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Abstract
To characterize the functions spaces explored by
multi-layer neural networks (NNs), we introduce
Neural Hilbert Ladders (NHLs), a collection of
reproducing kernel Hilbert spaces (RKHSes) that
are defined iteratively and adaptive to training.
First, we prove a correspondence between func-
tions expressed by L-layer NNs and those belong-
ing to L-level NHLs. Second, we prove general-
ization guarantees for learning the NHL based on
a new complexity measure. Third, corresponding
to the training of multi-layer NNs in the infinite-
width mean-field limit, we derive an evolution of
the NHL characterized by the dynamics of mul-
tiple random fields. Finally, we examine linear
and shallow NNs from the new perspective and
complement the theory with numerical results.

1. Introduction
In recent years, there has been significant interests in under-
standing how neural networks (NNs) work in deep learning.
In the supervised setup, NNs can be seen as parameterizing
a particular family of functions on the input domain, within
which a suitable one is searched for by training. Thus, to
explain what is special about NNs, it is crucial to investigate
the hypothesis class (i.e. space of functions) they represent.

As modern NNs often involve huge numbers of parame-
ters, it is especially interesting to understand the space of
functions that can be represented by NNs with unlimited
width. As a foundational result, the universal approximation
theorem (e.g., Cybenko, 1989; Hornik et al., 1989) shows
that, given enough width, NNs are capable of approximating
virtually all reasonable functions, suggesting the vastness of
this space. A deeper question, though, is to find a complexity
measure of functions that quantify their representation cost
in terms of the rate of approximation error, which would
yield insights on what kind of functions are more naturally
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represented by NNs. This question has been studied fruit-
fully in the literature for shallow (a.k.a. two-layer) NNs
(Barron, 1993; Bengio et al., 2005; Bach, 2017a; E et al.,
2019), but remains mostly open for multi-layer NNs.

Meanwhile, to study the sample complexity of learning
NNs, prior works have proved generalization guarantees
that are based on not the number of parameters but certain
norms of them (e.g., Bartlett, 1998; Neyshabur et al., 2015),
which could serve as a complexity measure of NNs from a
generalization point of view. Then, an important question
is whether there is a complexity measure associated with
width-limited multi-layer NNs that unifies the perspectives
of approximation and generalization.

Another critical aspect of deep learning is the training of
NNs, which involves a non-convex optimization problem
but can often be solved sufficiently well by variants of gra-
dient descent (GD). Although remarkable progress has been
made to prove optimization guarantees for various settings,
it remains intriguing what kind of exploration in function
space is induced by the training of NNs. The Neural Tan-
gent Kernel (NTK) analysis provides a candidate theory
via a linearized approximation of NN training (Jacot et al.,
2018), which treats NNs as representing functions in a pre-
determined reproducing kernel Hilbert space (RKHS). How-
ever, the NTK theory is unable to model the feature learning
that occurs in the training of actual NNs (Chizat et al., 2019;
Woodworth et al., 2020), which is crucial to the success of
deep learning.

Hence, the present work is motivated by the following ques-
tions, which are central yet largely open:

• How to characterize the hypothesis space correspond-
ing to multi-layer NNs that undergo training?

• Can we associate with it a complexity measure that
governs both approximation and generalization?

To answer these questions, we propose to model an L-layer
NN as a ladder of RKHS with L-levels, leading to a function
space F (L) and a complexity measure C (L) that satisfy:

i. Any L-layer NN represents a function in F (L);

ii. Any function f in F (L) can be approximated by an
L-layer NN at a cost that depends on C (L)(f);
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iii. Generalization guarantees can be proved for learning
in F (L) with C (L)(f) under control;

iv. Gradient descent training of L-layer NNs in a feature-
learning regime induces learning dynamics in F (L).

To our knowledge, this is the first proposal satisfying all
the properties above, thus opening up a new perspective in
understanding deep NNs.

The rest of the paper is organized as follows. In Section 3,
we introduce the Neural Hilbert Ladder (NHL) model and
the function space and complexity measures that it gives rise
to. In Section 4, we prove static correspondences between
multi-layer NNs and NHLs, verifying (i) and (ii). In Sec-
tion 5, we prove generalization bounds for learning NHLs,
verifying (iii). In Section 6, we show that the training of
multi-layer NNs translates to a learning dynamics of NHLs,
verifying (iv). In Section 7, we discuss specializations of
the NHL theory for the cases of shallow NN and linear NN.
In Section 8, we present numerical results on synthetic tasks
that support and complement the theory. Prior literature will
be discussed in Section 9 and Appendix F.

2. Background
2.1. Basic Notations

We use bold lower-case letters (e.g. x and z) to denote
vectors and bold upper-case letters (e.g. U and H) to de-
note random variables or random fields. ∀m ∈ N+, we
write [m] := {1, ...,m}. When the indices i, j, t and s and
variables x and x′ appear without being specified, by de-
fault, they are considered as under the universal quantifiers
“∀i, j ∈ [m]”, “∀t, s ≥ 0” and “∀x,x′ ∈ X ”.

Suppose U is some measurable space. We let P(U) denote
the the space of probability measures on U . ∀µ ∈ P(U),
we let L2(U , µ) denote the space of square-integrable func-
tions on U with respect to µ, and ∀ξ ∈ L2(U , µ), we write
∥ξ∥L2(U,µ) := (

∫
|ξ(u)|2µ(du))1/2. If U is a U -valued ran-

dom variable, we let Law(U) ∈ P(U) denote its law and
let E[ϕ(U)] =

∫
ϕ(u)[Law(U)](du) denote the expecta-

tion of any measurable function ϕ : U → R applied to U .
Additionally, if U is equipped with a norm (or quasi-norm)
∥ · ∥U , we define B(U ,M) := {u ∈ U : ∥u∥U ≤ M} for
M > 0; we write B(U) := B(U , 1) for the unit ball in U ;
we let Û := {u ∈ U : ∥u∥U = 1} denote the unit sphere in
U ; and ∀µ ∈ P(U), we define ∥µ∥U := (

∫
∥h∥2Uµ(dh))1/2.

For N ∈ N+, we let Lip(RN ) denote the space of functions
on RN with Lipschitz constant at most 1. For a function σ :
R → R, we call it non-expansive if ∀u ∈ R, |σ(u)| ≤ |u|;
we call it (non-negative) homogeneous if ∀u ∈ R, a ≥ 0,
σ(au) = aσ(u).

2.2. Multi-Layer Neural Networks (NNs)

Let X be the input domain, which we assume to be a com-
pact subset of Rd. We consider an L-layer (fully-connected)
NN with width m as expressing a function on X of the
following form:

fm(x) :=
1

m

m∑
i=1

aiσ
(
h
(L−1)
i (x)

)
, (1)

where h(1)
i (x) := z⊺

i ·x =
∑d

j=1 zi,jxj , and ∀l ∈ [L− 2] ,

h
(l+1)
i (x) :=

1

m

m∑
j=1

W
(l)
ij σ

(
h
(l)
j (x)

)
, (2)

where σ : R → R is the activation function, and each
zi,j ,W

(l)
i,j and ai is a weight parameter of the input layer,

the lth middle layer and the output layer, respectively. For
simplicity, we will omit the bias term here but include it in
the more general framework presented in Appendix B.1. We
refer to h

(l)
i as the pre-activation function associated with

the ith neuron in the lth hidden layer.

The 1/m factor in (2) is often called the mean-field scal-
ing, which allows large m limits to be considered while
the parameters stay scale-free. Unlike the NTK scaling,
the mean-field scaling allows feature learning to occur, in-
cluding in the infinite-width limit (Yang & Hu, 2021). The
comparison with NTK and other scaling choices are further
discussed in Appendix F.

2.3. Reproducing Kernel Hilbert Space (RKHS)

A Hilbert space is a vector space equipped with an inner
product, ⟨·, ·⟩, and a norm defined by ∥·∥ := ⟨·, ·⟩ that makes
the space complete. Of particular interest to learning theory
is a type of Hilbert spaces whose elements are functions on
X . ∀ν ∈ P(X ), we write Ex∼ν {f(x)} :=

∫
X f(x)ν(dx).

Let κ : X ×X → R be a kernel function that is a symmetric
and positive semi-definite function. It is associated with a
particular Hilbert space on X , whose definition, existence
and uniqueness are given by the following fundamental
result (Aronszajn, 1950; Cucker & Smale, 2002):

Lemma 2.1 (Moore-Aronszajn). There exists a unique
Hilbert space, H, consisting of functions on X and equipped
with the inner product ⟨·, ·⟩H, which satisfies the following:

1. ∀x ∈ X , κ(x, ·) ∈ H;

2. ∀f ∈ H, ∀x ∈ X , ⟨f, κ(x, ·)⟩H = f(x);

3. the span of the set {κ(x, ·)}x∈X is dense in H.

The Hilbert space defined above is called the Reproduc-
ing Kernel Hilbert Space (RKHS) associated with (a.k.a.
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Figure 1: Illustration of an NHL, as defined in Defini-
tion 3.1. Each H(l) is an RKHS; each µ(l) is a probability
measure on H(l); each kernel function κ(l) is defined by µ(l)

and, in turn, defines H(l+1).

reproducing) the kernel function κ. The RKHS plays an
important role in classical learning theory as well as math-
ematics and physics, and we refer the readers to Cucker &
Smale (2002); Mohri et al. (2018) for further background.

3. Neural Hilbert Ladders
We begin by introducing a way to create an RKHS from a
distribution of functions on X . If σ is the activation function
of interest and µ is a probability measure on a space of
functions on X , we define κµ : X × X → R by

κµ(x,x
′) :=

∫
σ
(
h(x)

)
σ
(
h(x′)

)
µ(dh) ,

which is symmetric and positive semi-definite. Hence, there
is an RKHS on X associated with the kernel function κµ,
which we denote by Hµ.

By applying this recipe iteratively, we are able to construct
a hierarchy of RKHSes. At the ground level, we define
H(1) := {x 7→ z⊺ · x : z ∈ Rd} to be the space of linear
functions on Rd. Through the canonical isomorphism with
Rd, H(1) inherits an inner product from the Euclidean inner
product on Rd, which makes H(1) the RKHS associated
with the kernel function κ(0)(x,x′) := x⊺ · x′. Then, for
L ≥ 2, we define an L-level Neural Hilbert Ladder (NHL)
as follows:

Definition 3.1. Suppose each of H(2), ..., H(L) is an RKHS
on X , and ∀l ∈ [L − 1], there exists µ(l) ∈ P(H(l))
such that H(l+1) = Hµ(l) , which is the RKHS associated
with κ(l) := κµ(l) . Then, we say that (H(l))l∈[L] is an L-
level NHL induced by the sequence of probability measures,
(µ(l))l∈[L−1]. In addition, we say that a function f on X
belongs to the NHL if f ∈ H(L).

Put differently, to define an NHL, at each level l we choose a
probability measure supported on H(l) – which is equivalent
to the law of a random field on X – to generate κ(l), which

then determines H(l+1). Thus, an NHL is a ladder of RKHS
constructed in an interleaved fashion by random fields and
kernel functions, as illustrated in Figure 1.

3.1. Complexity Measures and Function Spaces

Given an RKHS H on X , we define

D (L)(H) := inf
µ(1), µ(2), ... , µ(L−1)

H(2), ... , H(L−1)

(
L−1∏
l=1

∥µ(l)∥H(l)

)
,

with the infimum taken over all µ(1), ..., µ(L−1) and H(2),
..., H(L−1) such that: (i) ∀l ∈ [L − 1], µ(l) ∈ P(H(l));
(ii) ∀l ∈ [L − 2], H(l+1) = Hµ(l) ; (iii) H = Hµ(L−1) .
Heuristically speaking, it quantifies a certain difficulty of
arriving at H as the Lth-level of an NHL. Then, we define
the L-level NHL complexity of a function f as:

C (L)(f) := inf
H

(
∥f∥H · D (L)

(
H
))

, (3)

with the infimum taken over all RKHS H. Finally, we define
the L-level NHL space, F (L), to contain all functions with
a finite L-level NHL complexity:

F (L) := {f : C (L)(f) < ∞} =
⋃

D(L)(H)<∞

H . (4)

Unlike in the kernel theories of NNs (see Section 9), the
space F (L) is not one RKHS but an infinite union of them.

Some basic properties of F (L) and C (L) are in order:

Proposition 3.2. (a) F (L) is a vector space;

(b) If X ⊆ B(Rd) and σ is non-expansive, then ∥f∥∞ ≤
C (L)(f);

(c) If σ is homogeneous, then C (L) is a quasi-norm on
F (L), and ∀f ∈ F (L), there is an NHL satisfying
C (L)(f) = ∥f∥H(L) and ∀l ∈ [L−1], µ(l) is supported
within the unit-norm sphere of H(l).

These results are proved in Appendix A. When L = 2, as we
will show in Section 7.1.1, F (2) coincides with the Barron
space (E et al., 2022) for two-layer NNs, or equivalently, the
variation-norm function space (Bach, 2017a). Thus, when
L > 2, the NHL space can be seen as a generalization of
the Barron space to deeper NNs.

3.2. Alternative Form via Coupled Random Fields

As noted above, for each l ∈ [L− 1], µ(l) can be interpreted
as the law of a random field on X , H(l), whose sample
paths belong to H(l) almost surely. In fact, the random
fields can be defined on a common probability space in a
useful way, which yields an alternative formulation of the
NHL that will become relevant later:
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Proposition 3.3. In Definition 3.1, there exist random fields,
(H(l))l∈[L], that are defined on a common probability space
and satisfy the following properties:

• H(1), ..., H(L−1) are mutually independent, and ∀l ∈
[L− 1], µ(l) = Law(H(l));

• There exist scalar random variables Ξ(1), ..., Ξ(L−2)

such that ∀l ∈ [L− 2],

H(l+1)(x) = E
[
Ξ(l)σ

(
H(l)(x)

)∣∣H(l+1)
]
, (5)

where E
[
·
∣∣ · ] denotes the conditional expectation, and

∥H(l+1)∥2H(l+1) = E
[
(Ξ(l))2

∣∣H(l+1)
]
. In particular,

we can choose each Ξ(l) to be measurable with respect
to H(l) and H(l+1);

• There exists a scalar random variable A measurable
with respect to H(L−1) such that

f(x) = E
[
Aσ
(
H(L−1)(x)

)]
, (6)

and ∥f∥2H(L) = E
[
A2
]
.

The proof is given in Appendix A.4 and builds on the next
observation:

Lemma 3.4. Let σ be non-expansive, H be an RKHS, and
µ ∈ P(H) with

∫
H ∥h∥2Hµ(dh) < ∞. A function f belongs

to Hµ if and only if ∃ξ ∈ L2(H, µ) such that

f(x) =

∫
ξ(h)σ

(
h(x)

)
µ(dh) , ∀x ∈ X . (7)

Moreover, ∥f∥Hµ
= infξ ∥ξ∥L2(H,µ), with the infimum

taken over all ξ ∈ L2(H, µ) that satisfies (7).

This lemma is akin to prior results on duality between RKHS
and random basis expansions (Rahimi & Recht, 2008a;
Bach, 2017a;b), though they only apply to basis functions
with a compact index set, whereas here, the basis functions
{σ(h(·))}h∈H are indexed by a (non-compact) RKHS. We
give our proof in Appendix A.5, which extends the argument
in Bach (2017a).

4. Realization and Approximation by NN
4.1. NN as NHL

We shall define M (1)
m , ...,M

(L)
m ≥ 0 associated with the NN

defined in Section 2.2 by

M (1)
m :=

(
1

m

m∑
i=1

∥zi∥22
)1/2

, M (L)
m :=

(
1

m

m∑
i=1

a2i

)1/2

,

M (l+1)
m :=

(
1

m2

m∑
i=1

m∑
j=1

|W (l)
ij |2

)1/2

, ∀l ∈ [L− 2] ,

Note that these quantities are the per-layer Frobenius norms
modulo the scaling and admit width-independent upper
bounds if each parameter is sampled i.i.d. Similar quan-
tities appear in Neyshabur et al. (2015) for defining the
group norm of finite-width NNs.

We can show that any L-layer NN represents a function in
F (L), whose NHL complexity is controlled by the parameter
norms defined above, thus verifying property (i):

Theorem 4.1. fm ∈ F (L) with C (L)(fm) ≤
∏L

l=1 M
(l)
m .

In particular, fm belongs to the NHL of (H(l)
m )l∈[L], where

we define H(1)
m := H(1) and, ∀l ∈ [L− 1], H(l+1)

m := H
µ
(l)
m

with µ
(l)
m := 1

m

∑m
i=1 δh(l)

i
being the empirical measure

(on functional space) of the pre-activation functions of the
neurons in the lth hidden layer.

The proof is given in Appendix B.2, and we note that the
random fields can be constructed out of the pre-activation
functions in the respective hidden layers.

4.2. NHL can be Approximated by NN

Conversely, if X is bounded and σ is homogeneous, any
function in F (L) can be approximated by an L-layer NN:

Theorem 4.2. Suppose σ is homogeneous and non-
expansive and X ∈ B(Rd). Given any f ∈ F (L) and
ν ∈ P(X ), there exists an L-layer NN with width m such
that Eν{|fm(x)− f(x)|2} ≤ L−1

m

(
C (L)(f)

)2
.

This result is proved in Appendix B.3, where we use an
inductive-in-L argument to show that a randomized approx-
imation strategy based on sampling each µ(l) independently
can already achieve low approximation error in expectation.

Theorem 4.2 guarantees that the L2 approximation of a
function in F (L) can be achieved with error ϵ > 0 by an
L-layer NN with O(L5/ϵ4) number of parameters in total.
In comparison, functions in the neural tree space defined
by E & Wojtowytsch (2020) require O(1/ϵ4L+6), which
depends exponentially on the depth. The contrast highlights
a crucial property of multi-layer NNs – that the neurons in
a hidden layer all share the same preceding layers – which
is correctly captured by the NHL by not by the neural tree
space, where the models have a branching structure that
incurs an exponential dependence on the depth.

In summary, when σ is homogeneous (e.g. ReLU), we see
a two-way correspondence between L-layer NNs and the
space F (L) with the approximation cost governed by C (L),
and hence both (i) and (ii) are satisfied.
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5. Generalization Guarantees
5.1. Supervised Learning

We consider a general task of fitting a target function f∗ on
X . Concretely, we search for a function f that minimizes the
population risk defined as R(f) := Ex∼ν {l(f(x), f∗(x))},
where ν ∈ P(X ) is an underlying data distribution on X
and l is a differentiable loss function on R×R (e.g., in L2 re-
gression, l(ŷ, y) := 1

2 (ŷ− y)2). However, instead of having
access to ν directly, in supervised learning, we are typically
given a training set of size n, S = {x1, ...,xn} ⊆ X , sam-
pled i.i.d. from ν. We will write νn := 1

n

∑n
k=1 δxk

∈
P(X ). The strategy will be to find a function within a pre-
determined function space – in our case, F (L) (assuming
that σ is homogeneous) – that achieves a low empirical risk
defined as Rn(f) := Ex {l(f(x), f∗(x))}, where we write
Ex for Ex∼νn

for simplicity. Then, the question of gener-
alization is whether the discrepancy |R − Rn| decreases
sufficiently fast as n increases.

Classical learning theory suggests that we prove uniform
upper bounds on the discrepancy through the Rademacher
complexity of F (L). While the Rademacher complexity of
RKHS is known (Mendelson, 2003; Bartlett et al., 2005),
F (L) is not one RKHS but a union of infinitely many of
them, and hence a new approach is needed.

5.2. Rademacher Complexity of F (L)

Recall that the empirical Rademacher complexity of a
function space F with respect to the set S is defined
by R̂adS(F) := Eτ

[
1
n supf∈F

∑n
k=1 τkf(xk)

]
, where

τ = [τ1, ..., τn] is a vector of i.i.d. Rademacher random
variables. Our main result in this section is the following:

Theorem 5.1. If X ⊆ B(Rd) and σ is homogeneous, then
∀M > 0, R̂adS(B(F (L),M)) ≤ M(

√
2 log(2)L+1)/

√
n.

The proof is given in Appendix C.1, where we carry out an
inductive argument inspired by both Neyshabur et al. (2015)
for bounding the Rademacher complexity of multi-layer
NNs with finite group norms and Golowich et al. (2018) for
reducing its dependency on L from exponential to O(

√
L).

Combining this result with Proposition 3.2(b) and classi-
cal generalization bounds via Rademacher complexity (e.g.
Mohri et al., 2018), we derive the following generalization
guarantee for learning in the space of NHLs, verifying (iii):

Corollary 5.2. Suppose that X ⊆ B(Rd) and σ is ho-
mogeneous. ∀δ > 0, with probability at least 1 − δ
over the i.i.d. sampling of a sample S of size n in X , it
holds for all functions f with C (L)(f) ≤ 1 that R(f) ≤
RS(f) + 2/

√
n+ 3

√
log(2/δ)/(2n).

6. Training dynamics
6.1. Gradient Flow (GF)

Given the correspondence between NNs and NHLs shown in
Section 4.2, we can regard the training of NNs as instantiat-
ing the strategy of empirical risk minimization within F (L)

described in Section 5.1, which we will further elucidate
in this section. In practice, typically, we first initialize an
NN by sampling its parameters randomly and then perform
variants of gradient descent (GD) on them with respect to
the empirical risk. We assume below that

Assumption 6.1. σ is differentiable and its derivative σ′ is
Lipschitz and bounded.

Assumption 6.2. At t = 0, each Wi,j,0, ai,0 and zi,0 is
sampled independently from ρW , ρa ∈ P(R) and ρz ∈
P(Rd), respectively. Moreover, ρW and ρa have zero mean,
ρW has a finite fourth-moment, ρz has a finite covariance,
and ρa is bounded.

Assumption 6.1 is standard in prior works on the mean-field
theory of shallow NNs (e.g. Chizat & Bach, 2018), which
is satisfied if σ is e.g. tanh or sigmoid, though not ReLU.

For simplicity, we consider GD dynamics in the continuous-
time limit – also called the gradient flow (GF) – where
the parameters evolve over time t (added as a subscript)
according to a system of ordinary differential equations:

d
dtzi,t = − Ex

{
ζm,t(x)q

(1)
i,t (x)σ

′(h(1)
i,t (x)

)}
,

d
dtai,t = − Ex

{
ζm,t(x)σ

(
h
(L−1)
i,t (x)

)}
,

and ∀l ∈ [L− 2],

d
dtW

(l)
i,j,t = − Ex

{
ζm,t(x)q

(l+1)
i,t (x)

· σ′(h(l+1)
i,t (x)

)
σ
(
h
(l)
j,t(x)

)}
,

where ζm,t(x) := ∂ŷl(ŷ, f
∗(x))|ŷ=fm,t(x), q

(L−1)
i,t (x) :=

ai, and ∀l ∈ [L− 2], q(l)j,t(x) :=
1
m

∑m
i=1 W

(l)
i,j,tq

(l+1)
i,t (x).

Note that GF causes not only the output function fm,t but
also the pre-activation functions in the hidden layers (which
is summarized by µ

(l)
m,t := 1

m

∑m
i=1 δh(l)

i,t
) to evolve, thus

leading to a movement of the NHL represented by the model.
The dynamics of (µ(l)

m,t)l∈[L−1] is unfortunately not closed
but depends intricately on the weight matrices. Nonetheless,
we will show below that the dependencies the weight matri-
ces can be subsumed by a mean-field description once we
consider the infinite-width limit.

6.2. Mean-Field Limit

Several prior works have studied the infinite-width limits
of multi-layer NNs in the mean-field scaling (Araújo et al.,
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2019; Pham & Nguyen, 2021; Sirignano & Spiliopoulos,
2022). Here, to uncover the learning dynamics of the NHL,
we will first show that a mean-field limit can be expressed
in the form introduced in Section 3.2.

For t ≥ 0, let At, Ξ
(1)
t , ..., and Ξ

(L−2)
t be random variables,

let Zt be a d-dimensional random vector, and let H(1)
t , ...,

H
(L−1)
t and Q(1)

t , ..., Q(L−1)
t be random fields on X , which

all depend on time and are defined below. At initial time,
A0 and Z0 are distributed independently with laws ρa and
ρz , respectively, and Ξ

(l)
0 := 0, ∀l ∈ [L−2]. For t ≥ 0, At,

Zt, Ξ
(1)
t , ..., Ξ(L−2)

t evolve via the following dynamics:

d
dtAt = − Ex

{
ζt(x)σ

(
H

(L−1)
t (x)

)}
,

d
dtZt = − Ex

{
ζt(x)Q

(1)
t (x)σ′(H(1)

t (x)
)
x
}
,

and ∀l ∈ [L− 2],

d
dtΞ

(l)
t =− Ex

{
ζt(x)Q

(l+1)
t (x)

· σ′(H(l+1)
t (x)

)
σ
(
H

(l)
t (x)

)}
.

(8)

The random fields are defined by H
(1)
t (x) = Z⊺

t · x,
Q

(L−1)
t (x) = At, and ∀l ∈ [L− 2],

H
(l+1)
t (x) = E

[
Ξ

(l)
t σ(H

(l)
t (x))

∣∣H(l+1)
t

]
. (9)

Q
(l)
t (x) = E

[
Ξ

(l)
t Q

(l+1)
t (x)

∣∣H(l)
t

]
. (10)

Finally, we set ft(x) = E[Atσ(H
(L−1)
t (x))] and ζt(x) =

∂ŷl(ŷ, f
∗(x))|ŷ=ft(x).

We can show that, by the law of large numbers (LLN), ft as
defined above is the infinite-width limit of the GF training
of NNs considered in Section 6.1.
Theorem 6.3. Suppose Assumptions 6.1 and 6.2 hold. Then
∀t ≥ 0, as m → ∞,

1. fm,t(x)
a.s.−−→ ft(x);

2. ∀l ∈ [L− 1], the probability measure µ
(l)
m,t converges

weakly to µ
(l)
t := Law(H(l)

t ) in all finite distributions,
that is, ∀N ∈ N+, ∀x′

1, ..., x′
N ∈ X ,

sup
g∈Lip(RN )

∣∣∣∣ ∫ g(h(x′
1), ..., h(x

′
N ))µ

(l)
m,t(dh)

−
∫

g(h(x′
1), ..., h(x

′
N ))µ

(l)
t (dh)

∣∣∣∣ a.s.−−→ 0

Remark 6.4. If L ≥ 4, then for 2 ≤ l ≤ L− 2, the random
field H

(l)
t defined through the above is actually determinis-

tic, indicating a type of degeneracy in deep NNs under the
mean-field scaling (Araújo et al., 2019; Nguyen & Pham,
2020). Randomness can be restored if we add a bias term to
each layer that is randomly initialized (see Appendix B.1.2).

The proof of Theorem 6.3 is given in Appendix D.1. It incor-
porates the case where the bias terms are added and relies
on a propagation-of-chaos-type argument (Braun & Hepp,
1977). While our result is not meant to be an improvement
in techniques compared to prior literature, it enables us to fit
the mean-field training dynamics into the NHL framework,
as we will show below.

6.3. Mean-Field NHL Dynamics

Integrating (8) and substituting it into (9) and (10), we see
that ∀l ∈ [L− 1],

H
(l)
t (x) =H

(l)
0 (x)−

∫ t

0

Ex′

{
ζs(x

′)κ
(l−1)
t,s (x,x′)

·Q(l)
s (x′)σ′(H(l)

s (x′)
)}

ds ,

Q
(l)
t (x) =Q

(l)
0 (x)−

∫ t

0

Ex′

{
ζs(x

′)γ
(l+1)
t,s (x,x′)

· σ
(
H(l)

s (x′)
)}

ds ,

where we define, ∀l ∈ [L− 1],

κ
(l)
t,s(x,x

′) := E
[
σ
(
H

(l)
t (x)

)
σ
(
H(l)

s (x′)
)]

,

γ
(l)
t,s(x,x

′) := E
[
Q

(l)
t (x)Q(l)

s (x′)

· σ′(H(l)
t (x)

)
σ′(H(l)

s (x′)
)]

,

and κ
(0)
t,s (x,x

′) = γ
(L)
t,s (x,x′) := 1. Thus, having removed

the dependency on all Ξ(l)
t , we derive a dynamics that is

closed among the random fields. Moreover, the random
fields at different levels of the ladder are detached stochasti-
cally and interact only via the (deterministic) functions, κ(l)

t,s

and γ
(l)
t,s.

As a corollary of Lemma 3.4 and Theorem 6.3, we can show
that the equations above indeed define a dynamics in the
space of NHL, with each κ

(l)
t := κ

(l)
t,t defining H(l+1)

t as its
associated RKHS:

Proposition 6.5. Suppose Assumptions 6.1 and 6.2 hold.
∀t ≥ 0, ft belongs to the NHL of (H(l)

t )l∈[L], where H(1)
t :=

H(1) and ∀l ∈ [L − 1], H(l+1)
t := H

µ
(l)
t

is the RKHS

associated with κ
(l)
t . Moreover, ∀l ∈ [L− 1], as m → ∞,

κ
(l)
m,t converges to κ

(l)
t almost surely.

We refer to the evolution of (H(l)
t )l∈[L] in time as the mean-

field NHL dynamics. A notable consequence of the uncou-
pling step is that, when L > 2, the dynamics of each H

(l)
t

is no longer Markovian but dependent on its history. This is
further illustrated in Section 7.2 in the case of linear NNs.
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6.4. Functional Gradient Flow with an Evolving Kernel

From the mean-field NHL dynamics defined above, we can
derive that the output function satisfies

d
dtft(x) = Ex′

{
ζt(x

′)θt(x,x
′)
}
, (11)

where θt(x,x
′) :=

∑L
l=1 κ

(l−1)
t (x,x′)γ

(l)
t (x,x′) and we

set κ(0)
t (x,x′) := x⊺ · x′, γ(L)

t (x,x′) := 1 and γ
(l)
t :=

γ
(l)
t,t , ∀l ∈ [L − 1]. Hence, one can view ft as evolving

according to a functional gradient flow – also called the
residual dynamics in the mean-field theory of shallow NNs
(Rotskoff & Vanden-Eijnden, 2018) – with a time-varying
and data-dependent kernel function θt. It plays a similar
role as the Neural Tangent Kernel (NTK) in the NTK theory,
which governs the training dynamics of infinite-width NNs
under a difference choice of scaling (Jacot et al. (2018); see
also Appendix F). However, a crucial difference is that the
NTK remains fixed during training – and hence the name
“lazy training” (Chizat & Bach, 2018) for the NTK model
– whereas the current model exhibits feature learning as θt
evolves during training, thus satisfying (iv).

7. Examples
We delve deeper into two special families of NNs to better
illustrate the general theory and connect it to prior literature.

7.1. Shallow NN (L = 2)

Below, we show that prior works on the function space and
training dynamics of shallow NNs in the mean-field scaling
agree with the NHL perspective at L = 2.

7.1.1. FUNCTION NORM AND FUNCTION SPACE

The Barron norm has been proposed as a function norm that
corresponds to width-unlimited shallow NNs (E et al., 2019;
E & Wojtowytsch, 2022). For a function f on X , it can be
defined as

∥f∥B = inf
ξ,ρ

(∫
|ξ(z)|2ρ(dz)

)1/2

,

where the infimum is taken over all ρ ∈ P(Sd−1) and all
measurable functions ξ : Sd−1 → R such that

f(x) =

∫
ξ(z)σ

(
z⊺ · x

)
ρ(dz) . (12)

Meanwhile, if σ is homogeneous, Proposition 3.2(c) implies
that

C (2)(f) = inf
µ(1)

∥f∥H(2) ,

with the infimum taken over all probability measures µ(1)

supported within the unit sphere of H(1). The isomorphism

between H(1) and Rd means an equivalence in the roles
played by µ(1) and ρ. Thus, by Lemma 3.4, we see that:

Proposition 7.1. If σ is homogeneous, ∥f∥B = C (2)(f).

In fact, when L = 2, (4) reduces to F (2) =
⋃

ρ Hρ

with the union taken over all ρ ∈ P(Rd), where we de-
fine Hρ as the RKHS associated with the kernel function
κρ(x,x

′) :=
∫
σ(z⊺ · x)σ(z⊺ · x′)ρ(dz). This agrees

with the decomposition of the Barron space as a union of
RKHSes (E et al., 2019).

7.1.2. TRAINING DYNAMICS

When L = 2, the mean-field NHL dynamics reduces to the
following ODEs of the random variables At and Zt:

d
dtAt = Ex

{
ζt(x)σ

(
Z⊺

t · x
)}

d
dtZt =AtEx

{
ζt(x)σ

′(Z⊺
t · x

)
x
}
.

Thus, the joint law of At and Zt evolves in P(Rd+1) ac-
cording to a Wasserstein gradient flow (WGF), which re-
covers the mean-field theory of shallow NNs under training
(reviewed in Section 9). In particular, under similar assump-
tions, the global convergence guarantees of the WGF also
apply to the mean-field NHL dynamics at L = 2.

7.2. Deep Linear NN

When σ is the identity function, the model becomes a linear
NN, whose output function can be expressed as ft(x) =

v⊺
t ·x. Moreover, for all l ∈ {2, ..., L}, H(l)

t always contains
the same set of functions, namely, the linear functions on
Rd, except that their norms in H(l)

t , which are governed by
the kernel function κ

(l−1)
t , differ with l and evolve over time.

Below, we show the mean-field NHL dynamics reduces in
this case to a finite-dimensional system.

We consider the setting of fitting a linear target function
f∗(x) = (v∗)⊺x with least-squares regression, and we
define Σ := 1

n

∑n
k=1 xk · x⊺

k and ζt := Σ · (vt − v∗).
Thanks to the linearity, each κ

(l)
t,s(x,x

′) is bilinear in x and

x′ while γ
(s)
l,t (x,x

′) does not depend on x or x′. In other

words, ∃K(l)
t,s ∈ Rd×d and c

(l)
t,s ∈ R such that κ(l)

t,s(x,x
′) =

x⊺ ·K(l)
t,s · x′ and γ

(l)
t,s(x,x

′) = c
(l)
t,s. Then, (11) reduces to

d
dtvt =

( L∑
l=1

c
(l)
t K

(l−1)
t

)
· Σ · (vt − v∗) ,

where we set K(0)
t as the identity matrix, c(L)

t := 1, and
each K

(l−1)
t := K

(l−1)
t,t , c(l)t := c

(l)
t,t . Moreover, the mean-

field NHL dynamics reduces to equations that are closed in

7
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Figure 2: Learning trajectories of linear 3-layer NN ver-
sus the NHL dynamics. Solid: 3-layer linear NNs trained
by GD with width 64 and 8192. Dashed: numerical inte-
gration of the NHL dynamics derived in Section 7.2. Dot-
dashed: linear regression (LR) under population loss.

K
(l)
t,s and c

(l)
t,s. For example, ∀l ∈ [L− 2], it holds that

K
(l+1)
t,s =

∫ t

0

∫ s

0

c(l+1)
r,p K

(l)
t,r · ζr · ζ⊺

p ·K(l)
p,s dp dr , (13)

c
(l)
t,s =

∫ t

0

∫ s

0

c
(l+1)
t,r c(l+1)

s,p ζ⊺
r ·K(l)

r,p · ζp dp dr , (14)

The full system of equations is derived in Appendix E.1.

We see that although ft is always a linear function, its train-
ing dynamics is nonlinear and non-Markovian, which is in
contrast with the GF dynamics of plain linear regression:

d
dtvt = Σ · (vt − v∗) .

8. Numerical Illustrations
8.1. Experiment 1: Linear NN

To validate the NHL dynamics derived above for linear NNs,
we compare its numerical solution with the GD training of
an actual 3-layer linear NN on an L2 regression task of
learning a linear target v∗, as described in Section 7.2. We
choose d = 10, n = 50 and ν = N (0, Id). In Figure 2,
we plot the learning trajectories in the linear model space
projected into the first two dimensions, i.e., vt,1 and vt,2. We
see that the NHL dynamics solved by numerical integration
closely predicts the actual GD dynamics when the width is
large. Moreover, the NHL dynamics presents a nonlinear
learning trajectory in the space of linear models, which is
in contrast with, for example, the linear learning trajectory
of performing linear regression under the population loss.

8.2. Experiment 2: ReLU NN

To gain insights into feature learning and the evolution of
the NHL through training, we perform GD on 3-layer NNs
with the ReLU activation on an L2 regression task. We
choose d = 1, n = 20, m = 512, the target function being

f∗(x) = sin(2x), and ν being the uniform distribution on
[0, 2π]. All parameters in the model, including untrained
bias terms, are sampled i.i.d. from N (0, 1) at initialization.

We see from Figure 3(b) that the pre-activation values across
all neurons in the second hidden layer – which correspond
to µ

(2)
m,t and approximate µ

(2)
t – move substantially through

training, demonstrating the occurrence of feature learning.
Furthermore, as shown in Figure 3(c), the movement results
in a learned kernel function κ

(2)
t that bears the same period-

icity as the target function, showing that the kernel function
is adaptive through training. In particular, as measured by
the Centered Kernel Alignment (CKA) score (Cortes et al.,
2012), κ(2)

t becomes more aligned with the target function
during training – an important notion in the literature of
learning kernels (Cristianini et al., 2001) – and more so than
κ
(1)
t . It suggests that the space H(L)

t can move closer to the
target function via training, though a theoretical explanation
for the alignment phenomenon is lacking.

9. Related Works
Here, we further discuss the novelty and significance of our
work relative to the existing literature. Due to space limita-
tions, we defer to Appendix F the discussions of additional
prior works on the topics of the NTK theory, NNs as random
fields, complexity measures of NNs and NNs beyond lazy
training, and deep linear NNs.

Function spaces of width-unlimited NNs As discussed
in Section 7.1.1, prior works have proposed the function
space of shallow NNs based on a total-variation-type norm,
which is proved to control both the generalization error
(Bach, 2017a; E et al., 2019) and the dynamical approxima-
tion error (Chen et al., 2020b). Other works have also estab-
lished the regularity properties (Savarese et al., 2019; Ongie
et al., 2020) and representer theorems (Parhi & Nowak,
2021) of this space. Hence, for shallow NNs, a relatively
complete picture has been established that covers approxi-
mation, generalization and optimization.

For multi-layer NNs, however, a satisfactory theory for
the function space and the complexity measure is missing
for the lack of a suitable model. While the neural tree
space (E & Wojtowytsch, 2020) is an interesting attempt,
it does not correspond directly with the training of NNs,
and importantly, neurons in the same layer do not share
pre-synaptic neurons in this model, which leads to approxi-
mation error bounds that grow exponentially in the depth, as
discussed in Section 4.2. Several studies including Lee et al.
(2017a); Sonoda & Murata (2017); Bartlett et al. (2018);
Zou et al. (2020a); Lu et al. (2020); Zou et al. (2020b); E
et al. (2022); Ding et al. (2022); Hayou (2022); Parhi &
Nowak (2022) focus on NNs with bottleneck layers with

8
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(a) Learned function. (b) Pre-activation values. (c) κ(2)
t after training. (d) Kernel-target alignment.

Figure 3: Results of GD training of 3-layer NN with ReLU activation. (a): Target versus learned function. (b): Pre-
activation values across neurons in the second hidden layer on two training data points, x1 and x2, before and after training.
(c): The kernel function of the second hidden layer, κ(2)

t (x,x′), after training (red means a higher value). (d): Training and
test errors and the CKA scores of κ(1)

t and κ
(2)
t with respect to the target function over time, averaged over 10 runs.

fixed widths, whose behavior is quite different from the
multi-layer fully-connected NNs we focus on, where all
hidden layers can have unlimited width.

Mean-field theory of NNs In the mean-field scaling, shal-
low NNs under training are analogous to an interacting
particles system (Rotskoff & Vanden-Eijnden, 2018; 2022).
Hence, as described in Section 7.1.2, its infinite-width limit
can be modeled as a probability measure on the parameter
space, which evolves according to a Wasserstein GF during
training (Mei et al., 2018; Chizat & Bach, 2018; Sirignano
& Spiliopoulos, 2020). Notably, under suitable conditions,
the Wasserstein GF can be proved to converge to global
minimizers of the loss (Nitanda & Suzuki, 2017; Mei et al.,
2018; Chizat & Bach, 2018; Rotskoff & Vanden-Eijnden,
2018; Wojtowytsch, 2020; Chen et al., 2022b).

Several works have proposed mean-field-type models for
multi-layer NNs via probability measures defined in differ-
ent ways (Nguyen, 2019; Araújo et al., 2019; Nguyen &
Pham, 2020; Pham & Nguyen, 2021; Fang et al., 2021; Sirig-
nano & Spiliopoulos, 2022), where in particular, Araújo
et al. (2019); Pham & Nguyen (2021) prove law-of-large-
numbers results similar to Theorem 6.3 for the convergence
of finite-width NNs to the mean-field limit. However, these
works do not address the function space associated with
these models, which is a main contribution of our work.

NNs as kernels Besides the NTK theory, a number of
prior works have also explored the connection between neu-
ral networks and kernels, by either proposing new kernels
methods inspired by NNs (Cho & Saul, 2009; Mairal et al.,
2014; Wilson et al., 2016; Bietti & Mairal, 2017; Shankar
et al., 2020; Radhakrishnan et al., 2022) or by modeling NNs
as kernels (Rahimi & Recht, 2008b; Montavon et al., 2011;
Hazan & Jaakkola, 2015; Anselmi et al., 2015; Domin-
gos, 2020; Aitchison et al., 2021; Amid et al., 2022), or
both. Of particular interest is the conjugate kernel model
of multi-layer NNs proposed by Daniely et al. (2016), to-

gether with a random feature scheme for approximating the
kernel (Daniely et al., 2017) and a theoretical guarantee that
stochastic gradient descent (SGD) can learn a good solution
in the conjugate kernel space in polynomial time (Daniely,
2017). Under the current framework, the conjugate kernel
space can be seen as a particular fixed NHL determined by
the random initialization of the weights. In contrast, the
function space F (L) is not one RKHS, but an infinite collec-
tion of Hilbert spaces, in which learning can occur through
the NHL dynamics. In other words, the conjugate kernel
space does not satisfy desiderata (i) or (iv) from Section 1
as a theory for the function space of multi-layer NNs.

10. Conclusions
In this work, we propose to model multi-layer NNs as NHLs,
thereby deriving the function space of multi-layer NNs as a
union of hierarchically-generated RKHS. We prove that the
associated complexity measure governs both approximation
and generalization errors, and moreover, the training of
multi-layer NNs in feature-learning regimes translate to a
dynamics of the NHL. Hence, our proposal emerges as a
candidate for the hypothesis space of deep NNs.

Limitations of our work include the assumptions in Section 6
that the activation function is differentiable (thus excluding
ReLU) and the GD step size is infinitesimal. Meanwhile,
our work opens up interesting directions for further research,
including various properties of the NHL space and the long-
time behaviors of the mean-field NHL dynamics at L > 2.
It also lays the groundwork for a quantitative investigation
into the influential idea that deep NNs perform hierarchical
learning (Poggio et al., 2003; 2020; Allen-Zhu & Li, 2020;
Chen et al., 2020a).
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A. Supplementary Materials for Section 3
A.1. Proof of Proposition 3.2(a)

Suppose f is a function in F (L). By definition, ∃µ(1), ..., µ(L−1) such that ∥f∥H(L) < ∞ and ∀l ∈ [L−1], ∥µ(l)∥H(l) < ∞
and H(l+1) := Hµ(l) . Given any c > 0, the function cf ∈ H(L) with ∥cf∥H(L) = |c|∥f∥H(L) , which implies that cf
belongs to the same NHL as f and C (L)(cf) ≤ |c|C (L)(f) < ∞. This shows that F (L) is closed under scalar multiplication.
Meanwhile, C (L)(f) = C (L)(c−1(cf)) ≤ |c|−1C (L)(cf). As a result, C (L)(cf) = |c|C (L)(f). This proves the absolute
homogeneity of C (L).

Let f ′ be another function in F (L). Similarly, by definition, ∃µ(1)′ , ..., µ(L−1)′ such that ∥f∥H(L)′ < ∞, H(1)′ = H(1) and
∀l ∈ [L− 1], ∥µ(l)∥H(l) < ∞ and H(l+1)′ := Hµ(l)′ . Then, to show that F (L) is a vector space, we need an upper bound
on C (L)(f + f ′).

For l ∈ [L− 1], we define µ̃(l) := 1
2µ

(l) + 1
2µ

(l)′ . Thus, µ̃(l) is supported within H(l) ∪H(l)′ . We define H̃(1) := H(1) and
∀l ∈ [L− 1], H̃(l+1) := Hµ̃(l) , and we will show that f + f ′ belongs to the NHL formed by (H̃(l))l∈[L]. To do so, we need
the following lemma:

Lemma A.1. For l ∈ [L− 1], if g ∈ H(l), then ∥g∥H̃(l) ≤
√
2∥g∥H(l) ; similarly, if g ∈ H(l)′ , then ∥g∥H̃(l) ≤

√
2∥g∥H(l)′ .

This lemma is proved in Appendix A.1.1 and it allows us to bound ∥µ̃(l)∥H̃(l) for each layer by

∥µ̃(l)∥2H̃(l) =

∫
∥h∥2H̃(l) µ̃

(l)(dh)

=
1

2

∫
∥h∥2H̃(l)µ

(l)(dh) +
1

2

∫
∥h∥2H̃(l)µ

(l)′(dh)

≤
∫

∥h∥2H(l)µ
(l)(dh) +

∫
∥h∥2H(l)µ

(l)′(dh) ,

and moreover, ∥f + f ′∥H̃(L) ≤ ∥f∥H̃(L) + ∥f ′∥H̃(L) ≤
√
2(∥f∥H(L) + ∥f ′∥H(L)′ ). Therefore,

(
C (L)(f + f ′)

)2 ≤
( L−1∏

l=1

∥µ̃(l)∥2H̃(l)

)
∥f + f ′∥2H̃(L)

≤ 2

(
L−1∏
l=1

(
∥µ̃(l)∥2H(l) + ∥µ(l)′∥2H̃(l)

))
(∥f∥H(L) + ∥f ′∥H(L)′ )

2

<∞ .

(15)

Hence, f + f ′ ∈ F (L), and this concludes the proof that F (L) is a vector space.

A.1.1. PROOF OF LEMMA A.1

When l = 1, the statement is trivial since, by definition, H̃(1) = H(1) = H(1)′ .

Next, for l ∈ [L− 2], consider any g ∈ H(l+1). By Lemma 3.4, there exists a function ξ ∈ H(l) such that

g(x) =

∫
ξ(h)σ

(
h(x)

)
µ(l)(dh) ,

∥g∥H(l+1) = ∥ξ∥L2(H(l),µ(l)). Note that µ(l) is absolutely continuous with respect to µ̃(l) on H(l) ∪ H(l)′ . In particular,
for any set A ∈ H(l) ∪ H(l)′ , µ(l)(A) ≤ 2µ̃(l)(A). Therefore, there exists a function η(l) on H(l) ∪ H(l)′ that is the
Radon-Nikodym derivative of µ(l) with respect to µ̃(l), which, in particular, satisfies 0 ≤ η(l) ≤ 2 on H(l) ∪ H(l)′ . This
allows is to write

g(x) =

∫
ξ(h)σ

(
h(x)

)
η(l)(h)µ̃(l)(dh)
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Hence, by Lemma 3.4, there is

∥g∥2H̃(l+1) ≤
∫ ∣∣ξ(h)∣∣2∣∣η(l)(h)∣∣2µ̃(l)(dh)

=

∫ ∣∣ξ(h)∣∣2η(l)(h)µ(l)(dh)

≤ 2∥ξ∥2L2(H(l),µ(l))

= 2∥g∥2H(l+1) .

Similarly, for g ∈ H(l+1)′ , we can derive that ∥g∥2H̃(l+1) ≤ 2∥g∥2H(l+1)′ via a similar argument.

A.2. Proof of Proposition 3.2(b)

For each l ∈ [L− 1], using the reproducing property of H(l) as an RKHS, it holds for all f ∈ H(l) and x ∈ X that

|f(x)| =
∣∣∣⟨f, κ(l−1)(x, ·)⟩H(l)

∣∣∣
≤ ∥f∥H(l)(κ(l−1)(x,x))1/2

(16)

Thus, our strategy is to prove the following statement with an inductive argument, which is given in Appendix A.2.1:

Lemma A.2. If X ⊆ B(Rd) and σ is non-expansive, then supx∈X κ(L)(x,x) ≤
∏L

l=1 ∥µ(l)∥2H(l) , ∀L ∈ N+.

Suppose f ∈ F (L) and let (H(l))l∈[L] be an NHL to which it belongs. Then, Lemma A.2 allows us to derive that

sup
x∈X

|f(x)| ≤ ∥f∥H(L)

L−1∏
l=1

∥µ(l)∥H(l),2 .

Hence, if we take the infimum of the right-hand side, it follows from (3) that ∥f∥ ≤ C
(L)
2 (f).

A.2.1. PROOF OF LEMMA A.2

We can prove Lemma A.2 inductively in L. As we assume that X is a subset of the unit ball of Rd, there is
supx∈X κ(0)(x,x) = supx∈X ∥x∥2 ≤ 1. Next, suppose that the statements of Lemma A.2 hold for a certain L ∈ N. Then,
for L+ 1, (16) implies that, ∀x ∈ X ,

κ(L+1)(x,x) ≤
∫ ∣∣σ(h(x))∣∣2µ(L+1)(dh)

≤
∫ ∣∣h(x)∣∣2µ(L+1)(dh)

≤
(∫

∥h∥2H(L)µ
(L)(dh)

) L∏
l=1

∥µ(l)∥2H(l)

=

L+1∏
l=1

∥µ(l)∥2H(l) ,

which proves the statements for L+ 1.

A.3. Proof of Proposition 3.2(c)

We introduce the following lemma, which is proved in Appendix A.3.1:

Lemma A.3. Suppose that σ is homogeneous. Let H be a Hilbert space of functions on X , and let Ĥ denote the unit-norm
sphere of H. Given any µ ∈ P(H) such that ∥µ∥H = 1, there exists µ̃ ∈ P(Ĥ) such that ∥ · ∥Hµ̃ ≤ ∥ · ∥Hµ .
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If σ is homogeneous, then ∀f ∈ F (L), we may assume without loss of generality that ∥f∥H(L) = C (L)(f) while ∀l ∈ [L−1],
∥µ(l)∥H(l) = 1. Suppose that at some l ∈ [L − 1], µ(l) is not supported entirely within Ĥ(l). Then, Lemma A.3 implies
that there exists an alternative probability measure µ̃(l) supported within Ĥ(l) such that if we define H̃(l+1) := Hµ̃(l) ,
then ∀f ′ ∈ H(l+1), ∥f ′∥H̃(l+1) ≤ ∥f ′∥H(l+1) . In particular, this implies that ∥µ(l+1)∥H̃(l+1) ≤ ∥µ(l+1)∥H(l+1) . Hence, by
replacing H(l+1) with H̃(l+1), we obtain another NHL, (H(1), ...,H(l), H̃(l+1),H(l+2), ...,H(L)), which contains f and
realizes the minimization problem in C (L)(f). Applying this argument to each l, we see that µ(1), ..., µ(L−1) can be chosen
such that ∀l ∈ [L− 1], µ(l) is supported within Ĥ(l).

To show that C (L) is a quasi-norm, we follow the construction in Appendix A.1. Given f and f ′ ∈ F (L), since σ is
homogeneous, we may assume without loss of generality that ∥f∥H(L) = C (L)(f), ∥f∥H(L)′ = C (L)(f ′), and ∀l ∈ [L− 1],
∥µ(l)∥H(l) = ∥µ(l)′∥H(l)′ = 1. Then, (15) can be tightened to yield

C (L)(f + f ′) ≤ 2
L
2 (∥f∥H(L) + ∥f ′∥H(L)′ ) ≤ 2

L
2

(
C (L)(f) + C (L)(f ′)

)
,

which means that C (L) is a quasi-norm on F (L).

A.3.1. PROOF OF LEMMA A.3

Without loss of generality, we assume that µ({0}) = 0 (since otherwise we can replace µ with an µ′ ∈ P(H) such that
µ′({0}) = 0, ∥µ′∥H ≤ 1 and ∥ · ∥Hµ′ ≤ ∥ · ∥Hµ

). Let H be any H-valued random variable with law µ. Note that we can
define a bijection between R+ × Ĥ and H \ {0} via the map (c, ĥ) 7→ cĥ, and we let (C, Ĥ) denote the image of H under
the inverse of this map, which is a pair of random variables supported on R+ ×Ĥ. We first see that E[C2] = E[∥H∥2H] = 1.

We choose a Ĥ-valued random variable, H̃ , whose law has a Radon-Nikodym derivative of E[C2|Ĥ] with respect to the
law of Ĥ , i.e., ∀ĥ ∈ Ĥ, [Law(H̃)](dĥ) = E[C2|Ĥ = ĥ][Law(Ĥ)](dĥ). We can verify that Law(H̃) defined as such is
indeed a probability measure on Ĥ since E[C2|Ĥ = ĥ] ≥ 0, and moreover,

[Law(H̃)](Ĥ) =

∫
Ĥ

E
[
C2|Ĥ = ĥ

]
[Law(Ĥ)](dĥ) = E

[
E
[
C2|Ĥ

]]
= E

[
C2
]
= 1 .

Consider any function f ∈ Hµ. By Lemma 3.4 and the bijection between R+ × Ĥ and H \ {0}, there exists a function
ξ : R+ × Ĥ → R such that

f(x) = E
[
ξ(C, Ĥ)σ

(
H(x)

)]
= E

[
Cξ(C, Ĥ)σ

(
Ĥ(x)

)]
,

and E
[
|ξ(C, Ĥ)|2

]
= ∥f∥2Hµ

. Then, defining a function ξ̃ : Ĥ → R by ∀ĥ ∈ Ĥ,

ξ̃(ĥ) :=
E
[
Cξ(C, Ĥ)

∣∣Ĥ = ĥ
]

E
[
C2
∣∣Ĥ = ĥ

] ,

we see that

f(x) = E
[
E
[
Cξ(C, Ĥ)σ

(
Ĥ(x)

)∣∣Ĥ]]
= E

E
[
Cξ(C, Ĥ)

∣∣Ĥ]
E
[
C2
∣∣Ĥ] σ

(
Ĥ(x)

)
E
[
C2
∣∣Ĥ]


=

∫
Ĥ
ξ̃(ĥ)σ

(
ĥ(x)

)
E
[
C2
∣∣Ĥ = ĥ

]
[Law(Ĥ)](dĥ)

=

∫
Ĥ
ξ̃(ĥ)σ

(
ĥ(x)

)
[Law(H̃)](dĥ)

= E
[
ξ̃(H̃)σ

(
H̃(x)

)]
.
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Thus, there is

∥f∥2HLaw(H̃)
≤ E

[
|ξ̃(H̃)|2

]
=

∫
Ĥ

∣∣∣∣∣∣
E
[
Cξ(C, Ĥ)|Ĥ = ĥ

]
E
[
C2
∣∣Ĥ = ĥ

]
∣∣∣∣∣∣
2

[Law(H̃)](dĥ)

=

∫
Ĥ

∣∣∣∣∣∣
E
[
Cξ(C, Ĥ)|Ĥ = ĥ

]
E
[
C2
∣∣Ĥ = ĥ

]
∣∣∣∣∣∣
2

E[C2
∣∣Ĥ = ĥ][Law(Ĥ)](dĥ)

=

∫
Ĥ

∣∣∣E [Cξ(C, Ĥ)
∣∣Ĥ = ĥ

]∣∣∣2
E
[
C2
∣∣Ĥ = ĥ

] [Law(Ĥ)](dĥ)

= E


∣∣∣E [Cξ(C, Ĥ)

∣∣Ĥ]∣∣∣2
E
[
C2
∣∣Ĥ]


By the Cauchy-Schwartz inequality,

∣∣∣E [Cξ(C, Ĥ)
∣∣Ĥ]∣∣∣2 ≤ E

[
C2|Ĥ

]
E
[
|ξ(C, Ĥ)|2|Ĥ

]
. Hence,

∥f∥2HLaw(H̃)
≤ E

[
E
[
|ξ(C, Ĥ)|2

∣∣Ĥ]] = E
[
|ξ(C, Ĥ)|2

]
= ∥f∥2Hµ

.

A.4. Proof of Proposition 3.3

For each l ∈ [L − 1], let H(l) be a H(l)-valued random variable with law µ(l), and let H(1), ...,H(L−1) be distributed
independently on a common probability space.

First, we define A as follows. By Lemma 3.4, there exists ξ ∈ L2(H(L−1), µ(L−1)) such that f(x) =∫
ξ(h)σ

(
h(x)

)
µ(L−1)(dh) and ∥f∥H(L) = ∥ξ∥L2(H(L−1),µ(L−1)). Then, we define A := ξ(H(L−1)), which is measurable

with respect to H(L−1). Hence, (6) as well as the equality ∥f∥2H(L) = E
[
A2
]

are implied.

Next, ∀l ∈ [L− 2], we define Ξ(l) as follows. By Lemma 3.4, ∀h ∈ H(l+1), ∃ξh ∈ L2(H(l), µ(l)) such that

h(x) =

∫
ξh(h

′)σ
(
h′(x)

)
µ(l)(dh′) , (17)

and
∥h∥H(l+1) = ∥ξh∥L2(H(l),µ(l)) . (18)

We denote the map h 7→ ξh by Ξ(l), i.e., [Ξ(l)(h)](h′) := ξh(h
′) for h ∈ H(l+1) and h′ ∈ H(l), and finally define

Ξ(l) := [Ξ(l)(H(l+1))](H(l)), which is, by definition, measurable with respect to H(l) and H(l+1). Then, (5) and the
relation ∥H(l+1)∥2H(l+1) = E

[
(Ξ(l))2

∣∣H(l+1)
]

are implied by (17) and (18).

A.5. Proof of Lemma 3.4

The main proof strategy is adopted from Appendix A of Bach (2017a).

Let µ ∈ P(H) with ∥µ∥H < ∞. For any function f in X , we define

∥f∥△ := inf
ξ

(
∥ξ∥L2(H,µ)

)1/2
,
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with the infimum taken over all ξ ∈ L2(H, µ) such that (7) holds. We define H△ to be the space containing all functions
f such that ∥f∥△ < ∞. Then, our strategy is to prove that H△ must coincide with Hµ by leveraging the uniqueness of
RKHS.

To start with, it can be verified that ∥ · ∥△ is a norm on H△ and hence makes it a Banach space. Then, we define a map

T : L2(H, µ) → H△

ξ 7→
∫

ξ(h)σ
(
h(·)

)
µ(dh) .

As a surjective linear map between Banach spaces, there exists an orthogonal decomposition of L2(H, µ) into the null space
of T , denoted by K, and its complement, denoted by K⊥ (see Theorem 2.12 in Brézis, 2011, for example). We let U denote
the restriction of T onto K⊥, which is bijective, and let U−1 denote its inverse. Then, for f , g ∈ H△, we define

⟨f, g⟩△ :=

∫
[U−1(f)](h)[U−1(g)](h)µ(dh) . (19)

It can then be verified that (19) defines an inner product on H△ and gives rise to the norm ∥ · ∥△, thus making H△ a Hilbert
space on X . Thus, it remains to show that H△ satisfies the three properties in Lemma 2.1 with respect to the kernel function
κµ.

First, since κµ(x,x
′) =

∫
σ
(
h(x)

)
σ
(
h(x′)

)
µ(dh), we see that

∥κµ(x, ·)∥△ ≤
∫ ∣∣σ(h(x))∣∣2µ(dh) ≤ ∫ ∣∣h(x)∣∣2µ(dh) ≤ sup

x
κ(x,x)

∫
∥h∥2Hµ(dh) < ∞ ,

where κ is the kernel function associated with H, and supx κ(x,x) < ∞ is a consequence of the compactness of X . This
implies that κµ(x, ·) ∈ H△.

Second, given any f ∈ H△, there exists ξ ∈ K⊥ such that (7) holds. In particular, it means that ∀ξ̃ ∈ K,
∫
ξ(h)ξ̃(h)µ(dh) =

0. Therefore,

⟨f, κµ(x, ·)⟩△ =

∫
ξ(h)[U−1(κµ(x, ·))](h)µ(dh)

≤
∫

ξ(h)σ
(
h(x)

)
µ(dh)

= f(x).

(20)

Third, (20) implies that any function in H△ that is orthogonal to κµ(x, ·) for all x ∈ X has to be the zero function. Hence,
{κµ(x, ·)}x∈X spans H△.

Therefore, by Lemma 2.1, H△ = Hµ, which proves Lemma 3.4.

B. Supplementary Materials for Section 4
B.1. Including the Bias Terms

B.1.1. MULTI-LAYER NN

By including the bias term, we mean replacing (2) in the definition of the multi-layer NN by

h
(l+1)
i (x) := b

(l+1)
i +

1

m

m∑
j=1

W
(l)
ij σ

(
h
(l)
j (x)

)
.

In the GF dynamics, the bias terms evolve according to the following ODE:

d
dtb

(l)
i,t = −βEx

{
ζm,tq

(l)
i,t (x)

}
,

where β denotes the learning rate of the bias parameters relative to the weight parameters. If β = 0, for example, it
corresponds to having untrained bias terms.
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B.1.2. NHL

To incorporate the role played by the bias term, we replace Definition 3.1 by the following definition of the NHL:
Definition B.1. Suppose each of H(2), ..., H(L) is an RKHS on X , and ∀l ∈ [L− 1], there exists µ(l) ∈ P(H(l) × R) such
that H(l+1) is the RKHS associated with the kernel function

κ(l)(x,x′) :=

∫
σ
(
h(x) + b

)
σ
(
h(x′) + b

)
µ(dh, db) .

In other words, we can write H(l+1) = H
µ
(l)
+

, where µ(l)
+ ∈ P(H(l) +R) is the push-forward of the measure µ(l) under the

map:

C(X )× R → C(X )

(h, b) 7→ h(·) + b ,

and “H(l) + R” denotes the sum of H(l) and the space of constant functions on X as vector subspaces of C(X ), the space
of continuous functions on X . Then, we say that (H(l))l∈[L] is an L-level NHL induced by the sequence of probability
measures, (µ(l))l∈[L]; in addition, a function f on X belongs to the NHL if f ∈ H(L).

If H is a Hilbert space and µ ∈ P(H× R), we define ∥µ∥H,+ := (
∫
∥h∥2H + |b|2µ(dh, db))1/2. Given an RKHS H, we

can then define

D (L)(H) := inf
µ(1),...,µ(L−1)

H(2),...,H(L−1)

( L−1∏
l=1

∥µ(l)∥H(l),+

)
,

where the infimum is taken under the constraint that µ(l) ∈ P(H(l) × R) and H(l+1) = H
µ
(l)
+

, ∀l ∈ [L− 1]. Then, we can
define the L-level NHL complexity of a function in the same way as (3).

In addition, instead of Proposition 3.3, the coupled form of the NHL can be redefined in the following way.
Proposition B.2. In Definition B.1, there exist random fields, (H(l))l∈[L−1], and random variables, (B(l))l∈[L−1], that are
defined on a common probability space and satisfies the following properties:

• The pairs (H(1),B(1)), ..., (H(L−1),B(L−1)) are mutually independent, and ∀l ∈ [L− 1], µ(l) = Law(H(l),B(l)).

• There exist scalar random variables Ξ(1), ..., Ξ(L−2) such that ∀l ∈ [L− 2],

H(l+1)(x) = E
[
Ξ(l)σ

(
H(l)(x) +B(l)

)∣∣H(l+1)
]
, (21)

where E
[
·
∣∣ · ] denotes the conditional expectation, and ∥H(l+1)∥2H(l+1) = E

[
(Ξ(l))2

∣∣H(l+1)
]
. In particular, we can

choose each Ξ(l) to be measurable with respect to H(l) and H(l+1);

• There exists a scalar random variable A measurable with respect to H(L−1) such that

f(x) = E
[
Aσ
(
H(L−1)(x) +B(L−1)

)]
, (22)

and ∥f∥2H(L) = E
[
A2
]
.

In the mean-field dynamics, the evolution of the bias term is governed by

d

dt
B

(l)
t = −βEx

{
ζtQ

(l)
t (x)σ′(H(l)

t (x)
)}

B.2. Proof of Theorem 4.1

First, by the definition of H(1), there is ∥µ(1)
m ∥H(1) = M

(1)
m . For l ∈ [L − 2], Lemma 3.4 implies ∥h(l+1)

i ∥2
H(l+1)

m

≤
1
m

∑m
j=1 |W

(l)
i,j |2, and so ∥µ(l+1)

m ∥2H(l+1) = 1
m

∑m
i=1 ∥h

(l+1)
i ∥2H(l+1) ≤ (M

(l+1)
m )2. Finally, Lemma 3.4 also implies

∥f∥H(L),m ≤ M
(L)
m . Together, they prove the proposition.
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B.3. Proof of Theorem 4.2

Let f ∈ F (L). As explained in Section 3.2 and Appendix A.4, there exist probability measures µ(1), ..., µ(L−1) and deter-
ministic functions Ξ(1), ..., Ξ(L−1) that satisfy the conditions in Appendix A.4. Since σ is homogeneous, Propositions 3.2(c)
implies that we may assume without loss of generality that C (L)(f) = ∥f∥H(L) and ∀l ∈ [L− 1], µ(l) is supported on the
unit-norm sphere of H(l).

Our strategy will be to consider a random approximation of f using a width-m NN that achieves low a approximation error
in expectation. For each l ∈ [L− 1], we let {H(l)

i }i∈[m] be m independent samples from µ(l) on (the unit-norm sphere of)
H(l). We define H̄

(1)
i := H

(1)
i . Then, for l ∈ [L− 2], writing W̄

(l)
i,j := Ξ(l)(H

(l+1)
i ,H

(l)
j ), we iteratively define

H̄
(l+1)
i (x) :=

1

m

m∑
j=1

W̄
(l)
i,j σ

(
H̄

(l)
j (x)

)
,

and finally, writing Āi := Ξ(L−1)(H
(L−1)
i ), we define

Fm(x) :=
1

m

m∑
i=1

Āσ
(
H̄

(L−1)
i (x)

)
.

Lemma B.3. ∀l ∈ [L− 1], ∀i ∈ [m], ∀x ∈ X , almost surely,

E
[(
H̄

(l)
i (x)−H

(l)
i (x)

)2∣∣H(l)
i

]
≤ l − 1

m
.

The lemma is proved in Appendix B.3.1. Thus, ∀x ∈ X , we have

E
[
|Fm(x)− f(x)|2

]
≤ (I) + (II) ,

where

(I) := E

[(
Fm(x)− 1

m

m∑
i=1

Āiσ
(
H

(L−1)
i (x)

))2]

= E

( 1

m

m∑
i=1

Āi

(
σ
(
H̄

(L−1)
i (x)

)
− σ

(
H

(L−1)
i (x)

)))2


≤ E

[(
1

m

m∑
i=1

(Āi)
2

)(
1

m

m∑
i=1

(
σ
(
H̄

(L−1)
i (x)

)
− σ

(
H

(L−1)
i (x)

))2)]

≤ E

[(
1

m

m∑
i=1

(Āi)
2

)(
1

m

m∑
i=1

E
[(
H̄

(L−1)
i (x)−H

(L−1)
i (x)

)2∣∣H(L−1)
i

])]

≤L− 2

m
E

[
1

m

m∑
i=1

(
Ξ(L−1)

(
H

(L−1)
i

))2]

≤L− 2

m
∥f∥2H(L) ,

(23)

where on the third line we use the Cauchy-Schwartz inequality, on the fourth line we use that Āi is measurable with respect
to H

(L−1)
i , on the fifth line we use Lemma B.3; and on the other hand,

(II) := E

( 1

m

m∑
j=1

Āiσ
(
H

(L−1)
i (x)

)
− f(x)

)2


=
1

m

m∑
i=1

E
[(

Ξ(L−1)(H
(L−1)
i )σ

(
H

(L−1)
i (x)

)
− E

[
Ξ(L−1)(H

(L−1)
i )σ

(
H

(L−1)
i (x)

)])2]
≤ 1

m
E
[(

Ξ(L−1)(H(L−1))
)2 (

σ
(
H(L−1)(x)

))2]
,
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where on the second and third lines, we use the independence among H
(L−1)
1 , ..., H(L−1)

m and their equivalence in law.
By Proposition 3.2(b), there is supx∈X |H(L−1)

i (x)| ≤ C (L−1)(H
(l)
i ) = ∥H(L−1)

i ∥H(L−1) = 1. Therefore, it holds that(
σ
(
H

(L−1)
i (x)

))2 ≤
(
H

(L−1)
i (x)

)2 ≤ 1. Thus,

(II) ≤ 1

m
E
[(

Ξ(L−1)(H(L−1))
)2]

≤ 1

m
∥f∥2H(L) . (24)

Together, (23) and (24) imply that, ∀x ∈ X ,

E
[
|Fm(x)− f(x)|2

]
≤ L− 1

m
∥f∥2H(L) =

L− 1

m

(
C (L)(f)

)2
.

Hence, ∀ν ∈ P(X ),

E
[
Ex∼ν

{
|Fm(x)− f(x)|2

}]
= Eν

{
E
[
|Fm(x)− f(x)|2

]}
≤ L− 1

m

(
C (L)(f)

)2
.

Thus, as a consequence of Markov’s inequality, there exists a realization of (H(l)
i )l∈[L−1],i∈[m] under which

Ex∼ν

{
|Fm(x)− f(x)|2

}
≤ L− 1

m

(
C (L)(f)

)2
.

B.3.1. PROOF OF LEMMA B.3

For l = 1, there is H̄(1)
i = H

(1)
i , and hence H̄

(1)
i (x)−H

(1)
i (x) = 0, ∀x ∈ X .

Suppose that the statement holds for some l ∈ [L− 2]. Then, for level l + 1, we can write

E
[(
H̄

(l+1)
i (x)−H

(l+1)
i (x)

)2∣∣∣H(l+1)
i

]
≤ (I) + (II) ,

where

(I) := E

(H̄(l+1)
i (x)− 1

m

m∑
j=1

W̄
(l)
i,j σ

(
H

(l)
j (x)

))2∣∣∣H(l+1)
i


= E

( 1

m

m∑
j=1

W̄
(l)
i,j

(
σ
(
H̄

(l)
j (x)

)
− σ

(
H

(l)
j (x)

)))2∣∣∣H(l+1)
i


≤ E

( 1

m

m∑
j=1

(
W̄

(l)
i,j

)2)( 1

m

m∑
j=1

(
σ
(
H̄

(l)
j (x)

)
− σ

(
H

(l)
j (x)

))2)∣∣∣H(l+1)
i


≤ E

( 1

m

m∑
j=1

(
W̄

(l)
i,j

)2)E
( 1

m

m∑
j=1

(
H̄

(l)
j (x)−H

(l)
j (x)

)2)∣∣∣{H(l)
j }j∈[m]

 ∣∣∣H(l+1)
i


≤ l − 1

m
E

( 1

m

m∑
j=1

(
W̄

(l)
i,j

)2)∣∣∣H(l+1)
i


≤ l − 1

m
∥H(l+1)

i ∥2H(l+1)

≤ l − 1

m
,

where on the fourth line, we use that 1) W̄ (l)
i,j is measurable with respect to H

(l+1)
i and H

(l)
j , and 2) H̄(l)

j and H
(l)
j are
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independent from H
(l+1)
i ; and on the fifth line we use the inductive hypothesis; and on the other hand,

(II) := E


 1

m

m∑
j=1

W̄
(l)
i,j σ

(
H

(l)
j (x)

)
−H

(l+1)
i (x)

2 ∣∣∣H(l+1)
i


= E


 1

m

m∑
j=1

(
Ξ(l)(H

(l+1)
i ,H

(l)
j )σ

(
H

(l)
j (x)

)
− E

[
Ξ(l)(H

(l+1)
i ,H(l))σ

(
H(l)(x)

)∣∣H(l+1)
i

])2 ∣∣∣H(l+1)
i


≤ 1

m
E
[(

Ξ(l)(H
(l+1)
i ,H(l))

)2 (
σ
(
H(l)(x)

))2 ∣∣∣H(l+1)
i

]
.

By Proposition 3.2(b), there is supx∈X |H(l)
j (x)| ≤ C (L)(H

(l)
j ) = ∥H(l)

j ∥H(l) = 1. Hence, it holds that(
σ
(
H

(l)
j (x)

))2 ≤
(
H

(l)
j (x)

)2 ≤ 1. Thus,

(II) ≤ 1

m
E
[(

Ξ(l)(H
(l+1)
i ,H(l))

)2 ∣∣∣H(l+1)
i

]
≤ 1

m
∥H(l+1)

i ∥2H(l+1) =
1

m
.

Therefore, combining the bounds for (I) and (II), we get

E
[(

H̄
(l+1)
i (x)−H

(l+1)
i (x)

)2∣∣∣H(l+1)
i

]
≤ l − 1

m
+

1

m
≤ l

m
,

which proves the inductive hypothesis at level l + 1.

C. Supplementary Materials for Section 5
C.1. Proof of Theorem 5.1

When σ is homogeneous, we see that ∥ · ∥F(l) can be alternatively expressed as

∥f∥F(L) = inf
µ(1),...,µ(L−1)

∥f∥H(L)

s.t. ∥µ(l)∥H(l) = 1 , ∀l ∈ [L− 1]

In the following, for simplicity, we will write supµ(l) and supξ for

sup
µ(l)∈P(H(l))

∥µ(l)∥H(l)≤1

and sup
ξ∈L2(H(L−1),µ(L−1))

∥ξ∥
L2(H(L−1),µ(L−1))

≤1

,

respectively. Recall that the empirical Rademacher complexity is defined as

R̂adS(B(F (L), 1)) = Eτ

[
1

n
sup

∥f∥F(L)≤1

n∑
k=1

τkf(xk)

]
For any λ > 0, we consider the function gλ : R → R defined by gλ(u) = exp(λu), which is positive, monotonically
increasing and convex. Thus, using Jensen’s inequality, we can write

n R̂adS(B(F (L), 1)) ≤ 1

λ
log

(
gλ

(
Eτ

[
sup

∥f∥F(L)≤1

n∑
k=1

τkf(xk)

]))

≤ 1

λ
log

(
Eτ

[
gλ

(
sup

∥f∥F(L)≤1

n∑
k=1

τkf(xk)

)])

≤ 1

λ
logM(L)

λ ,
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where we define, ∀l ∈ [L], M(l)
λ := Eτ

[
gλ

(
sup∥f∥F(l)≤1

∣∣∣∑n
k=1 τkf(xk)

∣∣∣)].
Lemma C.1. M(L)

λ ≤ 2L−1Eτ [gλ (∥
∑n

k=1 τkxk∥)].

This lemma is proved in Appendix C.2. Then, if we choose λ =

√
2(L−1) log(2)√∑n

k=1 ∥xk∥2
2

, it is shown in Golowich et al. (2018) that

1

λ
log

(
2L−1Eτ

[
gλ

(∥∥∥∥∥
n∑

k=1

τkxk

∥∥∥∥∥
)])

≤
(√

2L log(2) + 1
)√√√√ n∑

k=1

∥xk∥22 ,

which yields the desired result.

C.2. Proof of Lemma C.1

We see that

sup
∥f∥F(L)≤1

∣∣∣∣∣
n∑

k=1

τkf(xk)

∣∣∣∣∣ ≤ sup
µ(1),...,µ(L−1),ξ

∣∣∣∣∣
n∑

k=1

τk

∫
ξ(h)σ

(
h(xk)

)
µ(L−1)(dh)

∣∣∣∣∣
≤ sup

µ(1),...,µ(L−1),ξ

∣∣∣∣∣
∫ n∑

k=1

τk
ξ(h

|ξ(h)|
σ
(
h(xk)

)
∥h∥H(L−1)

|ξ(h)|∥h∥H(L−1)µ(L−1)(dh)

∣∣∣∣∣ .

By the Cauchy-Schwartz inequality and the homogeneity of σ, there is

∣∣∣∣∣
∫ n∑

k=1

τk
ξ(h

|ξ(h)|
σ
(
h(xk)

)
∥h∥H(L−1)

|ξ(h)|∥h∥H(L−1)µ(L−1)(dh)

∣∣∣∣∣
≤

(
sup

h∈H(L−1)

∣∣∣∣∣
n∑

k=1

τk
ξ(h)

|ξ(h)|
σ
(
h(xk)

)
∥h∥H(L−1)

∣∣∣∣∣
)∫

|ξ(h)|∥h∥H(L−1)µ(L−1)(dh)

≤

 sup
∥ĥ∥H(L−1)≤1

∣∣∣∣∣
n∑

k=1

τkσ
(
ĥ(xk)

)∣∣∣∣∣
(∫ |ξ(h)|2µ(L−1)(dh)

)1/2(∫
∥h∥2H(L−1)µ

(L−1)(dh)

)1/2

,

and hence

sup
∥f∥F(L)≤1

∣∣∣∣∣
n∑

k=1

τkf(xk)

∣∣∣∣∣ ≤ sup
∥ĥ∥H(L−1)≤1

µ(1),...,µ(L−2)

∣∣∣∣∣
n∑

k=1

τkσ
(
ĥ(xk)

)∣∣∣∣∣ =
sup∥ĥ∥F(L−1)

∣∣∣∑n
k=1 τkσ

(
ĥ(xk)

)∣∣∣ , if L ≥ 3 ,

sup∥ĥ∥H(1)

∣∣∣∑n
k=1 τkσ

(
ĥ(xk)

)∣∣∣ , if L = 2 .
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Notice that, since g is positive, there is g(|u|) ≤ gλ(u) + gλ(−u). Therefore, when L ≥ 3,

M(L)
λ ≤ Eτ

[
gλ

(
sup

∥f∥F(L)≤1

∣∣∣∣∣
n∑

k=1

τkf(xk)

∣∣∣∣∣
)]

≤ Eτ

 sup
∥ĥ∥F(L−1)≤1

gλ

(∣∣∣∣∣
n∑

k=1

τkσ
(
ĥ(xk)

)∣∣∣∣∣
)

≤ Eτ

 sup
∥ĥ∥F(L−1)≤1

gλ

(
n∑

k=1

τkσ
(
ĥ(xk)

))+ Eτ

 sup
∥ĥ∥F(L−1)≤1

gλ

(
−

n∑
k=1

τkσ
(
ĥ(xk)

))
≤ Eτ

gλ
 sup

∥ĥ∥F(L−1)≤1

n∑
k=1

τkσ
(
ĥ(xk)

)+ Eτ

gλ
 sup

∥ĥ∥F(L−1)≤1

n∑
k=1

(−τk)σ
(
ĥ(xk)

)
≤ 2Eτ

gλ
 sup

∥ĥ∥F(L−1)≤1

n∑
k=1

τkσ
(
ĥ(xk)

)
≤ 2Eτ

gλ
 sup

∥ĥ∥F(L−1)≤1

n∑
k=1

τkĥ(xk)


where for the fifth line we use the symmetry of the Rademacher distribution, and for the sixth line we use a version of the
Contraction Lemma given by equation 4.20 in Ledoux & Talagrand (1991), leveraging the monotonicity and convexity of g.
Hence, we derive that

M(L)
λ ≤ 2M(L−1)

λ .

Thus, by induction, it holds that

M(L)
λ ≤ 2L−1M(1)

λ

= 2L−1Eτ

[
gλ

(
sup

∥f∥H(1)≤1

∣∣∣∣∣
n∑

k=1

τkf(xk)

∣∣∣∣∣
)]

= 2L−1Eτ

[
gλ

(
sup

∥z∥2≤1

∣∣∣∣∣
n∑

k=1

τkz
⊺ · xk

∣∣∣∣∣
)]

≤ 2L−1Eτ

[
gλ

(∥∥∥∥∥
n∑

k=1

τkxk

∥∥∥∥∥
)]

,

which proves the lemma.

D. Supplementary Materials for Section 6
D.1. Proof of Theorem 6.3

If (um)m∈N+ and (u′
m)m∈N+ are two sequences of non-negative random variables, we write um = oP(u

′
m) if it holds

almost surely that ∀ϵ < 0, ∃M > 0 such that ∀m > M , um ≤ ϵu′
m.

Preliminaries and Definitions From the mean-field dynamics defined in Section 6.2 and Appendix B.1.2, we see that for
t ≥ 0,

• for l ∈ [L− 1], H(l)
t , Q(l)

t and B
(l)
t depend deterministically on B

(l)
0 , Z0 (if l = 1) and A0 (if l = L− 1);

• for l ∈ [L− 2], Ξ(l)
t depends deterministically on B

(l)
0 , B(l+1)

0 , Z0 (if l = 1) and A0 (if l = L− 2);
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• Zt depends deterministically on B
(1)
0 and Z0;

• At depends deterministically on B
(L−1)
0 and A0;

In other words, we can express H(l)
t , Q(l)

t , Ξ(l)
t , B(l)

t and Zt alternatively as:

H
(l)
t (x) =


H

(1)
t (x,Z0,B

(1)
0 ) , l = 1

H
(l)
t (x,B

(l)
0 ) , l ∈ {2, ..., L− 2}

H
(L−1)
t (x,A,B

(L−1)
0 ) , l = L− 1

Q
(l)
t (x) =


Q

(1)
t (x,Z0,B

(1)
0 ) , l = 1

Q
(l)
t (x,B

(l)
0 ) , l ∈ {2, ..., L− 2}

Q
(L−1)
t (x,A,B

(L−1)
0 ) , l = L− 1

Ξ
(l)
t =


Ξ
(1)
t (Z0,B

(1)
0 ,B

(2)
0 ) , l = 1

Ξ
(l)
t (B

(l)
0 ,B

(l+1)
0 ) , l ∈ {2, ..., L− 2}

Ξ
(L−2)
t (A,B

(L−2)
0 ,B

(L−1)
0 ) , l = L− 2 ,

B
(l)
t =


B

(1)
t (Z0,B

(1)
0 ) , l = 1

B
(l)
t (B

(l)
0 ) , l ∈ {2, ..., L− 2}

B
(L−1)
t (A,B

(L−1)
0 ) , l = L− 1

Zt = Zt(Z0,B
(1)
0 ) ,

At = At(A0,B
(L−1)
0 ) .

(25)

by introducing the following (deterministic) functions:

H
(l)
t , Q

(l)
t :


X × Rd × R → R , l = 1,

X × R → R , l ∈ {2, ..., L− 2} ,

X × R× R → R , l = L− 1 ,

Ξ
(l)
t :


Rd × R× R → R , l = 1 ,

R× R → R , l ∈ {2, ..., L− 3} ,

R× R× R → R , l = L− 2 ,

B
(l)
t :


Rd × R → R , l = 1 ,

R → R , l ∈ {2, ..., L− 2} ,

R× R → R , l = L− 1 ,

Zt : Rd × R → Rd ,

At : R× R → R ,

which are defined as follows: ∀t ≥ 0,

• for l ∈ [L− 1], H(l)
t is defined by, ∀x ∈ X , ∀z ∈ Rd, ∀a, b ∈ R,

H
(1)
t (x, z, b) = Zt(z, b)

⊺ · x+B
(l)
t (b) ,

H
(2)
t (x, b) = E

[
Ξ
(1)
t (Z0,B

(1)
0 , b)σ

(
H

(1)
t (x,Z0,B

(1)
0 )
)]

+B
(2)
t (b) ,

H
(l+1)
t (x, b) = E

[
Ξ
(l)
t (B

(l)
0 , b)σ

(
H

(l)
t (x,B

(l)
0 )
)]

+B
(l+1)
t (b) , ∀l ∈ {2, ..., L− 3} ,

H
(L−1)
t (x, a, b) = E

[
Ξ
(L−2)
t (a,B

(L−2)
0 , b)σ

(
H

(L−2)
t (x,B

(L−2)
0 )

)]
+B

(L−1)
t (b) ;
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• for l ∈ [L− 1], Q(l)
t is defined by, ∀x ∈ X , ∀z ∈ Rd, ∀a, b ∈ R,

Q
(L−1)
t (x, a, b) = At(a, b) ,

Q
(L−2)
t (x, b) = E

[
Ξ
(L−2)
t (A, b,B

(L−1)
0 )Q

(L−1)
t (x,B

(L−1)
0 )σ′(H(L−1)

t (x,A,B
(L−1)
0 )

)]
,

Q
(l−1)
t (x, b) = E

[
Ξ
(l−1)
t (b,B

(l)
0 )Q

(l)
t (x,B

(l)
0 )σ′(H(l)

t (x,B
(l)
0 )
)]

, ∀l ∈ {1, ..., L− 2} ,

Q
(1)
t (x, z, b) = E

[
Ξ
(1)
t (z, b,B

(2)
0 )Q

(2)
t (x,B

(2)
0 )σ′(H(2)

t (x,B
(2)
0 )
)]

;

• for l ∈ [L− 2], Ξ(l)
t is defined by, ∀z ∈ Rd, ∀a, b ∈ R

d
dtΞ

(1)
t (z, b, b′) = − Ex

{
ζt(x)Q

(2)
t (x, b′)σ′(H(2)

t (x, b′)
)
σ
(
H

(1)
t (x, z, b)

)}
,

d
dtΞ

(l)
t (b, b′) = − Ex

{
ζt(x)Q

(l+1)
t (x, b′)σ′(H(l+1)

t (x, b′)
)
σ
(
H

(l)
t (x, b)

)}
, ∀l ∈ {2, ..., L− 2} ,

d
dtΞ

(L−2)
t (a′, b, b′) = − Ex

{
ζt(x)Q

(L−1)
t (x, a′, b′)σ′(H(L−1)

t (x, a′, b′)
)
σ
(
H

(l)
t (x, b)

)}
,

together with the initial conditions

Ξ
(1)
0 (z, b, b′) = 0 ,

Ξ
(l)
0 (b, b′) = 0 , ∀l ∈ {2, ..., L− 2} ,

Ξ
(L−2)
0 (a′, b, b′) = 0 ;

• for l ∈ [L− 1], B(l)
t is defined by, ∀z ∈ Rd, ∀a, b ∈ R,

d
dtB

(1)
t (z, b) = − βEx

{
ζt(x)Q

(1)
t (x, z, b)σ′(H(1)

t (x, z, b)
)}

,

d
dtB

(l)
t (b) = − βEx

{
ζt(x)Q

(l)
t (x, b)σ′(H(l)

t (x, b)
)}

, ∀l ∈ {2, ..., L− 2} ,

d
dtB

(L−1)
t (a, b) = − βEx

{
ζt(x)Q

(L−1)
t (x, a, b)σ′(H(L−1)

t (x, a, b)
)}

,

together with the initial conditions

B
(1)
0 (z, b) = b ,

B
(l)
0 (b) = b , ∀l ∈ {2, ..., L− 2} ,

B
(L−1)
0 (a, b) = b ;

• Zt is defined by, ∀z ∈ Rd, ∀b ∈ R,

d
dtZt(z, b) = −Ex

{
ζt(x)Q

(1)
t (x, z, b)σ′(H(1)

t (x, z, b)
)
x
}

,

together with the initial condition
Z0(z, b) = z ;

• At is defined by, ∀a, b ∈ R,
d
dtAt(a, b) = −Ex

{
ζt(x)σ

(
H

(l)
t (x, a, b)

)}
,

together with the initial condition
A0(a, b) = a .
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One can verify that the expressions (25) are consistent with the mean-field dynamics described in Section 6.2. Then, we
define

z̃i,t = Zt(zi,0, b
(1)
i,0 )

ãi,t = At(ai,0, b
(L−1)
i,0 )

b̃
(l)
i,t =


B

(1)
t (zi,0, b

(1)
i,0 ) , l = 1

B
(l)
t (b

(l)
i,0) , l ∈ {2, ..., L− 2}

B
(L−1)
t (ai, b

(L−1)
i,0 ) , l = L− 1

h̃
(l)
i,t(x) =


H

(1)
t (x, zi,0, b

(1)
i,0 ) , l = 1

H
(l)
t (x, b

(l)
i,0) , l ∈ {2, ..., L− 2}

H
(L−1)
t (x, ai, b

(L−1)
i,0 ) , l = L− 1

q̃
(l)
i,t (x) =


Q

(1)
t (x, zi,0, b

(1)
i,0 ) , l = 1

Q
(l)
t (x, b

(l)
i,0) , l ∈ {2, ..., L− 2}

Q
(L−1)
t (x, ai, b

(L−1)
i,0 ) , l = L− 1

W̃
(l)
i,j,t =


Ξ
(1)
t (zj,0, b

(1)
j,0 , b

(2)
i,0 ) , l = 1

Ξ
(l)
t (b

(l)
j,0, b

(l+1)
i,0 ) , l ∈ {2, ..., L− 3}

Ξ
(L−2)
t (ai, b

(L−2)
j,0 , b

(L−1)
i,0 ) , l = L− 2 .

By the property of Lipschitz ODEs, at any finite t ≥ 0, one can show that the maps H(l)
t , Q(l)

t , Ξ(l)
t , B(l)

t , At and Zt are all
Lipschitz, and moreover, Ξ(l)

t is bounded.

Main proof Given a function g on RN , using the definition of each µ
(l)
m,t and µ

(l)
t as well as the triangle inequality, we

have ∣∣∣∣∫ g(h(x′
1), ..., h(x

′
N ))µ

(l)
m,t(dh)−

∫
g(h(x′

1), ..., h(x
′
N ))µ

(l)
t (dh)

∣∣∣∣
=

∣∣∣∣∣ 1m
m∑
i=1

g(h
(l)
i,t(x

′
1), ..., h

(l)
i,t(x

′
N ))− E

[
g(H

(l)
t (x′

1), ...,H
(l)
t (x′

N ))
]∣∣∣∣∣

≤ (I) + (II) ,

where

(I) :=

∣∣∣∣∣ 1m
m∑
i=1

g(h̃
(l)
i,t(x

′
1), ..., h̃

(l)
i,t(x

′
N ))− E

[
g(H

(l)
t (x′

1), ...,H
(l)
t (x′

N ))
]∣∣∣∣∣

(II) :=

∣∣∣∣∣ 1m
m∑
i=1

g(h
(l)
i,t(x

′
1), ..., h

(l)
i,t(x

′
N ))− 1

m

m∑
i=1

g(h̃
(l)
i,t(x

′
1), ..., h̃

(l)
i,t(x

′
N ))

∣∣∣∣∣
For the first term, there is

(I) =



∣∣∣ 1m ∑m
i=1 g(H

(1)
t (x′

1, zi,0, b
(1)
i,0 ), ...,H

(1)
t (x′

N , zi,0, b
(1)
i,0 ))

−E
[
g(H

(1)
t (x′

1,Z0,B
(1)
0 ), ...,H

(1)
t (x′

N ,Z0,B
(1)
0 )
] ∣∣∣ , l = 1∣∣∣ 1m ∑m

i=1 g(H
(l)
t (x′

1, b
(l)
i,0), ...,H

(1)
t (x′

N , b
(l)
i,0))

−E
[
g(H

(1)
t (x′

1,B
(l)
0 ), ...,H

(1)
t (x′

N ,B
(l)
0 )
] ∣∣∣ , l ∈ {2, ..., L− 2}∣∣∣ 1m ∑m

i=1 g(H
(L−1)
t (x′

1, ai, b
(L−1)
i,0 ), ...,H

(1)
t (x′

N , ai, b
(L−1)
i,0 ))

−E
[
g(H

(L−1)
t (x′

1,A,B
(1)
0 ), ...,H

(1)
t (x′

N ,A,B
(L−1)
0 )

] ∣∣∣ , l = L− 1
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Since each b
(l)
i,0, z0 and ai are independent realizations of B(l)

0 , Z0 and A, and moreover, each H
(l)
t is a Lipschitz function

at any finite t ≥ 0 (due to the smooth dependence of solutions of ODEs to its initial condition), we know from the law of
large numbers that (II) = oP(1).

For the second term, if g ∈ Lip(RN ), then

(II) =

∣∣∣∣∣ 1m
m∑
i=1

g(h
(l)
i,t(x

′
1), ..., h

(l)
i,t(x

′
N ))− 1

m

m∑
i=1

g(h̃
(l)
i,t(x

′
1), ..., h̃

(l)
i,t(x

′
N ))

∣∣∣∣∣ ≤
(

1

N

N∑
k=1

∣∣∣∆h
(l)
m,t(x

′
k)
∣∣∣2)1/2

,

where we define, ∀l ∈ [L− 1], ∀x ∈ X ,

∆h
(l)
m,t(x) :=

 1

m

m∑
j=1

∣∣h(l)
i,t(x)− h̃

(l)
i,t(x)

∣∣2 1
2

.

Lemma D.1. 1
N

∑N
k=1

∣∣∣∆h
(l)
m,t(x

′
k)
∣∣∣2 = oP(1).

This lemma is proved in Appendix D.1.1 using a propagation-or-chaos argument (Braun & Hepp, 1977), and it implies that
(II) = oP(1). This concludes this proof of Theorem 6.3.

D.1.1. PROOF OF LEMMA D.1

We additionally define

∆ζm,t(x) := |ζm,t(x)− ζt(x)|

∆zm,t :=

 1

m

m∑
j=1

|zj,t − z̃j,t|2
 1

2

,

∆am,t :=

(
1

m

m∑
i=1

|ai,t − ãi,t|2
) 1

2

,

∆b
(l)
m,t :=

(
1

m

m∑
i=1

|b(l)i,t − b̃
(l)
i,t |

2

) 1
2

, ∀l ∈ [L− 1]

∆q
(l)
m,t(x) :=

 1

m

m∑
j=1

∣∣∣q(l)i,t (x)σ
′(h(l)

i,t(x)
)
− q̃

(l)
i,t (x)σ

′(h̃(l)
i,t(x)

)∣∣∣2
 1

2

, ∀l ∈ [L− 1],∀x ∈ X

∆W
(l)
m,t :=

 1

m2

m∑
i,j=1

|W (l)
i,j,t −W

(l)
i,j,0 − W̃

(l)
i,j,t)|

2

 1
2

, ∀l ∈ [L− 2]

=

(
1

m2
∥W (l)

t −W
(l)
0 − W̃

(l)
t ∥2F

) 1
2

≥
(

1

m2
∥(W (l)

t −W
(l)
0 − W̃

(l)
t )⊺(W

(l)
t −W

(l)
0 − W̃

(l)
t )∥2

) 1
2

,

and finally,

∆m,t = sup
k∈[n]

∆ζm,t(x) + ∆zm,t +∆am,t +

L−1∑
l=1

(
sup
k∈[n]

∆h
(l)
m,t(x) + sup

k∈[n]

∆q
(l)
m,t(x) + ∆b

(l)
m,t

)
+

L−2∑
l=1

∆W
(l)
m,t ,

At initial time, we see that ∆m,0 = 0. For t ≥ 0, we will bound its growth by examining each term on the right-hand side.
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1. ∆h
(l)
m,t

When l = 1,

∆h
(1)
m,t(x) = O(∆zm,t +∆b

(1)
m,t)

For l ∈ {2, ..., L− 3},

h
(l+1)
i,t (x)− h̃

(l+1)
i,t (x) = (b

(l+1)
i,t − b̃

(l+1)
i,t ) +

1

m

m∑
j=1

W
(l)
i,j,0σ

(
h
(l)
j,t(x)

)
+

1

m

m∑
j=1

(
W

(l)
i,j,0 −W

(l)
i,j,0 − W̃

(l)
i,j,t

)
σ
(
h
(l)
j,t(x)

)

+

 1

m

m∑
j=1

W̃
(l)
i,j,tσ

(
h
(l)
j,t(x)

)
− 1

m

m∑
j=1

W̃
(l)
i,j,tσ

(
h̃
(l)
j,t(x)

)
+

 1

m

m∑
j=1

W̃
(l)
i,j,tσ

(
h̃
(l)
j,t(x)

)
−H

(l+1)
t (x, b

(l+1)
i,0 )


By the Marchenko-Pastur law of the eigenvalues of sample covariance matrices (Marčenko & Pastur, 1967; Bai &
Silverstein, 2010), under the assumption that ρW has finite fourth moment, 1

m∥(W (l)
0 )⊺W

(l)
0 ∥ converges almost surely

to some finite number, and hence

1

m

m∑
i=1

∣∣∣∣∣∣ 1m
m∑
j=1

W
(l)
i,j,0σ

(
h
(l)
j,t(x)

)∣∣∣∣∣∣
2

= O

(
1

m

(
1 + ∆h

(l)
m,t(x)

)2( 1

m
∥(W (l)

0 )⊺W
(l)
0 ∥
))

= oP
(
1 + (∆h

(l)
m,t(x))

2
)
.

In addition,

1

m

m∑
i=1

∣∣∣∣∣∣ 1m
m∑
j=1

(
W

(l)
i,j,0 −W

(l)
i,j,0 − W̃

(l)
i,j,t

)
σ
(
h
(l)
j,t(x)

)∣∣∣∣∣∣
2

≤ 1

m2

∥∥∥(W (l)
t −W

(l)
0 − W̃

(l)
t )⊺(W

(l)
t −W

(l)
0 − W̃

(l)
t )
∥∥∥
2

1

m

m∑
j=1

∣∣σ(h(l)
j,t(x)

)∣∣2
= O((∆W

(l)
m,t)

2(∆h
(l)
m,t(x))

2)

Moreover, since the deterministic maps H(l)
t and Ξ

(l)
t are Lipschitz at any finite t ≥ 0, we can deduce from the law of

large numbers that ∀i ∈ [m],∣∣∣∣∣∣ 1m
m∑
j=1

W̃
(l)
i,j,tσ

(
h̃
(l)
j,t(x)

)
−H

(l+1)
t (x, b

(l+1)
i,0 )

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1m
m∑
j=1

Ξ
(l)
t (b

(l+1)
i,0 , b

(l)
j,0)σ

(
H

(l)
t (x, b

(l+1)
j,0 )

)
− E

[
Ξ
(l)
t (b

(l+1)
i,0 ,B

(l)
0 )σ

(
H

(l)
t (x,B

(l)
0 )
)]∣∣∣∣∣∣

= oP(1) .

Thus,

(∆h
(l+1)
m,t (x))2 = O

(
(∆b

(l+1)
t )2 + (∆W

(l)
t )2 + (∆h

(l)
m,t(x))

2
)
+ oP

(
1 + (∆h

(l)
m,t(x))

2
)

and so
∆h

(l+1)
m,t (x) = O

(
∆b

(l+1)
m,t +∆W

(l)
m,t +∆h

(l)
m,t(x)

)
+ oP

(
1 + ∆h

(l)
m,t(x)

)
.
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With a similar argument, we can obtain the same bound for ∆h
(2)
m,t and ∆h

(l+1)
m,t .

So, by induction, ∀l ∈ [L− 1], ∀x ∈ X ,

∆h
(l)
m,t(x) = O

(
∆zm,t +

l∑
l′=1

∆b
(l′)
m,t +

l−1∑
l′=1

∆W
(l′)
t

)
+ oP(1 + ∆h

(l)
m,t(x)) = O(∆m,t) + oP(∆m,t) . (26)

2. ∆q
(l)
m,t

For l = L− 1,∣∣q(L−1)
i,t (x)σ′(h(L−1)

i,t (x)
)
− q̃

(L−1)
i,t (x)σ′(h̃(L−1)

i,t (x)
)∣∣ = ∣∣ai,tσ′(h(L−1)

i,t (x)
)
− ãi,tσ

′(h̃(L−1)
i,t (x)

)∣∣ ,
and hence

∆q
(L−1)
m,t (x) = O(∆am,t +∆h

(L−1)
m,t ) .

For l ∈ {3, ..., L− 2},

q
(l−1)
j,t (x)σ′(h(l−1)

j,t (x)
)
− q̃

(l−1)
j,t (x)σ′(h̃(l−1)

j,t (x)
)

=

(
1

m

m∑
i=1

W
(l−1)
i,j,0 q

(l)
i,t (x)σ

′(h(l)
i,t(x)

))
σ′(h(l−1)

j,t (x)
)

+

(
1

m

m∑
i=1

(
W

(l−1)
i,j,t −W

(l−1)
i,j,0 − W̃

(l−1)
i,j,t

)
q
(l)
i,t (x)σ

′(h(l)
i,t(x)

))
σ′(h(l−1)

j,t (x)
)

+

(
1

m

m∑
i=1

W̃
(l−1)
i,j,t

(
q
(l)
i,t (x)σ

′(h(l)
i,t(x)

)
− q̃

(l)
i,t (x)σ

′(h̃(l)
i,t(x)

)))
σ′(h(l−1)

j,t (x)
)

+

(
1

m

m∑
i=1

W̃
(l−1)
i,j,t q̃

(l)
i,t (x)σ

′(h̃(l)
i,t(x)

))(
σ′(h(l−1)

j,t (x)
)
− σ′(h̃(l−1)

j,t (x)
))

+

((
1

m

m∑
i=1

W̃
(l−1)
i,j,t q̃

(l)
i,t (x)σ

′(h̃(l)
i,t(x)

))
σ′(h̃(l−1)

j,t (x)
)
− q̃

(l−1)
j,t (x)

)
.

Note that ∀j ∈ [m], by the Lipschitzness of the deterministic maps at finite t and the law of large numbers,∣∣∣∣
(

1

m

m∑
i=1

W̃
(l−1)
i,j,t q̃

(l)
i,t (x)σ

′(h̃(l)
i,t(x)

))
σ′(h̃(l−1)

j,t (x)
)
− q̃

(l−1)
j,t (x)

∣∣∣∣
≤
∣∣∣∣
(

1

m

m∑
i=1

Ξ
(l−1)
t (b

(l)
i,0, b

(l−1)
j,0 )Q

(l)
t (x, b

(l)
i,0)σ

′(H(l)
t (x, b

(l)
i,0)
))

σ′(H(l−1)
t (x, b

(l−1)
j,0 )

)
− E

[
Ξ
(l−1)
t (B

(l)
0 , b

(l−1)
j,0 )Q

(l)
t (x,B

(l)
0 )σ′(H(l)

t (x,B
(l)
0 )
)]

σ′(H(l−1)
t (x, b

(l−1)
j,0 )

)∣∣∣∣
= oP(1)

Thus, via similar techniques as above, we see that

∆q
(l−1)
m,t (x) = O

(
∆q

(l)
m,t(x) + ∆h

(l−1)
m,t (x) + ∆W

(l)
m,t + (∆q

(l)
m,t(x) + ∆h

(l−1)
m,t (x) + ∆W

(l)
m,t)

2 + oP(1 + ∆q
(l)
m,t(x)

)
Using similar arguments, we can obtain the same bound for ∆q

(L−2)
m,t (x) and ∆q

(1)
m,t(x). Thus, by induction,

∆q
(l)
m,t = O

(
∆m,t + (∆m,t)

2
L∏

l′=l

(1 + ∆W
(l′)
m,t)

)
+ oP

(
∆m,t + (∆m,t)

2
L∏

l′=l+1

(1 + ∆W
(l′)
m,t)

)
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3. ∆b
(l)
m,t

For l ∈ [L− 1],

d
dt (b

(l)
i,t − b̃

(l)
i,t) = − β

(
Ex
{
ζm,t(x)q

(l)
i,t (x)σ

′(h(l)
i,t(x)

)}
− Ex

{
ζt(x)q̃

(l)
i,t (x)σ

′(h̃(l)
i,t(x)

)})
= − βEx

{
ζm,t(x)

(
q
(l)
i,t (x)σ

′(h(l)
i,t(x)

)
− q̃

(l)
i,t (x)σ

′(h̃(l)
i,t(x)

))}
− βEx

{
(ζm,t(x)− ζt(x))q̃

(l)
i,t (x)σ

′(h̃(l)
i,t(x)

)}
Thus, (

1

m

m∑
i=1

∣∣∣ ddt (b(l)i,t − b̃
(l)
i,t)
∣∣∣2)1/2

= O
(
Ex
{
∆q

(l)
m,t(x) + ∆ζm,t(x) + ∆ζm,t(x)∆q

(l)
m,t(x)

})
,

which implies that

d
dtb

(l)
m,t = O

(
Ex
{
q
(l)
m,t(x) + ∆ζm,t(x) + ∆ζm,t(x)q

(l)
m,t(x)

})
= O

(
∆m,t + (∆m,t)

2
)

4. ∆W
(l)
m,t

For l ∈ [L− 2],

d
dt (W

(l)
i,j,t − W̃

(l)
i,j,t) = − Ex

{
ζm,t(x)q

(l+1)
i,t (x)σ′(h(l+1)

i,t (x)
)
σ
(
h
(l)
j,t(x)

)}
+ Ex

{
ζt(x)q̃

(l+1)
i,t (x)σ′(h̃(l+1)

i,t (x)
)
σ
(
h̃
(l)
j,t(x)

)}
= − Ex

{
ζm,t(x)

(
q
(l+1)
i,t (x)σ′(h(l+1)

i,t (x)
)
− q̃

(l+1)
i,t (x)σ′(h̃(l+1)

i,t (x)
))

σ
(
h
(l)
j,t(x)

)}
− Ex

{
ζm,t(x)q̃

(l+1)
i,t (x)σ′(h̃(l+1)

i,t (x)
) (

σ
(
h
(l)
j,t(x)

)
− σ

(
h̃
(l)
j,t(x)

))}
− Ex

{
(ζm,t(x)− ζt(x))q̃

(l+1)
i,t (x)σ

(
h̃
(l)
j,t(x)

)}
Thus,

1

m2

m∑
i,j=1

(
d
dt (W

(l)
i,j,t − W̃

(l)
i,j,t)

)2
= O

(
Ex
{
(1 + ∆ζm,t(x))(∆q

(l)
m,t(x) + ∆h

(l−1)
m,t (x))2 +∆ζm,t(x)

})
and so

d
dt∆W

(l)
m,t = O

(
Ex
{
(1 + ∆ζt(x))(∆q

(l)
m,t(x) + ∆h

(l−1)
m,t (x) + ∆ζm,t(x)

})
= O

(
∆m,t + (∆m,t)

2
)
.

5. ∆zm,t

d
dt∆zm,t = O

(
Ex
{
∆ζm,t(x) + ∆q

(1)
m,t(x) + ∆ζm,t(x)∆q

(1)
m,t(x)

})
= O

(
∆m,t + (∆m,t)

2
)
.

6. ∆am,t

d
dt∆am,t = O

(
Ex
{
∆ζm,t(x) + ∆h

(L−1)
m,t (x) + ∆ζm,t(x)∆h

(L−1)
m,t (x)

})
= O

(
∆m,t + (∆m,t)

2
)
.
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7. ∆ζm,t

∆ζm,t(x) = O
(
Ex
{
∆am,t +∆h

(L−1)
m,t (x) + ∆am,t∆h

(L−1)
m,t (x)

})
= O

(
∆m,t + (∆m,t)

2
)
.

Therefore, we derive that

d
dt∆m,t = O

(
∆m,t(1 + ∆m,t)

L∏
l′=l

(1 + ∆W
(l′)
t )

)
+ oP

(
(1 + ∆m,t)(1 + ∆m,t

L∏
l′=l

(1 + ∆W
(l′)
t ))

)
= O(2L+1∆m,t) + oP(2

L+1)

= O(∆m,t) + oP(1) .

with the second inequality holding when ∆m,t ≤ 1. Hence, with Grönwall’s inequality, it holds while ∆m,t ≤ 1 that

∆m,t = oP(1) (27)

Thus, for any finite t ≥ 0, when m is large enough, we can always ensure that ∆m,t ≤ 1. Thus, (27) holds for all finite
t ≥ 0.

Finally, applying (26) to x ∈ {x′
1, ...,x

′
N} , we are able to derive Lemma D.1.

E. Supplementary Materials for Section 7
E.1. Derivation of the Training Dynamics of Deep Linear NNs

In the case of linear NNs,

κ
(l)
t,s(x,x

′) = E
[
H

(l)
t (x)H(l)

s (x′)
]

= E
[(

H
(l)
0 (x)−

∫ t

0

Ex′′

{
ζr(x

′′)κ
(l−1)
t,r (x,x′′)Q(l)

r (x′′)
}
dr

)
(
H

(l)
0 (x′)−

∫ s

0

Ex′′

{
ζr(x

′′)κ(l−1)
s,r (x,x′′)Q(l)

r (x′′)
}
dr

)]
= κ

(l)
0,0(x,x

′) +

∫ t

0

∫ s

0

Ex′′,x′′′

{
ζr(x

′′)ζp(x
′′′)γ(l)

r,p(x
′′,x′′′)κ

(l−1)
t,r (x,x′′)κ(l−1)

s,p (x′,x′′′)
}
dr dp

−
∫ t

0

Ex′′

{
ζr(x

′′)κ
(l−1)
t,r (x,x′′)E(l)

[
H

(l)
0 (x′)Q(l)

r (x′′)
]}

dr

−
∫ s

0

Ex′′

{
ζr(x

′′)κ(l−1)
s,r (x′,x′′)E(l)

[
H

(l)
0 (x)Q(l)

r (x′′)
]}

dr

Since

E
[
H

(l)
0 (x)Q(l)

r (x′′)
]
= E

[
H

(l)
0 (x′)

∫ r

0

Ex′′′

{
ζp(x

′′′)γ(l+1)
r,p (x′′,x′′′)H(l)

p (x′′′)
}
dp

]
=

∫ r

0

Ex′′′

{
ζp(x

′′′)γ(l+1)
r,p (x′′,x′′′)κ

(l)
0,p(x,x

′′′)dp
}

,

we then have

κ
(l)
t,s(x,x

′) = κ
(l)
0,0(x,x

′) +

∫ t

0

∫ s

0

Ex′′,x′′′

{
ζr(x

′′)ζp(x
′′′)γ(l)

r,p(x
′′,x′′′)κ

(l−1)
t,r (x,x′′)κ(l−1)

s,p (x′,x′′′)
}
dr dp

−
∫ t

0

Ex′′,x′′′

{
ζr(x

′′)ζp(x
′′′)γ(l+1)

r,p (x′′,x′′′)κ
(l−1)
t,r (x,x′′)κ

(l)
0,p(x

′,x′′′)
}
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−
∫ s

0

Ex′′,x′′′

{
ζr(x

′′)ζp(x
′′′)γ(l+1)

r,p (x′′,x′′′)κ(l−1)
s,r (x′,x′′)κ

(l)
0,p(x,x

′′′)
}
dr .
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Notice that κ(l)
0,p(x,x

′) = 0, ∀l > 1,∀p ≥ 0 while κ
(1)
0,0(x,x

′) = κ
(0)
0,p(x,x

′) = x⊺ · x′, ∀p ≥ 0. Thus, using the linearity,
we can derive (13) for l ∈ [L− 2], and moreover,

K
(1)
t,s = 1 +

∫ t

0

∫ s

0

c(1)r,pζr · ζ⊺
p dp dr

−
∫ t

0

∫ r

0

c(2)r,pζr · ζ⊺
p ·K(1)

p,0 dp dr

−
∫ s

0

∫ r

0

c(2)r,pK
(1)
0,p · ζp · ζ⊺

r dp dr .

With a similar argument, we can derive (14) for l ∈ [L− 2], and moreover,

c
(L−1)
t,s = 1 +

∫ t

0

∫ s

0

ζ⊺
r ·K(L−1)

r,p · ζ⊺
p dp dr

−
∫ t

0

∫ r

0

c
(L−1)
p,0 ζ⊺

r ·K(L−2)
r,p · ζ⊺

p dp dr

−
∫ s

0

∫ r

0

c
(L−1)
p,0 ζ⊺

r ·K(L−2)
r,p · ζ⊺

p dp dr .

F. Additional Related Works
NTK theory If we replace the 1/m factor by 1/

√
m in (1), we arrive at what is commonly called the NTK scaling of NNs.

As shown by Jacot et al. (2018), if we initialize the NN randomly and take m → ∞ under this scaling, then the pre-activation
functions in the hidden layers barely move throughout training, and thus, the GF dynamics can be well-approximated
by its linearization around the initialization, which is described by a kernel GF with a fixed kernel (that is the NTK). In
other words, the evolution of the output function can also be written as (11) except that the kernel function θt is now
independent of t. Thanks to this simplification, gradient descent is proved to converge to global minimum at a linear rate
for over-parameterized NNs in the NTK regime (Du et al., 2019b;a; Allen-Zhu et al., 2019b; Zou et al., 2020a; Oymak &
Soltanolkotabi, 2020). Furthermore, generalization guarantees can be proved for such models through the learning theory of
RKHS (Arora et al., 2019b; Cao & Gu, 2019; E et al., 2020).

However, the fact that the hidden layer neurons and hence the kernel function remain fixed to their initialization indicates
a lack of feature learning. For this reason, the NTK limit is described as a regime of “lazy training” (Chizat et al., 2019;
Woodworth et al., 2020), and the NTK theory does not satisfy desideratum (iv). Several studies have shown the differences
between the NTK regime and feature-learning regimes, both theoretically (Ghorbani et al., 2019; 2020; Wei et al., 2019;
Woodworth et al., 2020; Liu et al., 2020; Luo et al., 2021) and empirically (Geiger et al., 2020; Lee et al., 2020).

NNs as random fields In the NTK scaling, a randomly-initialized NN in the infinite-width limit can also be viewed
representing a function sampled from a Gaussian Process whose covariance function is connected to the NTK, thus leading
to a Bayesian interpretation (Neal, 1996; Williams, 1996; Lee et al., 2017b; Matthews et al., 2018; Garriga-Alonso et al.,
2019; Borovykh, 2018; Novak et al., 2019). In particular, Lee et al. (2019) shows that SGD training corresponds to a linear
dynamics of the Gaussian Process and mimics Bayesian inference. However, like the NTK theory (and in contrast with
ours), this analysis relies on a linear approximation of the training dynamics close to initialization and therefore does not
model feature learning in the training of actual NNs. Another basic difference in our regime is that, while the hidden layers
are modeled as random fields, the output function is always deterministic.

Complexity measures of NNs With large numbers of parameters, NNs in practice often have enough capacity to fit data
with even random labels (Zhang et al., 2017). Hence, to derive meaningful generalization bounds, researchers have looked
for complexity measures of NNs that do no depend on the network size. For example, several complexity measures based on
certain norms of their parameters have been proposed, both for shallow NNs (Bartlett, 1998; Koltchinskii & Panchenko,
2002; Bartlett & Mendelson, 2002; Rosset et al., 2007; Cho & Saul, 2009) and for multi-layer ones (Neyshabur et al.,
2015; Bartlett et al., 2017), which give rise to generalization bounds that are independent of the number of parameters. In
particular, the group norm in Neyshabur et al. (2015) is closely related to the NHL norm proposed in the current work, as the
NHL norm of the function represented by an NN can be bounded by the group norm of the NN. Thus, the NHL norm can be
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regarded as a generalization of the group norm to the continuous, width-unlimited setup under the NHL model. Empirically,
there is evidence that regularizing the parameter norms through weight decays improves the model performance (Lee et al.,
2020).

Beyond lazy training Several efforts extend the NTK analysis beyond the lazy training regime by considering higher-order
Taylor expansions of the GD dynamics or corrections to the NTK due to finite widths or large depths (Allen-Zhu et al., 2019a;
Huang & Yau, 2019; Bai & Lee, 2020; Hanin & Nica, 2020; Yaida, 2020; Roberts et al., 2022; Hanin, 2022), but the function
space implication of these proposals is not clear. Meanwhile, there have been efforts to understand the effect of different
scaling choices on the behavior of the infinite-width limit (Golikov, 2020; Luo et al., 2021; Zhou et al., 2022). In particular,
Yang & Hu (2021) propose a third scaling choice different from both mean-field and NTK, called the maximum-update
scaling, which exhibits feature learning while avoiding the degeneracy of the mean-field scaling mentioned in Remark 6.4.
With nontrivial mathematical techniques, several works have studied the training dynamics in the infinite-width limit under
this scaling (Yang & Hu, 2021; Golikov & Yang, 2022; Hajjar et al., 2021; Ba et al., 2022; Bordelon & Pehlevan, 2022;
Chizat et al., 2022), but the function space associated with this model is unaddressed except when only the penultimate layer
is trained (Chen et al., 2022a).

Training dynamics of deep linear NNs Many prior studies have examined the GD or GF dynamics of deep linear NNs
Saxe et al. (2014); Jacot et al. (2021), including deriving their global convergence guarantees (Kawaguchi, 2016; Du &
Hu, 2019; Eftekhari, 2020; Bah et al., 2022) and implicit bias Gunasekar et al. (2017); Ji & Telgarsky (2019); Arora et al.
(2019a); Gidel et al. (2019); Li et al. (2021). The infinite-width limit of deep linear NNs under the maximum-update scaling
have been studied in Bordelon & Pehlevan (2022); Chizat et al. (2022). We are not aware of prior studies on deep linear
NNs in the infinite-width mean-field limit, nor any discussions related to function space.
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