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Abstract

In multi-goal Reinforcement Learning, an agent
can share experience between related training
tasks, resulting in better generalization for new
tasks at test time. However, when the goal space
has discontinuities and the reward is sparse, a
majority of goals are difficult to reach. In this con-
text, a curriculum over goals helps agents learn
by adapting training tasks to their current capabil-
ities. In this work we propose Stein Variational
Goal Generation (SVGG), which samples goals of
intermediate difficulty for the agent, by leverag-
ing a learned predictive model of its goal reaching
capabilities. The distribution of goals is mod-
eled with particles that are attracted in areas of
appropriate difficulty using Stein Variational Gra-
dient Descent. We show that SVGG outperforms
state-of-the-art multi-goal Reinforcement Learn-
ing methods in terms of success coverage in hard
exploration problems, and demonstrate that it is
endowed with a useful recovery property when
the environment changes.

1. Introduction
Multi-goal Reinforcement Learning (RL) (Kaelbling, 1993),
where agent policies are conditioned by goals specified
according to the task at hand, has recently been at the heart
of many research works (Schaul et al., 2015; Pitis et al.,
2020; Yang et al., 2021), since it offers an efficient way
for sharing experience between related tasks. The usual
ambition in the multi-goal RL context is to obtain an agent
able to reach any goal from some desired goal distribution.
This is particularly challenging in settings where the desired
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goal distribution is unknown at train time, which means
discovering the space of valid goals by experience, and
optimizing success coverage1

To avoid deceptive gradient issues and a tedious reward en-
gineering process, multi-goal RL often considers the sparse
reward context, where the agent only obtains a non-null
learning signal when the goal is achieved. In that case, the
multi-goal framework makes it possible to leverage Hind-
sight Experience Replay (HER) (Andrychowicz et al., 2017)
which helps densify the reward signal by relabeling failures
as successes for the goals achieved by accident. However,
in settings with discontinuities in the goal space (e.g., walls
in a maze), or in hard exploration problems where the long
task horizon results in an exponential decrease of the learn-
ing signal (Osband et al., 2016), many goals remain hard
to achieve and using HER does not suffice to reach all valid
goals. In these more difficult contexts, and without any
desired goal distribution at hand, the selection of training
goals from a behavior distribution must be structured into a
curriculum to help agents explore and learn progressively
by adapting training tasks to their current capabilities (Co-
las et al., 2022). The question is: how can we organize a
curriculum of goals to maximize the success coverage?

A first approach consists in focusing on novelty, with the
objective of expanding the set of achieved goals. This is the
approach of RIG (Nair et al., 2018), DISCERN (Warde-Farley
et al., 2018), SKEW-FIT (Pong et al., 2019) and MEGA (Pitis
et al., 2020)2. This leads to strong exploration results, but
success coverage is only optimized implicitly.

Another strategy is to bias the goal generation process to-
ward goals of intermediate difficulty (GOIDs). The general
intuition is that addressing goals that are too easy or too hard
does not foster progress, thus the agent needs to identify
goals on which it can make some progress. The focus is thus
more on performance. This is the approach of asymetric
self-play (Sukhbaatar et al., 2017), GOAL GAN (Florensa

1Success coverage, which measures the average performance
of the agent on all valid goals, is denoted competence in (Blaes
et al., 2019).

2This is also the case for OMEGA (Pitis et al., 2020), which
extends MEGA, but for settings where the desired goal distribution
is known, which leaves the scope of our work.
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et al., 2018), SETTER-SOLVER (Racaniere et al., 2019) or
VDS (Zhang et al., 2020). By aiming at performance, those
methods target more explicitly success in encountered goals,
but benefit from implicit exploration.

In this work, we propose a novel method which provides
the best of both worlds. Our method, called SVGG3, learns
a model of the probability of succeeding in achieving goals
by relying on a set of particles where each particle repre-
sents a goal candidate. This set of particles is updated via
Stein Variational Gradient Descent (Liu & Wang, 2016) to
fit GOIDs, modeled as goals whose success is the most
unpredictable. A key feature of SVGD is that the gradient
applied to particles combines an attraction term and a re-
pulsion term, which helps strike a good balance between
exploration and exploitation. In particular, when the agent
cannot find any additional GOID, due to the repulsion term
of SVGD, the current particles repel one another resulting
in fostering more exploratory goal sampling. This endows
SVGG with a very flexible model of the current capabili-
ties of the corresponding agent. Based on this feature, we
formally demonstrate that SVGG possesses a very useful
recovery property that prevents catastrophic forgetting and
enables the agent to adapt when the environment changes
during training. We empirically validate SVGG on Multi-
goal RL problems where the goal space is of moderate size,
and leave investigations on problems where goals are images
for future work.

2. Background
2.1. Goal-conditioned Reinforcement Learning

In this paper, we consider the multi-goal reinforcement
learning setting, defined as a Markov Decision Process
(MDP)Mg =< S, T,A, g,Rg >, where S is a set of states,
T is the set of transitions, A the set of actions and the re-
ward function Rg is parametrized by a goal g lying in the
d-dimensional continuous goal space G ≡ Rd. In our set-
ting, each goal g is defined as a set of states Sg ⊆ S that are
desirable situations for the corresponding task, with states
in Sg being terminal states of the corresponding MDP. Thus,
a goal g is considered achieved when the agent reaches
at step t any state st ∈ Sg, which implies the following
sparse reward function Rg : S → {0; 1} in the absence of
expert knowledge. The goal-conditioned reward function
is defined as Rg(st, at, st+1) = I(st+1 ∈ Sg) for discrete
state spaces and Rg(st, at, st+1) = I(mins∗∈(Sg) ||st+1 −
s∗||2 < δ) for discrete ones, where δ is a distance threshold
and I the indicator function.

Then, the objective is to learn a goal-conditioned policy
(GCP) π : S×G → A which maximizes the expected cumu-
lative reward from any initial state of the environment, given

3For Stein Variational Goal Generation.

a goal g ∈ G: π∗ = argmaxπ Eg∼pdEτ∼π(τ)[
∑∞
t=0 γ

trgt ],
where rgt = Rg(st, at, st+1) stands for the goal-conditioned
reward obtained at step t of trajectory τ using goal g, γ is
a discount factor in ]0; 1[ and pd is the distribution of goals
over G. In our setting we consider that pd is uniform over S
(i.e., no known desired distribution), while the work could
be extended to cover different distributions.

Importantly, since S is not known in advance and we want to
adapt training goals to the current capabilities of the agent,
learning is performed at each step through goals sampled
from a behavioral distribution pgoals, which is periodically
updated by experience. While training the agent can be
performed by any classical RL algorithm, our work focuses
on the definition of this behavioral distribution pgoals, which
drives the learning process.

2.2. Automatic Curriculum for sparse Reward RL

Our SVGG method addresses automatic curriculum for
sparse reward goal-conditioned RL (GCRL) problems and
learns to achieve a continuum of related tasks.

Achieved Goals Distributions Our work is strongly re-
lated to the MEGA algorithm (Pitis et al., 2020), which (1)
maintains a buffer of previously achieved goals, (2) mod-
els the distribution of achieved goals via a kernel density
estimation (KDE), and (3) uses this distribution to define
its behavior distribution. By preferably sampling from the
buffer goals at the boundary of the set of already reached
states, an increase of the support of that distribution is ex-
pected. In that way, MEGA aims at overcoming the limi-
tations of previous related approaches which also model
the distribution of achieved goals. For instance, DISCERN
(Warde-Farley et al., 2018) only uses a replay buffer of
goals whereas RIG (Nair et al., 2018) and SKEW-FIT (Pong
et al., 2019) rather use variational auto-encoding (Kingma &
Welling, 2013) of the distribution. While RIG samples from
the model of the achieved distribution, and DISCERN and
SKEW-FIT skew that distribution to sample more diverse
achieved goals, MEGA rather focuses on low density regions
of the distribution, aiming to expand it. This results in im-
proved exploration compared to competitors. Our approach
differs from all these works as they only model achieved
goals, independently from which goal was targeted when
they were achieved, whereas we model the capability of
reaching target goals. This makes a strong difference since,
while MEGA selects goals at the frontier of what it already
discovered, nothing indicates that goals g closer to the mode
of the distribution can be achieved when they are targeted.
MEGA is also prone to catastrophic forgetting and limits
exploration to goals present in the replay buffer.

Adversarial Goal Generation Another trend proposes to
adversarially learn a goal generator, that produces targets
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that are at the frontier of the agent’s capabilities. In that vein,
GOAL GAN (Florensa et al., 2018) simultaneously learns
a discriminator to sort out non GOIDs or generated goals
from GOIDs in the buffer of achieved goals, and a genera-
tor that aims at producing goals that fool the discriminator.
While appealing, the approach is prone to instabilities, with
a generator that may usually diverge far from the space of
reachable goals. SETTER-SOLVER (Racaniere et al., 2019)
stands as an extension of GOAL GAN, where a goal setter
is learned to provide goals of various levels of difficulty
w.r.t. a judge network (similar to our success predictor,
see next section). The provided goals remain close to al-
ready achieved goals, and are diverse enough to avoid mode
collapse. This approach however suffers from relying on
invertible networks to map from the latent space to the goal
space, which severely limits the modeling power, and can
reveal problematic for environments with strong disconti-
nuities. Asymmetric self-play (Sukhbaatar et al., 2017) is
another way to generate goals, with a teacher agent seeking
to produce goals that are just beyond the capabilities of the
student agent. Both teacher and student learn simultane-
ously, with an equilibrium of adverse rewards determined
on their respective time to go. However, this balance is
hard to maintain, and many useful areas are usually missed.
Our SVGG algorithm also samples GOIDs, but it does so by
learning a predictive model of the agent’s goal achievement
capability and building a sampling distribution that focuses
on goals whose achievement is the most unpredictable. Be-
cause it does not call upon an adversarial generative process,
SVGG is less prone to instabilities.

2.3. Stein Variational Gradient Descent

Our method builds on Stein Variational Gradient Descent
(SVGD) (Liu & Wang, 2016) to approximate the distribution
of goals of interest. SVGD is a powerful non-parametric tool
for density estimation, when the partition function of the
target distribution p to approximate is intractable, which
is the case when we do not know the support of the valid
goal distribution in the environment. It stands as an efficient
alternative to MCMC methods, which are proven to con-
verge to the true distribution p but are usually too slow to
be used in complex optimization processes. It also stands as
an alternative to variational inference of parametric neural
distributions q, which are restricted to pre-specified families
of distributions (e.g., Gaussian or mixtures of Gaussians)
that may not fit target distributions. Instead, it models q as a
set of particles {xi}ni=1, all belonging to the support of p.

The idea behind SVGD is to approximate the target dis-
tribution p with q by minimizing their KL-divergence:
minqKL(q||p). This objective is reached by iterative de-
terministic transforms as small perturbations of the identity
map, on the set of particles: T (x) = x+ ϵϕ(x), where ϕ is
a smooth transform function that indicates the direction of

the perturbation, while ϵ is the magnitude.

The authors draw a connection between KL-
divergence and the Stein operator Apϕ(x) =
ϕ(x)∇x log p(x)T + ∇xϕ(x) by showing that
∇ϵKL(q[T ]||p)|ϵ=0 = −Ex∼q[trace(Apϕ(x)], where
q[T ] is the distribution of particles after the trans-
formation T . The KL minimization objective is
thus related to the Stein Discrepancy, defined as:
S(q, p) = max

ϕ∈F
Ex∼q[trace(Apϕ(x)]4.

Minimizing Stein Discrepancy being intractable as such,
(Liu et al., 2016) and (Chwialkowski et al., 2016) introduce
the Kernelized Stein Discrepancy (KSD) where the idea is
to restrict to projections ϕ that belong to the unit ball of a re-
producing kernel Hilbert spaceH (RKHS), for which there
is a closed form solution. The KSD is defined as S(q, p) =
maxϕ∈H{Ex∼q[trace(Apϕ(x)], s.t ||ϕ||H ≤ 1},
whose solution is given by: ϕ∗(.) = Ex∼q[Apk(x, .)],
where k(x, x′) is the positive definite kernel of the RKHS
H. The RBF kernel k(x, x′) = exp(− 1

h ||x − x′||22) is
commonly used.

Therefore, the steepest descent on the KL-objective is given
by the optimal transform xi ← xi+ϵϕ

∗(xi), ∀i = 1 · · ·n,
where

ϕ∗(xi) =
1

n

n∑
j=1

[
k(xj , xi)∇xj

log p(xj)︸ ︷︷ ︸
attractive force

+∇xjk(xj , xi)︸ ︷︷ ︸
repulsive force

]
.

(1)

The “attractive force” in the update 1 drives the particles
toward high density areas of the target p. The “repulsive
force” pushes the particles away from each other, therefore
fosters exploration and avoids mode collapse. Note that
if n = 1, the update in (1) corresponds to a Maximum a
Posteriori.

SVGD has already been successfully explored in the con-
text of RL. The Stein Variational Policy Gradient (SVPG)
(Liu et al., 2017) employs SVGD to maintain a distribu-
tion of efficient agents as particles. It strongly differs from
our approach, since we consider particles as behavior goal
candidates, while SVPG aims at capturing the epistemic un-
certainty about policy parameters. (Chen et al., 2021) also
relies on SVGD to build a strategy to generate goals to agents,
but in a very simplified setting without the attractive force
from (1), which prevents from fully benefiting from this
theoretical framework. Notably, such a kind of approach is
particularly sensitive to catastrophic forgetting.

4Note that S(q, p) = 0 only if q = p.
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3. Stein Variational Goal Generation
In this section we introduce our Stein Variational Goal Gen-
eration (SVGG) algorithm. The pseudo-code of SVGG is
given in Algorithm 1 (a more detailed version is given in
Appendix G.2). Our aim is to obtain a curriculum to sample
goals of appropriate difficulty for the RL agent, where the
curriculum is represented as an evolving goal sampling prob-
ability pgoals. To do so, we maintain a model of the agent’s
skills – or goal reaching capability –, which helps define a
distribution pskills. This distribution assigns probability mass
to areas of goals of appropriate difficulty. Additionally, with
a simple one class SVM, we learn a validity distribution
pvalid preventing the particles from being sampled from non-
valid areas of the goal space. Then, we aim at sampling
training goals from the following target distribution:

pgoals(g) ∝ pskills(g).pvalid(g). (2)

Since computing the partition function is intractable for such
a distribution formulation, we rather sample uniformly over
a set of particles q = {xi}mi=1, that are optimized through
SVGD to approximate pgoals(g). Importantly, for our setting
where we are interested in tracking useful areas to train
the agent, dealing with a set of particles representing the
state of the full exploration landscape appears better fitted
than methods relying on single candidates, such as MCMC
or Langevin Dynamics, that would produce samples very
correlated in time, with unstable dynamics. This choice also
improves the interpretability of the process, by providing a
comprehensive picture of the current behavior distribution
along training. Formal definitions of the two components of
pgoals are given below.

Model of the agent’s skills The probability pskills is mod-
eled as a Neural Network Dϕ whose parameters ϕ are
learned by gradient descent on the following Binary Cross
Entropy (BCE) loss:

Lϕ =
∑

(gi,si)∈O

si(logDϕ(g
i))+(1−si)(log(1−Dϕ(g

i))),

(3)
where O = {gi, si}nB

i=1 is a batch of (goal, success) pairs
coming from recent trajectories of the agent in the envi-
ronment. The sampled goals are those whose predicted
probability of success is neither too high nor too low (i.e.,
we avoid Dϕ(g) ≈ 1 or Dϕ(g) ≈ 0).

To build pskills based on the prediction of Dϕ, we use a
beta distribution whose maximum density point mass is
determined according to the output of Dϕ, by two hyper-
parameters α and β that shape the distribution and control
the difficulty of the addressed goals, as illustrated on Fig-
ure 7 in appendix.

We define the distribution pskills as an energy-based density
whose potential is the output of the beta distribution f :

pskills(g) ∝ exp (fα,β(Dϕ(g)). (4)

In Appendix D, we compare the relative performance of 5
pairs of α and β and show that target a Medium difficulty
works best. We stick to this setting in the rest of the study.

Validity distribution As outlined in (Racaniere et al.,
2019), we would like to only sample valid goals. To do so,
instead of their validity loss, we define a validity distribution
which represents the probability that a goal g belongs to the
set of valid (reachable) goals G∗ ⊆ G. However, G∗ is not
known in advance. To circumvent this difficulty, the states
already reached by the agent are stored in an archiveR and
we aim at defining the validity distribution as depending on
the posterior probability givenR: pvalid(g) ∝ P(g ∈ G∗|R).
We progressively build this distribution with a One Class
SVM (OCSVM). This model is mainly designed for outlier
or novelty detection in absence of labeled data. Given a
dataset X ∈ Rd, it defines a boundary of the data support in
Rd, while keeping a small portion of the data points out of
that boundary. With data points being goals fromR, we get

pvalid(g) ∝ Vψ(g), (5)

where Vψ(g) is the output of the OCSVM model trained
on R, with parameters ψ. As the agent progresses and
expands its set of achieved states through training, it eventu-
ally reaches the environment boundary. In this case, we can
expect Vψ(g) ≈ P(g ∈ G∗|g ∈ ω) for any area ω ⊆ G.

Recovery property As demonstrated in Theorem 3.1 and
empirically validated in Section 4.2, SVGG benefits from a
useful recovery property: when the environment suddenly
changes, the SVGG agent will spontaneously resample goals
in the areas that are affected by the change.

Theorem 3.1. Recovery property: Let us denote as G+ the
set of goals g such that Vψ(g) > 0 and C ∈ Rd its con-
vex hull. Assume that, at a given iteration l, Dϕ(g) ≈ 1
for every g ∈ G+ (i.e., the whole set G+ is considered
as mastered by Dϕ(g)), and that, on that set, Vψ is well
calibrated: for any area ω ⊆ G+ and any goal g ∈ ω,
Vψ(g) ≈ P (g ∈ G∗|g ∈ ω). Assume also that we use
a kernel which ensures that the Kernelized Stein Discrep-
ancy KSD(q, pgoals) of any distribution q with pgoals is
0 only if q weakly converges to pgoals

5. Then, with no
updates of the models after iteration l and a number of
particles m > 1, any area ω ⊆ G+ ∩ G∗ with diameter
diam(ω) ≥

√
d diam(C)
( d
√
m−1)

eventually contains at least one

5As assumed for instance in (Liu, 2017). This is not always
true, but gives strong insights about the behavior of SVGD. Refer
to (Gorham & Mackey, 2017) for more discussions about KSD.
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Figure 1. Overview of the SVGG method. The interaction of agents with their environment is stored in a replay buffer (top right) and
used to learn Dϕ, a model of its abilities to achieve goals (bottom right). We build on this model to compute a distribution of goals of
appropriate difficulty pskills, leveraging a validity distribution pvalid to stay inside the space of valid goals. The obtained behavioral goal
distribution pgoals is approximated with particles {gi}ni=1 using Stein Variational Gradient Descent (SVGD), and the agent samples a goal
from these particles.

particle, whenever KSD({xi}ni=1, pgoals) = 0 after conver-
gence of the particle updates.

The above theorem (proof in Appendix A) ensures that,
even if the success model overestimates the capacities of the
agent for some area ω (e.g., due to changes in the environ-
ment, catastrophic forgetting or success model error), some
particles are likely to go back to this area once every goal
in G∗ looks well covered by the agent, with an increasing
probability for more particles. This way, the process can
reconsider overestimated areas, by sampling again goals in
them, and hence correcting the corresponding predictions,
which leads to attracting attention of pskills back to these dif-
ficult areas. Approaches such as MEGA do not exhibit such
recovery properties, since they always sample at the bound-
ary of their achievable goal distribution, which is likely to
incrementally grow towards G∗. The particles of our ap-
proach can be seen as attention trackers which remodel the
behavior distribution and mobilize the effort on useful areas
when needed. This is much better than uniformly sampling
from the whole space of achievable states with small proba-
bility, which would also ensure some recovery of forgotten
areas but in a very inefficient way. This theoretical guaran-
tee of SVGG is empirically validated by the experiment from
Figure 3, which shows the good recovery property of our
approach, after a sudden change in the environment.

4. Experiments
4.1. Experimental setup

Success coverage metric Our general objective is to ob-
tain a policy that can reliably achieve all valid goals in some
environment. To quantify this objective, we evaluate the
resulting policy on the entire space of valid goals G∗ in our
environment using a success coverage metric, defined as
S(π) = 1

V(G∗)

∫
G∗ P(π achieves g)dg, with V(G∗) the vol-

ume of G∗. The goal space being continuous, we evaluate
the policy on a finite subset Ĝ uniformly sampled from G∗.
Then our objective reduces to:

S(π) =
1

|Ĝ|

|Ĝ|∑
i=1

Eτ∼π[1{∃s ∈ τ, min
s∗∈Sgi

||s− s∗||2 < δ}].

(6)

To build Ĝ, we split G∗ into areas following a regular grid,
and then uniformly sample 30 goals inside each part of the
division.

Compared Approaches As baselines, we choose two
methods from the literature that span the existing trends
in unsupervised RL with goal-conditioned policies, MEGA
(Pitis et al., 2020) and GOAL GAN (Florensa et al., 2018).
In addition, the Random baseline randomly selects the be-
havior goal among past achieved states.

We also evaluate two SVGG ablations: a No Validity Distri-
bution version, which considers pgoals ∝ pskills and a Only
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Algorithm 1 RL with Stein Variational Goal Generation
1: Input: a GCP πθ, a success predictor Dϕ, a reachability predictor Vψ, buffers of transitions B, reached statesR and

success outcomes O, a kernel k.
2: Sample a set of particles q = {xi}mi=1 uniformly from states reached by pre-runs of πθ;
3: for n epochs do
4: ▷ Data Collection: Perform Rollouts of πθ conditioned on goals uniformly sampled from q;
5: Store transitions in B, visited states inR and success outcomes in O;
6: ▷ Model Update
7: Update model Dϕ (e.g., via ADAM), using gradient of Lϕ (3) with samples from O;
8: ▷ Prior Update
9: Update model Rψ according to all states inR;

10: ▷ Particles Update (t steps)
11: Update particles xi ← xi + ϵ 1

m

∑m
j=1

[
k(xj , xi)∇xj

log pgoals(xj) +∇xj
k(xj , xi)

]
;

12: ▷ Agent Improvement
13: Improve agent with any Off-Policy RL algorithm (e.g., DDPG) using transitions from B;
14: end for

Validity version, where pgoals ∝ pvalid.

Learning to reliably achieve all valid goals can be decom-
posed in learning to sample appropriate behavioral goals,
and learning to achieve these goals. Our focus being on the
goal sampling mechanism, all compared approaches learn
to achieve goals using DDPG and HER with a mixed strategy
described in Appendix G. In all versions of SVGG, we use
m = 100 particles to approximate the target distribution.
Implementation details about all considered architectures
are given in Appendix G.

Questions To compare the performance of SVGG to base-
lines, we investigate the following questions: 1) Does SVGG
maximize the success coverage metric better than the base-
lines? 3) Is SVGG more robust than the baselines to catas-
trophic forgetting that may occur in sudden environment
changes? In Appendix D, we also investigate the impact of
target difficulty (i.e., beta distribution as described above)
on success coverage maximization.

Evaluation environments To answer the above metric-
oriented questions, we use a modified version of the
FetchReach and FetchPush environments (Plappert et al.,
2018) where we have added obstacles in the workspace of
the robot arm to increase the amount of discontinuities be-
tween the optimal goal-oriented behaviors. We also compare
SVGG to baselines in the U-shaped AntMaze environment
(Trott et al., 2019) and in a hard version of FetchPickAnd-
Place. Additionally, to provide more analysis-oriented visu-
alizations, we use a Point-Maze environment where an agent
moves a point without mass within a 2D maze with contin-
uous spaces of states and actions. As the agent does not
perceive the walls, maximizing success coverage in these
environments is harder than it seems.

4.2. Main results

Success coverage evaluations Figure 2 shows that SVGG
significantly outperforms all baselines in terms of success
coverage. Especially in highly discontinuous goal space
settings such as in mazes and the modified version on
FetchReach and FetchPush, where it efficiently discovers
and achieves most of the valid goals. On AntMaze and
FetchPickAndPlace, where the goal space is more smooth,
our approach obtains comparable results to its competitors.

Due to the known stability issues in GAN training, GOAL
GAN is the least efficient baselines. Another explanation of
the failure of GOAL GAN is that it is likely to generate non
valid goals, which is not the case for MEGA or SVGG. MEGA
chooses behavior goals from a Replay Buffer of achieved
goals, while the validity distribution pvalid considered in
SVGG keeps particles inside valid areas.

The minimum density heuristic of MEGA efficiently discov-
ers all valid goals in the environment, but our results show
that its success plateaus in almost all the considered envi-
ronments. MEGA’s intrinsic motivation only relies on state
novelty. Thus, when the agent has discovered all reachable
states, it is unable to target areas that it has reached in the
past but has not mastered yet.

Recovery Property Figure 3 shows the advantages of
SVGG over MEGA and GOAL GAN in changing environ-
ments. Walls are suddenly added during the training pro-
cess (dot black line from Figure 3), after the methods had
reached their pick performance. We see that the perfor-
mance of MEGA and GOAL GAN plateaus lower than their
pick performance (see Figure 2) whereas SVGG discovers
new difficulties resulting from the environment modifica-
tion and focuses on those to finally recover its pick success
coverage.
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Figure 2. Success coverage over 4 different PointMazes, AntMaze, FetchPickAndPlace (Hard), FetchReach (Stuck) and FetchPush
(Maze) (4 seeds each). SVGG outperforms MEGA and GOAL GAN as well as ablations.

We also observe that the advantages of our method over
MEGA in terms of recovery ability are more significant when
changes in the environment are more drastic (i.e., when
starting from maze B).

Further SVGG analyses To gain further intuition on how
SVGG maximizes the success coverage, we show in Figure 4
the evolution of the particles throughout training. As the
agent progresses and achieves novel and harder goals, the
Dϕ model updates its predictions. Thus, the target distribu-
tion pgoals is updated accordingly (background color of the
2nd row of the figure). The particles q = {gi}ni=1 are then
moved toward new areas of intermediate difficulty through
SVGD to minimize KL(q||pgoals).

Figure 4 also highlights the recovery property of SVGG.
When the agent has nothing else to learn in the environment,

pgoals reduces to pvalid, that is at this point uniform over the
entire goal space. Therefore, the particles spread uniformly
over the goal space and prevent SVGG from catastrophic
forgetting, as the model rediscovers areas that the agent has
forgotten how to reach (cf. rightmost column in Figure 4).
Additional analyses on SVGG are given in Appendix D.

5. Conclusion
This paper introduces a new multi-goal reinforcement learn-
ing algorithm, SVGG, which leverages Stein Variational Gra-
dient Descent to monitor a model w.r.t. its goal achievement
capabilities. Using this model, the agent addresses goals of
intermediate difficulty, resulting in an efficient curriculum
for finally covering the whole goal space. Moreover, SVGG
can recover from catastrophic forgetting, which is a classic
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Figure 3. Evolution of success coverage in a changing environment for MEGA, GOAL GAN and SVGG (4 seeds each). We add walls to the
starting mazes A and B (left) and go from 2 to 4 walls in FetchReach (right). The triangles correspond to the pick success coverage of the
methods on the final environments (which correspond to maze 1 and FetchReach (Stuck) Figure 2) during regular training.

Figure 4. Parallel visualization of the model’s prediction (A), the particles evolution (B) and of the coverage (C) throughout training in
Maze 1.

pitfall in multi-goal RL.

Studying the impact of the number of particles is left for fu-
ture work. Actually, the target distribution being in constant
evolution, the KL divergence minimization objective is hard
to reach at all times, which makes it difficult to claim that
using more particles is always better. Furthermore, a previ-
ous work (D’Angelo & Fortuin, 2021) spotted exploration
failures in SVGD, and suggests that periodically annealing
the attraction force in particle optimization (1) is required
to enable particles to cover non-trivial distributions, e.g. in
multimodal settings (which is the case for us) or in high
dimensions.

Some limitations should be addressed in future work. The
environments used in our experiments have low dimensional
goal space, which facilitates the approximation of the target
distribution with SVGD and the agent’s model learning phase.
When the agent’s observation and goal space will be images,
the agent should learn a compact latent space of observation
as in (Pong et al., 2019; Yarats et al., 2021; Liu & Abbeel,
2021; Hafner et al., 2019), using various representation
learning techniques like contrastive learning, prototypical
representations or variational auto-encoders. In future work,
we should learn a latent goal space from observations, and
perform SVGD over particles in this latent space. This would
result in an end-to-end algorithm learning to discover and

8
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achieve all possible goals in its environment from pixels.

Besides, we also envision to address larger and stochas-
tic environments, where additional uncertainty estimation
should be added to the goal generation process, to prevent
the agent getting stuck in uncontrollable states (like a TV
screen showing white noise) as in (Chua et al., 2018; Pathak
et al., 2019), using methods such as model disagreement
between multiple agents.
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Blaes, S., Vlastelica Pogančić, M., Zhu, J., and Martius,
G. Control what you can: Intrinsically motivated task-
planning agent. Advances in Neural Information Process-
ing Systems, 32, 2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Chen, J., Zhang, Y., Xu, Y., Ma, H., Yang, H., Song, J.,
Wang, Y., and Wu, Y. Variational automatic curricu-
lum learning for sparse-reward cooperative multi-agent
problems, 2021. URL https://arxiv.org/abs/
2111.04613.

Chua, K., Calandra, R., McAllister, R., and Levine, S.
Deep reinforcement learning in a handful of trials us-
ing probabilistic dynamics models, 2018. URL https:
//arxiv.org/abs/1805.12114.

Chwialkowski, K., Strathmann, H., and Gretton, A. A kernel
test of goodness of fit. In Balcan, M. F. and Weinberger,
K. Q. (eds.), Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pp. 2606–2615,
New York, New York, USA, 20–22 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v48/
chwialkowski16.html.

Colas, C., Karch, T., Sigaud, O., and Oudeyer, P.-
Y. Autotelic agents with intrinsically motivated goal-
conditioned reinforcement learning: a short survey. Jour-
nal of Artificial Intelligence Research, 74:1159–1199,
2022.

D’Angelo, F. and Fortuin, V. Annealed stein variational
gradient descent. CoRR, abs/2101.09815, 2021. URL
https://arxiv.org/abs/2101.09815.

Eysenbach, B., Geng, X., Levine, S., and Salakhutdinov, R.
Rewriting history with inverse RL: hindsight inference
for policy improvement. CoRR, abs/2002.11089, 2020.
URL https://arxiv.org/abs/2002.11089.

Florensa, C., Held, D., Geng, X., and Abbeel, P. Automatic
goal generation for reinforcement learning agents. In
International conference on machine learning, pp. 1515–
1528. PMLR, 2018.

Gorham, J. and Mackey, L. Measuring sample quality with
kernels. In International Conference on Machine Learn-
ing, pp. 1292–1301. PMLR, 2017.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee,
H., and Davidson, J. Learning latent dynamics for plan-
ning from pixels. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 2555–2565. PMLR, 09–
15 Jun 2019. URL https://proceedings.mlr.
press/v97/hafner19a.html.

Kaelbling, L. P. Learning to achieve goals. In IJCAI, pp.
1094–1099. Citeseer, 1993.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Liu, H. and Abbeel, P. Behavior from the void: Un-
supervised active pre-training, 2021. URL https:
//arxiv.org/abs/2103.04551.

Liu, Q. Stein variational gradient descent as gradi-
ent flow. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
17ed8abedc255908be746d245e50263a-Paper.
pdf.

Liu, Q. and Wang, D. Stein variational gradient descent:
A general purpose bayesian inference algorithm. arXiv
preprint arXiv:1608.04471, 2016.

9

https://arxiv.org/abs/2111.04613
https://arxiv.org/abs/2111.04613
https://arxiv.org/abs/1805.12114
https://arxiv.org/abs/1805.12114
https://proceedings.mlr.press/v48/chwialkowski16.html
https://proceedings.mlr.press/v48/chwialkowski16.html
https://arxiv.org/abs/2101.09815
https://arxiv.org/abs/2002.11089
https://proceedings.mlr.press/v97/hafner19a.html
https://proceedings.mlr.press/v97/hafner19a.html
https://arxiv.org/abs/2103.04551
https://arxiv.org/abs/2103.04551
https://proceedings.neurips.cc/paper/2017/file/17ed8abedc255908be746d245e50263a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/17ed8abedc255908be746d245e50263a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/17ed8abedc255908be746d245e50263a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/17ed8abedc255908be746d245e50263a-Paper.pdf


Stein Variational Goal Generation for adaptive Exploration in Multi-Goal RL

Liu, Q., Lee, J., and Jordan, M. A kernelized stein dis-
crepancy for goodness-of-fit tests. In Balcan, M. F. and
Weinberger, K. Q. (eds.), Proceedings of The 33rd Inter-
national Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pp. 276–
284, New York, New York, USA, 20–22 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v48/
liub16.html.

Liu, Y., Ramachandran, P., Liu, Q., and Peng, J. Stein varia-
tional policy gradient. arXiv preprint arXiv:1704.02399,
2017.

Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine,
S. Visual reinforcement learning with imagined goals.
arXiv preprint arXiv:1807.04742, 2018.

Osband, I., Van Roy, B., and Wen, Z. Generalization and
exploration via randomized value functions. In Interna-
tional Conference on Machine Learning, pp. 2377–2386.
PMLR, 2016.

Pathak, D., Gandhi, D., and Gupta, A. Self-supervised
exploration via disagreement, 2019. URL https://
arxiv.org/abs/1906.04161.

Pitis, S., Chan, H., Zhao, S., Stadie, B., and Ba, J. Maximum
entropy gain exploration for long horizon multi-goal re-
inforcement learning. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 7750–7761. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/pitis20a.html.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B.,
Baker, B., Powell, G., Schneider, J., Tobin, J., Chociej,
M., Welinder, P., Kumar, V., and Zaremba, W. Multi-goal
reinforcement learning: Challenging robotics environ-
ments and request for research, 2018.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and
Levine, S. Skew-fit: State-covering self-supervised re-
inforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Racaniere, S., Lampinen, A., Santoro, A., Reichert, D.,
Firoiu, V., and Lillicrap, T. Automated curriculum gener-
ation through setter-solver interactions. In International
Conference on Learning Representations, 2019.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In International Confer-
ence on Machine Learning, pp. 1312–1320. PMLR, 2015.

Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam,
A., and Fergus, R. Intrinsic motivation and auto-
matic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

Trott, A., Zheng, S., Xiong, C., and Socher, R. Keep-
ing your distance: Solving sparse reward tasks using
self-balancing shaped rewards, 2019. URL https:
//arxiv.org/abs/1911.01417.

Warde-Farley, D., Van de Wiele, T., Kulkarni, T., Ionescu,
C., Hansen, S., and Mnih, V. Unsupervised control
through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Yang, D., Zhang, H., Lan, X., and Ding, J. Density-based
curriculum for multi-goal reinforcement learning with
sparse rewards. CoRR, abs/2109.08903, 2021. URL
https://arxiv.org/abs/2109.08903.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Re-
inforcement learning with prototypical representations.
arXiv, 2021. doi: 10.48550/ARXIV.2102.11271. URL
https://arxiv.org/abs/2102.11271.

Zhang, Y., Abbeel, P., and Pinto, L. Automatic curricu-
lum learning through value disagreement. arXiv preprint
arXiv:2006.09641, 2020. doi: 10.48550/ARXIV.2006.
09641. URL https://arxiv.org/abs/2006.
09641.

10

https://proceedings.mlr.press/v48/liub16.html
https://proceedings.mlr.press/v48/liub16.html
https://arxiv.org/abs/1906.04161
https://arxiv.org/abs/1906.04161
https://proceedings.mlr.press/v119/pitis20a.html
https://proceedings.mlr.press/v119/pitis20a.html
https://arxiv.org/abs/1911.01417
https://arxiv.org/abs/1911.01417
https://arxiv.org/abs/2109.08903
https://arxiv.org/abs/2102.11271
https://arxiv.org/abs/2006.09641
https://arxiv.org/abs/2006.09641


Stein Variational Goal Generation for adaptive Exploration in Multi-Goal RL

A. Proof of Theorem 1
Theorem 1. Recovery property: Let us denote as G+ the set
of goals g such that Vψ(g) > 0 and C ∈ Rd its convex hull.
Assume that, at a given iteration l, Dϕ(g) ≈ 1 for every
g ∈ G+ (i.e., the whole set G+ is considered as mastered by
Dϕ(g)), and that, on that set, Vψ is well calibrated: for any
area ω ⊆ G+ and any goal g ∈ ω, Vψ(g) ≈ P (g ∈ G∗|g ∈
ω). Assume also that we use a kernel which ensures that
the Kernelized Stein Discrepancy KSD(q, pgoals) of any
distribution q with pgoals is 0 only if q weakly converges to
pgoals

6. Then, with no updates of the models after iteration l
and a number of particles m > 1, any area ω ⊆ G+ ∩ G∗
with diameter diam(ω) ≥

√
d diam(C)
( d
√
m−1)

eventually contains

at least one particle, whenever KSD({xi}ni=1, pgoals) = 0
after convergence of the particle updates.

Proof. In settings where the KSD of a distribution µ from
a target p is 0 only if µ weakly converges to p, (Liu, 2017)
previously proved that, for any compact set, the empirical
measure µn of µ, computed on a set of n particles, con-
verges weakly towards the target p when a sufficient number
of particles is used. Thus, under our hypotheses, the set
of particles of SVGG appropriately represents pgoals after a
sufficient number of steps of Stein transforms.

Now, we know that particles cannot leave G+ since Vψ = 0
outside, and so does pgoals. Since Vψ is well calibrated on
G+, we also know that Vψ = 1 on every area of G+ only
containing achievable goals. Thus, since pskills = 1 in G+,
pgoals is maximal and constant for any area ω ∈ G+ ∩ G∗.
This implies that the concentration of particles in any area
of G+∩G∗ is greater than if particles were uniformly spread
over C. In that case, for any particle x from the set {xi}mi=1,
we know that P (x ∈ ω|KSD(q = {xi}mi=1, pgoals) = 0) ≥
P (x ∈ ω|KSD(q = {xi}mi=1, U(X )) = 0), with X an hy-
percube of d dimensions with side length equal to diam(C)
and U(X ) the uniform distribution over X .

Next, if KSD(q = {xi}mi=1, U(X )) = 0, we know that
particles are spread as a grid over each dimension of
X . Thus, in each dimension of X any particle is sepa-
rated from its closest neighbor by at most a difference of
diam(C)/( d

√
m − 1) in the worst case. Thus, any area ω

with diameter greater than
√
d diam(C)
( d
√
m−1)

is guaranteed to con-
tain a particle in that case, which concludes the proof.

6As assumed for instance in (Liu, 2017). This is not always
true, but gives strong insights about the behavior of SVGD. Please
refer to (Gorham & Mackey, 2017) for more discussions about
KSD.

B. Visualization of goals
We visualize behavioral and achieved goals in Maze 1 (Fig-
ure 5) and Maze 2 (Figure 6), in parallel with the success
coverage after training. The main advantages of our method
lie in the capacity to target difficult areas and avoid catas-
trophic forgetting, which results in nearly optimal success
coverage. We observe that MEGA efficiently discovers the
environment but fails to master the corresponding goals.
This also leads to catastrophic forgetting and a lack of adap-
tation when the environment changes, as studied in the main
paper.

One can see that the generation of GOIDs in GOAL GAN is
very unstable and tricky in such discontinuous goal space,
especially as the generator is susceptible to output goals
outside the environment boundary, which SVGG avoids with
the validity distribution.

C. Additional experiments details
C.1. Environments

Pointmaze We use a 2D pointmaze environment where
the state space and goal space are (x, y) coordinates (the
agent cannot see the walls), and the agent moves according
to its action, which is a 2-dimensional vector with dimen-
sions constrained to [−0.95, 0.95]. All methods are tested
on four 5× 5 mazes with different shapes and a highly dis-
continuous goal space. The maximum number of steps in
one trajectory is set to 30. We argue that the difficulty of
these environments does not lie in their size, but rather in the
complexity of their goal space and thus of the trajectories
adopted by the agent to achieve these goals.

Antmaze An Ant has to move around in a U-shape hall-
way maze of size 20x4, the goal space remains (x, y) coordi-
nates of the Ant as in Pointmaze. However, the exploratory
behavior is much simpler than in the considered pointmazes
environments, as the maze is simply U-shaped. The dif-
ficulty lies in the control of the Ant dynamics, as it must
move its legs with a 8-dimensional action space and the
observation space is a 30-dimensional vector corresponding
to the angles of the legs.

FetchPickAndPlace (Hard version) We also perform
comparisons on a hard version of FetchPickAndPlace-v1
from OpenAI gym (Brockman et al., 2016). The agent
controls a robotic arm which must pick and place a block
to a 3D desired location. In the hard version, the behavioral
goals are all between 20 and 45cm in the air, while in the
original version, 50% of behavioral goals are on the table
and the remaining ones are from 0 to 45cm in the air.

While this environment presents a greater difficulty in terms
of control (the action dimension is 4 and the state dimen-
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Figure 5. Visualization of: (A) behavioral goals , (B) achieved goals and (C) success coverage for 1M steps in Maze 1.

sion is 24 which correspond to the various positions of the
robot joint), the goal generation component is significantly
easier: as the 3-dimensional goal space is smooth, there
is no obstacle for the agent to bypass. As Figure 2 shows,
SVGG solves the environment within 1.5M steps, but does
not significantly outperform MEGA.

We argue that the interest of our goal generation algorithm
resides in environments with highly discontinuous goal
space as the action control is largely supported by the RL
algorithm (e.g. DDPG). Therefore, the smaller difference be-
tween MEGA and SVGG in this environment was expected, as
SVGG is mainly designed to target non-smooth goal spaces,
and to avoid pitfalls such as catastrophic forgetting.

FetchReach (Stuck version) We compare SVGG to base-
lines with a modified version of the FetchReach environ-
ment, where the gripper is initially stuck between four walls
and has to carefully navigate between them to reach the
goals. The observations are 9-dimensional vectors, the ac-
tions as well as the goals are 3-dimensional. The success
coverage is computed on uniformly sampled goals with a
target range fixed to 0.2, which corresponds to the maximal
L2 distance between the goal and the initial gripper posi-

tion. The initial task is solved within 20.000 steps by all
baselines, whereas with the modified version, only SVGG
achieves a 0.8 success rate in 3M steps.

FetchPush (Maze version) We add a maze structure with
walls on the table to the FetchPush benchmark to once again
add discontinuities in the goal space. The observations are
24-dimensional vectors, the actions as well as the goals
are 3-dimensional. The success coverage is computed on
goals uniformly sampled on the table, and the block’s initial
position is sampled behind the first wall on the robot side.
The standard FetchPush task was solved by SVGG and MEGA
in less than 1M steps. The maze version is much harder:
SVGG achieves a 0.8 success coverage rate within 10M steps,
whereas MEGA barely reaches 0.5. The distance to reach
the goals in all environments is δ = 0.15.

D. Control of the sampling difficulty
Using beta distributions makes it possible to tune the goal
difficulty an agent should aim at to efficiently explore and
control an environment. Indeed, by tuning the α and β
hyper-parameters of the distribution, one gets a different
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Figure 6. Visualization of: (A) behavioral goals , (B) achieved goals and (C) success coverage for 4M steps in Maze 2. SVGG is the only
one to achieve nearly perfect success coverage.

incentive for goal difficulty. We choose to compare the effi-
ciency of 5 pairs of α and β hyper-parameters, as illustrated
in Figure 7.

In Figure 8, we compare the 5 versions of SVGG using dif-
ferent beta distributions from Figure 7, on the 4 previously
considered mazes. One can observe that extreme targets
difficulties are the least effective ones, especially the Very
easy, which is too conservative to efficiently explore new
areas of the space. On the other hand, SVGG performs very
well with Medium and Hard distributions. This suggests that
the optimal goal difficulty is somewhere between medium
and hard. Performing a more advanced optimization over α
and β is left for future work.

E. Target goal distribution ablations
We conduct an ablation which consists in keeping SVGD,
but replacing our target goal distribution (corresponding to
goals whose prediction of success is close to 0.5) with the
target goal distributions of related work such as of SKEW-
FIT, MEGA or GOAL GAN (resp. the uniform distribution
over the support of achieved goals, the region of low den-

Figure 7. Modulation of goal’s target difficulty with beta distri-
butions. Dϕ(g) is the model’s predicted probability of the agent
achieving the goal g.

sity of achieved goals and goals of intermediate difficulty
(GOIDs)). For all criteria, the goal target distribution is rep-
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Figure 8. Evolution of success coverage for 5 target difficulties as intrinsic motivation for SVGG, on 4 mazes and 4 seeds each.

resented as a set of particles and optimized with SVGD. We
compare the average success coverage over our 4 mazes on
Figure 9 where we can see that our choice of target distribu-
tion is the most effective. We describe below the compared
goals’ distribution.

Figure 9. Plot of the average success coverage of SVGG over the 4
mazes (3 seeds each for a total of 12 runs) after 4 millions training
steps where we replace our target goal distribution with other
choices and keep SVGD as sampling method, the error bar shows
the standard deviation between all runs.

Uniform distribution over the support of achieved goals
(as in SKEW-FIT and DISCERN): This corresponds to our
”Only validity” baseline in Figure 2. Indeed, the probability
for a goal to be valid is learned with a One Class SVM
which exactly strives to uniformly cover the distribution
of achieved goals. As the results presented in Figure 9
show, this baseline performs relatively well, but is unable to
target areas where the agent struggles. Therefore, it is not
as efficient as our target distribution pgoals.

Distribution derived from the region of low density of
achieved goals (as in MEGA): We can obtain a distri-
bution of goals very close to MEGA ’s by combining our

“Only Validity” ablation with a beta distribution tuned to
address the lowest probability region (i.e taking pgoals ∝
f(α, β, Vψ(g))), with f a Beta distribution and α and β
set to target low density of V ). Due to the absence of a
mechanism to avoid sampling unfeasible goals, the particles
are attracted to low density areas that mostly correspond to
non-valid goals, which make this baseline very inefficient.

distribution of GOIDs (as in GOAL GAN): Our target
distribution pgoals is very close to the GOID in GOAL GAN,
the main difference is the smoothness of our Beta distribu-
tion versus the indicator function of GOAL GAN that labels
a goal as of ”intermediate difficulty” when the probability
of reaching it in an interval (eg. between 0.2 and 0.8). So,
to move closer to the GOAL GAN criterion, we replaced the
beta-distribution used in SVGG with the crisp distribution
(with a generalized Gaussian distribution of skewing param-
eter β = 6) which outputs 1 for probabilities between 0.3
and 0.7 and 0 otherwise (which are the parameters that give
the best results). Note that while this distribution is differen-
tiable, the gradient is less informative than our version. As
a consequence, approximating this distribution with SVGD
is less efficient and gets a lower success coverage.

F. Sampling method ablations
To highlight the interest of the SVGD choice to sample goals
from our target distribution pgoals, we conducted additional
experiment where we swap SVGD with some other sampling
tools : MCMC (Metropolis Hastings), GANs and direct
sampling from the replay buffer.

In Figure 10 we can see that SVGD is by far the most efficient
way to sample from pgoals and thus maximize the success
coverage. We describe below the tested sampling tools.

GANs : We use the same procedure as GOAL GAN by
replacing their GOID criterion by our target distribution
pgoals. the results are very similar to GOAL GAN, this can
be explained by the proximity of our criterion in terms of
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Figure 10. Plot of the average success coverage of SVGG over the 4
mazes (3 seeds each for a total of 12 runs) after 4 millions training
steps where we replace SVGD with other sampling methods, the
error bar shows the standard deviation between all runs.

intermediate difficulty, except from the fact that we add
pvalid, we can also conclude that GANs are not the best
choice for moving target distributions due to their training
instability. We use the same hyperparameters as in the GOAL
GAN baseline.

Buffer sampling : We sample a batch of previously
achieved goals in the buffer, and then compute a categorical
distribution based on the pgoals criterion and sample candi-
date goals. This method is the least effective baseline, which
was expected as the exploration component was provided by
SVGD, the goals from the replay buffer are not sufficiently
diverse to explore the environment if not combined with a
diversity criterion.

MCMC (Metropolis Hastings) : At each pgoals update,
we construct a markov-chain with normal movement (with
µ = 0 and σ = 0.5) then classic likelihood ratio rejection
sampling to draw goals samples that are provided to the
agent. Metropolis-Hastings is a good candidate but is still
far from the SVGD performance, it presents some good
sampling accuracy at times but is very slow to converge to
the true distribution, thus the goal sampling isn’t always
aligned with the agent skills at the time, and enable the
recovery property.

G. Methods details
We first focus on the behavioral goal sampling strategy. We
use DDPG with HER to learn how to reach a goal in SVGG,
MEGA and GOAL GAN. DDPG is parameterized as in Table 1.
All algorithms are run using the same number of training
epochs n.

Table 1. DDPG parameters

DDPG Hyper-Parameters Value

Batch size for replay buffer 2000
Discount factor γ 0.99
Action L2 regularization 0.1
(Gaussian) Action noise max std 0.1
Warm up steps before training 2500
Actor learning rate 1e-3
Critic learning rate 1e-3
Target network soft update rate 0.05
Actor & critic networks activation Gelu
Actor & critic hidden layers sizes 5123

Replay buffer size nb training steps

G.1. Hindsight Experience Replay

The original goal relabeling strategy introduced in HER
(Andrychowicz et al., 2017) is the future, which consists
in relabeling a given transition with a goal achieved on the
trajectory later on. This is very effective in sparse reward
setting to learn a GCP. However, many works suggested
that relabeling transitions with goals outside the current
trajectory helps the agent generalize across trajectories. For
example, one can use inverse RL to determine the optimal
goal to relabel a given transition (Eysenbach et al., 2020).
We use a naive version of this method. As in (Pitis et al.,
2020), we relabel transitions for DDPG optimization using a
mixed strategy. All methods presented in this work use the
same strategy.

10% of real experience are kept while 40% of the transitions
are relabeled using the future strategy of HER. We relabel
the remaining 50% transitions with goals outside of their
trajectory, with randomly sampled goals among the past
behavioral and achieved goals. The latter part of the strategy
helps share information between different trajectories that
often contains similar transitions.

G.2. SVGG

SVGG is described in the main paper, in this section, we go
through implementation details and hyper-parameters.
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Algorithm 2 RL with Stein Variational Goal Generation
1: Input: a GCP πθ, a success predictor Dϕ, a reachability predictor Rψ, buffers of transitions B, reached statesR and

success outcomes O, a kernel k, hyper-parameters t(r), t(m), t(p) standing for number of rollouts, model updates and
particles updates respectively, and hyper-parameter b standing for the batchsize of the model update.

2: Sample a set of particles q = {xi}mi=1 uniformly from states reached by pre-runs of πθ;
3: for n epochs do
4: for t(r) iterations do ▷ Data Collection
5: Sample a goal g from q;
6: τ ← Rollout πθ(.|., g);
7: Store all (st, at, st+1, rt, g) from τ in B and every st from τ inR;
8: Optionally (HER): Store relabeled transitions from τ ;
9: Store outcome (g, I(s|τ | ≈ g)) in O;

10: end for
11: for t(m) iterations do ▷ Model Update
12: Sample a batch {(gi, si)}bi=1 from O;
13: Oversample the minority class w.r.t. s to get a balanced success/failure dataset;
14: Update model Dϕ (e.g., via ADAM), with gradient of Lϕ (3));
15: end for
16: Update model Rψ according to all states inR; ▷ Prior Update
17: for t(p) iterations do ▷ Particles Update
18: Compute the density of the target pgoals for the set of particles q using 2;
19: Compute transforms: ϕ∗(xi) = 1

m

∑m
j=1

[
k(xj , xi)∇xj

log pgoals(xj) +∇xj
k(xj , xi)

]
;

20: Update particles xi ← xi + ϵϕ∗(xi), ∀i = 1 · · ·m;
21: end for
22: Improve agent with any Off-Policy RL algorithm ▷ Agent Improvement
23: (e.g., DDPG) using transitions from B;
24: end for

SVGG Hyper-Parameters Symbol Value

SVGD
Number of particles m 100
Optimization interval (in steps) 20
Nb of particle moves per optim. k(p) 1
RBF kernel k(., .) bandwidth σ 1
Learning rate ϵ 1e-3

Agent’s skill model Dϕ

Hidden layers sizes (64, 64)
Gradient steps per optimization K 10
Learning rate 1e-3
Training batch size l(m) 100
Training history length (episodes) 1000
Optimization interval (in steps) 4000
Nb of training steps k(m) 100
Activations Gelu

OCSVM validity distribution
RBF kernel k(., .) bandwidth σ 1
Optimization interval (in steps) 4000

G.3. MEGA

The authors of MEGA (Pitis et al., 2020) train a GCP with
previously achieved goals from a replay buffer. Their choice
of goals relies on a minimum density heuristic, where they
model the distribution of achieved goals with a KDE. They
argue that aiming at novel goals suffices to efficiently dis-
cover and control the environment. We use the original
implementation of the authors, the pseudocode is given in
Algorithm 3 and specific hyper-parameters are in Table 2.

Table 2. MEGA parameters

MEGA Hyper-parameters Symbol Value

RBF kernel bandwidth σ 0.1
KDE optimization interval (in steps) 1
Nb of state samples for KDE optim. 10.000
Nb of sampled candidate goals N 100
Q-value cutoff c -3

G.4. GoalGAN

GOAL GAN (Florensa et al., 2018) uses a procedural goal
generation method based on GAN training. As our SVGG, it
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Algorithm 3 MEGA

1: Input: a GCP πθ, buffer of reached statesR, a KDE model Pas of the achieved states, numbers c, N , t(r) and l(r).
2: InitializeR with states reached by pre-runs of πθ;
3: for n epochs do ▷ Data Collection
4: for t(r) iterations do
5: Sample a batch {gi}Ni=1 uniformly fromR;
6: Eliminate unachievable candidates if their Q-values are below cutoff c;
7: Choose goals {gi}l(r)i=1 = argmingi Pas(gi)

8: for i from 1 to l(r) do
9: τ ← Rollout πθ(.|., g = gi);

10: Store all (st, at, st+1, rt, g
i) from τ in B and every st from τ inR;

11: Optionally (HER): Store relabeled transitions from τ ;
12: Store outcome (gi, I(s|τ | ≈ gi)) in O;
13: end for
14: end for
15: Update KDE model Pas with uniform sampling fromR; ▷ Model Update
16: Improve agent with any Off-Policy RL algorithm ▷ Agent Improvement
17: (e.g., DDPG) using transitions from B;
18: end for

Algorithm 4 GoalGAN
1: Input: a GCP πθ, a goal Generator Gθg , a Discriminator Dθd , a success predictor Dϕ, buffers of transitions B, reached

statesR and success outcomes O, numbers t(r), l(r), l(m), k(m), l(g) and k(g).
2: Initialize Gθg and Dθd with pre-runs of πθ;
3: for n epochs do ▷ Data Collection
4: for t(r) iterations do
5: Sample noise {zi}l

(r)

i=1 ∼ N (0, 1)

6: generate {gi}l(r)i=1 = Gθg ({zi}l
(r)

i=1)

7: for i from 1 to l(r) do
8: τ ← Rollout πθ(.|., g = gi);
9: Store all (st, at, st+1, rt, g

i) from τ in B and every st from τ inR;
10: Optionally (HER): Store relabeled transitions from τ ;
11: Store outcome (gi, I(s|τ | ≈ gi)) in O;
12: end for
13: end for
14: Sample a batch {(gi, si)}l(g)i=1 from O; ▷ GAN training
15: Label goals (GOID or not) with model Dϕ : {ygi}l

(g)

i=1 = {Pmin < Dϕ(gi) < Pmax}l
(g)

i=1

16: for k(g) iterations do
17: Update Gθg and Dθd (e.g. with ADAM) with gradients of LSGAN losses; (7)
18: end for
19: for k(m) iterations do ▷ Model Update
20: Sample a batch {(gi, si)}l(m)

i=1 from O;
21: Update model Dϕ (e.g., via ADAM), with gradient of Lϕ (agent model loss described in the paper);
22: end for
23: Improve agent with any Off-Policy RL algorithm ▷ Agent Improvement
24: (e.g., DDPG) using transitions from B;
25: end for

aims at sampling goals of intermediate difficulty, which they
define as GGOID = {g|Pmin < Pπ(g) < Pmax}, Pπ(g)
being the probability for the policy π to achieve goal g,
Pmin and Pmax are hyper-parameters. A Discriminator

Dθd is trained to distinguish between goals in GGOID and
other goals, while a generator Gθg is trained to output goals
in GGOID by relying on the discriminator outputs. They
optimize Gθg and Dθd in a manner similar to the Least-
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Squares GAN (LSGAN) with the following losses:

min
θd

V (Dθd) =Eg∼R
[
yg(Dθd(g)− 1)2

+ (1− yg)(Dθd(g) + 1)2
]

min
θg

V (Gθg ) =Ez∼N (0,1)

[
Dθd(Gθg (z))

2
]
,

(7)

where yg is the label that indicates whether g belongs to
GGOID or not. In (Florensa et al., 2018), the authors use
Monte-Carlo sampling of the policy to estimate yg. For
efficiency reasons, we use a learned model of the agent’s
capabilities as in SVGG. The pseudocode is given in Algo-
rithm 4 and specific hyper-parameters are in Table 3.

Table 3. GOAL GAN parameters

GoalGAN Hyper-parameters Symbol Value

Gaussian prior dimension 4
Generator hidden layers sizes (64, 64)
Discriminator hidden layers sizes (64, 64)
Optimization interval (in steps) 2000
GAN training batch size l(g) 200
Nb of GAN optimization steps k(g) 100
GAN Learning rate 1e-3
Minimum GOID probability Pmin 0.1
Maximum GOID probability Pmax 0.9

G.5. Ressources

Every seed of each experiment was run on 1 GPU in the
following list {Nvidia RTX A6000, Nvidia RTX A5000,
Nvidia TITAN RTX, Nvidia Titan Xp, Nvidia TITAN V}.
The total training time is close to 4.000 hours, most of it
executed in parallel, as we had full time access to 12 GPUs.

18


