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Abstract
In this work, we study the problem of privately
maximizing a submodular function in the stream-
ing setting. Extensive work has been done on
privately maximizing submodular functions in the
general case when the function depends upon the
private data of individuals. However, when the
size of the data stream drawn from the domain of
the objective function is large or arrives very fast,
one must privately optimize the objective within
the constraints of the streaming setting. We estab-
lish fundamental differentially private baselines
for this problem and then derive better trade-offs
between privacy and utility for the special case
of decomposable submodular functions. A sub-
modular function is decomposable when it can
be written as a sum of submodular functions; this
structure arises naturally when each summand
function models the utility of an individual and
the goal is to study the total utility of the whole
population as in the well-known Combinatorial
Public Projects Problem. Finally, we complement
our theoretical analysis with experimental corrob-
oration.

1. Introduction
Consider the task of a service provider that trains machine
learning models for a set of users, e.g., platforms such as
Amazon Sagemaker and Microsoft Azure. In many cases,
collecting features can be costly and the service provider
has to select a limited number of features for their models.
For instance, given a data set of health attributes of a num-
ber of individuals, different users may want to predict the
likelihood of different diseases, and a subset of features may
be useful for the illnesses of some patients but extraneous
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for others. A common metric used to measure the utility
of a set of features is the mutual information between the
chosen set of features and the empirical likelihood of the
diseases of interest under the Naive Bayes assumption. This
function is known to exhibit a diminishing returns property
and is submodular (Krause & Guestrin, 2005b).

Definition 1.1 (Submodular functions). Let V be a finite
set and f a function mapping from 2V to R. For all S ⊂ V ,
we say that f(S) is the utility achieved by set S. For every
element e ∈ V and set S ⊂ V , the marginal utility of e over
S (denoted f(e|S)) is the gain in utility provided by e if we
add it to the set S; i.e. f(e|S) = f({e} ∪ S)− f(S). The
function f is called submodular if it has the diminishing
returns property, i.e., for every pair of subsets S ⊂ T ⊂ V
and element e not in T , f(e|T ) ≤ f(e|S). A submodular
function is called monotone if for all S ⊂ T ⊂ V , f(S) ≤
f(T ). We let OPT denote any arbitrary utility-maximizing
subset of V , potentially subject to additional constraints.

The problem of maximizing a submodular function subject
to constraints on the subsets of V one is allowed to pick
occurs across domains like computer science, electrical en-
gineering (Narayanan, 1997), and economics (Dobzinski
& Schapira, 2006). In theoretical computer science, sub-
modular maximization is a fundamental instance of combi-
natorial optimization, generalizing problems like Max-Cut
and Facility Location (Schrijver et al., 2003). On the other
hand, submodular maximization has also been applied con-
cretely to numerous problems in machine learning such
as feature selection for classification (Krause & Guestrin,
2005a), influence maximization in social networks (Kempe
et al., 2003), document and corpus summarization (Lin &
Bilmes, 2011), result diversification in recommender sys-
tems (Parambath et al., 2016) and exemplar based clustering
(Dueck & Frey, 2007) – see Mitrovic et al. (2017) and
Chaturvedi et al. (2021) for more references.

In many of these applications, one must publicly release a
solution to a submodular maximization problem in which
the information used to perform the optimization is private.
Consider the example above where private data of patients is
used to compute the utility of different sets of features. The
solution depends on private information, and may reveal too
much about the private data set. One way this can occur
is when a relatively rare feature is picked, adversaries with
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side-information (such as where the data was collected) can
then de-anonymize records in the private data set or deduce
who participated in the data collection. Situations like these
motivate the problem of differentially private submodular
maximization, as first considered in Gupta et al. (2010).

Differential privacy (DP) (Dwork et al., 2006b) is a property
that when satisfied by an algorithm, allows one to promise
strong information-theoretic guarantees limiting how much
an adversary might learn about the private data set based on
the output of that algorithm run on the data set.

Definition 1.2 (Differential privacy, Dwork et al. (2006b)).
Let X be the set of all possible data points. We say that
a pair of data sets A,B drawn from X are neighbouring
(denoted A ∼ B) if they differ in at most one data point I ,
so for instance A = B ∪ {I}. We say that an algorithm A
mapping from data sets derived from X to some output co-
domain Y is (ε, δ)-differentially private for some ε, δ > 0 if
for all pairs of neighbouring data sets A,B and all Y ⊂ Y ,

P (A(A) ∈ Y ) ≤ eεP (A(B) ∈ Y ) + δ.

The definition above says that the likelihood of any set of
outcomes Y of an (ε, δ)-DP algorithm can vary by at most
an eε multiplicative factor and an additive δ term if we
were to add or drop any one point from our data set. For
a given choice of privacy parameters ε and δ, (ε, δ)-DP is
typically achieved by adding appropriately scaled noise to
obfuscate sensitive values in the course of the computation,
and may result in trading off some of accuracy to achieve the
desired level of privacy. Such trade-offs have been shown
to be intrinsic to achieving differential privacy for many
problems, but a careful accounting for the noise added and
the privacy gained can let one significantly improve this
trade-off.

In practice, one picks the value of ε to be a small constant
that depends on the desired trade-off between privacy and
utility. It is typically required that δ = o(1/n) to avoid the
pathological case of completely revealing one person’s data
and claiming that privacy is achieved.

Although there is an extensive line of work in privately max-
imizing submodular functions (Gupta et al., 2010; Mitrovic
et al., 2017; Chaturvedi et al., 2021; Rafiey & Yoshida, 2020;
Sadeghi & Fazel, 2021), as far as we know there is no work
on doing so in the streaming setting. In this setting, the
elements that may be added to the final solution set arrive
in a stream such that either the stream length is significantly
greater than the disk space available to the optimization al-
gorithm, or the algorithm must make a decision immediately
whether to retain this item for possible inclusion in the solu-
tion set (at some cost) or to reject it outright. Submodular
maximization under streaming has been studied extensively
(Gomes & Krause, 2010; Kumar et al., 2013; Badanidiyuru

et al., 2014). Most notably, a (1− θ)/2-approximation al-
gorithm, that retains only O(k log k

θ ) many elements, was
introduced by Badanidiyuru et al. (2014) for the problem
of streaming submodular maximization. This algorithm is
near-optimal as it is known that one cannot do better than
an approximation factor of 1/2 (Feldman et al., 2020).

Problem statement: In this work, we consider the prob-
lem at the intersection of these two lines of inquiry, i.e.
submodular maximization in the streaming setting under
the constraint of differential privacy. For every possible
private data set A there is a corresponding monotonic (non-
decreasing) submodular function fA, a public stream of ele-
ments V of length n, and a cardinality constraint k, and we
want to find a subset S of V with cardinality at most k that
achieves utility close to fA(OPT) in the streaming setting.
Following previous work (Gupta et al., 2010; Mitrovic et al.,
2017), we assume a known bound on the sensitivity of fA
to A, i.e. for any A ∼ B, maxS⊂V |fA(S)− fB(S)| ≤ λ.
Without a bound on the sensitivity, f could be determined
completely by a single user and either their privacy or the
quality guarantee would have to fail. Even when the sen-
sitivity is at most 1, our lower bound below demonstrates
that we are bound to incur non-trivial additive error; it fol-
lows that in the case of unbounded sensitivity there can be
no (ε, δ)-differentially private algorithm with a non-trivial
utility guarantee.

1.1. Contributions

General monotone submodular functions. The starting
point for our work is the non-private algorithm of Badani-
diyuru et al. (2014) for submodular maximization in the
streaming setting, which we would like to privatize. The
algorithm is given the submodular function f to be maxi-
mized, a cardinality constraint of k, and a guess O for the
optimal utility f(OPT). For every stream element e ∈ V ,
the algorithm adds e to the solution set S if the marginal
utility provided by e exceeds the value O/2k.

Algorithm 1 Streaming algorithm for monotone submodu-
lar maximization subject to a cardinality constraint, Badani-
diyuru et al. (2014)
input Monotonic submodular function f , cardinality con-

straint parameter k, element stream V , approximation
parameter θ, estimate O of the optimum cost f(OPT)
S ← ∅
for e ∈ V do

if f(e|S) ≥ O/(2k) and |S| < k then
S ← S ∪ {e}

end if
end for

output S

The authors showed that this algorithm satisfies the follow-
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ing utility guarantee:

Theorem 1.3 (Badanidiyuru et al. (2014)). The final solu-
tion S satisfies f(S) ≥ min{O/2, f(OPT)−O/2}.

We see that if O = f(OPT), then we immediately get a
1/2-approximation algorithm. More generally if f(OPT) ∈
[E,m] for some E,m ∈ R>0, we can run multiple copies of
this algorithm in parallel with a set of geometrically scaling
guesses

O = {E, (1 + θ)E, . . . , (1 + θ)⌊log1+θ
m
E ⌋E,m}.

It then follows that there is some O∗ ∈ O which is within
a (1± θ) multiplicative factor of f(OPT) leading to a net
1−θ
2 approximation. Since we must maintain and update a

solution set SO for each O ∈ O, achieving this guarantee
requires that we pay a spatial overhead of 2 logm/E

θ .

One way of privatizing this algorithm is to appeal to the
celebrated sparse vector technique. Given a sequence of
sensitive yes/no queries (as is the case here where either
an element is added or not added), the sparse vector tech-
nique provides a way of privatizing this sequence of checks
with surprisingly little noise and low error. We see that the
value f(e|S) is the only private quantity accessed in the
submodular streaming maximization algorithm. The sparse
vector technique adds independently sampled noise values
drawn from a Laplace distribution with standard deviation
Õ(
√
k/ε) to the value of f(e|S) and O/2k before making

the threshold check. This can be justified by showing that
the net privacy lost scales only with number of elements
added to the solution set (i.e. at most k). Formalizing this
outline leads to the following result:

Theorem 1.4. Given query access to a monotone submod-
ular function fA with sensitivity λ taking values in [0,m],
and an input stream V of length n, there exists an algorithm
that when given a cardinality constraint of k, an approx-
imation parameter θ, a failure probability η, and privacy
parameters ε < 1 and δ, is (ε, δ)-DP and achieves utility at
least

(1− θ)f(OPT)

2
−O

(
λk1.5 log1.5 nk

ηθδ log
m
E

ε
√
θ

)
.

with probability 1− η, where OPT is any arbitrary optimal
solution for the non-private submodular maximization prob-
lem and E = min{k logn

ε ,m/2} and the total number of
elements retained in memory is O(k logm/E

θ ). Further, this
algorithm operates in just one pass.

This result serves as a differentially private baseline for gen-
eral monotone submodular functions - it achieves a similar
multiplicative approximation factor as the non-private al-
gorithm, but suffers significant additive loss. Minimizing
this additive loss is key to achieving better utility for private

streaming submodular maximization. Are there reasonable
assumptions under which we can achieve even lower addi-
tive loss whilst preserving privacy?

Decomposable monotone submodular functions. In the
non-streaming setting, Gupta et al. (2010) showed that
when the private submodular function to be maximized is λ-
decomposable, i.e., it can be written as a sum of monotonic
submodular functions taking values in [0, λ] each corre-
sponding to the data of one individual, then a much smaller
amount of noise needs to be added for DP than in the general
case.

fA(S) =
∑
p∈A

f{p}(S)

For each agent p, the function f{p} is monotone submodu-
lar and takes values in [0, λ], which automatically implies
fA has sensitivity λ. Gupta et al. (2010) achieved their re-
sult by picking k elements in sequence that approximately
maximize the marginal utility that they return. To preserve
privacy, these picks are made through the exponential mech-
anism, which randomly selects an element with probability
proportional to its marginal utility. The authors performed
an intricate analysis to show that the net privacy loss is in
fact independent of the number of elements picked.

In the streaming setting, however, the exponential mecha-
nism cannot be applied as the algorithm only has access
to the marginal utility of the current element in the stream
at any time whereas executing the exponential mechanism
requires knowledge of the marginal utility values of all el-
ements (in particular elements that have not yet been seen
by the algorithm). This limited access to the marginal util-
ity values make the previous approach inapplicable, and
therefore leads us to investigate the following question:

Is possible to achieve a better utility in the streaming setting
for monotone submodular functions that are decomposable?

Our main result answers this question in the affirmative. To
achieve this result we move beyond prior work in streaming
with privacy and show that even when picking arbitrarily
many elements k from an arbitrarily long stream of length
n, remarkably it still suffices to add privatizing noise with
just constant magnitude to the threshold check for each ele-
ment. The core algorithmic change made is that we sample
privatizing noise from the Gumbel distribution instead of
the Laplace distribution. Although the Gumbel distribu-
tion has been used before in DP to simulate the exponential
mechanism, its use in this manner to achieve privacy in the
streaming setting is as far as we know entirely novel.
Theorem 1.5. Given query access to a λ-decomposable
monotone submodular function fA with m summands over
a stream V of length n, there exists an algorithm that when
given a cardinality constraint of k, an approximation pa-
rameter θ, a failure probability η, and privacy parameters
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ε < 1 and δ, achieves utility at least

(1− θ)f(OPT)

2
−O

(
λk log2 m

Eεδθ log
2nk logm/E

ηθ

ε
√
θ

)
.

with probability 1 − η. Here E = min{k logn
ε ,m/2}

and the total number of elements retained in memory is
O(k logm/E

θ ). Further, this algorithm operates in just one
pass.

The privacy analysis of this result turns out to be quite in-
volved and we give more detail below. The multiplicative
approximation factor equals the (1− θ)/2-approximation
factor of the non-private setting. However, similar to the pri-
vate non-streaming setting in Chaturvedi et al. (2021) with
matroid constraints as well as non-monotone objectives, we
see a trade-off between the multiplicative and additive terms
which we can tune via the multiplicative approximation
parameter θ.

Near-optimality. To show that the additive error term has
the optimal dependence on k/ε (up to logarithmic terms) we
also extend previous lower bounds by Gupta et al. (2010) for
private submodular maximization from the (ε, 0) to (ε, δ)-
setting. The proof proceeds similarly to that of the lower
bound of Nguyen et al. (2021) for k-means clustering in the
(ε, δ) setting, and the formal statement is as follows:

Theorem 1.6. For all 0 ≤ ε, δ ≤ 1, k ∈ N, n ≥ k eε−1
δ ,

and c ≥ 4δ
eε−1 , if an (ε, δ)-DP algorithm for the submodular

maximization problem for decomposable objectives achieves
a multiplicative approximation factor of c, it must incur
additive error Ω((kc/ε) log(ε/δ)).

The gap in the exponent of k between the upper bound on the
additive loss for general λ-sensitive submodular functions
and the lower bound occurs in the non-streaming setting as
well (compare Mitrovic et al. (2017) and our lower bound
Theorem 1.6), and the assumption under which this gap is
closed is the same as ours - i.e. λ-decomposability. Further,
as we have observed before, the multiplicative approxima-
tion factor that we achieve is essentially the same as the
non-private setting. In this sense our results are tight with
the state of the art for both general private submodular max-
imization and streaming submodular maximization.

We also find an improvement for decomposable submod-
ular functions by using Gumbel noise instead of Laplace
noise in practice by conducting experiments comparing their
performance. We include all complete proofs and omitted
technical details in the appendix.

1.2. Related work

Papadimitriou et al. (2008) introduced the Combinatorial
Public Projects problem (CPPP) - given a set A of m agents

and n resources, and a private submodular utility function
f{p} for every agent p the solver must coordinate with the
agents to maximize fA :=

∑
p∈A f{p}, i.e. the sum of their

utilities. This problem captures public welfare maximization
and is interesting theoretically because in this setting agents
are incentivized to lie to the solver and over-represent the
utility they may individually derive from the resources that
are picked for the group. The authors showed that unless
NP ⊂ BPP , there is no truthful and computationally effi-
cient algorithm for the solver to achieve an approximation
ratio better than n1/2−ϵ for any ϵ > 0.

Gupta et al. (2010) were the first to consider the problem
of differentially private submodular maximization. They
showed that it is possible to privately optimize the objective
in CPPP while losing an amount of privacy that is indepen-
dent of k, the number of items picked, and achieved essen-
tially optimal additive error. Since (ε, δ) privacy implies
approximate (2ε+ δ)-truthfulness, their result showed that
a slight relaxation of the truthfulness condition considered
by Papadimitriou et al. (2008) allowed constant factor ap-
proximation if the optimal utility was not too low. They also
showed that optimizing a submodular function ε-privately
under a cardinality constraint of k over a ground set of n
elements must suffer additive loss Ω(k log n/k).

Mitrovic et al. (2017) considered the more general case of
private submodular maximization when the objective func-
tion has bounded sensitivity. They were motivated by the
problem of feature selection under the constraint of differ-
ential privacy. They proposed algorithms for both general
monotone and non-monotone objectives with bounded sensi-
tivity, and provided extensions to matroid and p-extendable
systems constraints. Although the error guarantees of their
results match those of Gupta et al. (2010) in the case of
decomposable functions, for the case of general monotone
and non-monotone objectives they get higher additive error.

Chaturvedi et al. (2021) extended the results of Gupta et al.
(2010) from cardinality to matroid constraints, and from
monotone to the non-monotone setting. They achieved this
by adapting the Continuous Greedy algorithm of Călinescu
et al. (2011) and the Measured Continuous Greedy algorithm
of Feldman et al. (2011). They also made a small fix to the
privacy analysis of Gupta et al. (2010) resulting in a weaker
bound (by a constant factor) on the privacy loss.

Rafiey & Yoshida (2020) also studied the problem of pri-
vate submodular and k-submodular maximization subject
to matroid constraints, and achieved the same multiplicative
approximation factor as Chaturvedi et al. (2021) for mono-
tone submodular maximization. In this work privacy and
time-efficiency were optimized at the cost of higher additive
error.

Sadeghi & Fazel (2021) made further progress on private
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monotone submodular maximization for submodular func-
tions with total curvature at most κ ∈ [0, 1] by achieving a
(1− κ/e)-approximation algorithm and lower query com-
plexity than the previous works.

Salazar & Cummings (2021) considered a variant of this line
of work wherein a sequence of private submodular functions
defined over a common public ground set are processed, and
at every iteration a set of at most k elements from the ground
set must be picked before the function is observed. Here the
goal is regret minimization, and the authors introduced dif-
ferentially private algorithms that achieve sub-linear regret
with respect to a (1− 1/e)-approximation factor in the full
information and bandit settings.

2. Preliminaries
We first make a couple of simplifying technical observa-
tions.
Remark 2.1. Following the setup of the DP set cover prob-
lem in Gupta et al. (2010), we assume that there is a publicly
known upper bound on the number of agents which we de-
note by m; as the dependence of the error and space on m
will be seen to be logarithmic, even a loose upper bound
works well. Alternatively, we can allocate a small fraction
of our privacy budget to privatize the number of agents m
via the Laplace mechanism (Lemma 2.6).
Remark 2.2. It will suffice to reason about functions with
sensitivity 1, and 1-decomposable functions. For the more
general case where the submodular function f has sensitivity
λ or is λ-decomposable, we can reason about f/λ which
ensures that our assumptions hold.

We will use the following basic and advanced composition
laws to reason about the privacy loss that occurs when multi-
ple differentially private mechanisms are used in a modular
fashion as subroutines. We follow the formulation in Dwork
& Roth (2014).

Theorem 2.3 (Basic composition, Dwork et al. (2006a);
Dwork & Lei (2009)). IfMi is (εi, δi)-differentially private
for i = 1, . . . , k, then the release of the outputs of all k
mechanisms is (

∑k
i=1 εi,

∑k
i=1 δi)-differentially private.

Theorem 2.4 (Advanced composition, Dwork et al. (2010)).
For all ε, δ, δ′ > 0, given a set of (ε, δ)-differentially
private mechanisms, if an adversary adaptively chooses
k mechanisms to run on a private data set, then the tu-
ple of responses is (ε′, kδ + δ′)-differentially private for
ε′ =

√
2k ln(1/δ′)ε+ kε(eε− 1). In particular, for ε′ < 1,

if ε = ε′

2
√

2k ln(1/δ)
, then the net k-fold adaptive release is

(ε, (k + 1)δ)-differentially private.

We will appeal to the following private mechanism used to
choose an element from a public set based on a private score
function of bounded sensitivity.

Lemma 2.5 (Exponential Mechanism, McSherry & Talwar
(2007)). Let q : X ∗ × V → R be a score function for a
public domain V that depends on the private input data set
drawn from X ∗, i.e. q(A, v) is the score of v ∈ V for the
data set A ∈ X ∗. Let ∆q = maxA∼B maxv∈V |q(A, v)−
q(B, v)| be the sensitivity of q, i.e. the maximum possible
change in the value of the score of an element for neigh-
boring data sets. The exponential mechanismM samples
v ∈ V with probability ∝ exp(εq(A, v)/(2∆q)) and out-
puts v∗. The exponential mechanism is ε-differentially pri-
vate. Further, for a finite set V , we have that with probability
1− γ,

qA(v
∗) ≥ max

v∈V
qA(v)−

2∆q

ε
ln
|V |
γ

.

Given a real-valued function with bounded sensitivity, the
Laplace mechanism can be used to privatize the value taken
by that function on the private input data set.

Lemma 2.6 (Laplace mechanism, Dwork et al. (2006b)).
Given a function f : 2X → R such that maxA∼B |f(A)−
f(B)| ≤ ∆f , the mapping A 7→ f(A) + α where α ∼
Lap(∆f/ε) is ε-differentially private. Here Lap(σ) de-
notes the standard Laplace distribution with scale parame-
ter σ.

We will also draw random values from the Gumbel dis-
tribution for improved privacy guarantees. We recall the
distribution function for later use.

Definition 2.7 (Gumbel distribution). The Gumbel distri-
bution is defined on R. When the mean is µ and the scale
parameter is γ, the distribution is defined by its CDF

F (x) = exp
(
−e−(x−µ)/γ

)
,

or alternatively its density function

f(x) =
1

γ
exp
(
−(x− µ)/γ + e−(x−µ)/γ

)
.

2.1. The sparse vector technique

Following Dwork & Roth (2014), we recall the pseudocode
and utility guarantee of the sparse vector technique. This
result is attributed to Dwork et al. (2009); we refer the reader
to the end of chapter 3 of Dwork & Roth (2014) for a more
comprehensive discussion.

Theorem 2.8 (Dwork et al. (2009)). For σ =

(
√

32k ln 1
δ )/ε, Dα = Lap(σ) and Dβ = Lap(2σ), Al-

gorithm 2 is (ε, δ)-DP. Further, with probability 1− β, for
all queries i, if ν̂i is the privatized query value fi + νi, then

|ν̂i − νi| ≤
(lnn+ ln 4c

β )
√

k ln 2
δ (
√
512 + 1)

ε
.
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Algorithm 2 Sparse, Dwork et al. (2009); Dwork & Roth
(2014)
input Arbitrary (possibly adaptive) stream of sensitivity 1

queries f1, f2, . . . , a threshold T , a cutoff point k, thresh-
old noise Dα, score noise Dβ .
α ∼ Dα

Let T̂i = T + α for i ∈ {0, . . . , k − 1}
Let count = 0
for query ei do

Let βi ∼ Dβ

if fi + βi ≥ T̂count then
ai = ⊤
count = count + 1

else
ai = ⊥

end if
if count ≥ k then

Halt
end if

end for
output Stream of yes/no outputs (a1, a2, . . . )

3. Private streaming with Laplace noise
Our main algorithm for maximizing submodular monotone
functions in both the general and decomposable cases is
Algorithm 3. At a high level we would like to adapt the non-
private submodular streaming algorithm of Badanidiyuru
et al. (2014) to the private setting by privatizing the check
that is made when adding an element e to the solution set S.
Doing so essentially gives us an instantiation of Algorithm 2
wherein the sensitivity 1 queries are the values f(e|S), the
marginal utilities of the stream elements for the private func-
tion over the solution set picked thus far, and the threshold
being compared with is O/2k, where O is a guess for the
optimal utility OPT.

In the case where f is monotone submodular and has sensi-
tivity 1 but is not decomposable, Algorithm 3 sets the priva-
tizing noise distributions Dα and Dβ directly according to
the analysis of the sparse vector technique, i.e. Theorem 2.8.

As in the non-private case, since the value OPT is not
known, we let O vary over a setO = {E, (1+θ)E, . . . ,m};
it follows that |O| = ⌈log1+θ

m
E ⌉+ 1, this is denoted T in

the pseudo-code. In this case the ideal choice of E is the
lowest possible additive error that we can achieve in the
DP setting, and can be set to be equal to the lower bound
which we derive in Theorem 1.6. Indeed, if f(OPT) < E,
it can be shown that the utility guarantees hold trivially.
Further, we observe that our net privacy budget of (ε, δ)
must be split across these T -many calls to Algorithm 2 by
the composition laws of privacy described in the prelim-
inary (for a stronger theoretical guarantee one appeals to

the advanced composition rule); this is how we derive our
expression for ε′ which is the privacy parameter passed in
each call to Algorithm 2. The stream V can then be pro-
cessed in parallel for each guess O ∈ O. At the end of the
stream we see that we have some T -many solutions SO cor-
responding to different guesses O ∈ O for OPT. To choose
a final solution one again has to access the private values
fA(S

O), and to account for this we appeal to the exponen-
tial mechanism to choose a candidate SO∗

that achieves
near-maximal utility among the set of guesses {SO : O}.
Applying the composition laws for privacy across all calls
to private mechanisms and accounting for the additive error
introduced by appealing to the sparse vector technique one
derives Theorem 1.4.

Algorithm 3 Private streaming submodular maximization
input Monotone submodular function fA, cardinality con-

straint parameter k, failure probability β, privacy parame-
ters (ε, δ), element stream V , approximation parameter
θ
Let E = min

{
k logn

ε ,m/2
}

Let T = ⌈log1+θ
m
E ⌉ + 1

if fA has sensitivity 1 but is not 1-decomposable then
Let ε′ = ε

4
√

2T ln((T+1)/δ)

Let σ =

√
32k ln T+1

δ

ε′

Let Dα = Lap(σ)
Let Dβ = Lap(2σ)

else if fA is 1-decomposable then
γ = O

(
ε√

T log1.5 T/δ

)
(exact expression in

Lemma 4.2)
Dα = Gumb(γ)
Dβ = Gumb(γ)

end if
Let O = {E, (1 + θ)E, (1 + θ)2E, . . . , (1 +
θ)⌊log1+θ

m
E ⌋E,m}

for ei ∈ V do
for all O ∈ O do
SO ← Algorithm 2
(Query stream (fA(e|SO))e∈V , threshold O

2k ,
cutoff k,Dα,Dβ)
where

ai = ⊤ ⇒ add element ei to SO

ai = ⊥ ⇒ reject element ei

end for
end for
SO∗ ← Exponential Mechanism({SO : O ∈ O}, fA(·),
privacy parameter ε/2) (in the notation of Lemma 2.5,
q(A,SO) = fA(S

O))
output SO∗
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4. Private streaming with Gumbel Noise
In the setting where the given objective is decomposable, we
show that by setting our privatizing noise distributions Dα

and Dβ equal to a Gumbel distribution with an appropriate
scale parameter, we can reduce the dependence of the addi-
tive error on k/ε to what is asymptotically the best possible.
As the utility analysis in this case is identical to that before,
we focus on just the privacy analysis in this section.

We fix some arbitrary guess O for OPT. For any possible
output set S = {ei1 , . . . , eik}, we want to bound the ratio
Pr[A(fA) = S]/Pr[A(fB) = S], where A = B ∪ I (the
other case B = A ∪ I turns out to be relatively straight-
forward). The output S = {vi1 , . . . , vik} is equivalent to
a stream of outputs a1, a2, . . . a|V |, where ai = ⊤ denotes
that the element ei was picked, and ai = ⊥ denotes rejec-
tion. For every index i, let Si denote the set of elements
already accepted when the element ei is being processed.
We have the following technical lemma:

Lemma 4.1. Conditioned on having picked the set Si of
elements with |Si| = u < k,

Pr[ai = ⊤|Si] =

∫ ∞

−∞
1− exp

(
−wA(i|Si)e

αu/γ
)
dα|Si|,

where

wA(i|Si) = exp

(−1
γ

(
O

2k
− fA(ei|Si)

))
,

and αu ∼ Gumbel(0, γ).

We think of the term wA(i|Si) as the weight of element ei;
we see that the probability that ei is accepted increases as
its weight increases. By appealing to this lemma iteratively
and integrating over the noise variables αu, it is possible to
show that Pr[A(A) = S] =

∏r
u=1 Xu where Xu equals

wA(iu|Siu)(
1 +

∑
j∈(iu−1,iu)

wA(j|Siu)

)(
1 +

∑
j∈(iu−1,iu]

wA(j|Siu)

) .

From some elementary algebra it then follows that

Pr[A(fA) = S]

Pr[A(fB) = S]
≤
( r∏

u=1

1 +
∑

j∈(iu−1,iu)
wA(j|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu)

)2

.

We see that by definition wA(j|Siu) = wB(j|Siu)
exp
(
f{I}(ej |Siu)/γ

)
, whence we can write

1 +
∑

j∈(iu−1,iu)

wA(j|Siu)

1 +
∑

j∈(iu−1,iu)

wB(j|Siu)
= E

j∼Pu

[exp
(
f{I}(ej |S)/γ

)
].

Here Pu is the distribution on (iu−1, iu) that picks element
j with probability∝ wB(ej |Siu), and no element at all with

probability ∝ 1. At a high level, what we show is that the
increase in the likelihood of an element eiu being picked
can be bounded in terms of the expectation of a function of
the marginal gain of ej over Siu for the agent I when ej is
drawn according to Pu. We denote this expectation term Yu,
whence we can write

Pr[A(fA) = S]

Pr[A(fB) = S]
≤
( r∏

u=1

Yu

)2

.

We use this upper bound to show that for most sets S that are
likely to be picked by the algorithm given the function fB
(i.e. with probability 1− δ),

∏k
u=1 Yu and consequently the

likelihood of S under fA is not too large. Since the submod-
ular function fI takes values in [0, 1], intuitively we expect
the product of the Yu to telescope over u and concentrate
strongly. We also see that if Yu is large, then the likelihood
of some element with its index in the interval (iu−1, iu)
being picked is relatively high (note that although the dis-
tribution according to which the next element is picked and
Pu are not identical, they are similar and closely related).
In particular, it should be unlikely that the algorithm picks
sequence of elements (ei1 , . . . , eik) for which this product
is large.

However, to formally derive a privacy guarantee from this
outline there are many technical challenges that need to
be resolved. The distribution over which the expectation
term of interest depends on the set of elements already
picked. We formalize this situation by defining a multi-
round probabilistic process and proceeding by induction.
The expectation term derived above does not admit a useful
concentration bound directly, so instead we must analyze
a Õ(1/ε)th-moment of the net privacy loss. The formal
statement that we derive is as follows:

Lemma 4.2. Consider the following k-round probabilistic
process. Let vj := wB(iu−1 + j|Siu). In each round u, it
is the case that the set of elements Siu = {i1, . . . , iu−1}
has been picked, and the element iu = j + iu−1 is picked
with probability

pj =
1

1 + v1 + · · ·+ vj−1
· vj
1 + v1 + · · ·+ vj

.

Then, for each q = 1, . . . , r, for a value of c = γ/4 =
2

ε ln 2 log
2
εδ , the following bound holds:

E
S

[
k∏

u=q

Y c
u |Siq

]
≤ 1 +

1

ε
(1− f{p}(Siq )).

We see that the right hand side of the bound above has a
telescoping form similar to what we expected - the higher
the utility of the current set Siq , the lower is the expected
product of the subsequent Yu terms for u > q.

7



Streaming Submodular Maximization with Differential Privacy

We recall that we bounded from above the ratio of proba-

bilities, Pr[A(fA) = S]/Pr[A(fB) = S] by
(∏k

u=1 Yu

)2
.

We can now apply Markov’s inequality on the c-th exponent
of this random variable so as to exploit the bound on the
expectation that we have derived; this completes the core of
our privacy analysis. Similar to before we must account for
the T many calls to Algorithm 2 as well as the exponential
mechanism and this is identical to the case with Laplace
noise.

5. Experiments
In this section, we empirically evaluate our approach on
a practical instance of private submodular maximization,
k-medians clustering 1. Given a set of points V , a metric
d : V × V → R, a private set of demand points P ⊆ V , the
objective of the k-medians problem is to select a set of points
S ⊂ V , |S| ≤ k to minimize cost(S) =

∑
p∈P d(p, S),

where d(p, S) = mins∈S d(p, s). An application of his
problem is allocating relatively few (k) service centers to
be able to reach a large set of clients (P ) and ensure that
there is at least one service location not too far from most
clients; when the clients’ locations are private but the service
locations are public, this problem requires a differentially
private solver. We can optimize this objective by casting
it into the following submodular maximization problem:
maxS⊂V,|S|≤k

∑
p∈P 1− d(p, S)/G, where G is a normal-

ization constant so that fp(S) = 1 − d(p, S)/G ∈ [0, 1].
Setting d(p, ∅) = G, it can be checked that cost(S) is a
monotone decomposable submodular function.

We compare the performance of Algorithm 3 with Laplace
and Gumbel noise on two data sets. First, following Mitro-
vic et al. (2017); Chaturvedi et al. (2021) we use the Uber
data set (FiveThirtyEight, 2019) of Uber cab pick ups in
Manhattan for the month of April 2014; the goal is to allo-
cate public waiting locations for Uber cabs so as to serve
requests from clients within short distances. Second, we con-
struct a synthetic dataset in R2 by generating clients P from
a mixture of 3 Gaussian distributions, each with identity co-
variance matrix and mean chosen uniformly at random from
a bounding box of [20]× [20]. We sample 15000 points for
one Gaussian distribution, and 2500 points for each of the
other two. For both settings, we set d(·, ·) to be the ℓ1 or
Manhattan distance, i.e. d(a, b) = |a1− b1|+ |a2− b2|. We
set V to be a 50× 50 2-D grid of points uniformly spanning
the rectangular domain.

We compare our two algorithms with an approach that se-
lects k Random points from the stream as a differentially

1The code used to run all experiments may be found at
www.github.com/thydnguyen/PrivSubmodularOpt. All experi-
ments were performed on a PC with 5.2 GHz i9 chip and 64
GB RAM.

private baseline and the Non-private algorithm 1. For both
data sets, we set δ = 1/|P |1.5 and θ = 0.2. In Figure 3 and
Figure 6 we graph the clustering cost versus the cardinality
constraint k on the Taxi and Synthetic data sets respectively.
We also tabulate the exact numerical values recorded in the
appendix. We measure and report the mean and standard
deviation of the clustering cost over 20 random runs with
varied k and ε.

We set E = min (k log n/ε, |P |/2) for the private algo-
rithms, and E = min(maxei∈V f(ei), k log n/ε, |P |/2)
for the non-private algorithm. This guarantees that the num-
ber of thresholds used in the non-private algorithm is at least
that used in the private algorithms. Instead of using the ex-
ponential mechanism to output the solution in algorithm 3,
we use the Report Noisy Max mechanism with equivalent
privacy guarantee and similar tail bound (see Dwork & Roth
(2014)); this avoids potential overflow issues with the ex-
ponential mechanism. When the number of elements left
in the stream of a non-private instance is less than k − |S|,
we add the rest of the points to S. This does not affect
the theoretical guarantee, but might benefit the algorithm
empirically.

Although we apply advanced composition in our theoretical
analyses as it asymptotically requires lower noise than basic
composition, because of the difference in constant coeffi-
cients, basic composition works better for the number of
thresholds we need to consider. For this experiment, we
apply basic composition and set ε′ = ε/T, δ′ = δ/T .

In Figures 1 and 4, we report the results for ε = 0.1. We
observe that Gumbel noise outperforms Laplace noise in
both settings. We observe similar results in Figures 2 and 5
for ε = 1. Gumbel noise continues to outperform Laplace
noise in both settings. Increasing the privacy budget from
0.1 to 1 slightly improves the utility of the differentially
private approaches.

One interesting artefact that we observe for the synthetic
data set is that the clustering cost actually increases as we
increase the solution size from k = 100 to k = 125 when
using Laplace noise. In general this should not happen
as increasing the number of centers can only reduce the
clustering cost if the centers are picked in the same way
across experiments. However, since we have a fixed privacy
budget and are forced to split this budget among a greater
number of choices when using Laplace noise, we end up
making a larger number of poorer quality picks for a net
worse solution. This phenomenon has also been seen in
other works on private clustering (Nguyen et al., 2021).

On the other hand, since the algorithm with Gumbel noise
uses a scale parameter which is invariant in the cardinality
constraint, there is no such worsening of performance with a
more generous cardinality constraint. We are able to ensure
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that apart from better performance overall, increasing our
budget can only lead to a lower clustering cost and we do
not need to consider private hyperparameter optimization
over k, for instance.
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Figure 1. ε = 0.1
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Figure 2. ε = 1

Figure 3. Comparison of clustering cost (lower is better) achieved
by various streaming algorithms on the Taxi data set.
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A. Proof of Theorem 1.3
In this section we reproduce the proof of utility of Algorithm 1 of Badanidiyuru et al. (2014).
Theorem 1.3 (Badanidiyuru et al. (2014)). The final solution S satisfies f(S) ≥ min{O/2, f(OPT)−O/2}.

Proof. We see from the pseudocode of Algorithm 1 that when an element ei ∈ V is processed by the stream, if Si is the set
of accepted elements at that point then ei is retained and added to the solution if and only if f(ei|Si) ≥ O/2k.

Let S = {ei1 , . . . , ei|S|}. We consider two cases depending on the size of S. If |S| = k, then

f(S) =

k∑
j=1

f(eij |Sij )

≥ k · O
2k

≥ O/2.

In the second case, if |S| < k, then all elements ei ∈ OPT \ S must have been rejected i.e. f(ei|Si) < O/(2k). Let
OPT\S = {ej1 , . . . , ejt} (i.e. {j1, . . . , jt} is some subset of {i1, . . . , i|S|}). Since f is monotonic and Si ⊂ S for all
ei ∈ V , we have that f(eji |S) ≤ f(eji |Sji) < O/(2k). We can write∑

eji∈OPT\S

f(eji |S) ≤ k · O
2k

≤ O/2.

On the other hand, we also have that∑
eji∈OPT\S

f(eji |S) ≥
t∑

i=1

f(eji |S ∪ {ej1 , . . . , eji−1
})

= f(S ∪ {ej1 , . . . , ejt})− f(S)

= f(OPT )− f(S),

where in the above we use that f(eji |S) ≥ f(eji |S ∪ {ej1 , . . . , eji−1
}) by the submodularity of f , and then let the sum of

marginal gains telescope. From the two inequalities above we get that

f(S) ≥ f(OPT )−O/2.

The desired lower bound now follows by simply taking the min over the two cases.

We see that if O = f(OPT ), then by setting the threshold according to this value we immediately get a 1/2-approximation
algorithm. In the setting where we do not have this information, but have the promise that the optimum value lies in the
range [E,m], we can run multiple copies of this algorithm with a set of geometrically scaling guesses

O = {E, (1 + θ)E, (1 + θ)2E, . . . , (1 + θ)⌊log1+θ
m
E ⌋E,m}.

Essentially, we try geometrically varying guesses for f(OPT ) so that we are assured that there is some O† ∈ O such that

f(OPT ) ≤ O† ≤ (1 + θ)f(OPT ).

From the guarantee of Theorem 1.3, we get that if SO†
is the output of Algorithm 1 when run with O = O†, then

f(SO†
) ≥ min{O†/2, f(OPT )−O†/2}
≥ min{f(OPT )/2, (1− θ)f(OPT )/2}
≥ (1− θ)f(OPT )/2.

We see that since we must maintain and update all the SO for O ∈ O, achieving this guarantee requires that we pay a
computational and spatial overhead of 2 logm/E

θ for a 1−θ
2 -approximation. We also note that this algorithm requires just one

pass over the data stream.
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B. Proof of Theorem 1.4
For ease of reference we reproduce the pseudo-code of Algorithm 2 and Algorithm 3.

Algorithm 2 Sparse, Dwork et al. (2009); Dwork & Roth (2014)
input Arbitrary (possibly adaptive) stream of sensitivity 1 queries f1, f2, . . . , a threshold T , a cutoff point k, threshold

noise Dα, score noise Dβ . Output is a stream of answers a1, a2, . . . , ai ∈ {⊥,⊤}
α ∼ Dα

Let T̂i = T + α for i ∈ {0, . . . , k − 1}
Let count = 0
for query ei do

Let βi ∼ Dβ

if fi + βi ≥ T̂count then
Output ai = ⊤
count = count + 1

else
ai = ⊥

end if
if count ≥ k then

Halt
end if

end for

Lemma B.16. If α ∈ (al, au) and for all elements ei ∈ V , βi ∈ (bl, bu), then Algorithm 2 has the promise that when run
with threshold T = O/2k, if we add all elements ei for which ai = ⊤ to SO, then

f(SO) ≥ 1

2
min{O, f(OPT)−O} − kbu + kal.

Proof. Let SO = {ei1 , . . . , eik}. Let SO
iu

:= {ei1 , . . . , eiu−1
} for u ≤ k. Since the selected elements must have succeeded

in the threshold check, it must be the case that

f(eiu |SO
iu) + βiu ≥

O

2k
+ αiu

⇒ f(eiu |SO
iu) + bu ≥

O

2k
+ al

⇒ f(eiu |SO
iu) ≥

O

2k
− bu + al

Hence we have that

f(S) =

k∑
u=0

f(eiu |SO
iu)

≥ O

2
− kbu + kal

On the other hand if |SO| = r < k, as in the proof of Theorem 1.3, let OPT\S = {ej1 , . . . , ejt}, and as before, we have
that

f(SO) ≥ f(OPT)−
∑

eji∈OPT\SO

f(eji |SO)

≥ f(OPT)−
t∑

i=1

(O/2k + αji − βji)

≥ f(OPT)− O

2
− kbu + kal.
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Algorithm 3 Private streaming submodular maximization
input Monotone submodular function fA, cardinality constraint parameter k, failure probability β, privacy parameters
(ε, δ), element stream V , approximation parameter θ
if fA has sensitivity 1 but is not 1-decomposable then

Let ε′ = ε

4
√

2T ln((T+1)/δ)

Let σ =

√
32k ln T+1

δ

ε′

Let Dα = Lap(σ)
Let Dβ = Lap(2σ)

else if fA is 1-decomposable then
γ = O

(
ε√

T log1.5 T/δ

)
(exact expression in Lemma 4.2)

Dα = Gumb(γ)
Dβ = Gumb(γ)

end if
Let E = min

{
k logn

ε ,m/2
}

Let T = ⌈log1+θ
m
E ⌉ + 1

Let O = {E, (1 + θ)E, (1 + θ)2E, . . . , (1 + θ)⌊log1+θ
m
E ⌋E,m}

for ei ∈ V do
for all O ∈ O do
SO ← Algorithm 2
(Query stream (fA(e|SO))e∈V , threshold O

2k ,
cutoff k,Dα,Dβ)
where

ai = ⊤ ⇒ add element ei to SO

ai = ⊥ ⇒ reject element ei

end for
end for
SO∗ ← EM({SO : O ∈ O}, ε/2)

output SO∗

Remark B.17. Note that although the noise random variables βei for ei ∈ O are all drawn independently and have mean
0, we have implicitly conditioned on SO of elements having already been picked, and so we cannot claim and exploit
independence so as to derive a better concentration bound. One would expect to see noise values biased high, making it
more likely that that element have passed the check. Although we should be able to derive a concentration bound for the
threshold noise random variables αO that scales as Õ(

√
k), as the other noise term dominates in magnitude this does not

help asymptotically.

Proof of Theorem 1.4. We assume for now that f has sensitivity 1. From Theorem 2.8 and the choice of σ in Algorithm 2
we see that each one of the T = |O| calls to is (ε′, δ

T+1 )-DP. Then, by advanced composition (Theorem 2.4), it follows that
since ε′ as set in the pseudocode is

ε

4
√

2T ln(T + 1)/δ
,

the T calls to Algorithm 2 are collectively
(
ε/2, T δ

T+1 + δ
T+1

)
-differentially private. We apply basic composition to

account for the ε/2-private call to the exponential mechanism and get (ε, δ)-differential privacy in sum.

We now derive the the utility guarantee. For all O ∈ O, and all αi, with probability 1− η
2kT

|αi| ≤
8 log 2T/η

σ
.
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Similarly, with probability 1− η
2nT , we have that for an element ej ,

|βj | ≤
4 log 2nT/η

σ
.

Applying the union bound, it follows that with probability 1− η, for all n elements across all T thresholds as well as for
all T guesses the respective noise variables αi, βj are bounded as above. It follows that we can apply Lemma B.16 with
au = −al = 8 log T/η

σ , and bu = −bl = 4 logn/η
σ . Substituting, we get that for all guesses O with probability 1− η/2,

f(SO) ≥ 1

2
min {O, 2f(OPT)−O} − 4k log 2nT/η

σ
− 8k log 2kT/η

σ

As O varies geometrically between E and m, and we have the promise that f takes values in [E,m], it follows that there is
a choice O† such that

f(OPT) ≤ O† ≤ (1 + θ)f(OPT)

⇒ min{O†, 2f(OPT)−O†} ≥ (1− θ)f(OPT)

⇒ f(SO†
) ≥ (1− θ)f(OPT)

2
− 12k log 2nkT/η

σ
.

From the guarantee of the exponential mechanism we get that with probability 1− η/2,

f(SO∗
) ≥ f(SO†

)− 2

ε
ln

2T

η
.

In sum, putting everything together and applying the union bound, we have that with probability 1− η,

f(SO∗
) ≥ (1− θ)f(OPT)

2
−

12k log(2nkT/η)
√
32k ln 1

δ

ε′
− 2

ε
ln

2T

η

≥ (1− θ)f(OPT)

2
−O

(
k
√
kT log(T/δ) log(1/δ) log nkT/η

ε

)

≥ (1− θ)f(OPT)

2
−O

(
k1.5 log1.5 nk logm/E

ηθδ log0.5 m/E

ε
√
θ

)
.

wherein we use that T = O(log1+θ m/E) = O
(

logm/E
θ

)
.

We now set E = min
{

k logn
ε ,m/2

}
, and show that the claimed bound holds. If f(OPT) lies in the prescribed interval

[E,m], then we have already shown that the claimed bound holds. On the other hand, if f(OPT) < E, the additive loss in
utility is

k1.5 log1.5 nk log 2
ηθδ log0.5 2

ε
√
θ

>
k log n

ε

> f(OPT)

and so the RHS of the claimed bound is negative, in which case any choice of SO∗
fulfills the claimed bound trivially. We

can therefore say that unconditionally, with probability 1− η,

f(SO∗
) ≥ (1− θ)f(OPT)

2
−O

(
k1.5 log1.5 nk

ηθδ log
m
E

ε
√
θ

)
.

In the more general case where f has sensitivity λ, we observe that our analysis holds for the function f/λ, and that the
optimum utility maximizing set for f/λ is the same as that of f and its utility is f(OPT)

λ , so we have that with probability
1− η,

15



Streaming Submodular Maximization with Differential Privacy

f(SO∗
)

λ
≥ (1− θ)f(OPT)

2λ
−O

(
k1.5 log1.5 nk

ηθδ log
m
E

ε
√
θ

)
.

Multiplying throughout by λ leads to the stated bound for the general case.

C. Proof of Theorem 1.5
The key technical lemma in the privacy analysis of Algorithm 3 with Gumbel noise is the following.

Lemma C.1. Algorithm 2 is (ε, δ)-differentially private for Dα,Dβ = Gumb(γ), where γ = 8
ε ln 2 log

2
εδ .

The proof of this result is technically involved, and we defer the proof to the end of this section. In addition to Lemma C.1,
we will also need some standard concentration bounds for the Gumbel distribution.

Lemma C.2. If αi ∼ Gumbel(µ, γ), the following statements hold.

1. With probability 1− β, x ≤ µ+ γ log 1/β.

2. With probability 1− β, x ≥ µ− γ log log 1
β .

Proof. 1. We recall that the CDF for Gumbel(µ, γ) is exp(− exp(−(x− µ)/γ)). Then,

1− exp(− exp(−(x− µ)/γ)) ≤ β

⇔ − exp(−(x− µ)/γ) ≥ log 1− β

⇔ x− µ

γ
≥ log

1

log 1
1−β

⇔ x ≥ µ+ γ log
1

log 1
1−β

.

Using the series expansion log 1− x = −x− x2/2− · · · ≤ −x, we have that

log
1

1− β
= − log 1− β

≥ β

⇒ log
1

log 1
1−β

≤ log
1

β

So in particular, if x ≥ µ+ γ log 1
β , then P (αi ≥ x) ≤ β.

2. Similar to the first part, we have that

exp(− exp(−(x− µ)/γ)) ≤ β

⇔ exp(−(x− µ)/γ) ≥ log
1

β

⇔ (x− µ)

γ
≤ − log log

1

β

⇔ x ≤ µ− γ log log
1

β
.

With these lemmas we can now derive our main result.
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Proof of Theorem 1.5. We assume for now that f is 1-decomposable. From Lemma C.2, we have that for every guess Oi,
with probability 1− η/2kT

αi ∈
[
−γ log log 2kT

η
, γ log

2kT

η

]
.

Similarly, for every element ei and every threshold O, with probability 1− η/2nT

βi ∈
[
−γ log log 2nT

η
, γ log

2nT

η

]
.

Applying the union bound, it follows that in the notation of Lemma B.16 we can set

al = −γ log log
2kT

η

au = γ log
2kT

η

bl = −γ log log
2nT

η

bu = γ log
2nT

η
.

and conclude that with probability 1− η, for all thresholds O,

f(SO) ≥ 1

2
min{O, f(OPT)−O} − kγ log

2nT

η
− kγ log log

2kT

η

≥ 1

2
min{O, f(OPT)−O} − 2kγ log

2nkT

η

As in the proof of Theorem 1.4, as long as f(OPT) ∈ [E,m] there exists a choice O† for which

f(SO†
) ≥ (1− θ)f(OPT)

2
− 2kγ log

2nkT

η
.

From the utility guarantee of the exponential mechanism (Lemma 2.5) we have that

f(S∗) ≥ f(SO†
)− 2

ε
log

2T

η

≥ (1− θ)f(OPT)

2
− 2kγ log

2nkT

η
− 2

ε
log

2T

η

≥ (1− θ)f(OPT)

2
−O

(
k
√
T log1.5 T log T/δ

εδ log 2nkT
η

ε

)
− 2

ε
log

2T

η

≥ (1− θ)f(OPT)

2
−O

k log0.5 m
E log1.5

log m
E log

log m/E
θδ

εδθ log 2nk logm/E
ηθ

ε
√
θ


wherein we use that γ = O

(√
T
ε log1.5 T log T/δ

εδ

)
, and T = log1+θ m/E = O

(
logm/E

θ

)
. Again, setting E =

min
{

k logn
ε ,m/2

}
, we get that if f(OPT) ∈ [E,m], then a good choice of O† exists and the desired bound follows. On

the other hand, if f(OPT) < E < k logn
ε , then since the additive error term is at least k logn

ε , the RHS of the claimed bound
is negative, and any choice of SO∗

fulfills the claimed bound trivially. Simplifying terms a bit we get

f(S∗) ≥ (1− θ)f(OPT)

2
−O

(
k log2 m

Eεδθ log
2nk logm/E

ηθ

ε
√
θ

)
.
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In the more general case where f is λ-decomposable, we observe that our analysis holds for the 1-decomposable function
f/λ, and that the optimum utility maximizing set for f/λ is the same as that of f and its utility is f(OPT)

λ . It follows that
with probability 1− η,

f(S∗)

λ
≥ (1− θ)f(OPT)

2λ
−O

(
k log2 m

Eεδθ log
2nk logm/E

ηθ

ε
√
θ

)
.

Multiplying throughout by λ leads to the stated bound.

We now derive the privacy guarantee. Since the T ≤ 2 log m
E

θ -many instantiations of Algorithm 2 are run with independent
random bits, we can use advanced composition to argue that the net privacy loss suffered by releasing the sets SO is

(2ε′
√
2T log(1/δ′), (T + 1)δ′),

where it suffices to set γ = 8
ε′ ln 2 log

2
ε′δ′ by Lemma C.1. Replacing ε′ by ε

4
√

2T log(1/δ′)
in the expression for γ, it follows

that for

γ =
32
√
2T log T/δ

ε ln 2
log

4T
√
2T log(T/δ)

εδ

= O

(
1

ε
√
θ
log1.5

log 1
θδ

θεδ

)
,

Algorithm 3 with Gumbel noise is (ε/2, δ)-differentially private. We can then apply the exponential mechanism on this
public set of choices for an additional (ε/2, 0)-privacy loss, giving us the claimed expression.

To prove Lemma C.1, we first derive some technical lemmas that characterize the probability of stream elements succeeding
in their privatized threshold checks. Lemma 4.1 characterizes the probability of an element ei being picked condition on the
set S already having been picked.

Lemma C.3. Conditioned on having picked the set Si of elements with |Si| = u < k,

Pr[ai = ⊤|Si] =

∫ ∞

−∞
1− exp

(
−wA(i|Si)e

αu/γ
)
dα|Si|,

where

wA(i|Si) = exp

(−1
γ

(
O

2k
− fA(ei|Si)

))
,

and αu ∼ Gumbel(0, γ).

Proof. We recall that for an element ei to be picked by Algorithm 3 (which happens if and only if the output ai of
Algorithm 2 on input ei equals ⊤), it must be the case that if Si is the set of elements picked thus far then |Si| = u < k, and
that the privatized marginal utility of ei given Si has been picked beats the privatized threshold O/2k + αu. We can write

Pr[ai = ⊤|Si] = Pr

[
f(ei|Si) + βi ≥

O

2k
+ α|S|

]
=

∫ ∞

−∞
1

[
f(ei|Si) + βi ≥

O

2k
+ αu

]
dαudβi

where αu, βi ∼ Gumbel(0, γ), and 1[·] denotes the indicator of the event in its argument. Since αu and βi are drawn
independently of each other, we can factorize their joint density function and write

Pr[ai = ⊤|Si] =

∫ ∞

−∞
Pr

[
βi ≥

O

2k
+ αu − f(ei|Si)

]
dαu. (1)
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Since βi ∼ Gumbel(0, γ), we have that

Pr

[
βi ≥

O

2k
+ αu − f(ei|Si)

]
= 1− Pr

[
βi <

O

2k
+ αu − f(ei|Si)

]
= 1− exp

(
− exp

(−1
γ

(
O

2k
+ αu − f(ei|Si)

)))
= 1− exp

(
−wA(i|Si)e

αu/γ
)
.

Substituting for the integrand in Equation (1), we get the stated result.

Lemma C.20. Let A(A) denote the set of elements indicated by Algorithm 2 to be picked for the decomposable submodular
function fA. If S = (ei1 , ei2 , . . . , eir ), then

Pr[A(A) = S] =

r∏
u=1

wA(iu|Siu)

(1 +
∑

j∈(iu−1,iu)
wA(j|Siu))(1 +

∑
j∈(iu−1,iu]

wA(j|Siu))
.

where Siu = {ei1 , ei2 , . . . , eiu−1
}, i.e. the set of elements already picked when element eiu is considered.

Proof. The stream e1, e2, . . . is given as input to Algorithm 2 and the elements ei1 , . . . , eir are picked. For this to be the
case, for every u ∈ {1, . . . , r}, all the elements after iu−1 (the element picked before iu)), and before iu must fail their
privatized checks conditioned on {i1, . . . , iu−1} having already been picked, but iu must itself succeed. In a way similar to
Lemma 4.1, we can factor the joint density function of the αu and the βj as they are drawn independently and write

Pr[A(A) = S] =

r∏
u=1

Pr[aiu = ⊤|Siu ]
∏

j∈(iu−1,iu)

Pr[aj = ⊥|Siu ]

=

r∏
u=1

∫ ∞

−∞
(1− exp

(
−wA(iu|u)eαu/γ

)
)

∏
j∈(iu−1,iu)

exp
(
−wA(j|Siu)e

αu/γ
)
dαu

=

r∏
u=1

∫ ∞

−∞
(1− exp(−wA(iu|u)ez)) exp

−ez ∑
j∈(iu−1,iu)

wA(j|Siu)

 exp
(
−z − e−z

)
dz

In the above we use that the PDF of αu is P (x) = 1
γ exp

(
−(xγ + e−x/γ)

)
, and make the variable substitution z = x/γ.

We can simplify the integrand of each factor as follows.

(1− exp(−wA(iu|Siu)e
z)) exp

−ez ∑
j∈(iu−1,iu)

wA(j|Siu)

 exp
(
−z − e−z

)

= exp

−z − e−z(1 +
∑

j∈(iu−1,iu)

wA(j|Siu))

− exp

−z − e−z(1 +
∑

j∈(iu−1,iu]

wA(j|Siu))


We can integrate the summands separately; as they have the same form, to derive the resulting expression it suffices to
compute the first integral, which we denote I .

I =

∫ ∞

−∞
exp

−z − e−z(1 +
∑

j∈(iu−1,iu)

wA(j|Siu))

dz

Let t = −e−z(1 +
∑

j∈(iu−1,iu)
wA(j|Siu)). Then, dt = e−z(1 +

∑
j∈(iu−1,iu)

wA(j|Siu))dz. Substituting this variable,
we get

I =
1

(1 +
∑

j∈(iu−1,iu)
wA(j|Siu))

∫ 0

−∞
etdt

=
1

1 +
∑

j∈(iu−1,iu)
wA(j|Siu)

.
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It follows that

Pr[A(A) = S] =

r∏
u=1

1

1 +
∑

j∈(iu−1,iu)
wA(j|Siu)

− 1

1 +
∑

j∈(iu−1,iu]
wA(j|Siu)

=

r∏
u=1

wA(iu|Siu)

(1 +
∑

j∈(iu−1,iu)
wA(j|Siu))(1 +

∑
j∈(iu−1,iu]

wA(j|Siu))
.

Proof of Lemma C.1. Let A,B ⊂ X , and let A = B ⊔ {I}. Let S = (ei1 , . . . , eir ) be any sequence of elements that can
be picked by the algorithm (i.e. r ≤ k). First we show that

Pr[A(A) = S] ≤ eε
′
Pr[A(B) = S] + δ

Substituting from Lemma C.20 and rearranging terms, we have that

Pr[A(A) = E]

Pr[A(B) = E]
=

r∏
u=1

wA(iu|Siu)

wB(iu|Siu)
·

r∏
u=1

(1 +
∑

j∈(iu−1,iu)
wB(j|Siu))(1 +

∑
j∈(iu−1,iu]

wB(j|Siu))

(1 +
∑

j∈(iu−1,iu)
wA(j|Siu))(1 +

∑
j∈(iu−1,iu]

wA(j|Siu))
.

We bound the two factors of this expression separately. For the first factor, we have

r∏
u=1

wA(iu|Siu)

wB(iu|Siu)
=

r∏
u=1

exp
(

−1
γ

(
O
2k − fA(eiu |Siu)

))
exp
(

−1
γ

(
O
2k − fB(eiu |Siu)

))
= exp

(
−1
γ

r∑
u=1

fB(eiu |Siu)− fA(eiu |Siu)

)

= exp

(
1

γ

r∑
u=1

fp(eiu |Siu)

)
≤ exp(1/γ).

The second factor is bounded trivially from above by 1; to see this, we observe that the following sequence of inequalities
holds.

wA(j|u) = exp

(−1
γ

(
O

2k
− fA(ei|Siu)

))
= exp

(−1
γ

(
O

2k
− fB(ei|Siu)

)
+

fp(ei|Siu))

γ

)
≥ exp

(−1
γ

(
O

2k
− fB(ei|Siu)

))
≥ wB(j|u).

In sum, it follows that any value of γ ≥ 1/ε suffices. We now show that

Pr[A(B) = S] ≤ eε Pr[A(A) = S] + δ.

To this end we consider the reciprocal of the ratio we bounded for the first case, i.e.

Pr[A(B) = E]

Pr[A(A) = E]
=

r∏
u=1

wB(iu|Siu)

wA(iu|Siu)
·

r∏
u=1

(1 +
∑

j∈(iu−1,iu)
wA(j|Siu))(1 +

∑
j∈(iu−1,iu]

wA(j|Siu))

(1 +
∑

j∈(iu−1,iu)
wB(j|Siu))(1 +

∑
j∈(iu−1,iu]

wB(j|Siu))
. (2)

To bound this ratio, we first derive a simple relaxation.
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Claim C.21. The following bound holds:

Pr[A(B) = E]

Pr[A(A) = E]
≤
(

r∏
u=1

1 +
∑

j∈(iu−1,iu)
wA(j|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu)

)2

.

Proof. We observe that

wB(iu|Siu)

wA(iu|Siu)
= exp

(−f{p}(eiu |S)
γ

)
≤ 1,

and that

wB(iu|Siu)

wA(iu|Siu)
·
1 +

∑
j∈(iu−1,iu]

wA(j|Siu)

1 +
∑

j∈(iu−1,iu]
wB(j|Siu)

= exp

(−f{p}(eiu |S)
γ

)
·
1 +

∑
j∈(iu−1,iu)

wA(j|Siu) + wA(iu|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu) + wB(iu|Siu)

= exp

(−f{p}(eiu |S)
γ

)
·
1 +

∑
j∈(iu−1,iu)

wA(j|Siu) + exp
(
f{p}(eiu |S)/γ

)
· wB(iu|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu) + wB(iu|Siu)

≤
exp
(
−f{p}(eiu |S)/γ

)
+ exp

(
−f{p}(eiu |S)/γ

)∑
j∈(iu−1,iu)

wA(j|Siu) + wB(iu|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu) + wB(iu|Siu)

≤
1 +

∑
j∈(iu−1,iu)

wA(j|Siu) + wB(iu|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu) + wB(iu|Siu)

<
1 +

∑
j∈(iu−1,iu)

wA(j|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu)

.

The claim now follows by applying this upper bound for each factor in Equation (2) as u varies from 1 to r.

We will now focus on bounding the expression

1 +
∑

j∈(iu−1,iu)
wA(j|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu)

.

We first observe that this expression can be identified with the expectation of an monotonically increasing function of the
marginal utility of the agent {p} = A\B.

Definition C.22. Let vj := wB(iu−1 + j|Siu). Let Pu be a distribution over {⊥} ∪ {1, . . . , iu − iu−1} such that
Pu(iu + j) ∝ vj and Pu(⊥) ∝ 1. With this definition, we see that

1 +
∑

j>0 wA(iu + j|Siu)

1 +
∑

j>0 wB(iu + j|Siu)
=

1 +
∑

j∈(iu−1,iu)
exp
(
f{p}(ej |Siu)/γ

)
wB(iu + j|Siu)

1 +
∑

j>0 wB(iu + j|Siu)

=
1 +

∑
j∈(iu−1,iu)

exp
(
f{p}(ej |Siu)

)
vj

1 +
∑

j∈(iu−1,iu)
vj

= E
j∼Pu

[
exp
(
f{p}(ej |S)/γ

)]
We let Yu := Ej∼Pu [exp

(
f{p}(ej |Siu)/γ

)
].

At a high level the key insight is that since the sum of marginal utilities
∑r

u=1 f{p}(eiu |Siu) of any agent is at most 1, the
net privacy loss, which we have shown to be bounded above by a product of monotonic functions of the sequential marginal
utilities may also be bounded more tightly than the Õ(

√
k/ε) bound that arises from advanced composition. To prove

this stronger concentration bound we first derive a moment bound on these functions of the expected marginal utility Yu.
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The complication here is that the elements picked by the algorithm affect the marginal utilities of all subsequent elements
considered; we proceed by formalizing a probabilistic process capturing the behaviour of this algorithm in a manner similar
to that of Gupta et al. (2010) and Chaturvedi et al. (2021).

Lemma C.23. Consider the following k-round probabilistic process. Let vj := wB(iu−1 + j|Siu). In each round u, it
is the case that the set of elements Siu = {i1, . . . , iu−1} has been picked, and the element iu = j + iu−1 is picked with
probability

pj =
1

1 + v1 + · · ·+ vj−1
· vj
1 + v1 + · · ·+ vj

.

Then, for each q = 1, . . . , r, for a value of c = γ/4 = 2
ε ln 2 log

2
εδ , the following bound holds:

E
S

[
k∏

u=q

Y c
u |Siq

]
≤ 1 +

1

ε
(1− f{p}(Siq )).

Before we prove this lemma, we first prove a minor claim that linearizes the dependence on the moments Y c
u on the marginal

utility random variable f{p}(eiu+j |Siu).
Claim C.23. For c, γ such that 1 ≤ c < γ,

Y c
u ≤ 1 +

(e− 1)c

γ
E

j∼Pu

[f{p}(eiu−1+j |Siu)].

Proof. By definition, we have that

Y c
u =

(
1 +

∑
j∈(iu−1,iu)

exp
(
f{p}(eiu−1+j |Siu)/γ

)
vj

1 +
∑

j∈(iu−1,iu)
vj

)c

.

Applying Jensen’s inequality, we get that

Y c
u ≤

1 +
∑

j∈(iu−1,iu)
exp
(
cf{p}(eiu−1+j |Siu)/γ

)
vj

1 +
∑

j∈(iu−1,iu)
vj

.

Since c < γ and f{p}(eiu−1+j |Siu) ≤ 1, by applying the inequality ex < 1 + (e− 1)x for x ≤ 1, it follows that

exp
(
cf{p}(eiu−1+j |Siu)/γ

)
≤ 1 + (e− 1)cf{p}(eiu−1+j |Siu).

Applying this bound and continuing, we get that

Y c
u ≤

1 +
∑

j∈(iu−1,iu)
(1 + (e− 1)cf{p}(eiu−1+j |Siu)/γ)wB(iu−1 + j|Siu)

1 +
∑

j∈(iu−1,iu)
wB(iu−1 + j|Siu)

≤ 1 +

∑
j∈(iu−1,iu)

(e− 1)cf{p}(eiu−1+j |Siu)wB(iu−1 + j|Siu)/γ

1 +
∑

j∈(iu−1,iu)
wB(iu−1 + j|Siu)

≤ 1 +
(e− 1)c

γ
E

j∼Pu

[f{p}(eiu+j |Siu)].

Proof of Lemma 4.2. We proceed by reverse induction on q. For the base case, i.e. q = k, we have that

E
ik
[Y c

k ] ≤ E

[
1 +

(e− 1)c

γ
E

j∼Pk

[f{p}(eik−1+j)]

]
≤ 1 +

(e− 1)c

γ
sup
j>0

f{p}(eik−1+j |Sik)

≤ 1 +
(e− 1)c

γ
(1− f{p}(Sik))

≤ 1 +
1

ε
(1− f{p}(Sik)),
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where in the above we use that c/γ = 1/4 ≤ 1
(e−1)ε for ε ≤ 1, and that f{p}(eik−1+j |Sik) + f{p}(Sik) = f{p}(Sik ∪

{eik−1+j}) ≤ 1 for any choice of j. For the induction step, we assume that the statement is true for u = q + 1, . . . , k, and
derive a bound for the case u = q.

E
iq,...,ik

[
k∏

u=q

Y c
u |Siq

]

= E
iq

[
Y c
q · E

iq+1,...,ik

[
k∏

u=q+1

Y c
u |Sq

]
|Siq

]

≤ E
iq

[
Y c
q

(
1 +

1

ε
(1− f{p}(Sq))

)
|Siq

]
≤ E

iq

[
Y c
q

(
1 +

1

ε
(1− f{p}(Siq )− f{p}(eiq |Siq ))

)
|Siq

]
≤ E

iq

[(
1 +

(e− 1)c

γ
E

j∼Pq

[f{p}(ej |Siq )]

)(
1 +

1

ε
(1− f{p}(Siq )− f{p}(eiq |Siq ))

)
|Siq

]
≤ 1 +

1

ε
(1− f{p}(Siq ))−

1

ε
E
iq
[f{p}(eiq |Siq )|Siq ]

+
(e− 1)

4
E
iq

[
E

j∼Pq

[f{p}(ej |Siq )] ·
(
1 +

1

ε
(1− f{p}(Siq )− f{p}(eiq |Siq ))

)]
≤ 1 +

1

ε
(1− f{p}(Siq ))−

1

ε
E
iq
[f{p}(eiq |Siq )|Siq ] +

(e− 1)(1 + 1/ε)

4
E
iq
[ E
j∼Pq

[f{p}(ej |Siq )]],

where in the above we use that

1 +
1

ε
(1− f{p}(Siq )− f{p}(eiq |Siq )) ≤ 1 +

1

ε
.

It follows that it would suffice to show that the last two terms sum to at most 0. We have that

E
iq
[ E
j∼Pq

[f{p}(ej |Siq )]] =
∑
w≥1

pw E
j∼Pq

[f{p}(ej |Siq )|iq = iq−1 + w]

=
∑
w≥1

pw
∑
x<w

vx
1 + v1 + · · ·+ vw−1

f{p}(eiq−1+x|Siq )

The outer expectation in the display above corresponds to iq being picked as described by the probabilistic process (and
Algorithm 3), and the expectation inside is the expression that we used to bound the privacy loss term for any one round;
conditioned on the choice of iq we recall that it is a distribution over (iq−1, iq). We switch the sums in the display above to
get

E
iq
[ E
j∼Pq

[f{p}(ej |Siq )]] =
∑
x≥1

f{p}(eiq−1+x|Siq )
∑
w>x

vx
1 + v1 + · · ·+ vw−1

pw

≤
∑
x≥1

f{p}(eiq−1+x|Siq )
vx

1 + v1 + · · ·+ vx

∑
w>x

pw.

Further we have ∑
w≥x

pw =
∑
w≥x

1

1 + v1 + · · ·+ vw−1
· vw
1 + v1 + · · ·+ vw

=
∑
w≥x

1

1 + v1 + · · ·+ vw−1
− vw

1 + v1 + · · ·+ vw

=
∑
w≥x

1

1 + v1 + · · ·+ vw−1
− vw

1 + v1 + · · ·+ vw

=
1

1 + v1 + · · ·+ vx−1
.
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Substituting, we get

E
iq
[ E
j∼Pq

[f{p}(ej |Siq )]] ≤
∑
x≥1

f{p}(eiq−1+x|Siq )
vx

1 + v1 + · · ·+ vx
· 1

1 + v1 + · · ·+ vx−1

=
∑
x≥1

pxf{p}(eiq−1+x|Siq )

= E
iq
[f{p}(iq|Siq )].

So in sum, we have that

E
iq,...,ik

[
k∏

u=q

Y c
u |Siq

]

≤ 1 +
1

ε
(1− f{p}(Siq )) + E

iq
[f{p}(iq|Siq )]

(
−1

ε
+

(e− 1)(1 + 1/ε)

4

)
≤ 1 +

1

ε
(1− f{p}(Siq )).

wherein we use that for ε < 1, (e−1)(1+1/ε)
4 < 1/ε.

Returning to the proof of Lemma C.1, we see that the probabilistic process defined and analysed in Lemma 4.2 can be
identified with a run of Algorithm 2 with Gumbel noise, where the input stream has been appended with infinitely many
items of 0 marginal utility - this ensures that k complete rounds are executed, but the output distribution on the non-trivial
items is identical. Setting q = 1 in Lemma 4.2, since f{p}(∅) = 0, we see that

E
S

[
k∏

u=1

Y c
u |Siq

]
≤ 1 +

1

ε

⇒ E
i1,...,ik

[(
k∏

u=1

1 +
∑

j∈(iu−1,iu)
wA(j|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu)

)c]
≤ 1 +

1

ε

⇒ Pr
i1,...,ik

[(
k∏

u=1

1 +
∑

j∈(iu−1,iu)
wA(j|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu)

)
> (1 + ε)1/2

]
≤ (1 + 1/ε)

(1 + ε)c/2
,

wherein in the last step we apply Markov’s inequality. Since ε < 1, we have that

(1 + 1/ε)

(1 + ε)c/2
≤ 2/ε

(1 + ε)c/2

≤ 2/ε

exp
(
ε ln 2 · c2

) ,
wherein we use that for ε < 1, 1 + ε ≥ exp(ε · ln 2). Setting c = 2

ε ln 2 log
2
εδ , which we note is ≥ 1, we get that

(1 + 1/ε)

(1 + ε)c/2
≤ 2/ε

exp(ln 2/εδ)

= δ.

It follows that with probability 1− δ,

k∏
u=1

1 +
∑

j∈(iu−1,iu)
wA(j|Siu)

1 +
∑

j∈(iu−1,iu)
wB(j|Siu)

≤ (1 + ε)1/2

⇒ Pr[A(B) = E]

Pr[A(A) = E]
≤ 1 + ε.

It follows that a run of Algorithm 2 with Gumbel noise with noise parameter γ = 4c = 8
ε ln 2 log

2
εδ is (ε, δ)-DP.
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D. Proof of Theorem 1.6
In this section we describe and prove a lower bound (Theorem 1.6) for private submodular maximization. This is a slightly
weaker bound than that of Gupta et al. (2010) but is more general as it applies to the (ε, δ) instead of the (ε, 0) setting.
Further, it also happens to have a decomposable objective, showing that Algorithm 3 with Gumbel noise has the optimal
dependence on k and ε (up to logarithmic terms).

Definition D.1 (Maximum coverage). Given a set system (U,S), i.e. a ground set U and a family S of subsets of U , the
maximum coverage problem fixes a private target subset R ⊂ U and a number k and asks the solver to pick T ⊂ S such
that R ⊂ ∪T∈T T and |T | ≤ k.

We can recast this problem in the form of submodular maximization, and then construct a hard instance of maximum
coverage to prove our lower bound for (ε, δ)-DP submodular maximization.

Lemma D.2 (Maximum coverage as submodular maximization). Given a set system (U,S), and a set cover problem with a
private target subset R ⊂ U and budget k, it is easy to see that the objective

|R ∩ (∪T∈T T )| =
∑
e∈R

1e∈T .

is a decomposable submodular function with |R| summands.

Theorem 1.6. For all 0 ≤ ε, δ ≤ 1, k ∈ N, n ≥ k eε−1
δ , and c ≥ 4δ

eε−1 , if an (ε, δ)-DP algorithm for the submodular
maximization problem for decomposable objectives achieves a multiplicative approximation factor of c, it must incur additive
error Ω((kc/ε) log(ε/δ)).

Proof. We construct a hard instance for maximum coverage. Let (U,S) be a set system where S consists of all the singletons

in U . Let A be a set of size k picked uniformly at random from U , and let the data set DA = A× [L] for L =
ln c eε−1

δ

2ε . Let
n := |DA| = |A| · |L|. Let T be k subsets of S picked by the solver M . The objective we are trying to maximize is

f(T ) =
∑
e∈DA

1{e}∈T .

Let M be any (ε, δ)-DP algorithm for the set cover problem and let ϕ = EM,A[(M(DA) ∩A)/|A|], i.e. ϕ is the average
fraction of points of A (and consequently DA) that were recovered successfully by M . ϕ captures the average approximation
factor achieved by the algorithm M over this family of hard instances.

We see that since A is of size k, and the data set DA is simply points of A repeated with multiplicity, the collection of sets
T = {{i} : i ∈ A} is a solution for this maximization problem that achieves f(OPT) = n.

We observe that

ϕ = E
A,M

[ ∑
e∈DA

1{e}∈T

]
/|A|

= E
A,M

E
i∈A

[1i∈M(DA)]

= E
i∈U

E
A,M

[1i∈M(DA)|i ∈ A].

Fixing any choice of i ∈ A, let i′ be uniformly random in U\A, and let A′ = (A\{i})∪{i′}; A′ is hence uniformly random
over U\{i}. We see that there is a chain of sets D0

A, D
1
A, . . . , D

L
A such that D0

A = DA, Dt
A = (Dt−1

A \{i}) ∪ {i′} for
t ∈ [L], and DL

A = DA′ (we recall that we treat data sets as multisets, allowing us to swap one copy of i for one copy of i′

at a time. Since M is (ε, δ)-DP, it follows that for all t ∈ [L],

E
M
[1i∈M(Dt

A)] ≥ exp(−2ε) E
M
[1i∈M(Dt−1

A )]− 2δ.
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It follows that

E
M
[1i∈M(D′

A)] ≥ exp(−2ε) E
M
[1i∈M(DL−1

A )]− 2δ.

≥ exp(−4ε) E
M
[1i∈M(DL−2

A )]− exp(−2ε) · 2δ − 2δ

≥ . . .

≥ exp(−2Lε) E
M
[1i∈M(D0

A)]− 2δ (1 + exp(−2ε) + exp(−4ε) + . . . )

≥ exp(−2Lε) E
M
[1i∈M(DA)]−

2δ

1− e−2ε

≥ exp(−2Lε) E
M
[1i∈M(DA)]−

2δ

e2ε − 1
.

Taking the expectation over i ∈ U and the randomness in the choice of A, we get

E
i∈U

E
A,M

[1i∈M(DA)|i ̸∈ A] ≥ ϕ exp(−2Lε)− 2δ

e2ε − 1
.

It follows by the law of total expectation that

E
i∈U

E
A,M

[1i∈M(DA)] ≥ ϕ exp(−2Lε)− 2δ

e2ε − 1
.

The LHS is at most k/n, so rearranging terms we get

(
k

n
+

2δ

e2ε − 1

)
exp(ε · 2L) ≥ ϕ.

It follows that for n ≥ k e2ε−1
2δ , and L ≤ 1

2ε log c
e2ε−1
8δ , ϕ is at most c/2. Hence for all c ≥ 8δ

e2ε−1 , either the algorithm fails
to achieve the multiplicative approximation factor of c, or it incurs additive error ckL/2 = Ω((ck/ε) log(ε/δ)).

E. Experimental data and further results
E.1. Data for graphs of Section 5

We tabulate the data recorded in our main experiments for better scrutiny. As pointed out in the Section 5, note in particular
the increases in the mean clustering cost when using Laplace noise for the synthetic data set (Tables 3 and 4) as we increase
the cardinality constraint k from 100 to 125. There is a small jump in the cost of the Gumbel noise as well in Table 1, but
this is attributable to the variance of the experiments, as the privatizing noise parameter used is the same regardless of the
value of k.

Table 1. Comparison of the mean clustering cost and variance over 20 runs for the Taxi data set with privacy parameter ε = 0.1 (graphed
in Figure 1)

Cardinality constraint k Random Laplace Gumbel Non-private
25 1.68 (0.73) 0.79 (0.34) 0.64 (0.24) 0.17 (0)
50 1.23 (0.55) 0.68 (0.23) 0.44 (0.12) 0.17 (0)
75 1 (0.44) 0.53 (0.21) 0.39 (0.12) 0.17 (0)
100 0.88 (0.34) 0.48 (0.14) 0.32 (0.09) 0.16 (0)
125 0.76 (0.26) 0.46 (0.2) 0.34 (0.11) 0.16 (0)
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Table 2. Comparison of the mean clustering cost and variance over 20 runs for the Taxi data set with privacy parameter ε = 1 (graphed in
Figure 2)

Cardinality constraint k Random Laplace Gumbel Non-private
25 1.68 (0.73) 0.7 (0.33) 0.62 (0.28) 0.15 (0)
50 1.23 (0.55) 0.64 (0.23) 0.4 (0.12) 0.14 (0)
75 1 (0.44) 0.52 (0.22) 0.36 (0.09) 0.14 (0)
100 0.88 (0.34) 0.49 (0.14) 0.3 (0.07) 0.14 (0)
125 0.76 (0.26) 0.44 (0.16) 0.28 (0.07) 0.14 (0)

Table 3. Comparison of the mean clustering cost and variance over 20 runs for the Synthetic data set with privacy parameter ε = 0.1
(graphed in Figure 4)

Cardinality constraint k Random Laplace Gumbel Non-private
25 1.57 (0.48) 0.98 (0.25) 0.83 (0.23) 0.38 (0)
50 1.09 (0.34) 0.7 (0.23) 0.61 (0.12) 0.22 (0)
75 0.92 (0.31) 0.59 (0.15) 0.55 (0.1) 0.22 (0)
100 0.85 (0.21) 0.53 (0.15) 0.49 (0.1) 0.21 (0)
125 0.8 (0.26) 0.56 (0.16) 0.48 (0.09) 0.21 (0)

Table 4. Comparison of the mean clustering cost and variance over 20 runs for the Synthetic data set with privacy parameter ε = 1
(graphed in Figure 5)

Cardinality constraint k Random Laplace Gumbel Non-private
25 1.57 (0.48) 0.95 (0.27) 0.75 (0.2) 0.38 (0)
50 1.09 (0.34) 0.66 (0.2) 0.58 (0.09) 0.22 (0)
75 0.92 (0.31) 0.59 (0.14) 0.51 (0.08) 0.18 (0)
100 0.85 (0.21) 0.48 (0.11) 0.46 (0.08) 0.16 (0)
125 0.8 (0.26) 0.54 (0.16) 0.41 (0.09) 0.15 (0)

E.2. Additional experiments

In Figure 9, we compare the performance of Algorithm 3 with Laplace and Gumbel noises with the Private (Mitrovic et al.,
2017; Gupta et al., 2010) and the Non-private non-streaming (Non-private NS) (Nemhauser et al., 1978) algorithms. We
evaluate the algorithms on the synthetic dataset described in Section 5 for ε = 0.1 and ε = 1 and δ = 1/|P |1.5, as before.

We see that the private non-streaming algorithm performs significantly better, as expected. We recall that the multiplicative
approximation ratio for the private non streaming algorithm is (1− 1/e) which explains much of this gap; in the streaming
case even for non-private algorithms the approximation factor is at best 1/2.
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Figure 7. ε = 0.1
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Figure 8. ε = 1

Figure 9. Performance on the synthetic dataset.
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