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Abstract

In this paper, we study the stochastic linear ban-
dit problem under the additional requirements of
differential privacy, robustness and batched ob-
servations. In particular, we assume an adversary
randomly chooses a constant fraction of the ob-
served rewards in each batch, replacing them with
arbitrary numbers. We present differentially pri-
vate and robust variants of the arm elimination
algorithm using logarithmic batch queries under
two privacy models and provide regret bounds in
both settings. In the first model, every reward in
each round is reported by a potentially different
client, which reduces to standard local differen-
tial privacy (LDP). In the second model, every
action is “owned” by a different client, who may
aggregate the rewards over multiple queries and
privatize the aggregate response instead. To the
best of our knowledge, our algorithms are the
first simultaneously providing differential privacy
and adversarial robustness in the stochastic linear
bandits problem.

1. Introduction
Bandits model is a popular formulation for online learning,
wherein a learner interacts with her environment by choos-
ing a sequence of actions, each of which presents a reward
to the learner, from an available (potentially infinite) set of
actions. The goal of the learner is to minimize her regret,
defined as the difference between the rewards obtained by
the chosen sequence of actions and the best possible action
in hindsight. To achieve this, the learner must balance be-
tween exploration (choosing actions that reveal information
about the action set) and exploitation (repeating actions that
offered the highest rewards in previous rounds).
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In theory, deciding the next action sequentially is easiest.
However, there are several obstacles to overcome when it
comes to practice. The first obstacle is that the rewards in
bandit algorithms are often the result of interactions with
physical entities (Bouneffouf et al., 2020) (e.g., recommen-
dation systems, clinical trials, advertising, etc.), raising con-
cerns about the privacy of participating entities. For exam-
ple, responses of an individual to medical treatments can
inadvertently reveal privacy-sensitive health information.
Therefore, it is essential to design learning algorithms that
preserve the privacy of reward sequences.

Furthermore, observations collected from multiple users
or external resources are prone to failures or corruptions.
These corruptions are modeled by adversaries, which can
tamper with a fraction of the observed rewards. Adversarial
corruptions can be strategic, (e.g., simultaneously hijacking
the devices of multiple users), or random (such as misclicks
in the context of an ad campaign). Regardless of their na-
ture, they highlight the need for developing robust learning
algorithms that succeed in the presence of such corruptions.
Developing robust private policies has drawn considerable
attention in the past couple of years ((Esfandiari et al., 2022;
Liu et al., 2021; Kothari et al., 2022; Ghazi et al., 2021;
Dimitrakakis et al., 2014; Li et al., 2022b)). However, de-
spite the importance of the bandits model, we are not aware
of any provably robust and private policy for this model.

Lastly, in practice, it is often desirable or even necessary
for the learner to perform actions in parallel. For example,
ad campaigns present an assortment of advertisements to
multiple users at the same time and are only periodically
recalibrated (Bertsimas & Mersereau, 2007). Consequently,
batch policies must optimally balance between paralleliza-
tion, which can offer significant time savings, and informa-
tion exchange, which must happen frequently enough to
allow for exploration of the action space (Esfandiari et al.,
2021).

In this paper, we develop a learning policy that addresses
both privacy and robustness challenges, while enjoying the
benefits of parallelization. Specifically, our policy protects
the privacy of reward sequences by respecting the standard
differential privacy measure, while withstanding an adver-
sary that changes a constant fraction of the observed rewards
in each batch. In the remainder of this section, we formally
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introduce the problem and survey related work in the bandit
literature.

1.1. Problem formulation and provable guarantees

We study the stochastic linear bandit problem: given
an action space A ⊂ Rd with K elements satisfying
maxa∈A ∥a∥2 ≤ 1, a learner “plays” actions a ∈ A and
receives rewards

ra := ⟨a, θ⋆⟩+ η, η ∼ SubG(1), (1)

where θ⋆ is an unknown vector in Rd and SubG(1) denotes
a zero-mean subgaussian random variable. Our assump-
tion that |A| ≤ K is without loss of generality, since our
results extend to the infinite case by a standard covering
argument (Lattimore & Szepesvári, 2020, Chapter 20). For
simplicity, we also assume that ∥θ⋆∥ ≤ 1. Given a budget
of T total actions, the goal of the learner is to minimize her
expected regret:

E [RT ] := max
a∈A

T∑
t=1

⟨a− at, θ
⋆⟩ (2)

Batched observations. In bandits problems with batch
policies, the learner commits to a sequence (i.e., a batch) of
actions and observes the rewards of the actions only after
the entire batch of actions has been played. The learner
may play multiple batches of actions, whose sizes may be
chosen adaptively, subject to the requirement that the total
number of batches does not exceed B (in addition to the
total number of actions played not exceeding the budget T ).
We assume that B is also known to the learner.

Robustness. We require that our algorithm is robust under
possibly adversarial corruptions suffered. In particular, we
assume that an adversary replaces every observation by
an arbitrary number with some small probability α. Thus,
during each batch, the observed rewards will satisfy

ri =

{
⟨ai, θ⋆⟩+ ηi, w.p. 1− α,
∗, w.p. α

, i = 1, . . . , n, (3)

where ∗ is an arbitrary value, α ∈ [0, 1/4) is the corruption
probability, and n is the size of the batch.

Diffential privacy. Our other requirement is that the algo-
rithm is differentially private (DP).
Definition 1.1 (Differential Privacy for Bandits (Basu et al.,
2019)). A randomized mechanism M for stochastic linear
bandits is called (εpriv, δpriv)-differentially private if, for any
two neighboring sequences of rewards R = (r1, . . . , rT )
and R′ = (r′1, . . . , r

′
T ) where ri ̸= r′i for at most one index

i, and any subset of outputs O ∈ MT , it satisfies

P (M(R) ∈ O) ≤ eεpriv · P (M(R′) ∈ O) + δpriv. (4)

The main contribution of our paper is a batched arm elimi-
nation algorithm that satisfies both desiderata, presented in
detail in Section 2. We assume a distributed setting where a
central server takes on the role of the learner, connected with
several clients that report back rewards. The clients do not
trust the central server and therefore choose to privatize their
reward sequences; this model is better known as local dif-
ferential privacy (LDP) (Kasiviswanathan et al., 2011). Our
algorithm addresses the following client response models:

(M1) Each reward r̄i may be solicited from a different
client i.

(M2) Each client “owns” an action a ∈ A and may report
multiple rewards in each batch.

Remark 1.2. In Model (M1), we may assume without loss of
generality that every reward r̄i is solicited from a different
client, and thus every client returns at most 1 response.

Below, we provide informal statements for the expected re-
gret that our algorithms achieves under each model. While
the regret under (M1) has better dependence on the dimen-
sion d, (M2) leads to a better dependence on the privacy pa-
rameter εpriv. The improved dependence on εpriv in the latter
should not come as a complete surprise, since model (M2)
can be viewed as interpolating between the local and central
models of differential privacy. For simplicity, we focus on
the case where B scales logarithmically in T , although our
analysis can be easily modified for general B. Figure 1
illustrates the qualitative behavior of our regret bounds.

Theorem 1.3 (Informal). Under Model (M1), there is an
εpriv-locally differentially private algorithm that is robust to
adversarial corruptions with expected regret satisfying

E [RT ] = Õ
([√

dT + T max
{√

αd, αd
}](

1 + 1
εpriv

))
It is worth noting that in the non-private setting, the regret
bound above scales as Õ(T

√
αd+

√
dT ) when α < 1/d and

Õ(Tαd+
√
dT ) when α ≥ 1/d. Note that the total amount

of corruption injected by the adversary is upper bounded by
C = αT . Interestingly, our result shaves off a factor of at
least

√
d compared to the regret bound of the best previous

work on robust stochastic linear bandits (Bogunovic et al.,
2021), which scales as Õ(

√
dT + Cd3/2).

Theorem 1.4 (Informal). Under Model (M2), there is an
εpriv-differentially private algorithm that is robust to adver-
sarial corruptions with expected regret satisfying

E [RT ] = Õ

(
d
√
T +

d

εpriv

)
+ Õ

(
d3/2

√
α

(
T + d

√
T +

d

εpriv

))
+ αT.

2



Robust and private stochastic linear bandits

Compared to Theorem 1.3, Theorem 1.4 yields an improved
dependence on T in the “private” part of the regret at the
expense of an additional

√
d factor in the non-private part.

1.2. Related work

In this section, we survey related work in the bandit liter-
ature that addresses differential privacy and/or robustness
to corruptions. We note that, to the best of our knowledge,
our work is the first to simultaneously provide robustness
and differential privacy guarantees for the stochastic linear
bandit setting. While preparing the camera-ready version
of this manuscript we were made aware of the work of (Wu
et al., 2023), which studies private and robust multi-armed
bandits.

Differential privacy in linear bandits. Differential pri-
vacy has been well-studed in the context of bandit learn-
ing. In the central DP model, which is the focus of this
paper, (Shariff & Sheffet, 2018) proved a lower bound of
Ω(

√
T + log(T )

εpriv
) on the expected regret and proposed a pri-

vate variant of the LinUCB algorithm with additive noise
that achieves expected regret of Õ(

√
T +

√
T/εpriv). In

recent work, (Li et al., 2022a; Hanna et al., 2022) proposed
a private variant of the arm elimination algorithm that ob-
tains a regret bound of O(

√
T log T + log2(T )

εpriv
) which is

tight up to logarithmic factors; in particular, the work of (Li
et al., 2022a) achieves (ϵ, δ)-differential privacy using the
Gaussian mechanism while (Hanna et al., 2022) achieve ϵ-
differential privacy (also known as pure differential privacy)
via the Laplace mechanism. While conceptually similar to
that of (Li et al., 2022a; Hanna et al., 2022), our algorithm
guarantees differential privacy and robustness to corrupted
observations simultaneously and maintains an order-optimal
regret bound.

In the local DP model, (Zheng et al., 2020) used a reduction
to private bandit convex optimization to achieve expected re-
gret Õ(T 3/4/εpriv). Under additional distributional assump-
tions on the action set, this was improved to Õ(T 1/2/εpriv)
by (Han et al., 2021). The same rate was obtained by (Hanna
et al., 2022), who removed the requirement that actions
are generated from a distribution. Finally, a recent line of
work focused on so-called shuffle differential privacy (Bit-
tau et al., 2017; Cheu, 2021), wherein a trusted shuffler
can preprocess client responses before transmitting them
to the central server. A sequence of works (Tenenbaum
et al., 2021; Chowdhury & Zhou, 2022; Garcelon et al.,
2022; Hanna et al., 2022) proposed shuffle-DP algorithms
for linear bandits, with (Li et al., 2022a; Hanna et al., 2022)
achieving essentially the same regret bound as in the central
DP setting.

Robustness to adversarial attacks. Recent work pro-
posed various adversarial attacks in the bandit setting, as
well as algorithms to protect against them. (Lykouris et al.,
2018) (and (Gupta et al., 2019) in a follow-up work) study
multi-armed bandits with adversarial scaling, wherein an
adversary can shrink the means of the arm distributions in
each round, and propose robust algorithms for this setting.
The corruption in this work differs from our setting, where
the adversary can replace a random fraction of rewards arbi-
trarily. The works of (Jun et al., 2018; Liu & Shroff, 2019;
Garcelon et al., 2020) study multi-armed and contextual ban-
dit algorithms from the attacker perspective, demonstrating
how an adversary can induce linear regret with logarithmic
effort.

(Li et al., 2019) and (Bogunovic et al., 2021) study additive
adversarial corruptions in contextual bandits. In particular,
they assume that the observed reward in round i suffers an
additive perturbation by ci(ai), where ai is the ith context
and ci : A → [−1, 1] is a context-dependent corruption
function. Crucially, the adversary is subject to a budget
constraint given some budget C unknown to the learner:

T∑
i=1

max
a∈A

|ci(a)| ≤ C. (5)

In (Li et al., 2019), the authors present a robust exploration
algorithm for contextual bandits using the Löewner ellip-
soid. Letting ∆ denote the gap between the highest and
lowest expected rewards, their algorithm achieves a regret
of O

(
d5/2C log T

∆ + d6 log2 T
∆2

)
, under the key assumption that

the action space A is a full-dimensional polytope, and re-
quires no knowledge of the corruption budget C.

On the other hand, the work of (Bogunovic et al., 2021)
introduces a robust variant of the phased arm elimination
algorithm for stochastic linear bandits that achieves an ex-
pected regret of Õ(

√
dT + Cd3/2), assuming the budget C

is known to the learner; for unknown budgets, an additional
C2 factor appears in the regret bound. Our work deviates
from that of (Bogunovic et al., 2021) in the sense that we
measure corruption using the probability α of an adversary
interfering with each observation; moreover, assuming that
C scales as αT , our work shaves off a

√
d factor from the

result of (Bogunovic et al., 2021) in certain regimes, while
it also ensures differential privacy.

1.3. Notation

We let ⟨x, y⟩ := xTy denote the Euclidean inner product
with induced norm ∥x∥ =

√
⟨x, x⟩ and write Sd−1 :=

{x ∈ Rd | ∥x∥2 = 1} for the unit sphere in d dimensions.
When M is a positive-definite matrix, we write ∥x∥M :=√

⟨x,Mx⟩ for the norm induced by M . Finally, we write
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Figure 1. Demonstration of regret bounds. Left: private vs. non-private regret bounds under (M1). Center: scaling of private regret bound
under (M1) and (M2). Right: effect of corruption parameter α under model (3).

∥A∥op := supx∈Sn−1 ∥Ax∥ for the ℓ2 → ℓ2 operator norm
of a matrix A ∈ Rm×n.

1.4. Coresets and G-optimal designs

Our algorithms make use of coresets, which in turn are
formed with the help of a concept called G-optimal design.
We formally define this concept below.

Definition 1.5 (G-optimal design). Let A ⊂ Rd be a fi-
nite set of vectors and let π : A → [0, 1] be a probability
distribution on A satisfying

∑
a∈A π(a) = 1. Then π is

called a G-optimal design for A if it solves the following
optimization problem:

minimize
{
max
a∈A

∥a∥2M−1(π)

}
, (6)

where M−1(π) :=
(∑

a∈A π(a)aaT
)−1

.

A standard result in experiment design (Lattimore &
Szepesvári, 2020, Theorem 21.1) shows that the optimal
value of (6) is equal to d. Moreover, it is possible to find a
probability distribution π satisfying the following:

Definition 1.6 (Approximate G-optimal design). Let A ⊂
Rd be a finite set of vectors and let π : A → [0, 1] be a
probability distribution on A. We call π an approximate
G-optimal design for A if it satisfies

max
a∈A

∥a∥2M−1(π) ≤ 2d, |supp(π)| ≤ Cd log log d (7)

for a universal constant C > 0.

In particular, an approximate G-optimal design π in the
sense of Definition 1.6 can be found in time O(d log log d).

Given a (approximate) G-optimal design π in the sense
of Definition 1.5 or Definition 1.6, a coreset SA of total size
n is a multiset {a1, . . . , an} where each action a ∈ supp(π)
appears a total of na := ⌈π(a) · n⌉ times.

2. Algorithm and main results
To minimize the regret of the learner, we use a variation
of the standard arm elimination algorithm (Lattimore &
Szepesvári, 2020). In this algorithm, the learner uses batches
of actions to construct confidence intervals for the opti-
mal rewards and eliminates a set of suboptimal arms in
each round based on their performance on the current batch.
While the vanilla arm elimination algorithm is neither ro-
bust nor differentially private, we develop a variant that
simultaneously ensures both these properties. An additional
attractive property of our algorithm is that its implementa-
tion only requires a simple modification.

2.1. Our approach

To motivate our approach, we first sketch a naive attempt at
modifying the arm elimination algorithm and briefly explain
why it is unable to achieve good regret guarantees.

Recall that in the standard arm elimination algorithm, the
learner first forms a so-called coreset of the action space A,
which is a multiset of vectors a1, . . . , an ∈ A, and plays
all the actions aj receiving rewards rj . To prune the action
space, the learner first computes the least-squares estimate:

θ̂ :=

 n∑
j=1

aja
T
j

−1
n∑
j=1

ajrj , (8)

and chooses a suitable threshold γ to eliminate arms with〈
a, θ̂
〉
< max
j=1,...,n

〈
aj , θ̂

〉
− 2γ.

Clearly, the arm elimination algorithm interacts with the
rewards directly only when forming the least squares esti-
mate θ̂. Therefore, estimating θ̂ with a differentially private
algorithm is sufficient to protect the privacy of rewards.
Likewise, computing θ̂ robustly will ensure robustness of
the overall algorithm.
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The main idea behind our arm elimination variant is the fol-
lowing. First, let us dispense with the differential privacy re-
quirement. Notice that in the absence of corruptions, θ̂ is the
empirical mean of the sequence of variables {Z1, . . . , Zn}:

Zj :=

(
n∑
i=1

aia
T
i

)−1

rjaj .

To compute θ̂ robustly, one may attempt to run an algo-
rithm such as the geometric median. However, the approx-
imation guarantee of the geometric median method scales
proportionally to maxj∈[n] ∥Zj − θ̂∥, for which worst-case
bounds are overly pessimistic. Indeed, letting M denote the
Gram matrix of the coreset used in the current arm elimina-
tion round, a tedious but straightforward calculation shows
that these bounds scale as κ2(M), the condition number
of M . In turn, the latter quantity depends on the geome-
try of the maintained action set and is difficult to control
in general. For example, even if the original action set is
“well-conditioned”, that property will not necessarily hold
throughout the algorithm.

To work around this issue, we take advantage of the prob-
abilistic nature of the adversary. The main idea is that, in
expectation, the least-squares estimate computed over the
subset of non-corrupted rewards, Igood, and given by

θ̂Igood =

(
n∑
i=1

aia
T
i

)−1 ∑
j∈Igood

ajrj , (9)

is close to the true least-squares estimate in the absence of
any corruptions. While the set Igood is not known a-priori to
the learner, we may still estimate θ̂Igood from Eq. (9) using
a well-known spectral filtering algorithm from the robust
statistics literature. In doing so, we reduce the problem of
robust linear regression (with a fixed design matrix) to that
of robust mean estimation (over an appropriately weighted
set of inputs). We mention in passing that the work of(Chen
et al., 2022) also develop a distribution-free algorithm for
robust linear regression which applies to a more general
class of problems. However, their algorithm requires re-
peatedly solving a semidefinite program, while our spectral
filtering-based method is simpler to implement.

In what follows, we describe our robust linear regression
primitive and state its theoretical approximation guarantees,
and finally sketch how to take advantage of it to design a
robust and diffentially private algorithm for batched bandits.

2.2. Robust linear regression with fixed designs

In this section, we describe an efficient algorithm for Huber-
robust linear regression with a fixed design matrix. In par-
ticular, we let the (clean) set of observations satisfy

yi = ⟨ai, θ⋆⟩+ ηi, i = 1, . . . , n. (10)

where ηi are independent noise realizations and a1, . . . , an
are design vectors. The least-squares estimate of θ⋆ is given
by

θ̂ := M−1
n

n∑
i=1

yiai, Mn :=

n∑
i=1

aia
T
i .

Now, suppose that an adversary corrupts each yi indepen-
dently with probability α ∈ (0, 1/2), so the learner observes

ŷi =

{
yi, if Zi = 1,

∗, otherwise
, Zi ∼ Ber(1− α). (11)

The goal is to estimate the least-squares solution θ̂ robustly.
Our strategy will be to first estimate the least-squares solu-
tion over the subset of “good” indices G0:

θG0
=
∑
i∈G0

M−1
n aiyi, G0 = {i | Zi = 1} . (12)

To estimate θG0 , we will apply the well-known (randomized)
spectral filtering algorithm for robust mean estimation (see,
e.g., (Diakonikolas & Kane, 2019; Prasad et al., 2019)), pro-
vided in Algorithm 2 for completeness, to the components of
the least-squares solution after an appropriate reweighting.
In particular, we will estimate

γ{ai}n
i=1

:=
maxa∈A ∥a∥2M−1

n

∑n
i=1 y

2
i

n
;

w̃ := Filter
({

M−1/2
n aiyi

}n
i=1

, γ{ai}n
i=1

)
;

θ̃ := nM−1/2
n w̃

(13)
We prove the following guarantee for this method. The
proof of this proposition is deferred to Appendix A. We
use this proposition in the next section to design robust and
differentially private algorithms for stochastic linear bandits.

Proposition 2.1. Fix a δ ∈ (0, 1), a ∈ A and let ei =
yi−⟨ai, θ⋆⟩. Then with probability at least 1− 2δ, we have∣∣⟨a, θ̃ − θ⋆⟩

∣∣ ≲
max
a∈A

∥a∥2M−1
n

√√√√n

n∑
i=1

y2i

(
α+

log(1/δ)

n

)1/2

+max
a∈A

∥a∥2M−1
n

√√√√ n∑
i=1

y2i +
√
α log(1/δ)

+

n∑
i=1

ei
〈
a,M−1

n ai
〉
+ α,

(14)

where Mn :=
∑n
i=1 aia

T
i .
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Algorithm 1 Robust arm elimination

1: Input: action space A, T , B, failure prob. δ, corruption prob. α ∈ (0, 1/4), truncation parameter ν > 0.
2: Set A0 := A, q = T 1/B

3: for i = 1, . . . , B − 1 do
4: Compute approximate G-optimal design π with |supp(π)| ≲ d log log d.
5: Form a coreset SAi−1 by playing each distinct a ∈ supp(π) a total of

na =

{⌈
qiπ(a)

⌉
, under Model (M1);⌈

qimax {π(a), ν}
⌉
, under Model (M2).

.

6: Play actions aj ∈ SAi−1
and collect rewards rj according to (3).

7: Compute w̃i := Filter

({
M

−1/2
n airi

}n
i=1

,
maxa∈A∥a∥2

M
−1
n

∑n
i=1 r

2
i

n

)
, where Mn :=

∑n
i=1 aia

T
i . {Alg. 2}

8: Compute θ̃i := nM
−1/2
n w̃.

9: Set the elimination threshold

γi :=


√
d
(√

log(qi/δ) + log(qi/δ)
εpriv

)
(
√
α+ α

√
d) + α+

√
d log(1/δ)

qi

(
1 +

√
log(1/δ)

εpriv

)
, under (M1);√

d log(1/δ)
νm

(
1 + 1

εpriv

√
log(1/δ)
νm

)
+ 2d

(
1 +

√
log(k/δ)
νm + log(k/δ)

νmεpriv

)(√
kα+

√
α log(1/δ)

)
+ α, under (M2),

where k := |supp(π)| in the second option.
10: Eliminate suboptimal arms:

Ai :=

{
a ∈ SAi−1

| ⟨a, θ̃i⟩ ≥ max
a′∈SAi−1

⟨a′, θ̃i⟩ − 2γi.

}
,

11: end for
12: Play the “best” action in SAB−1

in the last round.

Algorithm 2 Filter(S := {Xi}mi=1, λ)

1: Compute empirical mean and covariance:

θS :=
1

|S|
∑
i∈S

Xi, ΣS :=
1

|S|
∑
i∈S

(Xi−θS)(Xi−θS)
T.

2: Compute leading eigenpair (µ, v) of ΣS .
3: if µ < 4λ then
4: return θS
5: else
6: Compute outlier scores τi := ⟨v,Xi − θS⟩2 for all i.
7: Sample an element Y with P (Y = Xi) ∝ τi
8: return Filter(S \ {Y } , λ)
9: end if

3. Robust differentially private bandits
In this section, we consider the requirement of differen-
tial privacy. In particular, we assume that the learner is
an untrusted server; every client must therefore privatize
their rewards before reporting them to the learner. Recall
that we consider two different models for generating client

responses:

(M1) Every reward is obtained from a distinct client.

(M2) All rewards associated with a distinct action a are
obtained from the same client.

Algorithm 1 documents the parameter choices under each
of the models above. For our regret analysis, we rely on the
following facts for each round i.

Fact 1: The optimal arm is not eliminated. Let a⋆ de-
note the “optimal” action in the sence of maximizing the
inner products ⟨a, θ⟩. Then, with high probability,

⟨a, θ̃⟩ − ⟨a⋆, θ̃⟩ = ⟨a, θ⋆⟩+ ⟨a, θ̃ − θ⋆⟩
− ⟨a⋆, θ⋆⟩ − ⟨a⋆, θ̃ − θ⋆⟩

≤ ⟨a− a⋆, θ⋆⟩+ 2γi

≤ 2γi,

using the bound on the difference in the penultimate inequal-
ity and the fact that ⟨a, θ⋆⟩ ≤ ⟨a⋆, θ⋆⟩ in the last inequality.
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Thus, a⋆ always satisfies the condition of the algorithm and
is not eliminated.

Fact 2: Surviving arms have bounded gap. Fix an arm
a and let ∆ := ⟨a⋆ − a, θ⋆⟩ be its gap. We have

⟨a⋆ − a, θ̃⟩ ≥ ⟨a⋆, θ⋆⟩ − γi − (⟨a, θ⋆⟩+ γi)

≥ ∆− 2γi.

Now, let i be the smallest positive integer such that γi <
∆/4. Then the above implies that

⟨a⋆ − a, θ̃⟩ ≥ 2γi.

Consequently, any arm a with gap ∆a > 4γi for some index
i will be eliminated at the end of that round. Therefore,
all arms that are active at the beginning of round i will
necessarily satisfy ∆a ≤ 4γi−1.

3.1. Local differential privacy under (M1)

In this setting, we can achieve pure LDP using the Laplace
mechanism (Dwork & Roth, 2014). In particular, we define

M(r) = r + ξ, ξ ∼ Lap

(
2

εpriv

)
,

where εpriv is a desired privacy parameter. Then, when
queried for a response, client i reports the privatized reward:

r̂i = M(ri) = ⟨ai, θ⋆⟩+ ηi + ξi, ξi ∼ Lap

(
2

εpriv

)
.

(15)
The three forthcoming lemmata control different terms ap-
pearing in the confidence interval from Eq. (14). Lemma 3.1
below controls the contribution of the additive noise.

Lemma 3.1. Under the model (M1), with probability at
least 1− 2δ we have

n∑
i=1

ei
〈
a,M−1

n ai
〉
≤

∥a∥M−1
n

√
log(1/δ)

(
c1 +

c2
√

log(1/δ)

εpriv

)
.

(16)

Two of the three terms in Eq. (14) depend on the maximal
weighted norm ∥a∥2M−1

n
over the action set; Lemma 3.2

bounds that norm for an arbitrary round of the arm elimina-
tion algorithm.

Lemma 3.2. Under Model (M1), we have the bound:

max
a∈A

∥a∥2M−1
n

≤ 2d

n
. (17)

Finally, Lemma 3.3 below controls the contribution of√∑n
i=1 y

2
i to the robust confidence interval.

Lemma 3.3. With probability at least 1− δ, we have√√√√ n∑
i=1

y2i ≲
√
n

(
1 +

√
log(n/δ) +

log(n/δ)

εpriv

)
. (18)

With control over the confidence interval (14) at hand, we
arrive at the regret bound in Theorem 3.4 below. The proof
follows standard arguments (see, e.g., (Esfandiari et al.,
2021, Theorem 5.1)) and can be found in Appendix B.1.4.

Theorem 3.4. Under Model (M1), the expected regret of Al-
gorithm 1 is at most

√
Td log(T/δ)

(
1 +

√
log(T/δ)

εpriv

)

+ T
√

log(T/δ)max
{√

αd, αd
}(

1 +
log(T/δ)

εpriv

)
,

(19)
up to a dimension-independent multiplicative constant.

3.2. Local differential privacy under (M2)

In this setting, every client achieves differential privacy
by aggregating their responses before transmitting them
to the server. In particular, let na denote the number of
times action a is played during the current round. The
parameter na can be considered public, since it is known to
the untrusted server. Then, client a may report

r̂a = M
(

1

na

na∑
i=1

⟨a, θ⋆⟩+ ηi

)

=
1

na

na∑
i=1

⟨a, θ⋆⟩+ ηi + ξa,

(20)

where ηi ∼ SubG(1) and ξa is Laplace noise. The amount
of noise needed to achieve privacy scales inversely with na.

Lemma 3.5. With ξa ∼ Lap
(

2
naεpriv

)
, the mechanism M

in (20) is εpriv-differentially private for client a.

Recall that in this model, the arm elimination algorithm
follows the modifications below:

1. We receive |supp(π)| distinct responses in each round,
where π is an approximately G-optimal design.

2. Every action a ∈ supp(π) is played a total of na =
⌈mmax {π(a), ν}⌉ times for fixed m and ν > 0.

Our proof for this setting is analogous to the proof
under Model (M1). We have the following analogue
of Lemma 3.1:

7
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Lemma 3.6. Under the model (M2), with probability at
least 1− 2δ we have∑

v∈supp(π)

ev
〈
a,M−1v

〉
≤

∥a∥M−1√
νm

√
log(1/δ)

(
c1 +

c2
εpriv

√
log(1/δ)

νm

)
,

(21)

where ev = M(rv)− ⟨v, θ⋆⟩ and M =
∑
a∈supp(π) aa

T.

Lemma 3.7. Under Model (M2), we have the bound:

max
a∈A

∥a∥2M−1 ≤ 2d. (22)

We also have the following analogue of Lemma 3.3.

Lemma 3.8. With probability at least 1− δ, we have√ ∑
v∈supp(π)

y2v ≲

1 +

√
log(|supp(π)| /δ)

νm
+

log(|supp(π)| /δ)
νmεpriv

.

(23)

Putting everything together, we arrive at Theorem 3.9 below,
whose proof can be found in Appendix B.2.4.

Theorem 3.9. Under Model (M2), the expected regret of Al-
gorithm 1 is at most

νd log log d

(√
dT log(1/δ)

ν
+

log(1/δ) log(T )
√
d

εpriv
√
ν

)
+ 2d

(√
αd log log d+

√
α log(1/δ)

)
×(

T +

√
Td log log d/δ

ν
+

log(d log log d
δ ) log T

νεpriv

)
+ αT,

(24)
up to a dimension-dependent multiplicative constant.

4. Conclusion
In this paper we presented a robust and εpriv-LDP policy for
batched stochastic linear bandits with an expected regret

E [RT ] = Õ
(
[
√
dT + T max{

√
αd, αd}](1 + 1/εpriv)

)
,

where α is the probability of corruption of each reward,
which only requires a logarithmic number of batch queries.
In the absence of corruption (α = 0), our regret matches
that of the best-known non-robust differentially private al-
gorithm (Hanna et al., 2022). On the other hand, when no
differential privacy is required, our regret bounds shaves off

a factor of
√
d compares to previous work on robust linear

bandits (Bogunovic et al., 2021). In addition, a variant of
our policy is immediately applicable to a differential pri-
vacy model that interpolates between the local and central
settings and achieves improved dependence on the privacy
parameter εpriv.

While simple to implement, our algorithms require the
learner to provide an upper bound on the corruption proba-
bility α, which may be difficult to estimate in practice. We
leave the task of designing an adaptive policy as exciting
future work. At the same time, it is unclear if our regret
bounds for the privacy model (M2) are tight (in terms of the
dependence on εpriv and d). A natural question left open by
our work is constructing tight lower bounds in this setting.
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Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Li, F., Zhou, X., and Ji, B. Differentially private linear
bandits with partial distributed feedback. In 2022 20th
International Symposium on Modeling and Optimization
in Mobile, Ad hoc, and Wireless Networks (WiOpt), pp.
41–48. IEEE, 2022a.

Li, M., Berrett, T. B., and Yu, Y. On robustness and local
differential privacy. arXiv preprint arXiv:2201.00751,
2022b.

Li, Y., Lou, E. Y., and Shan, L. Stochastic Linear Opti-
mization with Adversarial Corruption. arXiv e-prints, art.
arXiv:1909.02109, 2019.

Liu, F. and Shroff, N. Data poisoning attacks on stochastic
bandits. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 4042–4050. PMLR, 09–15 Jun
2019.

9



Robust and private stochastic linear bandits

Liu, X., Kong, W., Kakade, S., and Oh, S. Robust and dif-
ferentially private mean estimation. Advances in Neural
Information Processing Systems, 34:3887–3901, 2021.

Lykouris, T., Mirrokni, V., and Paes Leme, R. Stochastic
bandits robust to adversarial corruptions. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, pp. 114–122, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN
9781450355599. doi: 10.1145/3188745.3188918.

Prasad, A., Balakrishnan, S., and Ravikumar, P. A uni-
fied approach to robust mean estimation. arXiv preprint
arXiv:1907.00927, 2019.

Shariff, R. and Sheffet, O. Differentially private contextual
linear bandits. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

Tenenbaum, J., Kaplan, H., Mansour, Y., and Stemmer, U.
Differentially Private Multi-Armed Bandits in the Shuffle
Model. In Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 24956–
24967. Curran Associates, Inc., 2021.

Vershynin, R. High-Dimensional Probability: An intro-
duction with applications in data science, volume 47 of
Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press, 2018.

Wu, Y., Zhou, X., Tao, Y., and Wang, D. On Private and
Robust Bandits. arXiv e-prints, art. arXiv:2302.02526,
2023. doi: 10.48550/arXiv.2302.02526.

Zheng, K., Cai, T., Huang, W., Li, Z., and Wang, L. Lo-
cally differentially private (contextual) bandits learning.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 12300–12310. Curran
Associates, Inc., 2020.

10



Robust and private stochastic linear bandits

A. Proofs from Section 2.2
We will work with the empirical second moment and covariance matrices defined below:

Σ̃G0 :=
1

|G0|
∑
i∈G0

M−1/2
n y2i aia

T
i M

−1/2
n , ΣG0 := Σ̃G0 − θG0θ

T
G0

, (25a)

Σ̃n :=
1

n

n∑
i=1

M−1/2
n y2i aia

T
i M

−1/2
n , Σn := Σ̃n − θnθ

T
n . (25b)

In addition, we will use the vector notation below:

y =

y1
...
yn

 , and σ =

σ1

...
σn

 . (26)

Our guarantees will depend on the maximal weighted norm of the elements ai, which we will denote by

µ := max
i=1,...,n

∥ai∥2M−1
n

. (27)

Finally, we make the following assumption:

Assumption A.1. Fix δ to be a desired failure probability. The corruption probability α satisfies α ≳ log(1/δ)
n .

To approximate θG0
, we will first reduce the above problem to robust mean estimation and apply the spectral filtering

algorithm from the robust statistics literature. In (Prasad et al., 2019), the authors provide the following guarantee:

Theorem A.2 (Prasad et al. (2019, Theorem 4)). Suppose that λ ≥ ∥ΣG0
∥op and that the set of inliers, G0, satisfies

n−|G0|
n + log(1/δ)

n ≤ c, where c is a dimension-independent constant. Then with probability at least 1 − δ, the spectral
filtering algorithm for robust mean estimation terminates in at most O((n− |G0|)+ log(1/δ)) steps and returns an estimate
θ̃ satisfying ∥∥θ̃ − θG0

∥∥ ≤ C
√
λ

(
n− |G0|

n
+

log(1/δ)

n

)1/2

. (28)

In light of Theorem A.2, we will control the quantities involved. Before we proceed, we state the following bound for the
size of G0 that we will repeatedly appeal to throughout:

Lemma A.3. Let n ≳ log(1/δ)
α . Then with probability at least 1− δ, we have∣∣∣∣ |G0|

n
− (1− α)

∣∣∣∣ ≤
√

α log(1/δ)

n
(29)

Proof. Let Sn =
∑n
i=1 1 {i /∈ G0}, which is a sum of i.i.d. Bernoulli random variables with parameter α. From the

Chernoff bound (Vershynin, 2018, Exercise 2.3.5), it follows that for δ ∈ (0, 1], we have

P
(
|Sn − nα| ≥

√
nα log(1/δ)

)
≤ δ, (30)

after setting δ =
√

log(1/δ)
αn ≤ 1 in (30). The claim follows since

|G0|
n

= 1− Sn
n

∈ (1− α)±
√

α log(1/δ)

n
.
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A.1. Controlling the empirical mean

We now control the deviation of θG0 from the mean of the dataset absent any corruptions.

Lemma A.4. With probability at least 1− δ, we have∥∥∥∥θG0
− n(1− α)

|G0|
θn

∥∥∥∥ ≲
∥y∥
|G0|

√
µα(1− α) log(1/δ). (31)

Proof. Define the following collection of random variables:

Qi := (Zi − E [Zi])M
−1/2
n yiai, with Zi = 1 {i ∈ G0} . (32)

Clearly, we have E [Qi] = 0. At the same time,

E
[
∥Qi∥2

]
= Var(Zi)y

2
i ∥ai∥2M−1

n
≤ α(1− α)y2i µ.

Applying the vector Bernstein inequality (Gross, 2011, Theorem 12), we obtain

P

(∥∥∥ n∑
i=1

Qi

∥∥∥ ≥ ∥y∥
√

µα(1− α) + t

)
≤ exp

(
− t2

µα(1− α) ∥y∥2

)
.

Consequently, we may set t = ∥y∥
√
µα(1− α) log(1/δ) to obtain the claimed probability. Finally, we note that

n∑
i=1

Qi =
∑
i∈G0

M−1/2
n yiai − (1− α)

n∑
i=1

M−1/2
n yiai = |G0| θG0

− n(1− α)θn.

A.2. Putting everything together

We now combine the bounds from Appendix A.1 and Theorem A.2. We first note that

ΣG0
= Σ̃G0

− θG0
θTG0

⪯ Σ̃G0

=
1

|G0|
∑
i∈G0

y2iM
−1/2
n aia

T
i M

−1/2
n

⪯ 1

|G0|
∑
i∈G0

y2i
∥∥M−1/2

n aia
T
i M

−1/2
n

∥∥
op
Id

⪯ 1

|G0|
∑
i∈G0

y2i
∥∥M−1/2

n ai
∥∥2Id

⪯ 1

|G0|
∑
i∈G0

y2i ∥ai∥2M−1
n

Id,

which implies that the spectral norm of ΣG0 is bounded from above by

∥ΣG0
∥op ≤ ∥yG0

∥2
|G0|

·max
i

∥ai∥2M−1
n

≤ µ ∥y∥2
|G0|

. (33)

At the same time, we appeal to Lemma A.3 to deduce that

|G0| ≥ (1− α)n− 3
√

n log(1/δ) ≥ (1− α)n

2
, for n ≥ 18 log(1/δ)

(1− α)2
.

Consequently, we can replace the previous upper bound with ∥ΣG0
∥op ≤ 2µ∥y∥2

n(1−α) .
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We now appeal to Theorem A.2. Note that Lemma A.3 yields

n− |G0|
n

= 1− |G0|
n

≤ 1− (1− α) +

√
α log(1/δ)

n
= α+

√
α log(1/δ)

n
.

Therefore, the estimate θ̃ computed by the spectral filtering algorithm satisfies

∥∥θ̃ − θG0

∥∥ ≲ ∥y∥
√

2µ

n(1− α)

(
α+

√
α log(1/δ)

n
+

log(1/δ)

n

)1/2

. (34)

Taking a union bound over Lemmas A.3 and A.4, we deduce that (34) holds with probability at least 1− 2δ.

A.3. Application to phased elimination

Let θLS := M−1
n

∑n
i=1 yiai denote the least squares solution from an approximate G-optimal design, and define

θ̄G0
= M−1

∑
i∈G0

yiai = M−1/2 |G0| θG0
, (35a)

θ̄ = nM−1/2θ̃. (35b)

Note that θ̄ can be computed from the output of Algorithm 2, while θ̄G0
only serves for the analysis. With these at hand, we

have the following decomposition:〈
a, θ̄ − θ⋆

〉
=
〈
a, θ̄ − θ̄G0

〉
+
〈
a, θ̄G0 − θLS

〉
+ ⟨a, θLS − θ⋆⟩ (36)

In what follows, we bound each term in (36) separately.

A.3.1. BOUNDING THE FIRST TERM IN (36)

The first term in (36) is equal to〈
M−1/2a,M1/2(θ̄ − θ̄G0

)
〉
=
〈
M−1/2a, nθ̃ − |G0| θG0

〉
=
〈
M−1/2a, n(θ̃ − θG0

)
〉
+ (n− |G0|)

〈
M−1/2a, θG0

〉
≤ ∥a∥M−1

∥∥∥n(θ̃ − θG0
)
∥∥∥+ (n− |G0|)

〈
M−1/2a, θG0

〉
(37)

In particular, the second term in (37) is given by

〈
M−1/2a, θG0

〉
=

1

|G0|

〈
M−1/2a,M−1/2

∑
i∈G0

yiai

〉

≤ 1

|G0|
∥a∥M−1

∥∥∥∥∥∑
i∈G0

yiai

∥∥∥∥∥
M−1

≤ 1

|G0|
∥a∥M−1

∥∥∥∥∥( ∑
i∈G0

aia
T
i

)−1/2 ∑
i∈G0

yiai

∥∥∥∥∥ , (38)

using the fact that
∑
i∈G0

aia
T
i ⪯∑n

i=1 aia
T
i . Let AG0 be a matrix whose rows are the vectors {ai | i ∈ G0}. We have∑

i∈G0

aia
T
i = AT

G0
AG0

, and
∑
i∈G0

yiai = AT
G0

yG0
.

Letting AG0 = UΣV T denote the economic SVD of AG0 , we thus have∥∥∥∥∥( ∑
i∈G0

aia
T
i

)−1/2 ∑
i∈G0

yiai

∥∥∥∥∥ =
∥∥∥(AT

G0
AG0

)−1/2AT
G0

yG0

∥∥∥ =
∥∥V Σ−1V TV ΣUTyG0

∥∥ ≤ ∥y∥ . (39)
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Plugging Eq. (39) into Eq. (38) and the result into Eq. (37), we obtain〈
M−1/2a,M1/2(θ̄ − θ̄G0

)
〉
≤ ∥a∥M−1

(∥∥∥n(θ̃ − θG0
)
∥∥∥+ n− |G0|

|G0|
∥y∥

)
Using Eq. (34), the bound ∥a∥M−1 ≤ √

µ, and Lemma A.3 with α ≳ log(1/δ)
n , the above becomes:

〈
M−1/2a,M1/2(θ̄ − θ̄G0

)
〉
≲ µ ∥y∥√n

(
α+

log(1/δ)

n

)1/2

(40)

A.3.2. BOUNDING THE SECOND TERM IN (36)

Recall that θ̄G0 = M−1/2 |G0| θG0 . We further decompose the second term in (36) into〈
a, θ̄G0 − θLS

〉
=
〈
M−1/2a,M1/2(θ̄G0 − θLS)

〉
=

〈
M−1/2a,M−1/2

(∑
i∈G0

yiai −
n∑
i=1

yiai

)〉

=

〈
M−1/2a, |G0|

(
θG0

− n

|G0|
θn

)〉
=

〈
M−1/2a, |G0|

(
θG0 −

n(1− α)

|G0|
θn

)〉
+
〈
M−1/2a, nαθn

〉
(41)

The first term in (41) can be upper bounded using Lemma A.4. Indeed,〈
M−1/2a, |G0|

(
θG0 −

n(1− α)

|G0|
θn

)〉
≤ ∥a∥M−1 ∥y∥

√
µα log(1/δ) ≤ µ ∥y∥

√
α log(1/δ).

We now simplify the second term in (41). With ei = ri − ⟨ai, θ⋆⟩, we obtain

〈
M−1/2a, nαθn

〉
= α

〈
a,

n∑
i=1

M−1yiai

〉

= α

〈
a,

n∑
i=1

M−1ai(⟨ai, θ⋆⟩+ ei)

〉

= α

〈
a,M−1

(
n∑
i=1

aia
T
i

)
θ⋆

〉
+ α

n∑
i=1

〈
a,M−1ai

〉
ei

= α ⟨a, θ⋆⟩+ α

n∑
i=1

〈
a,M−1ai

〉
ei.

Since maxa∈A |⟨a, θ⋆⟩| ≤ 1, combining the two bounds above yields

〈
a, θ̄G0

− θLS
〉
≲ µ ∥y∥

√
α log(1/δ) + α

(
1 +

n∑
i=1

〈
a,M−1ai

〉
ei

)
. (42)

A.3.3. BOUNDING THE THIRD TERM IN (36)

The last term is straightforward to bound. Let ei = yi − ⟨ai, θ⋆⟩ and note that

θLS − θ⋆ = M−1
n∑
i=1

yiai − θ⋆ = M−1
n∑
i=1

ai(⟨ai, θ⋆⟩+ ei)− θ⋆ = M−1
n∑
i=1

aiei. (43)
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A.3.4. PUTTING EVERYTHING TOGETHER

Combining Eqs. (40), (42) and (43) yields the following robust confidence intervals:

∣∣〈a, θ̄ − θ⋆
〉∣∣ ≲ µ ∥y∥

[
√
n

(
α+

log(1/δ)

n

)1/2

+
√
α log(1/δ)

]
+

n∑
i=1

ei
〈
a,M−1ai

〉
+ α. (44)

B. Missing proofs from Section 3
B.1. Missing proofs from Section 3.1

B.1.1. PROOF OF LEMMA 3.1

Proof. We write ei = M(ri)− ⟨ai, θ⋆⟩ = ηi + ξi, ηi ∼ SubG(1), ξi ∼ Lap
(

2
εpriv

)
. Now, define the random variables

Xi := ηi
〈
a,M−1ai

〉
; Yi := ξi

〈
a,M−1ai

〉
.

The family {Xi} is subgaussian with ∥Xi∥ψ2
≤
∣∣〈a,M−1ai

〉∣∣. Consequently,

n∑
i=1

∥Xi∥2ψ2
≤

n∑
i=1

〈
a,M−1ai

〉2
=

n∑
i=1

Tr(aTM−1aia
T
i M

−1a)

=

〈
M−1a,

n∑
i=1

aia
T
i M

−1a

〉
=
〈
a,M−1a

〉
= ∥a∥2M−1 .

Therefore, applying the Hoeffding inequality (Vershynin, 2018, Theorem 2.6.2) yields:

P

(∣∣∣∣∣
n∑
i=1

ηi
〈
a,M−1ai

〉∣∣∣∣∣ ≥ c1 ∥a∥M−1

√
log(1/δ)

)
≤ δ (45)

On the other hand, when ξi ∼ Lap(2/εpriv), we have the Bernstein-style bound

E
[
eλ

∑n
i=1 ξi⟨a,M−1ai⟩

]
=

n∏
i=1

E
[
exp

(
λξi
〈
a,M−1ai

〉)]
≤

n∏
i=1

exp

(
λ2
〈
a,M−1ai

〉2
2ε2priv

)
, ∀λ ∈

(
0,

b

∥α∥∞

]
,

using (Vershynin, 2018, Proposition 2.7.1(e)) in the last step. Collecting terms we obtain

n∏
i=1

exp

(
λ2
〈
a,M−1ai

〉2
2ε2priv

)
= exp

(
λ2

∑n
i=1

〈
a,M−1ai

〉2
ε2priv

)
≤ exp

(
λ2c1

(∥a∥M−1

εpriv

)2
)
.

Now, appealing to (Vershynin, 2018, Proposition 2.7.1(a)), we obtain the concentration bound

P

(∣∣∣ n∑
i=1

ξi
〈
a,M−1ai

〉 ∣∣∣ ≥ c2
∥a∥M−1 log(1/δ)

εpriv

)
≤ δ. (46)

Combining the two bounds yields the result.
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B.1.2. PROOF OF LEMMA 3.3

Proof. Let π below denote an approximate G-optimal design in the sense of Definition 1.6. We have

M =

n∑
i=1

aia
T
i

=
∑

a∈supp(π)

naaa
T

= n ·
∑

a∈supp(π)

π(a)aaT

= nM(π).

Consequently, we have the inequality

∥a∥2M−1 =
〈
a,M−1a

〉
=
〈
a, (nM(π))−1a

〉
=

1

n

〈
a,M−1(π)a

〉
=

∥a∥2M−1(π)

n

≤ 2d

n
,

using the fact that π is an approximate G-optimal design in the last inequality.

B.1.3. PROOF OF LEMMA 3.3

Proof. With y =
[
y1 . . . yn

]T
, we have ∥y∥ ≤ √

n ∥y∥∞. To control the latter, we note

max
i

|⟨ai, θ⋆⟩+ ηi + ξi| ≤ max
i

{|⟨ai, θ⋆⟩|+ |ηi|+ |ξi|} ≤ 1 + max
i

|ηi|+max
i

|ξi| .

Since ηi ∼ SubG(1), standard concentration inequalities for subgaussian maxima yield

P
(
max
i

|ηi| ≥ C
√
log(n/δ)

)
≤ δ. (47)

Similarly, ξi are subexponential with parameter 2/εpriv. By a union bound and (Vershynin, 2018, Proposition 2.7.1),

P
(
max
i

|ξi| ≥ t
)
≤

n∑
i=1

P (|ξi| ≥ t) ≤ n exp

(
−min

{
ε2privt

2

8
,
εprivt

4

})

Setting t := 4 log(n/δ)
εpriv

above yields maxi |ξi| ≤ 4 log(n/δ)
εpriv

with probability at least 1− δ.

Finally, taking a union bound and relabelling yields the result.

B.1.4. PROOF OF THEOREM 3.4

Proof. We perform a regret analysis under the LDP model (M1). First, we simplify Proposition 2.1 using Lemmas 3.1
and 3.3 and the assumption α ≳ log(1/δ)/n. Letting µ := maxa∈A ∥a∥2M−1 , we have

∣∣⟨a, θ̃ − θ⋆⟩
∣∣ ≲ µ

(
n
√
α+

√
αn log(1/δ)

)(
1 +

√
log(n/δ) +

log(n/δ)

εpriv

)
+
√
µ log(1/δ)

(
1 +

√
log(1/δ)

εpriv

)
+ α,

(48)

for any fixed a with probability at least 1− δ by suitably adjusting constants.
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In particular, when a1, . . . , an are drawn from an approximate G-optimal design, Lemma 3.3 implies that

µ ≡ max
a∈A

∥a∥2M−1
n

≤ 2d

n
, (49)

so the bound in (48) can be written as

∣∣⟨a, θ̃ − θ⋆⟩
∣∣ ≲ d

(
√
α+

√
α log(1/δ)

n

)(
1 +

√
log(n/δ) +

log(n/δ)

εpriv

)
+

√
d log(1/δ)

n

(
1 +

√
log(1/δ)

εpriv

)
, (50)

By standard arguments (see, e.g., the proof of (Esfandiari et al., 2021, Theorem 5.1)), we may focus on bounding the regret
conditioned on the “good” event where all the invocations to the coreset construction and robust filtering algorithms succeed.
This requires us to choose failure probability δ proportional to δ′/(KT 2), where T is the number of rounds, K is the size of
the action space, and δ′ is an overall desired failure probability. To ease notation, we relabel δ in this manner below.

Now, recalling the width of the confidence interval

γi :=
√
d

(√
log(qi/δ) +

log(qi/δ)

εpriv

)
(
√
α+ α

√
d) + α+

√
d log(1/δ)

qi

(
1 +

√
log(1/δ)

εpriv

)
,

we have the following expression for the regret:

Regret =
B∑
i=1

(arms pulled)× (instantaneous regret)

≤
B∑
i=1

qi4γi−1

≲
B∑
i=1

qi

√
d log(1/δ)

qi−1

(
1 +

√
log(1/δ)

εpriv

)
+

√
d(
√
α+ α

√
d)

B∑
i=1

qi
(√

log(qi−1/δ) +
log(qi−1/δ)

εpriv

)
(51)

To bound the first sum above, we notice that

B∑
i=1

qi
√

1

qi−1
= q

B−1∑
i=0

√
qi = q · q

B/2 − 1

q1/2 − 1
.

For the second sum, we first bound log(qi−1/δ) ≤ log(T
B−1
B /δ) ≤ log(T/δ), followed by

B∑
i=1

qi
(√

log(qi−1/δ) +
log(qi−1/δ)

εpriv

)
≤
(√

log(T/δ) +
log(T/δ)

εpriv

)
T.

Finally, we note that when B ≥ log(T ) we have qB/2−1
q1/2−1

≲
√
T and q = T 1/B ≤ e. Therefore,

Regret ≲
√

Td log(1/δ)

(
1 +

√
log(1/δ)

εpriv

)
+ T max

{√
αd, αd

}(√
log(T/δ) +

log(T/δ)

εpriv

)
.

B.2. Missing proofs from Section 3.2

B.2.1. PROOF OF LEMMA 3.6

Proof. We have ev = M(rv)− ⟨v, θ⋆⟩ = ηv + ξv , where ηv ∼ SubG(1/na) and ξv ∼ Lap(2/naεpriv). Therefore,

ηv + ξv
(d)
=

1√
na

η̃v +
1

na
ξ̃v, η̃v ∼ SubG(1), ξ̃v ∼ Lap(2/εpriv).
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Consequently, we may trace the proof of Lemma 3.1 to arrive at

∑
v∈H

ηv
〈
a,M−1v

〉
≲ ∥a∥M−1

√
log(1/δ)

(
c1√
na

+
c2
√
log(1/δ)

naεpriv

)
. (52)

This completes the proof after noticing that na ≥ νm.

B.2.2. PROOF OF LEMMA 3.7

Proof. Recall that M =
∑
v∈H vvT. In particular, we have∑

v∈H
vvT =

∑
v∈supp(π̂)

⪰
∑
v∈H

π̂(v)vvT =⇒ ∥a∥2M−1 ≤ ∥a∥2M−1(π̂) ≤ 2d, (53)

where the last inequality follows since π is an approximate G-optimal design.

B.2.3. PROOF OF LEMMA 3.8

Proof. Let k = |supp(π̂)| and let y1, . . . , yk be an enumeration of the elements yv, v ∈ supp(π̂). With y =[
y1 . . . yk

]T
, we have ∥y∥ ≤

√
k ∥y∥∞. To control the latter, we note

max
v

|⟨v, θ⋆⟩+ ηv + ξv| ≤ max
v

{|⟨v, θ⋆⟩|+ |ηv|+ |ξv|} ≤ 1 + max
v

|ηv|+max
i

|ξv| .

Since ηv ∼ SubG(1/nv), standard concentration inequalities for subgaussian maxima yield

P

max
v

|ηv| ≥ C

√
log(k/δ)

nv

 ≤ δ. (54)

Similarly, ξv are subexponential with parameter 2
nvεpriv

. By a union bound and (Vershynin, 2018, Proposition 2.7.1),

P
(
max
v

|ξv| ≥ t
)
≤

∑
v∈supp(π̂)

P (|ξv| ≥ t)

≤
∑

v∈supp(π̂)

P (|ξv| ≥ t)

≤ k exp

(
−min

{
minv n

2
vε

2
privt

2

8
,
minv nvεprivt

4

})

≤ k exp

(
−min

{
ν2m2ε2privt

2

8
,
νmεprivt

4

})
.

Setting t := 4 log(k/δ)
νmεpriv

above yields maxv |ξv| ≤ 4 log(k/δ)
νmεpriv

with probability at least 1− δ.

Finally, taking another union bound and relabelling yields the result.

B.2.4. PROOF OF THEOREM 3.9

Proof. We proceed with deriving an expression for the robust confidence interval from Proposition 2.1 under (M2). Indeed,
with probability at least 1− δ, for any fixed a ∈ A we have:

∣∣⟨a, θ̃ − θ⋆⟩
∣∣ ≲√d log(1/δ)

νm

(
1 +

1

εpriv

√
log(1/δ)

νm

)

+ 2d

(
1 +

√
log(k/δ)

νm
+

log(k/δ)

νmεpriv

)(√
kα+

√
α log(1/δ)

)
+ α,

(55)
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where k := |supp(π)|. Recall we can find (in poly-time) an approximate G-optimal design π satisfying

k := |supp(π)| ≲ d log log d. (56)

Therefore, we may proceed with the regret analysis. Similarly to the proof of Theorem 3.4, we condition on the case where
all randomized algorithms and invocations to random events succeed with high probability.

Then, with m = qi at round i, we have the following bound:

ni =
∑

v∈supp(π)

nv

=
∑

v∈supp(π)

⌈
qimax {π(v), ν}

⌉
≤

∑
v∈supp(π)

qimax {π(v), ν}+ 1

= supp(π) + qi
∑
v

max {π(v), ν}

≲ qi(1 + νd log log d).

In particular, we have the following property for the sum
∑
i q
i:

B∑
i=1

qi =
1

1 + νd log log d

B∑
i=1

ni =
T

1 + νd log log d
. (57)

Consequently, the regret of the algorithm conditioned on the good event is given by

Regret ≤ 4

B∑
i=1

niγi−1 ≲ q(1 + νd log log d)

B−1∑
i=0

qiγi, (58)

where γi is the width of the confidence interval at round i. The first term in the sum
∑
i q
iγi is

B−1∑
i=0

qi

√
d log(1/δ)

νqi
+ qi

√
d log(1/δ)

νqiεpriv
≤
√

d log(1/δ)

ν

(
B−1∑
i=0

qi/2 +

√
log(1/δ)

εpriv
√
ν

B−1∑
i=0

)

≤
√

d log(1/δ)

ν

(
qB/2 − 1

q1/2 − 1
+

√
log(1/δ)

ν

B − 1

εpriv

)
, (59)

which is a term independent of the corruption fraction. The second group of summands in
∑
i q
iγi is

B−1∑
i=0

qi

(
1 +

√
log(d log log d/δ)

νqi
+

log(d log log d/δ)

νqiεpriv

)

=
T

1 + νd log log d
+

√
log(d log log d/δ)

ν
· q

B/2 − 1

q1/2 − 1
+

log(d log log d/δ)

ν
· B − 1

εpriv
. (60)

Finally, summing over i using the last term of the confidence interval yields
B−1∑
i=0

qiα =
αT

1 + νd log log d
. (61)

Putting everything together, we arrive at the claimed regret bound:

Regret ≲ (1 + νd log log d)

(√
dT log(1/δ)

ν
+

log(1/δ) log(T )
√
d

εpriv
√
ν

)

+ 2d
(√

αd log log d+
√
α log(1/δ)

)(
T +

√
Td log log d/δ

ν
+

log(d log log d/δ)

ν

log T

εpriv

)
+ αT.

(62)
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