therefore subject to an exponential screening effect (Schäfer et al., 2021a, Section 4.1). Let P↕ denote the permutation
matrix that reverts the order of the degrees of freedom. Since P↕V−⊤P↕ is lower triangular and

P↕ΣP↕ = P↕V−⊤P↕P↕V−1P↕ =
(
P↕V−⊤P↕

)(
P↕V−⊤P↕

)⊤
,

the matrix P↕V−⊤P↕ is the Cholesky factor of Σ in the maximin (as opposed to the reverse maximin) ordering. In Schäfer
et al. (2021b), it is shown that the Cholesky factors of discretized Green’s functions of elliptic PDEs in the maximin ordering
have exponentially decaying Cholesky factors. In particular, the results of Schäfer et al. (2021b) suggest that

∀j ≥ i : log

(∣∣∣∣(P↕V−⊤P↕
)
ji

∣∣∣∣) ⪅ log(n)− dist (xj ,xi) /ℓi

⇒ ∀j ≥ i : log
(∣∣∣(V−1

)
ji

∣∣∣) ⪅ log(n)− dist (xj ,xi) /ℓj .

As shown, for instance, in Schäfer et al. (2021b, Lemma 5.19), products of matrices that decay rapidly with respect to a
distance function dist(·, ·) on its index set, inherit this decay property. To this end, assume that lower triangular matrices A
and B satisfy this property. We then have

log
(∣∣∣(AB)ji

∣∣∣) = log

(∣∣∣∣∣∑
k

AjkBki

∣∣∣∣∣
)

≤ log(n) + log

(
max

k
|AjkBki|

)
⪅ log(n)−max

k
(dist (xj ,xk) /ℓj − dist (xj ,xk) /ℓk) .
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By the triangle inequality, we have dist (xj ,xk) + dist (xk,xi) ≥ dist (xj ,xi). Since the right hand is −∞ unless j > i
and thus ℓj ≥ ℓi, we have thus

log
(∣∣∣(AB)ji

∣∣∣) = log

(∣∣∣∣∣∑
k

AjkBki

∣∣∣∣∣
)

⪅ log(n)− dist (xj ,xi) /ℓj ,

proving the the result.

For a general exponential family likelihood, the matrix V does not necessarily satisfy (10). Instead, according to Nickisch &
Rasmussen (2008), a quadratic approximation to the log-likelihood under mild conditions implies that

VV⊤ = L̂L̂⊤ +W−1,

where W is the covariance of the effective likelihood obtained by dividing the approximate posterior by the prior. Assuming
that W−1 corresponds to a zero-order term in the context of a PDE, one can also obtain the result from the justification for
the Gaussian likelihood case above.

Proof of Proposition 2.5. Note that p(f∗|f) = p(f̃)/p(f) = Nn∗
(
µ∗ +K∗oK−1(f − µ),K∗|o

)
, where K∗|o =

K∗∗ − K∗oK−1Ko∗, and q(f∗|f) = q(f̃)/q(f) = Nn∗
(
ν∗ − (V∗∗)−⊤Vo∗⊤(f − ν), (V∗∗V∗∗⊤)−1

)
. Then, since

KL
(
p(f∗|f)

∥∥q(f∗|f)) is a KL divergence between two Gaussian distributions, we have

2KL
(
p(f∗|f)

∥∥q(f∗|f)) = (Gf + h)⊤(V∗∗V∗∗⊤)(Gf + h) + 2KL
(
Nn∗

(
0,K∗|o

) ∥∥Nn∗
(
0, (V∗∗V∗∗⊤)−1

) )
where G = −(V∗∗)−⊤Vo∗⊤ −K∗oK−1 and h = ν∗ + (V∗∗)−⊤Vo∗⊤ν −µ∗ +K∗oK−1µ. Using the fact that the first
term is quadratic in form, one can show that

E
p

[
(Gf + h)⊤(V∗∗V∗∗⊤)(Gf + h)

]
= (Gµ+ h)⊤(V∗∗V∗∗⊤)(Gµ+ h) + tr

(
(V∗∗V∗∗⊤)(GKG⊤)

)
.

Then, we can see that KL
(
p(f∗|f)

∥∥q(f∗|f)) is minimized with respect to ν∗ by Gµ + h = 0. This implies that
ν̂∗ = µ∗ − (V∗∗)−⊤Vo∗⊤(ν − µ). Plugging this in, we have

argmin
V∗∈S∗

E
p

[
KL
(
p(f∗|f)

∥∥q(f∗|f))] = argmin
V∗∈S∗

[
tr
(
V∗⊤K̃V∗

)
− log det(V∗∗V∗∗⊤)

]
= argmin

V∗∈S∗

n∗∑
i=1

(
V∗

S∗
i ,i

⊤K̃S∗
i ,S∗

i
V∗

S∗
i ,i

− 2 logV∗
i,i

)
Taking the first derivative of the summation with respect to the column vector V∗

S∗
i ,i

and setting it to zero, one can show

that V̂∗
S∗
i ,i

= K̃−1
S∗
i ,S∗

i
e1/V

∗
i,i. Since V∗

i,i is the first entry of V̂∗
S∗
i ,i

, we can have V̂∗
S∗
i ,i

= ci/
√
ci,1 where ci = K̃−1

S∗
i ,S∗

i
e1.

From the definition of S∗
i , it can be easily shown that K̃−1

S∗
i ,S∗

i
= K(S∗

i ,S∗
i )

−1.
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