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Abstract

We propose LESS-VFL, a communication-
efficient feature selection method for distributed
systems with vertically partitioned data. We con-
sider a system of a server and several parties with
local datasets that share a sample ID space but
have different feature sets. The parties wish to
collaboratively train a model for a prediction task.
As part of the training, the parties wish to remove
unimportant features in the system to improve
generalization, efficiency, and explainability. In
LESS-VFL, after a short pre-training period, the
server optimizes its part of the global model to
determine the relevant outputs from party models.
This information is shared with the parties to then
allow local feature selection without communica-
tion. We analytically prove that LESS-VFL re-
moves spurious features from model training. We
provide extensive empirical evidence that LESS-
VFL can achieve high accuracy and remove spu-
rious features at a fraction of the communication
cost of other feature selection approaches.

1. Introduction
Federated learning has recently become of interest to the
research community, and has shown promise in several ap-
plication areas, such as healthcare, smart transportation, and
predictive energy systems (Sun et al., 2019; Kairouz et al.,
2021; Zhou et al., 2021). Federated learning algorithms
support distributed model training among parties without
the need to directly share local private data.

Vertical Federated Learning (VFL), an important class of
federated learning algorithms, has received a significant
amount of attention lately (Yang et al., 2019; Cha et al.,
2021; Castiglia et al., 2022). VFL works consider the case
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Figure 1. Example VFL model architecture. Non-significant fea-
tures and embedding components (in gray) are removed after train-
ing with LESS-VFL.

where parties store a shared sample ID space, but different
private feature sets. For example, a healthcare provider, a
wearable technology company, and an insurance company
wish to collaboratively train a model for disease predic-
tion. The parties have information on the same individuals
(sample ID space), but each party stores different health
information (feature space). In VFL, parties typically use lo-
cal feature extractor models, such as deep neural networks,
to produce low-dimensional embeddings of local feature
sets (Hu et al., 2019; Ceballos et al., 2020). The server takes
embeddings as input to a fusion model for predictions. We
provide an example VFL model in Figure 1.

Feature selection is an important part of machine learning
tasks. Often, datasets contain many spurious features that do
not relate to the current prediction task. For example, health
care providers may train models using electronic medical
records (EMRs), which contain clinical documents, results
from routine visits, and many features that may be irrelevant
to disease diagnosis (Canino et al., 2016). Failing to remove
spurious features can have drastic effects on generalization.
In Figure 2, we compare the test accuracy of VFL training
with the original dataset against training with the dataset
and an additional set of Gaussian noise features. Simply
adding in these spurious features causes the test accuracy
of VFL to fall drastically. In addition to improving model
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Figure 2. Test accuracy on the Activity dataset (details in Sec-
tion 5). VFL (Original) denotes the test accuracy of running Algo-
rithm 2 with the original dataset. VFL (Spurious) denotes the test
accuracy on the dataset with spurious features added in. The solid
line is the average of 5 runs and the shaded region represents the
standard deviation.

generalization, feature selection is often used for model
explainability (Clinciu & Hastie, 2019).

Most centralized feature selection algorithms cannot be di-
rectly translated to VFL because it either requires direct data
sharing or is communication inefficient. Parties in VFL may
be globally distributed, leading communication to be expen-
sive in time, money, and resources. Thus it is important to
design communication-efficient VFL algorithms. Although
a few works propose VFL feature selection algorithms (sum-
marized in Table 1), no work formally analyzes the feature
selection problem in VFL and creates a method that provably
removes spurious features. In this work, we seek to answer
the following: Can we design a communication-efficient
VFL feature selection algorithm and formally verify that it
removes spurious features and achieves high accuracy?

Related Work. Feature selection algorithms tend to broadly
fit into three categories: filter, wrapper, and embedded meth-
ods (Chandrashekar & Sahin, 2014). Filter methods use sta-
tistical metrics of the data to determine feature importance
a priori to training a model. These methods require direct
access to features to calculate the metrics and cannot be
directly applied to the VFL setting without sharing raw data.
Wrapper methods typically involve retraining a model sev-
eral times to determine the importance of different feature
subsets. This is impractical for the VFL setting where model
training requires a large amount of communication between
parties and the server. Embedded methods involve training
a model while simultaneously determining the importance
of all features. These methods may fully train a model
before performing feature selection, or gradually remove
unimportant features during training. Embedded methods
that remove unimportant features during training seem to be
a good fit for VFL, however they must be adapted to support
distributed training and keep communication overhead low.

There have been a few works that propose embedded VFL

Table 1. VFL feature selection algorithms.

VFL Feature
Selection Algorithm

Supports neural
networks

Features selected
during training

Provably removes
spurious features

MMVFL (Feng & Yu, 2020) ✗ ✓ ✗
Fed-EINI (Chen et al., 2021) ✗ ✓ ✗
Hou et al. (2022) ✗ ✓ ✗
Zhang et al. (2022b) ✗ ✓ ✗
Zhang et al. (2022a) ✓ ✗ ✗
EVFL (Chen et al., 2022) ✓ ✗ ✗
VFLFS (Feng, 2022) ✓ ✓ ✗
FedSDG-FS (Li et al., 2023) ✓ ✓ ✗

LESS-VFL (ours) ✓ ✓ ✓

feature selection methods (Feng & Yu, 2020; Chen et al.,
2021; Hou et al., 2022; Zhang et al., 2022a;b; Chen et al.,
2022; Feng, 2022; Li et al., 2023). However, most of these
methods lack support for deep neural networks or require a
fully trained model to begin feature selection (see Table 1).
Critically, none of these works provide theoretical evidence
that spurious features are removed with their proposed meth-
ods, only providing empirical evidence. An important open
problem is how to formalize the feature selection problem
in the VFL setting and provide a theoretical framework for
proving that unimportant features are removed.

Contributions. In this work, we formalize the VFL fea-
ture selection problem and propose Local communication-
Efficient group laSSo for Vertical Federated Learning
(LESS-VFL), an embedded feature selection method
for VFL that provably removes spurious features in a
communication-efficient manner. Our method utilizes group
lasso regularization (Zhao et al., 2015; Zhang et al., 2020;
Wang et al., 2021) in a novel way that reduces the amount of
communication between parties. After a short pre-training
period, the server determines a set of “significant” embed-
ding components from each party. Using this informa-
tion, each party performs feature selection utilizing group
lasso locally without communication. Although it has been
proven that a centralized implementation of group lasso
removes spurious features (Dinh & Ho, 2020), it is not ob-
vious that our method can provide similar guarantees in
VFL. We prove in our analysis that the parties asymptot-
ically solve the feature selection problem in terms of the
sample size given the set of significant embedding com-
ponents. In our experiments, we compare LESS-VFL to
applying group lasso regularization directly to VFL and find
that our method can greatly reduce the communication cost
of feature selection.

We summarize our contributions:

• We formalize the feature selection problem for VFL in
Section 2.

• We propose a three-stage approach, namely LESS-VFL,
along with a practical implementation in Section 3.

• We prove analytically that LESS-VFL removes spurious
features and achieves high accuracy in Section 4.
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• We provide empirical evidence that LESS-VFL achieves
high accuracy at a low communication cost in Section 5.

2. Problem Formulation and Background
We consider a system with M parties and a server. Each
party m stores dm features for N training samples. We
denote party m’s dataset as Xm ∈ RN×dm . We let the i-th
sample in Xm be denoted as x(i)

m . We assume that each
party’s dataset is aligned, i.e., x(i)m and x(i)j for all parties
m ̸= j are different features for data sample i. We let a
combined data sample be denoted as x(i) = [x(i)

1 , . . . , x(i)M ]
and let X be the set of all possible values for a sample x(i).
We denote the combined dataset as X = [X1, . . . ,XM ]. We
assume the server stores the training labels y. Note that any
party can play the role of server if it stores the labels.

Each party trains a local model hm(·) with parameters θm,
and the server trains a server model hs(·) with parameters
θs. The output of the party models are called embeddings.
All party embeddings act as input to the server fusion model
hs(·). The full VFL model f(·) is defined as follows:

f(Θ; x(i)) := hs(θs,h1(θ1; x(i)1 ), . . . ,hM (θM ; x(i)
M )).

where Θ = [θ⊤
s ,θ

⊤
1 , . . . ,θ

⊤
M ]⊤.

We formalize the feature selection problem. Recall from
Section 1 that not all input features may be significant to
the current prediction task. We formalize this notion of
significance for any given input w and model u(θ), which
extends Definition 2.2 in Dinh & Ho (2020) to VFL systems.

Definition 2.1. For a given model u with parameters θ,
let wj be the j-th input to the model u(θ;w), and gj(w, s)
be a function that replaces wj with value s. The input
wj is non-significant in this model u(θ;w) iff u(θ;w) =
u(θ; gj(w, s)) for all s ∈ R. Otherwise, wj is significant.

We want to emphasize that in Definition 2.1, the set of
significant inputs is dependent on the model parameters θ.
Throughout this paper, we apply the notion of significance
in Definition 2.1 to the following two scenarios specifically:

1. When the input is the set of training features and the
model is the classifier, i.e., w = x, u(·) = f(·), and
θ = Θ in Definition 2.1;

2. When the input is the set of embedding components gen-
erated based on parties’ local models and the model is the
server model, i.e. w = [h1(·); . . . ;hM (·)], u(·) = hs(·),
and θ = θs.

We define Θ⋄ = [(θ⋄
s)

⊤, (θ⋄
1)

⊤, . . . , (θ⋄
M )⊤]⊤ as the

generating model that generated the training labels:
y(i) = f(Θ⋄; x(i)) + ϵ(i) where x(i) are drawn from a dis-
tribution PX,y and ϵ ∼ N (0, σ2) (formal definition in Sec-
tion 4). Our main goal in feature selection is to determine

the set of significant features for Θ⋄. We let the set of sig-
nificant features for a party m’s generating model θ⋄

m be sm
and the set of non-significant features be zm for any data
sample xm. We can consider the input layer weights that
correspond to the significant and non-significant features:

xm = (sm, zm) and π(θ⋄
m) = (Um,Vm)

where π(θ) extracts the input weights in a model θ, and
Um and Vm are the input layer weights for the significant
and non-significant features in θ⋄

m, respectively. Note that
the separation between Um and Vm is not known during
training and is simply used for mathematical convenience.

The goal of embedded VFL feature selection is to find
a model that simultaneously gives similar predictions to
the generating model Θ⋄ and sets non-significant feature
weights to zero:

min
Θ

R(Θ;PX,y) s.t. Uk
m ̸= 0 ∀m ∈ [M ], ∀k ∈ [dsm]

Vl
m = 0 ∀m ∈ [M ], ∀l ∈ [dzm] (1)

where R(·) is some generalization risk over the data distri-
bution PX,y (e.g., expected squared loss, cross-entropy) and
dsm and dzm are the number of significant and non-significant
features at party m, respectively. Setting the input weights
on non-significant features to zero removes their influence
in the network, thus it essentially removes the features from
the model (shown visually in Figure 1). Note Vm may not
necessarily be zero in Θ⋄, as the effect of non-significant
features can be lost at any layer in the model f(Θ⋄).

A popular centralized method to solve (1) for neural net-
works is group lasso (Zhao et al., 2015; Zhang et al., 2020;
Wang et al., 2021). If we apply group lasso directly to the
VFL setting, then we can define the estimator as follows:

Θ̄ := argmin
Θ

RN (Θ;X; y) +
∑M

m=1λmG(θm) (2)

where RN (·) is an empirical risk that approximates R(·)
over N training samples, and G(·) is L2,1 regularization:

G(θm) :=
∑dm

j=1∥π(θm)j∥2
where the projection π(·) extracts the input layer weights
of θm and dm is the number of input features. The regular-
izer G(·) sparsifies the input layer weights on each feature,
pushing irrelevant feature weights to zero.

Why not standard group lasso? Minimizing the group
lasso objective (2) using standard VFL training (Hu et al.,
2019; Ceballos et al., 2020) requires the parties and server to
exchange embeddings and partial derivatives every iteration
of training (see Algorithm 2). Instead of communicating em-
beddings at every iteration, is it possible to perform feature
selection locally at each client given auxiliary information
from the server? In the next section, we propose a feature
selection method to solve (1) that utilizes local training with
minimal communication between the parties and the server.
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Algorithm 1 LESS-VFL implemented using P-SGD

1: Input: pre-trained model parameters θ̂s, θ̂1, . . . , θ̂M

2: for m← 1, . . . ,M in parallel do
3: Send hm(θ̂m;Xm) to server
4: end for
5: Initialize: θ0

s ← θ̂s

6: for t← 0, . . . , T1 − 1 do
7: Randomly sample B ⊂ [N ]

8: Φ̂← {θt
s,h1(θ̂1;X(B)

m ), . . . ,hM (θ̂M ;X(B)
m )}

9: θt+1
s ← proxλs,ηt

s

(
θt
s−ηts∇sRB(Φ̂; y(B))

)
10: end for
11: for m← 1, . . . ,M in parallel do
12: Km = {k | ∥π(θT1

s )k∥2 > 0}
13: Initialize: θ0

m ← θ̂m

14: end for
15: for t← 0, . . . , T2 − 1 do
16: for m← 1, . . . ,M in parallel do
17: Randomly sample B ⊂ [N ]

18: θt+1
m = proxλm,ηt

m

(
θt
m−ηtm∇HB(θ

t
m; θ̂m;Km)

)
19: end for
20: end for
21: Θ̄← [θT1

s ,θT2
1 , . . . ,θT2

M ]

3. Algorithm
We present LESS-VFL, a communication-efficient approach
to perform feature selection in VFL. We formalize the three
stages of LESS-VFL and present a practical implementation.

Stage 1 – Pre-training. The parties and server begin by
solving the following empirical risk minimization problem:

Θ̂ := argminΘ RN (Θ;X; y). (3)

Standard VFL training, described in Algorithm 2 in Ap-
pendix A (Hu et al., 2019; Ceballos et al., 2020), is a practi-
cal method to find an approximate solution to (3).

Stage 2 – Embedding Component Selection. In this
stage, the server determines the set of significant embed-
ding components. Each party sends its current pre-trained
embeddings hm(θ̂m; x(i)) for each sample i. These em-
beddings are fixed and used as input to the server model
during this stage. With some abuse of notation, we let
RN (θs,h1(θ̂1), . . . ,hM (θ̂M )) be the empirical risk of the
server model using pre-trained embeddings as inputs. The
server solves the following:

θ̄s := argmin
θs

RN (θs,h1(θ̂1), . . . ,hM (θ̂M )) + λsG(θs)

(4)

where G(·) is the L2,1 regularizer on the input layer of
θs and θ̂m are party m’s pre-trained parameters after pre-

training. Note that the server uses the pre-trained embed-
dings as input, and does not require communication with
the parties to calculate RN (·). Solving (4) simultaneously
minimizes the risk while sparsifying embedding compo-
nent weights. This is illustrated in Figure 1, where non-
significant embedding components (in gray) no longer pro-
vide input to the server model.

In Algorithm 1 (lines 1–10) we provide a practical method
to find an approximate solution to (4). The parties generate
embeddings for all data samples using the pre-trained mod-
els and send them to the server (lines 1–4). The server then
starts embedding component selection (lines 5–10). The
server randomly samples a mini-batch B of indices, then
calculates the partial derivative of the risk with respect to
the server model: ∇sRB(·). The server then employs proxi-
mal stochastic gradient descent (P-SGD). We let proxλ,η(θ)
with parameter λ and step size η denote the closed-form
solution to the proximal operator for L2,1 regularization:

proxλ,η(P
j) =

{
Pj −λη Pj

∥ Pj ∥2
∥Pj ∥2 > λη

0 ∥Pj ∥2 ≤ λη

where Pj := π(θ)j is the j-th group of input weights. After
training, any embedding components with non-zero input
weights are considered significant, and each party m is sent
its list of significant embedding components indices Km

(lines 11–14).

Stage 3 – Feature Selection. In this stage, each party’s
goal is to match the values of the significant embedding
components while removing non-significant features from
its model. We denote the squared difference between the
party’s embedding value and the pre-trained embedding
values over the set of significant components Km:

e(θm; θ̂m;Km; x(i)m ) :=∑
k∈Km

(hm(θm; x(i)m )k − hm(θ̂m; x(i)
m )k)2

where hm(θm; x(i)m )k is the k-th embedding component.
Each party minimizes e(·) for each data sample while spar-
sifying its input layer weights:

θ̄m := argmin
θm

HN (θm; θ̂m;Km;Xm) + λmG(θm) (5)

where,

HN (θm; θ̂m;Km;Xm) :=
1

N

∑N
i=1e(θm; θ̂m;Km; x(i)m ).

A practical method to find an approximate solution to (5) can
be seen in Algorithm 1 (lines 15–20). Each party updates its
model using the mini-batch gradient∇HB(·) and applying
proxλm,ηt

m
(θ) with regularization parameter λm.

After minimizing (5), any input feature weights set to zero
are considered non-significant and removed from the model.
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This is illustrated in Figure 1, where input weights from
non-significant features (in gray) are removed. Once feature
selection is complete, one can further refine the network
with the remaining features using Algorithm 2 if desired.

Algorithm Cost. Stage 1 of LESS-VFL is the same as stan-
dard VFL, and thus has the same communication cost per
iteration. Stages 2 and 3 only require one round of commu-
nication where parties send current embeddings to the server.
The number of iterations T1 and T2 in Algorithm 1 controls
the computation cost at the server and parties respectively,
which one can tune.

Privacy. LESS-VFL uses information already shared during
VFL training to perform feature selection. Thus it provides
the same privacy guarantees as standard VFL. Although no
raw data is shared between parties, VFL may be vulnerable
to reconstruction attacks and label leakage. There have been
techniques applied on top of VFL to protect against such
attacks (Qiu et al., 2022; Zou et al., 2022), and these can be
similarly applied to LESS-VFL. Our analysis in Section 4
still holds when applying these methods.

Theory vs. Practice. We note that Algorithms 1 and 2
provide approximate solutions to each stage’s optimization
problem when running a fixed number of iterations. By
using P-SGD, input weights are set to zero and features are
selected without the need for convergence, even if it is not
the optimal set. Our analysis of LESS-VFL in Section 4
considers the ideal case where (3), (4), and (5) are solved
exactly. However, we find in our experiments in Section 5
that LESS-VFL can remove spurious features and achieve
high accuracy with only a few communication rounds for
pre-training and an approximate solution from Algorithm 1.

Hyper-parameter tuning. Determining the best hyper-
parameters for LESS-VFL (e.g. regularization parameters,
number of pre-training epochs) can be done in an efficient
manner. The parties and server can produce several pre-
trained models for Stage 1 with different numbers of iter-
ations. In Stage 2, the server can then explore the space
of server model regularization parameters λs without com-
munication. For Stage 3, the server can share the resulting
sets of significant embedding component indices with the
parties, and each party then can tune its local regularization
parameter λm without communication. For choosing the
numbers of iterations T1 in Stage 2, the server can mini-
mize its optimization problem locally until the training loss
plateaus. Similarly, for choosing T2 in Stage 3, each party
can minimize its local feature selection problem until its
proxy training loss plateaus.

4. Theoretical Analysis
We analyze LESS-VFL and prove under which conditions
the algorithm minimizes risk and removes spurious features.

We assume each party m’s network is structured as follows:

• input layer: ℓ1m(xm) = Pm · xm +pm

• hidden layers:
ℓjm(xm) = ζjm(Sj

m, ℓj−1
m (xm), . . . , ℓ1m(xm))

• output layer: hm(θm; xm) = Qm · ℓL−1
m (xm) + qm

where djm are the number of neurons in the j-th hidden layer
for party m, Pm ∈ Rd1

m×dm , Qm ∈ RdL
m×dL−1

m , pm ∈ Rd1
m ,

qm ∈ RdL
m , and ζjm(·) are functions of previous layers with

parameters Sj
m. We define the server network structure the

same, denoted with subscript s. This structure generalizes
to several types of neural networks, including feed-forward
networks, convolutional networks, and many residual net-
works (Dinh & Ho, 2020).

We make the following assumptions, standard in model-
based feature selection (Huang et al., 2010; Wu & Liu,
2009; Dinh & Ho, 2020):

Assumption 4.1. Training data {(x(i), y(i))}Ni=1 are sam-
pled i.i.d. from distribution PX,y such that the input density
pX is positive and continuous on its open domain X and
y(i) = f(Θ⋄; x(i)) + ϵ(i) where ϵ ∼ N (0, σ2).

Assumption 4.1 states that there is a generating model
f(Θ⋄) that generates the training labels with some Gaus-
sian noise. This ensures that feature selection is possible
since the learned model f(Θ̄) matches the structure of the
generating model. The assumption on the input density pX
ensures that there are no perfect correlations between input
features. Note that since X is an open domain, we assume
that all underlying features are continuous for this analysis.

Assumption 4.2. The hidden layer functions ζjm(·) in all
models are analytic. The empirical risk is mean squared
error: RN (Θ;X; y) := 1

N

∑N
i=1(f(Θ; x(i)) − y(i))2 and

the generalization risk function is expected squared error:
R(Θ;PX,y) := E(x,y)∼PX,y [(f(Θ; x)− y)

2
].

Assumption 4.2 ensures that the risk function is analytic,
which allows us to reason about the distance between the
learned model and the generating model. Note that under
the definition of the generating model in Assumption 4.1,
Θ⋄ minimizes the expected squared error R(·).

Next, we formalize our goal to find parameters Θ̄ that solves
(1), i.e. performs the same as the generating model Θ⋄ while
removing non-significant features. We define the set T ∗ as
the parameters that achieve the same risk as the generating
model:

T ∗ := {Θ : R(Θ) = R(Θ⋄)}.

Recall from Section 2 that for Θ⋄, it is not necessarily the
case that the input weights on non-significant features are
zero. The same holds for any model in T ∗. Thus, we define
a subset of parameters in T ∗ that also have weights on
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non-significant features set to zero:

T ∗
ϕ := {Θ : Θ ∈ T ∗ and Vm = 0},

where Vm are the input weights on non-significant features
in the generating model Θ⋄ (definition in Section 2). We
define the distance of a vector θ from a set of vectors S as:

d(θ,S) = inf
θ′∈S
∥θ−θ′ ∥2.

The feature selection problem (1) is solved if d(Θ̄, T ∗
ϕ )→ 0

for our learned parameters Θ̄. Dinh & Ho (2020) proved this
can be achieved using group lasso in centralized machine
learning problems. Our goal is to show that our three-stage
method can achieve the same in VFL settings.

4.1. Main Result

We present our main result below.

Theorem 4.3. Let Θ̃ = argminΘ∈T ∗ ∥Θ − Θ̂∥2. Let
Km and Zm be the set of party m’s significant and non-
significant embedding components in the model Θ̃, respec-
tively. Let Θ̄ be the model after solving (3), (4), and (5) in
succession. Under Assumptions 4.1 and 4.2, we conclude:

(i) After solving (4) and obtaining θ̄s, for all m, π(θ̄s)
k ̸= 0

for all k ∈ Km and π(θ̄s)
l → 0 for all l ∈ Zm, where

π(θ̄s) are the embedding layer weights.

(ii) When the server finds Km for all m, then for any δ > 0
and ν > 1, if λs ∼ N−1/4 and λm ∼ N−1/4 for all m,

d(Θ̄, T ∗
ϕ ) = O

(
√
M

(
logN

N

) 1
4(ν−1)

)
(6)

with probability 1− δ.

Theorem 4.3 (i) states that the server finds a set of embed-
ding components that are significant in Θ̃, the closest model
to the pre-trained model Θ̂ that matches the risk of the gen-
erating model. This result ensures that the list of embedding
components given by the server to the parties can serve as
an accurate proxy for the loss function.

Theorem 4.3 (ii) states if we run each LESS-VFL stage to
convergence, then we approach a model that minimizes the
risk and removes non-significant features at a polynomial
rate in terms of the number of training samples N . Since
parties cannot calculate the risk RN (·) locally, each uses
HN (·), the distance between the produced embeddings and
the significant components of the pre-trained embeddings,
as a proxy. It is not immediately evident that feature selec-
tion can be performed at each party without access to the
server model to calculate the risk. Theorem 4.3 states that
regardless of the depth or complexity of the server model,
given pre-trained embeddings from solving (3) and the set

of significant embedding components Km found by solving
(4), each party can successfully remove its non-significant
features by solving (5). This emphasizes that all stages of
LESS-VFL are necessary.

The bound in (6) is similar to that of centralized group
lasso (Dinh & Ho, 2020), with the addition of sub-linear er-
ror growth depending on the number of parties M . It is com-
mon for M to be small in many VFL applications (Kairouz
et al., 2021), thus this term has a minor effect on the bound.

4.2. Proof Sketch

For the sake of brevity, we present this proof sketch for the
case where M = 1 (one party and server), using subscript
m to denote the party. We provide the complete proof of
Theorem 4.3 for M > 1 in the appendix. The proof for
M > 1 is similar to that of M = 1 since the server-side
group lasso treats embeddings as input and is agnostic to the
number of parties, and party-side group lasso runs in parallel
using only its own significant embedding components as
a proxy for the loss function. The key challenge in the
extension to M > 1 comes in the relationship between
significant embedding components and significant party
features (see Lemma B.9 in Appendix B.5).

We start by providing some definitions and additional nota-
tion. We define H(·) as the expected squared difference be-
tween two embeddings over the full data distribution PX,y:

H(θm;θ′
m;Km) := E(x,y)∼PX,y

[
e(θm;θ′

m;Km; xm)
]

where θm,θ′
m are party model parameters, Km is a set of

embedding components, and e(·) is the square difference
between embeddings components in Km. Recall that the
notion of significance as given in Definition 2.1 can be
applied to any input and model. We summarize our steps to
prove that d(Θ, T ∗

ϕ )→ 0:

(a) Prove that minimizing H(·) also minimizes R(·) ifKm

is the set of significant embedding components.
(b) Prove that e(· ; Km) has the same significant and non-

significant features as f(·) ifKm is the set of significant
embedding components.

(c) Prove that (4) finds optimal server parameters and finds
the set of significant embedding components.

(d) Prove that given the set of significant embedding com-
ponents, (5) finds optimal party parameters and re-
moves non-significant features.

We start by proving (a) and (b). In the following proposition,
we discuss the relationship between the significance of fea-
tures in the full network versus the significance of features
to embedding components in the party sub-network.

Proposition 4.4. Consider a model Θ = [θ⊤
s ,θ

⊤
m]⊤. Let s

and z be the sets of significant and non-significant features
for f(Θ), respectively. Let the set of significant embed-
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ding components for f(θs;h(θm; x)) be ss. Let gj(x, r)
replace input xj with value r. For each significant embed-
ding component k ∈ ss, for all j ∈ z, and any r ∈ R,
h(θm; x)k = h(θm; gj(x, r))k.

Informally, Proposition 4.4 states that significant embed-
ding component values are unchanged by non-significant
features, and can only be changed by significant features.

Proof. Suppose that h(θm; x)k ̸= h(θm; gj(x, r))k for
some significant embedding component k ∈ ss, non-
significant feature j ∈ z, and r ∈ R. By our supposition
and since component k is significant, f(θs;h(θm; x)) ̸=
f(θs;h(θm; gj(x; r))) for some value r ∈ R. This contra-
dicts the fact that j is a non-significant feature.

Utilizing Proposition 4.4, we can prove (a) and (b).

Lemma 4.5. Let Θ̃ = [θ̃
⊤
s , θ̃

⊤
m]⊤ ∈ T ∗. Let Km be the

significant embedding components for f(θ̃s;h(θ̃m)). Let
θm = argminθ′

m
H(θ′

m; θ̃m;Km). Let s and z be the sig-
nificant and non-significant features for f(Θ⋄). Let sh
and zh be the significant and non-significant features for
e(θm; θ̃m;Km) with parameters θm. Then:

[θ̃s,θm] ∈ T ∗, sh = s, and zh = z .

The proof of Lemma 4.5 is given in Appendix B.2.
Lemma 4.5 proves that H(·) can serve as a proxy for R(·)
if the pre-trained model parameters Θ̂ are in the optimal
set T ∗ and the set of selected embedding components Km

contains only the significant embedding components.

Next, we consider objective (c), and prove that the server
can find the significant embedding components required for
(a) and (b). We first define Θ̃ = argminΘ∈T ∗ ∥Θ− Θ̂∥2
as the closest model in T ∗ to the pre-trained parameters Θ̂.
The server’s goal is to find the set of significant embedding
components in Θ̃, which the parties can then use to remove
their non-significant features. We define the set of server
model parameters in T ∗ with non-significant embedding
component weights set to zero:

S∗ϕ = {θs : ∃θm s.t. [θs,θm] ∈ T ∗ and Vs = 0}

where Vs are the weights on non-significant embedding
components in Θ̃. If d(θ̄s,S∗ϕ)→ 0, the server finds the set
of significant embedding components, completing objective
(c). We bound this distance in the following theorem.

Theorem 4.6. Given a pre-trained model Θ̂ defined by (3),
for any δ > 0, there exists N ≥ N0(δ) such that:

d(θ̄s,S∗ϕ) = O

(
logN

λs

√
N

+

(
logN√

N
+ λν/(ν−1)

s

)1/ν
)

with probability 1− δ.

The proof of Theorem 4.6 can be found in Appendix B.3.
The bound in Theorem 4.6 indicates that if λs ∼ N−1/4,
then non-significant weights will approach zero at a poly-
nomial rate in terms of the number of training samples N ;
if the regularization parameter is set appropriately, then the
set of significant embedding components are found.

Finally, since the server finds the set of significant embed-
ding components allowing H(·) to be a proxy of R(·), we
can prove objective (d). We define the set of party models
in T ∗ with non-significant feature weights set to zero:

C∗ϕ = {θm : ∃θs s.t. [θs,θm] ∈ T ∗ and Vm = 0}

where Vm are the input weights on non-significant features
in the generating model Θ⋄. If d(θ̄m, C∗ϕ) → 0, then the
party removes the non-significant features, completing ob-
jective (d). We bound this distance in the following theorem.

Theorem 4.7. Let [θ̃
⊤
s , θ̃

⊤
m]⊤ = argminΘ∈T ∗ ∥Θ− Θ̂∥2

where Θ̂ are pre-trained model parameters defined in (3).
If Km in (5) is the set of significant embedding components
for f(θ̃s;h(θ̃m)), then for any δ > 0, there exists some
number of samples N ≥ N0(δ) such that:

d(θ̄m, C∗ϕ) ≤ O

(
logN

λm

√
N

+

(
logN√

N
+ λν/(ν−1)

m

)1/ν
)

with probability 1− δ.

The proof of Theorem 4.7 can be found in Appendix B.4.
Similar to the server’s case, this bound goes to zero at a poly-
nomial rate if λm ∼ N−1/4. Note that for Theorem 4.7 to
hold, the server must provide the party with the set of signif-
icant embeddings. Otherwise, the bound is not guaranteed.
In Section 5, we explore the importance of the embedding
component selection stage in practice. In Appendix B.5,
we extend Theorems 4.6 and 4.7 to the case where M > 1,
which can be combined to prove Theorem 4.3.

5. Experiments
We implement LESS-VFL by running a fixed number of
iterations of Algorithm 2 (standard VFL algorithm, see
Appendix A), then running Algorithm 1 to remove non-
significant features, then continuing training with Algo-
rithm 2. We evaluate LESS-VFL on several datasets.

• MIMIC-III (Johnson et al., 2016; Harutyunyan et al.,
2019): Hospital dataset consisting of time-series medical
information on anonymized patients. Used to predict in-
hospital mortality. Contains 14,681 samples each with
712 features.

• Activity (Anguita et al., 2013): Time-series positional
data on humans performing various activities. Used for
multi-class classification of the current activity (walking,
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sitting, running, etc.). Contains 7,352 samples each with
560 features.

• Phishing (Dua & Graff, 2017): Dataset that provides
relevant features for determining if a website is a phish-
ing website (use of HTTP, TinyURL, forwarding, etc.).
Contains 11,055 samples each with 30 features.

• Gina (Guyon, 2007): Hand-written two-digit images.
Used for binary classification between even and odd num-
bers, meaning only the first digit is necessary for classifica-
tion and the rest of the features are distractions. Contains
3,468 samples each with 968 features.

• Sylva (Guyon, 2007): Forest cover type information.
Used for binary classification (Ponderosa pine vs. ev-
erything else). Similar to Gina, half the features are dis-
tractions; each sample has two records with relevant in-
formation for the target, while the other two are randomly
chosen. Contains 14,395 samples each with 216 features.

For each dataset, we add 50% more features that are Gaus-
sian noise. These spurious features act as our non-significant
features, allowing us to measure how well LESS-VFL per-
forms feature selection. Note that not all the features in the
original dataset are necessarily significant. The only fea-
tures we know for sure are non-significant are the Gaussian
noise features we add to each dataset. Thus, the final test
accuracy is our indicator that we have correctly selected
significant features in the dataset and trained a model that
generalizes well.

We compare LESS-VFL with the following VFL baselines.

• VFL (Original): VFL as described in Algorithm 2
without spurious features in the datasets.

• VFL (Spurious): Algorithm 2 with spurious features in
the datasets.

• Group Lasso: Applies group lasso directly to the VFL
model by approximately solving (2) using P-SGD.

• Local Lasso: This algorithm is the same as LESS-VFL
with stage 2, embedding component selection, removed.

We restrict our evaluations to methods that do not require
a fully trained VFL model as input, which excludes Zhang
et al. (2022a) and Chen et al. (2022) from our compari-
son. The feature selection portion of VFLFS (Feng, 2022)
employs group lasso, which we include in our evaluations.

Training Details. For each dataset, we split both the orig-
inal and Gaussian noise features evenly among a set of
parties (three parties for Phishing, four parties otherwise).
Each party’s model is a 3-layer dense neural network, and
the server trains a linear model that takes the concatenation
of party embeddings as input. We run a grid search to deter-
mine regularization parameters for LESS-VFL, local lasso,
and group lasso, and the number of pre-training epochs
for LESS-VFL and local lasso. We chose parameters that
achieved the highest training accuracy and removed at least

Table 2. Communication cost to achieve 90% of baseline test accu-
racy and remove at least 80% of the spurious features. The value
shown is the average of 5 runs ± the standard deviation.

Dataset
Communication Cost (MB)

Group Lasso Local Lasso LESS-VFL (ours)

MIMIC-III 57.35 ± 0.00 30.47 ± 1.79 7.17 ± 0.00
Activity 322.73 ± 61.32 26.56 ± 5.83 21.17 ± 0.00
Phishing 95.22 ± 1.89 8.10 ± 3.40 3.99 ± 0.75
Gina 13.55 ± 0.00 1.90 ± 0.27 1.48 ± 0.26
Sylva 22.49 ± 0.00 5.62 ± 0.00 5.62 ± 0.00

(a) Activity (b) Phishing

Figure 3. Communication rounds to remove spurious features. The
values shown is the average of 5 runs. LESS-VFL and local
lasso remove a similar percentage of spurious features after pre-
training, though local lasso takes longer to reach high accuracy
(see Table 5). Group Lasso gradually removes features while local
lasso and LESS-VFL remove features with only a few rounds of
communication after pre-training.

80% of spurious features. We use the ADAM optimizer
with a learning rate of 0.01 when employing Algorithm 2
in VFL (Original and Spurious) and pre-training and post
feature selection in local lasso and LESS-VFL. We run 150
epochs of P-SGD for embedding component selection in
LESS-VFL and feature selection in LESS-VFL and local
lasso, which we found to be a sufficient amount of iterations
for the training loss to plateau.

Communication cost. In Table 2, we compare the com-
munication cost of reaching a target test accuracy while
removing at least 80% of the spurious features. We choose
a target accuracy of 90% of the maximum accuracy reached
by VFL (Original). In all cases, LESS-VFL meets these con-
ditions with the lowest communication cost, reducing the
communication cost when compared to group lasso. In the
case of the Phishing dataset, LESS-VFL has ∼20× lower
communication cost than group lasso. LESS-VFL greatly
reduces the cost of feature selection over group lasso by only
communicating during pre-training, and once at the start
of feature selection. LESS-VFL also always achieves the
same or lower communication cost than local lasso. Local
lasso forgoes embedding component selection, and in most
datasets, this led to higher communication cost. We explore
this more in our next set of experiments.

In the remaining experiments, we seek to illustrate how
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(a) Activity

(b) Phishing

Figure 4. Test accuracy plotted by communication cost. VFL (Orig-
inal) is trained without spurious features, while all other methods
are trained with spurious features. The solid lines are the average
of 5 runs and the shaded region represents the standard deviation.

LESS-VFL performs over the course of training. We focus
on two representative datasets (Activity and Phishing). We
provide results for all datasets in Appendix C.

Feature removal. In Figure 3, we compare the percentage
of spurious features removed using group lasso, local lasso,
and LESS-VFL over the communication epochs. Group
lasso gradually removes features over the course of training,
while local lasso and LESS-VFL remove features after a
few rounds of communication for pre-training. LESS-VFL
benefits greatly from using local training without communi-
cation to perform its feature selection. Local lasso removes
a similar percentage of features as LESS-VFL in about the
same communication epochs. However, we see in the next
experiment that local lasso can require more communication
to both reach high accuracy and remove spurious features.

Accuracy. In Figure 4, we plot the test accuracy against
communication cost. The test accuracy of VFL (Spurious) in
both datasets indicates that VFL training without removing
spurious features can have a drastic effect on the generaliza-
tion. In both cases, LESS-VFL achieves high accuracy faster
than group lasso, and achieves similar accuracy to the base-
line VFL algorithm without spurious features. In fact, in the
Phishing dataset, LESS-VFL performs better than the VFL
(Original) baseline. This is due to LESS-VFL removing
non-significant embedding components which reduce post
feature selection communication cost. Local lasso performs
similarly to LESS-VFL in the Activity dataset, but local
lasso requires a much higher communication cost to achieve
high accuracy in the Phishing dataset. In Figure 4b, we can

Table 3. Experimental results with heterogeneous feature partitions.
Communication cost to achieve 90% of baseline test accuracy and
remove at least 80% of the spurious features. The value shown is
the average of 5 runs ± the standard deviation.

Dataset
Communication Cost (MB)

Group Lasso Local Lasso LESS-VFL (ours)

MIMIC-III 57.35 ± 0.00 7.17 ± 0.00 7.17 ± 0.00
Activity 187.39 ± 52.61 24.77 ± 6.75 15.76 ± 3.09
Phishing 94.57 ± 1.94 5.51 ± 0.79 3.98 ± 0.74
Gina 13.55 ± 0.00 1.63 ± 0.33 1.35 ± 0.00
Sylva 21.93 ± 1.12 5.62 ± 0.00 5.62 ± 0.00

see local lasso has a lower model accuracy than LESS-VFL
after feature selection (at∼25 MB). This reinforces that em-
bedding component selection can improve model accuracy
by both minimizing risk to refine server model parameters,
and providing parties with important information for local
feature selection.

Uneven Features. For the previous experiments, we con-
sidered a case where all parties have the same percentage of
Gaussian noise features. We now consider a case where par-
ties have an uneven distribution of Gaussian noise features:
One party with 80% additional Gaussian noise features, one
with 25%, one with 10%, and one with no Gaussian noise
features. Table 3 shows the communication cost of group
lasso, local lasso, and LESS-VFL to reach 90% of base-
line VFL (Original) test accuracy while removing 80% of
the total spurious features. We find that, in this heteroge-
neous setting, LESS-VFL still achieves high accuracy while
removing spurious features, and does so with low communi-
cation cost.

6. Conclusion
In this work, we proposed LESS-VFL, a communication-
efficient method for feature selection in vertical federated
learning. We analytically proved that LESS-VFL removes
spurious features. We experimentally showed that LESS-
VFL can achieve comparable accuracy and percentage of
spurious features removed at reduced communication cost.
In the future, we seek to extend our analysis to non-analytic
neural networks and adaptive group lasso.
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A. Vertical Federated Learning Algorithm
In Algorithm 2, we present pseudocode for standard VFL training with neural networks (Hu et al., 2019; Ceballos et al.,
2020).

Algorithm 2 Vertical Federated Learning

1: Initialize: θ0
m for all parties m and server model θ0

s

2: for t← 0, . . . , T1 − 1 do
3: Randomly sample B ⊂ [N ]
4: for m← 1, . . . ,M in parallel do
5: Send hm(θt

m;X(B)
m ) to server

6: end for
7: Φ← {θt

s,h1(θ
t
1;X(B)

m ), . . . ,hM (θt
M ;X(B)

m )}
8: θt+1

s ← U(θt
s,∇sRB(Φ

t; yB
t

))
9: Server sends∇hm(θt

m)RB(Φ
t; y(B)) to each party

10: for m← 1, . . . ,M in parallel do
11: ∇mRB(Φ

t) = ∇θm hm(θt
m)⊤∇hm(θt

m)RB(Φ
t)

12: θt+1
m = U(θt

m,∇mRB(Φ
t))

13: end for
14: end for

The parties start by agreeing upon a mini-batch samples B, then sending their current embeddings for the given mini-batch
to the server. We let X(B) and y(B) denote the training samples and labels in the mini-batch, respectively. The server updates
its model using the mini-batch partial derivative with respect to θs, denoted by∇sRB(·), and some optimizer update rule
U(·) (e.g. SGD, Adam, etc.). The server then sends the partial derivatives with respect to the party’s embeddings. Each
party m then updates its model using its mini-batch partial derivative, denoted by∇mRB(·).

B. Proof of Theorem 4.3
In this section, we start by proving Theorems 4.7 and 4.6 for the case when M = 1, extend the results to M > 1 case, and
finally prove Theorem 4.3. We provide a summary of the notation used in this section in Table 4.

B.1. Additional Notation for M = 1

We start by providing additional notation for proving Theorems 4.7 and 4.6. We define the set of party and server model
parameters that are in the optimal parameter set T ∗:

C∗ = {θm : ∃θs s.t. [θs,θm] ∈ T ∗}

and
S∗ = {θs : ∃θm s.t. [θs,θm] ∈ T ∗}.

We use the following lemmas proven by Dinh & Ho (2020):
Lemma B.1. Let U and V be the significant and non-significant input layer weights in a generating model Θ⋄. Let ϕ(Θ)
be the parameters Θ with all non-significant input layer weights V set to zero. Under Assumption 4.1,

• There exists c0 > 0 such that ∥Uk ∥ ≥ c0 for all Θ ∈ T ∗ and k = 1, . . . , ds (where ds is the number of significant
features).

• If Θ ∈ T ∗, then parameters ϕ(Θ) also belongs in T ∗.

Lemma B.2. There exist c2, ν > 0 such that:

c2d(Θ, T ∗)ν ≤ R(Θ)−R(Θ⋄)

for all Θ ∈ T .
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Table 4. Summary of notation.

Notation Definitions
N Number of training samples.
M Number of parties.
λs, λm The server’s and party’s regularization coefficients, respectively.
f(·) VFL model label prediction.
h(·) Party’s local embedding function.
e(·) Mean squared error between two embeddings.
R(·) Risk function: MSE with labels for all possible samples.
RN (·) Empirical risk function: MSE with labels for all training samples.
G(·) Group lasso L2,1 regularization term.
H(·) Expected mean-squared difference between two embedding functions.
HN (·) Empirical mean-squared difference between two embedding functions.
d(·) Distance between a vector and a set of vectors.
Θ⋄ The generating model parameters defined in Assumption 4.1.
Θ̂ Pre-trained model parameters from minimizing empirical risk.
Θ̃ Model with the same risk as the generating model closest to pre-trained model.
Θ̄ Learned model parameters after running LESS-VFL.
Um,Vm Input weights on significant and non-significant features in party m’s generating model.
T ∗ Set of models that have the same risk as the generating model.
S∗ Set of server models that have the same risk as the generating server model.
C∗ Set of client models that have the same risk as the generating client model.
T ∗
ϕ Subset of T ∗ with non-significant feature weights set to zero.

S∗
ϕ Server models in T ∗ with non-significant embedding weights set to zero.

C∗
ϕ Party models in T ∗ with non-significant feature weights set to zero.

Lemma B.3. For any δ > 0, there exists c1(δ) > 0 such that for all Θ ∈ T :

|RN (Θ)−R(Θ)| ≤ c1
logN√

N

with probability 1− δ.

We also prove the following lemma:

Lemma B.4. Given a model Θ̂ defined by (3), for any δ > 0, there exists Cδ(δ) > 0 and N ≥ N0(δ) such that:

d(Θ̂, T ∗) ≤ Cδ
logN√

N
(7)

with probability 1− δ.

Proof. Let [θ̂
⊤
m, θ̂

⊤
s ]

⊤ = Θ̂ be the party and server model parameters after the pre-training step. We define Θ̃ =

argminΘ∈T ∗ ∥Θ− Θ̂∥2 = [θ̃
⊤
s , θ̃

⊤
m]⊤ as the optimal model closest to the pre-trained model. By Lemmas B.2 and B.3, we

have the following:

c2d(Θ̂, T ∗)µ = c2∥Θ̃− Θ̂∥µ2 (8)

≤ R(θ̂s;h(θ̂m))−R(θ̃s;h(θ̃m)) (9)

≤ 2c1
logN√

N
+RN (θ̂s;h(θ̂m))−RN (θ̃s;h(θ̃m)) (10)

13
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Note that RN (θ̂s;h(θ̂m)) ≤ RN (θ̃s;h(θ̃m)), thus:

c2d(Θ̂, T ∗)µ ≤ 2c1
logN√

N
(11)

d(Θ̂, T ∗) ≤
(
2c1
c2

logN√
N

)1/µ

(12)

We let µ = 1. This completes the proof of Lemma B.4.

B.2. Proof of Lemma 4.5

Proof. Note that the minimization of H(θm; θ̃m;Km) causes h(θm; x)k = h(θ̃m; x)k for all significant embedding
components k ∈ Km and any input x. By the definition of T ∗ and Definition 2.1, this means that R(θ⋄

s;h(θ⋄
m)) =

R(θ̃s;h(θ̃m)) = R(θ̃s;h(θm)). Thus, [θ̃s,θm] ∈ T ∗.

By Lemma 3.1 in (Dinh & Ho, 2020), because Θ̃ ∈ T ∗, f(Θ̃; x; y) = f(Θ⋄; x; y) for all inputs x. This means that
the significant and non-significant features for f(Θ⋄) must be the same for f(Θ̃). Let s̃ and z̃ be the significant and
non-significant features for f(Θ̃). It must be the case that s̃ = s and z̃ = z.

Let j ∈ z̃ be a non-significant feature in f(Θ̃) and let r ∈ R. Let gj(x, s) be a function that replaces xj with value s. We
know that for all k ∈ Km:

h(θm; gj(x, r))k = h(θ̃m; gj(x, r))k = h(θ̃m; x)k.

In fact, by Proposition 4.4, all embedding components inKm only depend on s̃. Since h(θm; ·)k for all k ∈ Km is unaffected
by features in z̃, this means the set of non-significant features for e(θm; θ̃m;Km) contains the set of non-significant features
for f(Θ̃): zh ⊇ z̃.

Similarly, let k be a significant feature for f(Θ̃). By Proposition 4.4, for all k ∈ Km:

h(θm; gk(x, r))k = h(θ̃m; gk(x, r))k ̸= h(θ̃m; x)k

for some r ∈ R. This means that:∑
k∈Km

(h(θm; gk(x, r))k − h(θ̃m; x)k)2 ̸=
∑

k∈Km

(h(θm; x)k − h(θ̃m; x)k)2

and we can say that significant features for e(θm; θ̃m;Ks) contains of the set of significant features for f(Θ̃): sh ⊇ s̃.
Therefore, sh = s̃ = s and zh = z̃ = z.

B.3. Proof of Theorem 4.6

Next, we prove that the server solving (4) finds an optimal solution that also sets the non-significant embedding component
weights to zero. We define θ̄s as the server model parameters that solves (4). We start by proving the following lemma:

Lemma B.5. Let L be the Lipschitz constant for f(·). Given a pre-trained model Θ̂ = [θ̂
⊤
m, θ̂

⊤
s ]

⊤ defined by (3), let

Θ̃ = argminΘ∈T ∗ ∥Θ− Θ̂∥2 = [θ̃
⊤
s , θ̃

⊤
m]⊤ be the optimal model closest to the pre-trained model. For any δ > 0, there

exists C1(δ), C2(δ), C3(δ), C4(δ), C5 > 0 and N ≥ N0(δ) such that:

d(θ̄s,S∗) ≤ d(θ̄s, {θ̃s}) ≤
(
C1

logN√
N

+ C2λ
ν/(ν−1)
s + C3Ld(Θ̂, T ∗)

)1/ν

(13)

and the sum over the non-significant embedding component weights is∑
l

∥Vl
s ∥2 ≤ C4

logN

λs

√
N

+
2L

λs
d(Θ̂, T ∗) + C5d(θ̄s, {θ̃s}). (14)

with probability 1− δ.
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Proof. Note that {θ̃s} is the zero-level set of the analytic function E(θs) = R(θs;h(θ̃m))−R(θ̃s;h(θ̃m)). We can apply
the Łojasiewicz inequality (Ji et al., 1992) as follows:

c2d(θ̄s,S∗)ν ≤ c2d(θ̄s, {θ̃s})ν (15)

= c2∥θ̃s − θ̄s∥ν2 (16)

≤ R(θ̄s;h(θ̃m))−R(θ̃s;h(θ̃m)) (17)

Since f(·) is analytic, we know that the risk function is smooth. Let L be the Lipschitz constant for R(·). For any θs we
have: ∣∣∣R(θs;h(θ̃m))−R(θs;h(θ̂m))

∣∣∣ ≤ L∥[θs, θ̃m]− [θs, θ̂m]∥2 (18)

≤ L∥Θ̃− Θ̂∥2 (19)

= Ld(Θ̂, T ∗). (20)

Applying (20) and Lemma B.3 to (17) we have:

c2d(θ̄s,S∗)ν ≤ 2Ld(Θ̂, T ∗) +R(θ̄s;h(θ̂m))−R(θ̃s;h(θ̂m)) (21)

≤ 2c1
logN√

N
+ 2Ld(Θ̂, T ∗) +RN (θ̄s;h(θ̂m))−RN (θ̃s;h(θ̂m)) (22)

By the definition of θ̄s in (4) we have:

RN (θ̄s;h(θ̂m)) + λsG(θ̄s) ≤ RN (θ̃s;h(θ̂m)) + λsG(θ̃s) (23)

RN (θ̄s;h(θ̂m))−RN (θ̃s;h(θ̂m)) ≤ λsG(θ̃s)− λsG(θ̄s) (24)

Plugging (24) into (22), and noting that regularizer G(·) is smooth, we have:

c2∥θ̃s − θ̄s∥ν2 ≤ 2c1
logN√

N
+ 2Ld(Θ̂, T ∗) + λs(G(θ̃s)−G(θ̄s)) (25)

≤ 2c1
logN√

N
+ 2Ld(Θ̂, T ∗) + λsC∥θ̃s − θ̄s∥2 (26)

where C is the Lipschitz constant for G(·).

By Young’s inequality, we have:

λsC∥θ̃s − θ̄s∥2 ≤
1

ν

(
(c2ν)

1/ν

2
∥θ̃s − θ̄s∥2

)ν

+
ν − 1

ν

(
2C

(2c2)1/ν
λs

)ν/(ν−1)

(27)

=
c2
2
∥θ̃s − θ̄s∥2 +

2(ν − 1)Cν/(ν−1)

ν(c2ν)1/(ν−1)
λν/(ν−1)
s . (28)

Let C0 = 2(ν−1)Cν/(ν−1)

ν(c2ν)1/(ν−1) . Plugging (28) into (26) we have:

c2∥θ̃s − θ̄s∥ν2 ≤ 2c1
logN√

N
+ 2Ld(Θ̂, T ∗) + C0λ

ν/(ν−1)
s +

c2
2
∥θ̃s − θ̄s∥ν2 (29)

c2
2
∥θ̃s − θ̄s∥ν2 ≤ 2c1

logN√
N

+ 2Ld(Θ̂, T ∗) + C0λ
ν/(ν−1)
s (30)

∥θ̃s − θ̄s∥2 ≤
(
4c1
c2

logN√
N

+
2C0

c2
λν/(ν−1)
s +

4L

c2
d(Θ̂, T ∗)

)1/ν

(31)
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Note that G(·) can be rewritten as G(·) =
∑

k ∥Uk
s ∥2 +

∑
l ∥Vl

s ∥2. Let K(·) =
∑

k ∥Uk
s ∥2 be the sum of significant

embedding component weights in the regularizer G(·). Let ϕ(θs) be the parameters θs with all non-significant embedding
component weights Vs set to zero. Note that R(θ̃s;h(θ̃m)) ≤ R(θ̄s;h(θ̃m)) since [θ̃s, θ̃m] ∈ T ∗. Using the definition of
θ̄s and the smoothness of K(·), we have the following:

λs

∑
l

∥Vl
s ∥2 ≤ RN (ϕ(θ̃s);h(θ̂m))−RN (θ̄s;h(θ̂m)) + λs(K(ϕ(θ̃s))−K(θ̄s)) (32)

≤ 2c1
logN√

N
+ 2Ld(Θ̂, T ∗) +R(θ̃s;h(θ̃m))−R(θ̄s;h(θ̃m)) + λs(K(θ̃s)−K(θ̄s)) (33)

≤ 2c1
logN√

N
+ 2Ld(Θ̂, T ∗) + λsC∥θ̃s − θ̄s∥2 (34)∑

l

∥Vl
s ∥2 ≤ 2c1

logN

λs

√
N

+
2L

λs
d(Θ̂, T ∗) + Cd(θ̄s, {θ̃s}). (35)

This completes the proof of Lemma B.5.

To complete the proof of Theorem 4.6, we look at the distance of θ̄s from the set of parameters S∗ϕ. Note that by Lemma B.1,
ϕ(θ̃s) ∈ S∗ϕ. Let Vθs =

∑
l ∥Vl

s ∥2 be the sum over non-significant embedding component weights in a model θs.

d(θ̄s,S∗ϕ) ≤ ∥θ̄s − ϕ(θ̃s)∥2 (36)

≤ ∥θ̄s − θ̃s∥2 + ∥ϕ(θ̃s)− θ̃s∥2 (37)

≤ ∥θ̄s − θ̃s∥2 + ∥Vθ̃s
∥2 (38)

≤ ∥θ̄s − θ̃s∥2 + ∥Vθ̃s
+Vθ̄s

−Vθ̄s
∥2 (39)

≤ ∥θ̄s − θ̃s∥2 + ∥Vθ̄s
∥2 + ∥Vθ̃s

−Vθ̄s
∥2 (40)

≤ ∥θ̄s − θ̃s∥2 + ∥Vθ̄s
∥2 + C∥θ̄s − θ̃s∥2 (41)

The proof of Theorem 4.6 is completed by combining Lemma B.5, Lemma B.4, and (41).

B.4. Proof of Theorem 4.7

Next we prove that the party solving (5) finds the optimal solution and sets all non-significant input layer weights to zero.
Following the same proof of Lemma B.3 given by Dinh & Ho (2020), we can prove the following lemma:

Lemma B.6. For any δ > 0, there exist c1(δ) > 0 such that for all θ,θ′ and sets K:

|HN (θ;θ′;K)−H(θ;θ′;K)| ≤ c1
logN√

N

with probability 1− δ.

Let θ̄m be the parameters that solve (5). We prove the following lemma:

Lemma B.7. Let B be the Lipschitz constant for H(·). Let [θ̃
⊤
s , θ̃

⊤
m]⊤ = argminΘ∈T ∗ ∥Θ − Θ̂∥2 where Θ̂ is the

pre-trained model defined in (3). If Km in (5) is the set of significant embedding components for f(θ̃s;h(θ̃m)), for any
δ > 0, there exists C1(δ), C2(δ), C3(δ), C4(δ), C5 > 0 and N ≥ N0(δ) such that:

d(θ̄m, C∗) ≤ d(θ̄m, {θ̃m}) ≤
(
C1

logN√
N

+ C2Bd(θ̂m, C∗) + C3(λm)ν/(ν−1)

)1/ν

(42)

and the sum over the non-significant input layer weights is∑
l

∥Vl
m ∥2 ≤ C4

logN

λm

√
N

+
2B

λm
d(θ̂m, C∗) + C5d(θ̄m, {θ̃m}) (43)

with probability 1− δ.
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Proof. Note that {θ̃m} is the zero-level set of H(θ̄m; θ̃m;Km). Since H(·) is analytic, we can apply the Łojasiewicz
inequality as follows:

c2d(θ̄m, C∗)ν ≤ c2d(θ̄m, {θ̃m})ν (44)

≤ H(θ̄m; θ̃m) (45)

= H(θ̄m; θ̃m)−H(θ̃m; θ̃m) (46)

where (46) follows from that fact that H(θm;θm) = 0 for any θm.

Since H(·) is analytic, we know H(·) is smooth. Let B be the Lipschitz constant for H(·). For any θm we have:

|H(θm; θ̂m)−H(θm; θ̃m)| ≤ B∥θ̂m − θ̃m∥2 (47)

≤ Bd(θ̂m, C∗) (48)

Applying (48) and Lemma B.6 to (46):

c2d(θ̄m, C∗)ν ≤ 2Bd(θ̂m, C∗) +H(θ̄m; θ̂m)−H(θ̃m; θ̂m) (49)

≤ 2c1
logN√

N
+ 2Bd(θ̂m, C∗) +HN (θ̄m; θ̂m)−HN (θ̃m; θ̂m) (50)

By the definition of θ̄m in (5):

HN (θ̄m; θ̂m) + λmG(θ̄m) ≤ HN (θ̃m; θ̂m) + λmG(θ̃m) (51)

HN (θ̄m; θ̂m)−HN (θ̃m; θ̂m) ≤ λm(G(θ̃m)−G(θ̄m)) (52)

Plugging (52) into (50):

c2d(θ̄m, C∗)ν ≤ 2c1
logN√

N
+ 2Bd(θ̂m, C∗) + λm(G(θ̃m)−G(θ̄m)) (53)

≤ 2c1
logN√

N
+ 2Bd(θ̂m, C∗) + λmC∥θ̃m − θ̄m∥2 (54)

where C is the Lipschitz constant for G(·).

By Young’s inequality:

λmC∥θ̃m − θ̄m∥2 ≤
1

ν

(
(c2ν)

1/ν

2
∥θ̃m − θ̄m∥2

)ν

+
ν − 1

ν

(
2C

(2c2)1/ν
λs

)ν/(ν−1)

(55)

=
c2
2
∥θ̃m − θ̄m∥2 +

2(ν − 1)Cν/(ν−1)

ν(c2ν)1/(ν−1)
λν/(ν−1)
m . (56)

Let C0 = 2(ν−1)Cν/(ν−1)

ν(c2ν)1/(ν−1) . Applying (56) to (54) we have:

c2∥θ̃m − θ̄m∥ν2 ≤ 2c1
logN√

N
+ 2Bd(θ̂m, C∗) + C0(λm)ν/(ν−1) +

c2
2
∥θ̃m − θ̄m∥ν2 (57)

c2
2
∥θ̃m − θ̄m∥ν2 ≤ 2c1

logN√
N

+ 2Bd(θ̂m, C∗) + C0(λm)ν/(ν−1) (58)

c2
2
∥θ̃m − θ̄m∥ν2 ≤ 2c1

logN√
N

+ 2Bd(θ̂m, C∗) + C0(λm)ν/(ν−1) (59)

d(θ̄m, C∗) ≤ d(θ̄m, {θ̃m}) ≤
(
4c1
c2

logN√
N

+
4B

c2
d(θ̂m, C∗) + 2C0

c2
(λm)ν/(ν−1)

)1/ν

(60)
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Note that G(·) can be rewritten as G(·) =
∑

k ∥Uk
m ∥2 +

∑
l ∥Vl

m ∥2. Let K(·) =
∑

k ∥Uk
m ∥2 be the sum of significant

input layer weights in the regularizer G(·). Let ϕ(θm) be the parameters θm with all non-significant input layer weights Vm

set to zero. Note that under our assumption that Km only contains significant embedding components and Proposition 4.4,
H(ϕ(θ̃m); θ̃m;Km) = H(θ̃m; θ̃m;Km) = 0, because non-significant features have no effect on significant embedding
components. By the definition of θ̄m:

λm

∑
l

∥Vl
m ∥2 ≤ HN (ϕ(θ̃m); θ̂m;Km)−HN (θ̄m; θ̂m;Km) + λm(K(ϕ(θ̃m))−K(θ̄m)) (61)

≤ 2c1
logN√

N
+ 2Bd(θ̂m, C∗) +H(ϕ(θ̃m); θ̃m;Km)−H(θ̄m; θ̃m;Km) + λm(K(θ̃m)−K(θ̄m))

(62)

≤ 2c1
logN√

N
+ 2Bd(θ̂m, C∗) + λm(K(θ̃m)−K(θ̄m)) (63)

≤ 2c1
logN√

N
+ 2Bd(θ̂m, C∗) + λmC∥θ̃m − θ̄m∥2 (64)∑

l

∥Vl
m ∥2 ≤ 2c1

logN

λm

√
N

+
2B

λm
d(θ̂m, C∗) + Cd(θ̄m, {θ̃m}) (65)

This completes the proof of Lemma B.5.

To complete the proof of Theorem 4.7, we look at the distance of θ̄m from the set of parameters C∗ϕ. Note that by Lemma B.1,
ϕ(θ̃m) ∈ C∗ϕ. Let Vθm

=
∑

l ∥Vl
m ∥2 be the sum over non-significant feature weights in a model θm.

d(θ̄m, C∗ϕ) ≤ ∥θ̄m − ϕ(θ′
s)∥2 (66)

≤ ∥θ̄m − θ̃m∥2 + ∥ϕ(θ̃m)− θ̃m∥2 (67)

≤ ∥θ̄m − θ̃m∥2 + ∥Vθ̃m
∥2 (68)

≤ ∥θ̄m − θ̃m∥2 + ∥Vθ̃m
+Vθ̄m

−Vθ̄m
∥2 (69)

≤ ∥θ̄m − θ̃m∥2 + ∥Vθ̄m
∥2 + ∥Vθ̃m

−Vθ̄m
∥2 (70)

≤ ∥θ̄m − θ̃m∥2 + ∥Vθ̄m
∥2 + C∥θ̄m − θ̃m∥2. (71)

Note that:

d(θ̂m, C∗) = ∥θ̃m − θ̂m∥2 ≤ ∥Θ̃− Θ̂∥2 = d(Θ̂, T ∗). (72)

The proof of Theorem 4.7 is completed by combining Lemma B.7, (71), (72), and Lemma B.4.

B.5. Extension to M > 1 Parties

Proposition B.8. Consider a model Θ = [θ⊤
s ,θ

⊤
1 , . . . ,θ

⊤
M ]⊤. Let s and z be the sets of significant and non-significant

features for f(Θ), respectively. Let the set of significant embedding components for f(θs;h1(θ
⋄
1); . . . ;hM (θ⋄

M )) be ss. Let
gj(xm, r) replace input xj

m with value r. For each significant embedding component k ∈ ss, for all j ∈ z and m ∈ [M ],
and any r ∈ R, hm(θm; xm)k = hm(θm; gj(xm, r))k.

Proof. Suppose that for a party m, hm(θm; xm)k ̸= hm(θm; gj(xm, r))k for some significant embedding component
k ∈ ss, non-significant feature j ∈ z, and r ∈ R. By our supposition and since component k is significant,

f(θs;h1(θ1; x1); . . . ;hm(θm; xm); . . . ;hM (θM ; xM )) ̸= f(θs;h1(θ1; x1); . . . ;hm(θm; gj(xm; r)); . . . ;hM (θM ; xM ))

for some value r ∈ R. This contradicts the fact that j is a non-significant feature.
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Lemma B.9. Let Θ̃ = [θ̃
⊤
s , θ̃

⊤
1 , . . . , θ̃

⊤
M ]⊤ ∈ T ∗. Let s and z be the significant and non-significant features for f(Θ⋄). Let

Km be the subset of significant embedding components for f(θ̃s;h1(θ̃1); . . . ;hM (θ̃M )) in the embedding vector hm(θ̃m).
Let θm = argminθ′

m
H(θ′

m; θ̃m;Km) for all parties m. Let shm and zhm be the significant and non-significant features at
each party m for e(θm; θ̃m;Km) with parameters θm. Then:

[θ̃s,θ1, . . . ,θM ] ∈ T ∗,

M⋃
m=1

shm
= s, and

M⋃
m=1

zhm
= z .

Proof. Note that the minimization of H(θm; θ̃m;Km) causes hm(θm; xm)i = hm(θ̃m; xm)i for all significant embedding
components i ∈ Km and any input xm. By the definition of T ∗ and Definition 2.1, this means that

R(θ⋄
s;h1(θ

⋄
1); . . . ;hM (θ⋄

M )) = R(θ̃s;h1(θ̃1); . . . ;hM (θ̃M )) = R(θ̃s;h1(θ1); . . . ;hM (θM )).

Thus, [θ̃s,θ1, . . . ,θM ] ∈ T ∗.

By Lemma 3.1 in (Dinh & Ho, 2020), because Θ̃ ∈ T ∗, f(Θ̃; x; y) = f(Θ⋄; x; y) for all inputs x. This means that
the significant and non-significant features for f(Θ⋄) must be the same for f(Θ̃). Let s̃ and z̃ be the significant and
non-significant features for f(Θ̃). It must be the case that s̃ = s and z̃ = z.

Let j ∈ z̃m be a non-significant feature for some party m in f(Θ̃) and let r ∈ R. Let gj(·) be defined the same as in
Definition 2.1. We know that for all k ∈ Km:

hm(θm; gj(xm, r))k = hm(θ̃m; gj(xm, r))k = hm(θ̃m; xm)k

because by Proposition 4.4, all embedding components in Km only depend on s̃m. Since hm(θm; ·)k is unaffected by
features in z̃m, this means the set of non-significant features for e(θm; θ̃m;Km) contains the set of non-significant features
for f(Θ̃) at party m: zhm ⊇ z̃m.

Similarly, let k ∈ s̃m be a significant feature for some party m in f(Θ̃). By Proposition B.8, for some k ∈ Km:

hm(θm; gk(xm, r))k = hm(θ̃m; gk(xm, r))k ̸= hm(θ̃m; x)k

for some r ∈ R. This means that:∑
k∈Km

(hm(θm; gk(xm, r))k − hm(θ̃m; xm)k)2 ̸=
∑

k∈Km

(hm(θm; xm)k − hm(θ̃m; xm)k)2

and we can say that significant features for e(θm; θ̃m;Km) contains the set of significant features for f(Θ̃) at party m:
shm
⊇ s̃m.

Since for each party m, shm
∩ zhm

= ∅, shm
= s̃m and zhm

= z̃m. Since for parties m ̸= j, s̃m ∩ s′j = ∅ and z̃m ∩ z′j = ∅,
M⋃

m=1
shm

= s̃ = s and
M⋃

m=1
zhm

= z̃ = z. This completes the proof of Lemma B.9.

We redefine S∗ϕ for M > 1:

S∗ϕ = {θs : ∃θm ∀m = 1, . . . ,M s.t. [θs,θ1, . . . ,θM ] ∈ T ∗ and Vs = 0}.

We bound the distance d(θs,S∗ϕ) in the following theorem.

Theorem B.10. Let L be the Lipschitz constant for f(·). Given a pre-trained model Θ̂ defined by (3), for any δ > 0, there
exists CN , Cδ(δ) > 0 and N ≥ N0(δ) such that:

d(θs,S∗ϕ) ≤ LCN
logN

λs

√
N

+ LCδ

(
logN√

N
+ λν/(ν−1)

s

)1/ν

(73)

with probability 1− δ. If λs ∼ N−1/4, then with probability 1− δ there exists C(δ) > 0 such that:

d(θs,S∗ϕ) ≤ LC

(
logN

N

) 1
4(ν−1)

(74)
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Proof. The proof of Theorem B.10 is the same as the proof of Theorem 4.6 in Appendix B.3 when replacing R(θs;h(θm))
with R(θs;h1(θ1); . . . hM (θM )).

We define the set of party m parameters in T ∗ that have the weights on local non-significant features set to zero as:

C∗m = {θm : ∃θs and θj ∀j ̸= m s.t. [θs,θ1, . . . ,θm, . . . ,θM ] ∈ T ∗ and Vm = 0}.

We bound the distance d(θm, C∗m)→ 0 in the following theorem.

Theorem B.11. Let B be the Lipschitz constant for H(·). Let [θ̃
⊤
s , θ̃

⊤
1 , . . . , θ̃

⊤
M ]⊤ = argminΘ∈T ∗ ∥Θ − Θ̂∥2

where Θ̂ is the pre-trained model defined in (3). If Km in (5) is the subset of significant embedding components for
f(θ̃s;h1(θ̃1); . . . ;hM (θ̃M )) in hm(θ̃m), then for each party m, for any δ > 0, there exists CN , Cδ(δ) > 0 and N ≥ N0(δ)
such that:

d(θm, C∗m) ≤ BCN
logN

λm

√
N

+ Cδ

(
B
logN√

N
+ (λm)ν/(ν−1)

)1/ν

(75)

with probability 1− δ. If λm ∼ N−1/4, then with probability 1− δ there exists Cm(δ) > 0 such that:

d(θm, C∗m) ≤ BCm

(
logN

N

) 1
4(ν−1)

(76)

Theorem B.11 follows from applying the proof of Theorem 4.7 to each party m, replacing C∗ϕ with C∗m.

B.6. Proof of Theorem 4.3

Let constant C be defined as in Theorem B.10 and let constant Cm be defined the same as in Theorem B.11 for all parties m.
Let Bm be the Lipschitz constant of H(·) at party m. Then by Theorems B.10 and B.11, with probability 1− δ:

d(Θ̄, T ∗
ϕ ) =

√
d(θ̄s,S∗ϕ)2 + d(θ̄1, C⋄1 )2 + . . .+ d(θ̄M , C∗m)2 (77)

≤

√√√√L2C2

(
logN

N

) 1
2(ν−1)

+

(
logN

N

) 1
2(ν−1)

M∑
m=1

B2
mC2

m (78)

≤

√√√√(L2C2 +

M∑
m=1

B2
mC2

m

)(
logN

N

) 1
4(ν−1)

(79)

= O

(
√
M

(
logN

N

) 1
4(ν−1)

)
. (80)

C. Additional Experimental Results
We now provide additional experimental results. We use the same experimental setup as described in Section 5, and provide
results for the datasets that were not included previously (MIMIC-III, Gina, Sylva). We also include a complete results from
the grid search, showing the percentage of spurious feature removed and final training accuracy of group lasso, local lasso,
and LESS-VFL with different regularization parameters.

In Figure 5, we plot the percentage of spurious features removed over 150 communication epochs of training in the
MIMIC-III, Gina, and Sylva datasets. For MIMIC-III and Sylva, we can see that all method perform similarly in terms of
removing spurious features quickly, though group lasso lags behind the other methods by a few communication rounds.
In the case of Gina, group lasso takes about 20 additional communication epochs to start removing spurious features, and
oscillates before settling at a percentage lower than the other methods. Reinforcing the takeaways from the main paper, by
allowing feature selection to take place with minimal upfront communication, spurious features can be removed in fewer
communication rounds compared to group lasso.
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(a) MIMIC-III (b) Gina (c) Sylva

Figure 5. Percentage of spurious features removed over 150 communication epochs. The values shown is the average of 5 runs. Group
Lasso gradually removes features while local lasso and LESS-VFL remove features with one round of communication after pre-training.

(a) MIMIC-III (b) Gina (c) Sylva

Figure 6. Test accuracy over the first 50 communication epochs. The solid lines are the average of 5 runs and the shaded region represents
the standard deviation.

In Figure 6, we plot the test accuracy against communication cost for all baselines. For both MIMIC-III and Sylva, the
inclusion of spurious features does not have a large detrimental effect on the VFL test accuracy. In this case, it is important
that applying the feature selection methods do not lead to model performance becoming worse than if we had not removed
any spurious features. In the case of MIMIC-III, all methods achieve similar test accuracy. However, for the Sylva dataset,
group lasso is unable to achieve the same accuracy as the other methods in the first 50 communication epochs. For the Gina
dataset, all feature selection methods achieve test accuracy similar to the VFL baseline without spurious features, although
group lasso takes more communication rounds to converge.

In Table 5, we provide the communication cost to reach 90% of the baseline VFL (original) test accuracy and remove 80%
of spurious features for different amount of pre-training epochs. We show the communication cost taken during pre-training
and post feature selection (Post-FS) as well as the total communication cost. The values shown are the average of five
runs, ± the standard deviation. We can see that in many cases, LESS-VFL has zero cost for post feature selection. This
indicates that LESS-VFL removed spurious features and achieves high accuracy during feature selection itself. We can
see that LESS-VFL always achieves the same or lower communication cost than local lasso. Additionally, we see that in
the Phishing dataset, local lasso requires more pre-training epochs in order to achieve its lowest communication cost to
reach the thresholds. In the Activity dataset, LESS-VFL always costs less communication than local lasso between 1 and 5
pre-training epochs. Local lasso’s lowest communication cost is 26.56 MB, while LESS-VFL’s highest communication cost
is 21.88 MB.

In Tables 6, 7, and 8, we provide the results of our grid search, used to determine the best regularization parameters for each
method. We provide the final training accuracy and percentage of spurious features removed for group lasso, local lasso, and
LESS-VFL using different regularization values: (λm, λs). Note that the server regularization parameter λs only applies to
LESS-VFL. The values shown are the average of five runs, ± the standard deviation.
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Table 5. Communication cost to reach 90% of baseline VFL (original) test accuracy and remove 80% of spurious features for different
amount of pre-training epochs. All values are the average of 5 runs. Bold values are the lowest communication cost achieved by that
method on the dataset. ‘Pretrain’ is the communication cost during pre-training, ‘Post-FS’ is the communication cost during training after
feature selection is complete, and ‘Total’ is the sum of the previous.

Dataset Pre-training
Epochs

Communication Cost (MB)

Local Lasso LESS-VFL (ours)

Pretrain Post-FS Total Pretrain Post-FS Total

Activity

1 3.59 30.15 33.74 3.59 15.97 19.56
2 5.38 26.56 31.95 5.38 16.49 21.88
3 7.18 19.39 26.56 7.18 10.90 18.08
4 8.97 21.54 30.51 8.97 7.70 16.68
5 10.77 18.85 29.62 10.77 10.51 21.28

Phishing

1 3.24 4.86 8.10 3.24 0.75 3.99
2 4.86 1.62 6.48 4.86 0.38 5.23
3 6.48 1.62 8.10 6.48 0.00 6.48
4 8.10 1.62 9.72 8.10 0.00 8.10
5 9.72 1.62 11.34 9.72 0.00 9.72

MIMIC-III

1 7.17 0.00 7.17 7.17 0.00 7.17
2 10.75 0.00 10.75 10.75 0.00 10.75
3 14.34 0.00 14.34 14.34 0.00 14.34
4 17.92 0.00 17.92 17.92 0.00 17.92
5 21.51 0.00 21.51 21.51 0.00 21.51

Gina

1 1.35 0.54 1.90 1.35 0.13 1.48
2 2.03 0.00 2.03 2.03 0.00 2.03
3 2.71 0.00 2.71 2.71 0.00 2.71
4 3.39 0.00 3.39 3.39 0.00 3.39
5 4.06 0.00 4.06 4.06 0.00 4.06

Sylva

1 5.62 0.00 5.62 5.62 0.00 5.62
2 8.43 0.00 8.43 8.43 0.00 8.43
3 11.25 0.00 11.25 11.25 0.00 11.25
4 14.06 0.00 14.06 14.06 0.00 14.06
5 16.87 0.00 16.87 16.87 0.00 16.87
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Table 6. Training accuracy and percentage of spurious features removed for the Activity and Phishing datasets.

Dataset
Regularizer
Coefficients

(λm, λs)

Group Lasso Local Lasso LESS-VFL (ours)

Final Spurious Features Final Spurious Features Final Spurious Features
Accuracy Removed Accuracy Removed Accuracy Removed

Activity

(2.0, 0.5) 18.22 ± 0.00 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 47.22 ± 2.49 100.00 ± 0.00
(2.0, 0.25) 18.22 ± 0.00 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 69.38 ± 1.75 100.00 ± 0.00
(2.0, 0.1) 18.22 ± 0.00 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 73.53 ± 0.71 100.00 ± 0.00
(2.0, 0.05) 18.22 ± 0.00 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 74.38 ± 0.61 100.00 ± 0.00
(1.0, 0.5) 18.22 ± 0.00 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 50.00 ± 0.29 100.00 ± 0.00
(1.0, 0.25) 18.22 ± 0.00 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 69.38 ± 1.75 100.00 ± 0.00
(1.0, 0.1) 18.22 ± 0.00 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 73.53 ± 0.71 100.00 ± 0.00
(1.0, 0.05) 18.22 ± 0.00 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 74.38 ± 0.61 100.00 ± 0.00
(0.5, 0.5) 25.37 ± 8.79 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 45.95 ± 8.65 99.46 ± 0.54
(0.5, 0.25) 25.37 ± 8.79 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 72.96 ± 2.34 100.00 ± 0.00
(0.5, 0.1) 25.37 ± 8.79 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 73.95 ± 1.02 100.00 ± 0.00
(0.5, 0.05) 25.37 ± 8.79 100.00 ± 0.00 74.18 ± 0.77 100.00 ± 0.00 74.38 ± 0.61 100.00 ± 0.00
(0.25, 0.5) 57.10 ± 1.74 100.00 ± 0.00 73.72 ± 4.78 100.00 ± 0.00 45.54 ± 7.09 91.90 ± 3.76
(0.25, 0.25) 57.10 ± 1.74 100.00 ± 0.00 73.72 ± 4.78 100.00 ± 0.00 78.66 ± 3.40 100.00 ± 0.00
(0.25, 0.1) 57.10 ± 1.74 100.00 ± 0.00 73.72 ± 4.78 100.00 ± 0.00 74.02 ± 7.81 100.00 ± 0.00
(0.25, 0.05) 57.10 ± 1.74 100.00 ± 0.00 73.72 ± 4.78 100.00 ± 0.00 73.73 ± 5.01 100.00 ± 0.00
(0.1, 0.5) 75.47 ± 1.93 88.93 ± 3.06 86.75 ± 2.04 100.00 ± 0.00 49.68 ± 4.03 59.05 ± 7.24
(0.1, 0.25) 75.47 ± 1.93 88.93 ± 3.06 86.75 ± 2.04 100.00 ± 0.00 86.70 ± 3.13 87.93 ± 8.91
(0.1, 0.1) 75.47 ± 1.93 88.93 ± 3.06 86.75 ± 2.04 100.00 ± 0.00 88.31 ± 0.74 99.64 ± 0.71
(0.1, 0.05) 75.47 ± 1.93 88.93 ± 3.06 86.75 ± 2.04 100.00 ± 0.00 87.14 ± 1.86 99.93 ± 0.14
(0.05, 0.5) 89.98 ± 2.60 1.71 ± 0.61 90.17 ± 2.02 0.64 ± 0.35 43.91 ± 5.10 0.48 ± 0.34
(0.05, 0.25) 89.98 ± 2.60 1.71 ± 0.61 90.17 ± 2.02 0.64 ± 0.35 89.13 ± 2.36 0.50 ± 0.36
(0.05, 0.1) 89.98 ± 2.60 1.71 ± 0.61 90.17 ± 2.02 0.64 ± 0.35 87.75 ± 2.18 0.57 ± 0.43
(0.05, 0.05) 89.98 ± 2.60 1.71 ± 0.61 90.17 ± 2.02 0.64 ± 0.35 91.11 ± 1.58 0.64 ± 0.35
(0.01, 0.5) 89.05 ± 2.24 0.00 ± 0.00 90.45 ± 1.12 0.00 ± 0.00 43.91 ± 5.10 0.00 ± 0.00
(0.01, 0.25) 89.05 ± 2.24 0.00 ± 0.00 90.45 ± 1.12 0.00 ± 0.00 90.15 ± 1.86 0.00 ± 0.00
(0.01, 0.1) 89.05 ± 2.24 0.00 ± 0.00 90.45 ± 1.12 0.00 ± 0.00 89.39 ± 1.61 0.00 ± 0.00
(0.01, 0.05) 89.05 ± 2.24 0.00 ± 0.00 90.45 ± 1.12 0.00 ± 0.00 87.97 ± 2.30 0.00 ± 0.00

Phishing

(2.0, 0.01) 55.63 ± 0.00 100.00 ± 0.00 90.27 ± 0.67 100.00 ± 0.00 53.38 ± 4.50 100.00 ± 0.00
(2.0, 0.005) 55.63 ± 0.00 100.00 ± 0.00 90.27 ± 0.67 100.00 ± 0.00 53.38 ± 4.50 100.00 ± 0.00
(1.0, 0.01) 55.63 ± 0.00 100.00 ± 0.00 90.27 ± 0.67 100.00 ± 0.00 53.38 ± 4.50 100.00 ± 0.00
(1.0, 0.005) 55.63 ± 0.00 100.00 ± 0.00 90.27 ± 0.67 100.00 ± 0.00 53.38 ± 4.50 100.00 ± 0.00
(0.5, 0.01) 55.63 ± 0.00 100.00 ± 0.00 90.27 ± 0.67 100.00 ± 0.00 53.38 ± 4.50 100.00 ± 0.00
(0.5, 0.005) 55.63 ± 0.00 100.00 ± 0.00 90.27 ± 0.67 100.00 ± 0.00 53.38 ± 4.50 100.00 ± 0.00
(0.25, 0.01) 89.26 ± 1.96 100.00 ± 0.00 90.27 ± 0.67 100.00 ± 0.00 53.38 ± 4.50 100.00 ± 0.00
(0.25, 0.005) 89.26 ± 1.96 100.00 ± 0.00 90.27 ± 0.67 100.00 ± 0.00 51.13 ± 5.52 100.00 ± 0.00
(0.1, 0.01) 91.71 ± 0.20 84.00 ± 5.33 78.96 ± 15.00 92.00 ± 9.80 78.98 ± 15.01 90.67 ± 9.04
(0.1, 0.005) 91.71 ± 0.20 84.00 ± 5.33 78.96 ± 15.00 92.00 ± 9.80 92.45 ± 0.00 93.33 ± 0.00
(0.05, 0.01) 91.85 ± 0.43 0.00 ± 0.00 92.06 ± 0.11 0.00 ± 0.00 91.92 ± 0.11 0.00 ± 0.00
(0.05, 0.005) 91.85 ± 0.43 0.00 ± 0.00 92.06 ± 0.11 0.00 ± 0.00 92.06 ± 0.12 0.00 ± 0.00
(0.01, 0.01) 91.86 ± 0.21 0.00 ± 0.00 92.00 ± 0.11 0.00 ± 0.00 92.00 ± 0.12 0.00 ± 0.00
(0.01, 0.005) 91.86 ± 0.21 0.00 ± 0.00 92.00 ± 0.11 0.00 ± 0.00 91.88 ± 0.26 0.00 ± 0.00
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Table 7. Training accuracy and percentage of spurious features removed in MIMIC-III dataset. A ’–’ means that the experiments with this
regularization parameter choice was not run.

Dataset
Regularizer
Coefficients

(λm, λs)

Group Lasso Local Lasso LESS-VFL (ours)

Final Spurious Features Final Spurious Features Final Spurious Features
Accuracy Removed Accuracy Removed Accuracy Removed

MIMIC-III

(40.0, 0.5) – – 81.97 ± 2.64 100.00 ± 0.00 81.12 ± 2.08 99.89 ± 0.22
(40.0, 0.25) – – 81.97 ± 2.64 100.00 ± 0.00 80.60 ± 1.59 100.00 ± 0.00
(40.0, 0.1) – – 81.97 ± 2.64 100.00 ± 0.00 80.61 ± 2.62 100.00 ± 0.00
(40.0, 0.05) – – 81.97 ± 2.64 100.00 ± 0.00 80.82 ± 1.44 99.21 ± 1.57
(35.0, 0.5) – – 80.94 ± 3.45 98.60 ± 2.81 81.28 ± 1.89 96.07 ± 5.68
(35.0, 0.25) – – 80.94 ± 3.45 98.60 ± 2.81 80.96 ± 1.92 98.60 ± 2.81
(35.0, 0.1) – – 80.94 ± 3.45 98.60 ± 2.81 81.79 ± 1.03 98.43 ± 3.15
(35.0, 0.05) – – 80.94 ± 3.45 98.60 ± 2.81 80.23 ± 2.09 98.71 ± 2.58
(32.5, 0.1) – – 83.45 ± 2.47 87.53 ± 10.81 81.85 ± 2.66 89.94 ± 10.14
(32.5, 0.05) – – 83.45 ± 2.47 87.53 ± 10.81 82.56 ± 1.37 86.85 ± 10.21
(30.0, 0.5) – – 84.45 ± 2.08 76.24 ± 6.35 84.39 ± 2.84 66.15 ± 13.21
(30.0, 0.25) – – 84.45 ± 2.08 76.24 ± 6.35 84.26 ± 2.26 76.12 ± 4.97
(30.0, 0.1) – – 84.45 ± 2.08 76.24 ± 6.35 85.21 ± 1.62 74.38 ± 5.37
(30.0, 0.05) – – 84.45 ± 2.08 76.24 ± 6.35 83.61 ± 2.54 78.30 ± 5.57
(25.0, 0.5) – – 85.62 ± 1.24 55.22 ± 5.03 87.53 ± 1.19 53.43 ± 3.23
(25.0, 0.25) – – 85.62 ± 1.24 55.22 ± 5.03 87.82 ± 0.65 53.54 ± 1.39
(25.0, 0.1) – – 85.62 ± 1.24 55.22 ± 5.03 87.21 ± 1.45 56.07 ± 5.01
(25.0, 0.05) – – 85.62 ± 1.24 55.22 ± 5.03 85.73 ± 1.13 55.11 ± 5.03
(20.0, 0.5) – – 85.51 ± 1.34 44.61 ± 2.23 87.58 ± 0.53 46.40 ± 1.90
(20.0, 0.25) – – 85.51 ± 1.34 44.61 ± 2.23 88.01 ± 0.40 44.94 ± 1.51
(20.0, 0.1) – – 85.51 ± 1.34 44.61 ± 2.23 87.78 ± 0.66 43.71 ± 1.59
(20.0, 0.05) – – 85.51 ± 1.34 44.61 ± 2.23 87.50 ± 0.54 45.51 ± 1.48
(15.0, 0.5) – – 85.19 ± 0.86 32.25 ± 5.01 87.39 ± 0.79 29.72 ± 3.10
(15.0, 0.25) – – 85.19 ± 0.86 32.25 ± 5.01 86.92 ± 0.76 31.40 ± 4.34
(15.0, 0.1) – – 85.19 ± 0.86 32.25 ± 5.01 86.67 ± 0.75 31.63 ± 3.76
(15.0, 0.05) – – 85.19 ± 0.86 32.25 ± 5.01 86.48 ± 1.32 30.73 ± 2.98
(10.0, 0.5) – – 83.92 ± 1.70 8.99 ± 2.20 86.37 ± 2.26 9.89 ± 1.66
(10.0, 0.25) – – 83.92 ± 1.70 8.99 ± 2.20 87.50 ± 0.83 8.26 ± 1.52
(10.0, 0.1) – – 83.92 ± 1.70 8.99 ± 2.20 84.82 ± 2.11 9.72 ± 3.01
(10.0, 0.05) – – 83.92 ± 1.70 8.99 ± 2.20 85.65 ± 0.86 8.88 ± 1.99
(2.0, 0.5) 80.21 ± 1.25 100.00 ± 0.00 – – – –
(2.0, 0.25) 80.21 ± 1.25 100.00 ± 0.00 – – – –
(2.0, 0.1) 80.21 ± 1.25 100.00 ± 0.00 – – – –
(2.0, 0.05) 80.21 ± 1.25 100.00 ± 0.00 – – – –
(1.0, 0.5) 83.88 ± 2.24 98.93 ± 0.63 – – – –
(1.0, 0.25) 83.88 ± 2.24 98.93 ± 0.63 – – – –
(1.0, 0.1) 83.88 ± 2.24 98.93 ± 0.63 – – – –
(1.0, 0.05) 83.88 ± 2.24 98.93 ± 0.63 – – – –
(0.5, 0.5) 87.55 ± 0.74 93.37 ± 0.98 – – – –
(0.5, 0.25) 87.55 ± 0.74 93.37 ± 0.98 – – – –
(0.5, 0.1) 87.55 ± 0.74 93.37 ± 0.98 – – – –
(0.5, 0.05) 87.55 ± 0.74 93.37 ± 0.98 – – – –
(0.25, 0.5) 87.64 ± 0.92 81.35 ± 3.42 – – – –
(0.25, 0.25) 87.64 ± 0.92 81.35 ± 3.42 – – – –
(0.25, 0.1) 87.64 ± 0.92 81.35 ± 3.42 – – – –
(0.25, 0.05) 87.64 ± 0.92 81.35 ± 3.42 – – – –
(0.1, 0.5) 87.63 ± 0.47 60.84 ± 4.70 – – – –
(0.1, 0.25) 87.63 ± 0.47 60.84 ± 4.70 – – – –
(0.1, 0.1) 87.63 ± 0.47 60.84 ± 4.70 – – – –
(0.1, 0.05) 87.63 ± 0.47 60.84 ± 4.70 – – – –
(0.05, 0.5) 86.01 ± 1.41 43.99 ± 7.25 – – – –
(0.05, 0.25) 86.01 ± 1.41 43.99 ± 7.25 – – – –
(0.05, 0.1) 86.01 ± 1.41 43.99 ± 7.25 – – – –
(0.05, 0.05) 86.01 ± 1.41 43.99 ± 7.25 – – – –
(0.01, 0.5) 85.02 ± 0.84 0.00 ± 0.00 – – – –
(0.01, 0.25) 85.02 ± 0.84 0.00 ± 0.00 – – – –
(0.01, 0.1) 85.02 ± 0.84 0.00 ± 0.00 – – – –
(0.01, 0.05) 85.02 ± 0.84 0.00 ± 0.00 – – – –
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Table 8. Training accuracy and percentage of spurious features removed for the Gina and Sylva datasets. A ’–’ means that the experiments
with this regularization parameter choice was not run.

Dataset
Regularizer
Coefficients

(λm, λs)

Group Lasso Local Lasso LESS-VFL (ours)

Final Spurious Features Final Spurious Features Final Spurious Features
Accuracy Removed Accuracy Removed Accuracy Removed

Gina

(2.0, 0.1) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 80.84 ± 0.00 100.00 ± 0.00
(2.0, 0.05) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.00 ± 1.15 100.00 ± 0.00
(2.0, 0.01) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.46 ± 1.25 100.00 ± 0.00
(2.0, 0.005) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.37 ± 1.34 100.00 ± 0.00
(1.0, 0.1) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 80.98 ± 0.00 100.00 ± 0.00
(1.0, 0.05) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.00 ± 1.15 100.00 ± 0.00
(1.0, 0.01) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.46 ± 1.25 100.00 ± 0.00
(1.0, 0.005) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.37 ± 1.34 100.00 ± 0.00
(0.5, 0.1) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 80.98 ± 0.00 100.00 ± 0.00
(0.5, 0.05) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.00 ± 1.15 100.00 ± 0.00
(0.5, 0.01) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.46 ± 1.25 100.00 ± 0.00
(0.5, 0.005) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.37 ± 1.34 100.00 ± 0.00
(0.25, 0.1) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 80.98 ± 0.00 99.59 ± 0.00
(0.25, 0.05) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.00 ± 1.15 99.79 ± 0.21
(0.25, 0.01) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.46 ± 1.25 100.00 ± 0.00
(0.25, 0.005) 50.43 ± 0.00 100.00 ± 0.00 83.46 ± 1.10 100.00 ± 0.00 83.37 ± 1.34 100.00 ± 0.00
(0.1, 0.1) 81.16 ± 1.12 82.33 ± 0.47 83.46 ± 1.10 100.00 ± 0.00 81.99 ± 0.00 81.20 ± 0.00
(0.1, 0.05) 81.16 ± 1.12 82.33 ± 0.47 83.46 ± 1.10 100.00 ± 0.00 83.57 ± 0.86 99.38 ± 0.62
(0.1, 0.01) 81.16 ± 1.12 82.33 ± 0.47 83.46 ± 1.10 100.00 ± 0.00 83.46 ± 1.25 100.00 ± 0.00
(0.1, 0.005) 81.16 ± 1.12 82.33 ± 0.47 83.46 ± 1.10 100.00 ± 0.00 83.37 ± 1.34 100.00 ± 0.00
(0.05, 0.1) 82.71 ± 0.24 54.75 ± 3.12 83.29 ± 0.84 100.00 ± 0.00 81.99 ± 0.00 43.18 ± 0.00
(0.05, 0.05) 82.71 ± 0.24 54.75 ± 3.12 83.29 ± 0.84 100.00 ± 0.00 83.93 ± 1.22 88.22 ± 5.17
(0.05, 0.01) 82.71 ± 0.24 54.75 ± 3.12 83.29 ± 0.84 100.00 ± 0.00 83.54 ± 1.37 100.00 ± 0.00
(0.05, 0.005) 82.71 ± 0.24 54.75 ± 3.12 83.29 ± 0.84 100.00 ± 0.00 83.34 ± 0.87 100.00 ± 0.00
(0.025, 0.1) – – 84.03 ± 0.67 99.83 ± 0.15 81.99 ± 0.00 30.37 ± 0.00
(0.025, 0.05) – – 84.03 ± 0.67 99.83 ± 0.15 83.57 ± 0.00 71.90 ± 0.00
(0.025, 0.01) – – 84.03 ± 0.67 99.83 ± 0.15 80.40 ± 0.62 99.71 ± 0.31
(0.025, 0.005) – – 84.03 ± 0.67 99.83 ± 0.15 84.15 ± 0.92 99.75 ± 0.15
(0.01, 0.1) 80.40 ± 0.75 0.00 ± 0.00 81.12 ± 1.01 0.00 ± 0.00 81.99 ± 0.00 0.00 ± 0.00
(0.01, 0.05) 80.40 ± 0.75 0.00 ± 0.00 81.12 ± 1.01 0.00 ± 0.00 79.47 ± 0.94 0.00 ± 0.00
(0.01, 0.01) 80.40 ± 0.75 0.00 ± 0.00 81.12 ± 1.01 0.00 ± 0.00 81.38 ± 1.61 0.00 ± 0.00
(0.01, 0.005) 80.40 ± 0.75 0.00 ± 0.00 81.12 ± 1.01 0.00 ± 0.00 80.03 ± 1.89 0.00 ± 0.00

Sylva

(2.0, 0.01) 93.30 ± 0.00 100.00 ± 0.00 97.60 ± 0.28 100.00 ± 0.00 97.55 ± 0.18 100.00 ± 0.00
(2.0, 0.005) 93.30 ± 0.00 100.00 ± 0.00 97.60 ± 0.28 100.00 ± 0.00 97.58 ± 0.23 100.00 ± 0.00
(1.0, 0.01) 93.30 ± 0.00 100.00 ± 0.00 97.60 ± 0.28 100.00 ± 0.00 97.55 ± 0.18 100.00 ± 0.00
(1.0, 0.005) 93.30 ± 0.00 100.00 ± 0.00 97.60 ± 0.28 100.00 ± 0.00 97.58 ± 0.23 100.00 ± 0.00
(0.5, 0.01) 93.30 ± 0.00 100.00 ± 0.00 97.60 ± 0.28 100.00 ± 0.00 97.55 ± 0.18 100.00 ± 0.00
(0.5, 0.005) 93.30 ± 0.00 100.00 ± 0.00 97.60 ± 0.28 100.00 ± 0.00 97.58 ± 0.23 100.00 ± 0.00
(0.25, 0.01) 93.30 ± 0.00 100.00 ± 0.00 97.60 ± 0.28 100.00 ± 0.00 97.55 ± 0.18 100.00 ± 0.00
(0.25, 0.005) 93.30 ± 0.00 100.00 ± 0.00 97.60 ± 0.28 100.00 ± 0.00 97.58 ± 0.23 100.00 ± 0.00
(0.1, 0.01) 93.30 ± 0.00 100.00 ± 0.00 98.54 ± 0.06 100.00 ± 0.00 98.61 ± 0.06 100.00 ± 0.00
(0.1, 0.005) 93.30 ± 0.00 100.00 ± 0.00 98.54 ± 0.06 100.00 ± 0.00 98.55 ± 0.04 100.00 ± 0.00
(0.05, 0.01) 98.52 ± 0.08 23.89 ± 4.32 98.56 ± 0.07 11.11 ± 2.03 98.53 ± 0.09 10.00 ± 1.08
(0.05, 0.005) 98.52 ± 0.08 23.89 ± 4.32 98.56 ± 0.07 11.11 ± 2.03 98.59 ± 0.11 10.56 ± 1.81
(0.01, 0.01) 98.46 ± 0.10 0.00 ± 0.00 98.37 ± 0.11 0.00 ± 0.00 98.49 ± 0.09 0.00 ± 0.00
(0.01, 0.005) 98.46 ± 0.10 0.00 ± 0.00 98.37 ± 0.11 0.00 ± 0.00 98.53 ± 0.07 0.00 ± 0.00
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