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Abstract

We study the incentivized information acquisi-

tion problem, where a principal hires an agent to

gather information on her behalf. Such a problem

is modeled as a Stackelberg game between the

principal and the agent, where the principal an-

nounces a scoring rule that specifies the payment,

and then the agent then chooses an effort level

that maximizes her own profit and reports the in-

formation. We study the online setting of such

a problem from the principal’s perspective, i.e.,

designing the optimal scoring rule by repeatedly

interacting with the strategic agent. We design

a provably sample efficient algorithm that tai-

lors the UCB algorithm (Auer et al., 2002) to our

model, which achieves a sublinear T 2/3-regret af-

ter T iterations. Our algorithm features a delicate

estimation procedure for the optimal profit of the

principal, and a conservative correction scheme

that ensures the desired agent’s actions are incen-

tivized. Furthermore, a key feature of our regret

bound is that it is independent of the number of

states of the environment.

1. Introduction

Delegated information acquisition is a widely popular sit-

uation where one party (known as the principal) wants to

acquire some information that assists decision-making, and

thus hires another party (known as the agent) to gather in-

formation on its behalf. Consider a portfolio manager who

aims to learn the potential of a company in order to decide
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whether to invest in its stock. The manager hires an ana-

lyst, who spends some effort to conduct the research, hands

in a report to the manager, and gets payment according to

the report she writes. Based on the report, the manager

makes the investment decision and earns profit if the stock

rises. The level of effort the analyst puts into the research

affects the quality of the information gathered, i.e., the re-

port, and her own cost incurred in conducting the research.

As a result, a rational analyst would choose an effort level

that maximizes her own profit – the difference between the

payment and the cost. Whereas the manager also wants to

maximize its own profit in expectation, which is given by

the expected gain from the investment, subtracted by the

payment. Knowing that the analyst is rational, the goal of

the manager is to design a payment rule that incentivizes

the analyst to spend a proper amount of effort, such that the

acquired information leads to the investment decision that

maximizes the portfolio manager’s profit.

Mathematically, such a problem can be modeled under the

principal-agent model (Laffont & Martimort, 2009), where

the principal wants to know the state ω of a stochastic en-

vironment, and the information acquired by the agent is a

distribution σ̂ over the state space Ω, also known as the

reported belief. The game between the principal and the

agent is as follows. At the beginning, the state is not real-

ized and unknown to both parties. The principal chooses a

scoring rule S (Savage, 1971; Gneiting & Raftery, 2007)

as the payment rule and presents it to the agent. The

agent chooses among K effort levels by selecting an ac-

tion bk ∈ {b1, . . . , bK} at a cost ck. Then bk determines

the joint distribution p(ω, o | bk) of the state ω and an ob-

servation o. Based on such a conditional distribution and

the realized value of o, the agent reports σ̂ to the principal.

Based on such acquired information, the principal chooses

an action a ∈ A. Finally, the state ω is revealed, the prin-

cipal receives utility u(a, ω) and pays the agent S(σ̂, ω).
Here, the payment to the agent is determined by the scor-

ing rule S, which quantifies the value of the reported belief

by comparing it with the realized state.

More generally, our model is a general Stackelberg

game with information asymmetry (von Stackelberg, 1952;

Mas-Colell et al., 1995), where the agent knows the distri-
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bution of the state while the principal does not. The prin-

cipal first announces a scoring rule S. Then the principal

chooses an effort level bk which maximizes her own profit

and reports a belief σ̂. That is, bk is the best response of

the agent to S. The expected profits of both the principal

and the agents are functions of S, bk, and σ̂. From such a

perspective, designing the scoring rule that optimally elicits

information is equivalent to finding the strong Stackelberg

equilibrium of such a Stackelberg game.

In this work, we focus on the online setting of such a

principal-agent model. In particular, we aim to answer:

How to learn the optimal scoring rule by interacting with

a strategic agent from the principal’s perspective?

The online setting comes with a few challenges. First, as

the agent is strategic, the reported belief σ̂ might be untruth-

ful, or even arbitrary. Second, similar to other online learn-

ing problems such as bandits (Lattimore & Szepesvári,

2020), we need to explore the stochastic environment.

More importantly, in our problem, the distribution of the

state is determined by the action bk of the agent, which is

beyond the control of the principal. Thus, any successful

learning algorithm needs to execute scoring rules that in-

centivize the agent to explore her action space. Third, both

the cost ck and the distribution p(ω, o | bk) are unknown to

the principal. In other words, the profit functions of both

the principal and the agent are unknown and needs to be

estimated from the online data. In particular, this implies

that the best response of the agent, as a function of the prin-

cipal’s scoring rule, is unknown. To find principal’s opti-

mal scoring rule, we need to know how to incentivize the

agent to choose the most favorable bk for principal, which

requires learning the best response function.

We tackle these challenges by introducing a novel al-

gorithm, OSRL-UCB, which leverages proper scoring

rules (Gneiting & Raftery, 2007), the principle of op-

timism in the face of uncertainty (Auer et al., 2002;

Lattimore & Szepesvári, 2020), and the particular con-

strained optimization formulation of our principal-agent

model. In particular, to elicit truthful information, we prove

a revelation principle (Myerson, 1979) that shows that it

suffices to only focus on the class of proper scoring rules

(Lemma 2.2). Then we show that the principal’s profit

maximization problem can be written as a K-armed ban-

dit problem, where the reward of each arm hk,∗ is the op-

timal profit of the principal when the best response of the

agent is fixed to bk (Equation (3.1)). The value of hk,∗ is

determined by the optimal objective of a constrained opti-

mization problem — finding a proper scoring rule Sk that

maximizes the principal’s profit, subject to the constraint

that the best response to Sk is bk. Furthermore, we show

that hk,∗ can be equivalently written as the optimal value

of a constrained optimization linear program (LP) involves

the unknown pairwise cost differences and the distribution

of the truthful belief induced by bk (Equation (3.3)). Fol-

lowing the optimism principle, we aim to construct upper

confidence bounds (UCB) of each hk,∗ and incentive the

agent to pick the action that maximizes the UCB. To this

end, we construct confidence sets for the pairwise cost dif-

ferences and belief distributions based on the online data,

and obtain a UCB of hk,∗ by solving an optimistic variant

of the LP by replacing the unknown quantities by elements

in the corresponding confidence sets (Equation (3.7)). Fur-

thermore, the optimal solution to such an optimistic LP,

which is a scoring rule, might violate the condition that its

best response is bk. To remedy this, we devise a conser-

vative modification scheme which simultaneously guaran-

tees desired best response and optimism with high probabil-

ity. Finally, we prove that the proposed algorithm achieves

a Õ(K2CO · T 2/3) sublinear regret upper bound after T
rounds of interactions. Here K is the number of effort lev-

els of the agent and CO is the number of all possible obser-

vations, and Õ omits logarithmic terms. A key feature of

our regret bound is that it is independent of the number of

states of the environment.

1.1. Related Work

The information elicitation problem and its implications

for decision making have been one of the most popular ar-

eas in economics. The seminal work by (Savage, 1971)

characterizes the truthful elicitation with the design of

proper scoring rules. More recently, several work have

studied the optimization problem of scoring rules for the

principal’s different objectives (Chen & Yu, 2021; Li et al.,

2022; Papireddygari & Waggoner, 2022; Neyman et al.,

2021). Closer to our problem is the model studied by

Papireddygari & Waggoner (2022); Oesterheld & Conitzer

(2020), as we both explore the connection between informa-

tion acquisition and contract design. However, our model

is strictly more general in that we assume the agent may

have multi-level efforts, and the information state may be

affected by the agent’s action. In addition, we primarily fo-

cus on the learning aspects, when the principal has limited

knowledge of the game parameters.

More generally, our problem is related to a family of on-

line learning problems under the principal-agent frame-

work, which includes special cases such as security game,

information design, auction design, contract design and etc.

However, to our best knowledge, there is no previous work

that considered any similar learning problem for our model

of information acquisition. We also remark that, in many of

these existing works, e.g., Balcan et al. (2015); Guo et al.

(2022); Castiglioni et al. (2020); Wu et al. (2022), the

learner is assumed to have sufficient knowledge about the

other strategic player(s), and her uncertainty is regarding

the environment or her own utility. Assumptions of such

2



Learning to Incentivize Information Acquisition

kind can significantly simplify the problem into the stan-

dard online learning problems, once the learner can almost

predict the best response of other player(s). Notably, our

work does not make any of such assumption and the most

challenging part of our learning algorithm design is indeed

to ensure the desired agent response under uncertainty. We

defer more discussions on the related work to Appendix A.

2. The Information Acquisition Model

2.1. Basics of Information Acquisition

To formulate the problem of optimally acquiring informa-

tion under the principal-agent framework, we consider a

stochastic environment with a principal and an almighty

agent. At the t-th round, there is a hidden state ωt ∈ Ω that

will affect the principal’s utility, but is unknown to both the

agent and the principal until the end of this round. To elicit

refined information, i.e., the agent’s belief of the hidden

state, the principal moves first and offers a scoring rule to

the agent, based on which the agent receives a payment ac-

cording to the quality of her reported belief. The agent is

allowed to choose an action from her finite action space B
with some cost, obtain an observation related to the hidden

state, and generate a report on her belief, which puts the

principal in a better position to make a decision. In the end,

the hidden state is revealed, and a utility is generated for

the principal, who then pays the agent based on the scor-

ing rule. For any t ≥ 0, in the t-th round, the interactions

between the principal and the agent are as follows.

1. The principal commits to a scoring rule St : ∆(Ω)×Ω→
R+, where ∆(Ω) is the space of distributions over Ω.

2. Based on St, the agent chooses an action bkt
∈ B indexed

by kt and bears a cost ckt
≥ 0. The action bkt

can be

observed by the principal.

3. The stochastic environment then selects a hidden state

ωt ∈ Ω and emits an observation ot ∈ O only for the

agent according to p(ωt, ot | bkt
). The hidden state ωt

is unknown to both the agent and the principal at this

moment.

4. The agent reports a belief σ̂t ∈ ∆(Ω) about the hidden

state to the principal.

5. The principal makes a decision at ∈ A based on

(σ̂t, kt, St).

6. In the end, the hidden state ωt is revealed. The princi-

pal obtains her utility u(at, ωt) and pays the agent by

St(σ̂t, ωt).

Here, the scoring rule St is a payment rule that depends on

the agent’s report σ̂t and the true state ωt. Let S be the

class of scoring rules with bounded norm ‖S‖∞ ≤ BS . In

the sequel, we assume the principal picks St from S . We

assume that the reward function u : A×Ω→ R also has a

bounded norm ‖u‖∞ ≤ Bu. We consider the agent’s action

set B and the observation setO to be finite. Specifically, the

agent’s action space B = {b1, . . . , bK} has K actions. In

the sequel, we also use the action index kt to represent the

agent’s action. The agent’s policy for choosing her action

kt, her report σ̂t, and the principal’s policy for choosing her

action at will be introduced shortly after.

Notably, our modeling captures the endogenous effect that

the agent’s action choice may influence the environment

state. This is more general than assuming the state is exoge-

nous, and captures the real-world situations that the act of

information acquisition, e.g., market investigation, affects

the stochastic environment. Consider the example of a port-

folio manager and financial analyst introduced in §1. The

report written by the analyst about a particular stock, when

released to the public, may generate considerable impact

and affect the stock price (Lui et al., 2012).

Information Structure. In the remaining part of this sub-

section, we ignore the subscript t for a while. In this

information acquisition process, we assume the agent is

almighty that has full knowledge of the information struc-

ture, i.e., each action’s cost ck and the generating process

p(ω, o | bk) for the hidden state and the observation under

action bk. Therefore, after obtaining the observation o,

the agent is able to refine her belief σ ∈ ∆(Ω) of the

hidden state via the Bayesian rule σ(ω) := p(ω | o, bk) =
p(ω, o | bk)/p(o | bk). Note that σ is a random measure map-

ping from the observation space to the probability space

∆(Ω) and captures the randomness in o. Let Σ ⊂ ∆(Ω) be

the support of σ. Define M as the cardinality of Σ and it fol-

lows from the discreteness of B and O that M ≤ K × CO,

where CO is the cardinality ofO. Let qk(σ) ∈ ∆(Σ) be the

distribution of σ under the agent’s action k ∈ [K]. Since σ
already captures all the information about the hidden state

from the observation, we ignore the observation o and re-

fer to the costs {ck}k∈[K] and the distributions of the belief

{qk}k∈[K] as the information structure, which are private

to the agent.

Solving for the Optimal Scoring Rules. We start with

the observation that the information acquisition process

can be formulated as a general Stackelberg game. Let

µ : S → [K] and ν : S × Σ × [K] → ∆(Ω) be the

agent’s policy for action selection and belief reporting, re-

spectively. Here, the reporting policy ν depends on σ in-

stead of o since σ captures all the information about the

hidden state. Given any scoring rule S, the agent (as the fol-

lower of this game) finds her own action by k = µ(S), and

reports σ̂ = ν(S, σ, k) that maximizes her own expected

profit, i.e., g(µ, ν;S) :=E[S (ν(S, σ, µ(S)), ω) − cµ(S)],
where the expectation is taken over the randomness of ω, σ
with respect to qµ(S). Let ι : S × ∆(Ω) × [K] → A be

the principal’s decision policy. Hence, the principal (as the
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leader of this game) is to find the optimal scoring rule S
and the best decision policy ι that maximize her own ex-

pected profit given the agent’s best response (µ∗, ν∗), i.e.,

h(µ∗, ν∗;S, ι) :=E[u(ι
(
S, ν∗(S, σ, µ∗(S)), µ∗(S)

)
, ω) −

S(ν∗(S, σ, µ∗(S)), ω)], where the expectation is taken over

the randomness of ω, σ with respect to qµ∗(S). The opti-

mal leader strategies are known as the strong Stackelberg

equilibria that can be formulated as solutions of a bilevel

optimization problem (Conitzer, 2016), i.e.,

max
ι,S∈S

h(µ∗, ν∗;S, ι), s.t. (µ∗, ν∗) ∈ argmax
µ,ν

g(µ, ν;S).

(2.1)

However, the bilevel optimization in (2.1) is computation-

ally intractable, since the agent’s action space (particularly,

the space of reporting scheme ν) is intractable.

To resolve such an issue, in the following, we establish a

revelation principle result that guarantees that, without loss

of generality, it suffices to only focus on the case where

the agent is truthful. Specifically, there is a well-known

class of scoring rules (in Definition 2.1) that characterizes

all scoring rules, under which truthfully reporting is in the

agent’s best interest (Savage, 1971).

Definition 2.1 (Proper scoring rule). A scoring rule S :
∆(Ω)×Ω→ R+ is proper if, for any belief σ ∈ ∆(Ω) and

any reported posterior σ̂ ∈ ∆(Ω), we have Eω∼σS(σ̂, ω) ≤
Eω∼σS(σ, ω). In addition, if the inequality holds strictly

for any σ̂ 6= σ, the scoring rule S is strictly proper.

By definition, reporting the true belief maximizes the

payment for the agent. Following the revelation princi-

ple (Myerson, 1979), we can argue that any equilibrium

with possibly untruthful report of belief can be imple-

mented by an equilibrium with truthful report of belief.

This means that the principal’s optimal scoring rules can

be assumed proper without loss of generality, and we can

thereby restrict the reporting scheme ν to the truthful ones

— we state the revelation principle for the information ac-

quisition model in the following lemma and defer its proof

to §C.1.

Lemma 2.2 (Revelation principle). There exists a proper

scoring rule S∗ that is an optimal solution to (2.1).

In the sequel, we let S denote the class of proper scoring

rules with bounded norm ‖S‖∞ ≤ BS . When S ∈ S ,

the agent’s best report scheme is v∗(S, σ) = σ since be-

ing truth-telling maximizes the payment, and the princi-

pal’s best decision policy ι∗ can be simplified to a∗(σ)
since ω ⊥⊥ (S, k) |σ. Using the notations u(σ) =
Eω∼σu(a

∗(σ), ω), S(σ) = Eω∼σS(σ, ω), and k∗(S) =
µ∗(S), we can transform the optimization program in (2.1)

into

max
S∈S

Eσ∼qk∗(S)
[u(σ)− S(σ)] , (2.2)

s.t. k∗(S) ∈ argmax
k∈[K]

Eσ∼qkS (σ)− ck,

where we will denote the agent’s utility function as

g(k, S) :=Eσ∼qkS (σ) − ck and the principal’s util-

ity function under the agent’s best response k∗(S) as

h(S) :=Eσ∼qk∗(S)
[u(σ)− S(σ)]. This optimization pro-

gram can be solved efficiently, e.g., by solving for the op-

timal proper scoring rule that induces each of the agent’s

actions as the best response. And we will revisit (2.2) in

the online learning process where the information structure,

i.e., qk and ck, is unknown to the principal.

We also remark that our model is fully capable of modeling

the standard contract designing problem. If the informa-

tion structure is full-revealing (e.g., σ is a point belief), our

model with the endogenous states degenerates to a standard

contract design problem, where the scoring rule S becomes

a contract as a mapping from (truthfully reported) outcome

to payment. We defer the details to §Appendix B.

2.2. Online Learning to Acquire Information

We now formalize the online learning problem of solving

the optimal scoring rule for information acquisition. We

consider the situation where the principal only has knowl-

edge of her utility function u 1 and is able to observe the

agent’s action bk
2. In Table 1, we summarize all the in-

formation types discussed above together with their avail-

ability. Given Ht−1 = {(Sτ , kτ , στ , ωτ )}τ∈[t−1] ∈ Ht−1

as the history observed by the principal before round t, the

principal is able to deploy a policy for the next round’s scor-

ing rule πt : Ht−1 → S . Hence, the data generating pro-

cess is described as the following,

pπ(St, kt, σt, ωt |Ht−1) = 1 (St = πt(Ht−1), kt = k∗(St))

· qkt
(σt) · σt(ωt). (2.3)

1Since the utility and the hidden state are both known to the
principal at the end of each round, if the agent is truth-telling
about her belief, the principal’s decision problem reduces to a con-
textual bandit (with finite context set) and can be handled by the

standard UCB algorithm with O(M
√
T ) regret. To simplify our

discussion, we consider u to be known by the principal.
2In cases where the principal cannot observe the agent’s action,

there are still ways to distinguish different actions. For instance,
when qk has different support for different k and the agent is truth-
telling about her belief under proper scoring rules (see §C.1), the
principal is able to learn the support for a particular agent’s action
by repeating the same scoring rule multiple times. The next time
the agent chooses the same action, the principal will be aware.
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The regret for the online policy π = {πt}t∈[T ] is defined

as,

Regπ(T )

:=T ·max
S∈S

h(S)− Eπ

[
T∑

t=1

u(a∗(σt), ωt)− St(σt, ωt)

]
,

where the expectation is taken with respect to the data gen-

erating process. We aim to develop an online policy πt that

learns the optimal scoring rule with small regret.

3. The OSRL-UCB Algorithm

In this section, we introduce the algorithm for Online Scor-

ing Rule Learning with Upper Confidence Bound (OSRL-

UCB). We begin with an overview of the algorithm in §3.1

and introduce an action-informed oracle that is necessary

for the algorithm in §3.2. In §3.3, we give a detailed de-

scription of the OSRL-UCB algorithm. To simplify nota-

tion, we let k to denote bk in the sequel.

3.1. Algorithm Overview

Define Vk = {S ∈ S | g(k, S) ≥ g(k′, S), ∀k′ ∈ [K]} as

the k-th section in which the agent takes action bk as her

best response. The principal’s optimization problem (2.2)

can be reformulated as

max
k∈[K]

hk,∗ := sup
S∈Vk

Eσ∼qk [u(σ)− S(σ)] , (3.1)

where hk,∗ is the principal’s optimal profit when the agent’s

best response is k. Let Sk,∗ be the optimal solution to the

inner problem of (3.1). If the principal knows the best scor-

ing rule Sk,∗ that achieves hk,∗, the problem immediately

reduces to a multi-arm bandit where k ∈ [K] is the arm and

hk,∗ is the reward for arm k. Such a problem can thus be

handled by the standard UCB algorithm (Auer et al., 2002).

However, there are two obstacles: (i) the action region Vk is

unknown; (ii) the belief distribution qk is unknown. Recall

the definition of Vk:

Vk = {S ∈ S | 〈qk − qk′ , S〉Σ ≥ ck − ck′ , ∀k′ ∈ [K]} .

To identify Vk, we just need to estimate the belief dis-

tribution qk and the pairwise cost difference defined as

C(i, j) = ci − cj . Specifically, estimator q̂ = (q̂k)k∈[K]

can be updated by the empirical distribution of σt such that

kt = k while estimator Ĉ = (Ĉ(i, j))i,j∈[K] can be up-

dated using the following identity

C(i, j) = 〈qi − qj , S〉Σ, ∀S ∈ Vi ∩ Vj , (3.2)

where we plug in estimator q̂. In addition, we must iden-

tify a scoring rule S ∈ Vi ∩ Vj to successfully employ

(3.2). To this end, we employ a binary search method on

the convex combination of S1, S2 such that k∗(S1) = i and

k∗(S2) = j. To inform the principal of the K actions and

also to guarantee that the principal can find a scoring rule

S such that k∗(S) = i for the sake of the binary search, we

introduce with examples an action-informed oracle in §3.2,

which provides the principal with foreknown scoring rules

S̃1, S̃1, . . . , S̃K such that k∗(S̃i) = i.

Now that the estimation problem of qk and C(i, j) is ad-

dressed, the inner problem of (3.1) can be solved by the

following constrained linear program,

LPk : hk,∗ = max
S∈S

〈qk, u− S〉Σ, (3.3)

s.t. 〈qk − qk′ , S〉Σ ≥ C(k, k′), ∀k′ ∈ [K].

If (3.3) is solved, we can reduce the outer problem of

(3.1) to a bandit by viewing [K] as the set of arms and

the hk,∗ as the reward for each arm k ∈ [K]. To illus-

trate the method for solving LPk, let Q̃ = {(q̃k)k∈[K]}
and C̃ = {(C̃ij)i,j∈[K]} be the confidence sets for q̂ and

Ĉ that capture the real q and C with high probability. To

encourage exploration, we follow the principle of optimism

and obtain an upper confidence bound for hk,∗ by solving

LPk with plugged-in (q̃, C̃) that maximizes the optimiza-

tion goal (principal’s profit) over the confidence sets Q̃× C̃.

This optimistic version of LPk is given by Opt-LPk in (3.7)

, in which we do not explicitly construct these confidence

sets, but instead exploit the confidence intervals for esti-

mating the utilities, the payments, and the cost differences

using q̂ and Ĉ. With the optimistic reward for each action

given by Opt-LPk, the algorithm simply chooses action k∗t
that maximizes this reward, and obtain the scoring rule so-

lution S∗
t corresponding to k∗t .

However, there is one remaining issue if we want to deploy

S∗
t to incentive the agent to choose action k∗t . The fact that

the constraints of (3.3) are relaxed in Opt-LPk by using

optimism may cause S∗
t to go beyond Vk∗

t
. To address such

a problem, we propose to deploy a conservatively adjusted

scoring rule St = (1 − αt)S
∗
t + αtS̃k∗

t
, which guarantees

the agent to choose k∗t with high probability. By letting

αt to decay with t, the conservatively adjusted scoring rule

also guarantees optimism. The algorithm is summarized in

Algorithm 1 and more details are available in §3.3.

3.2. Oracle for Action Awareness

We assume that there is an oracle that provides the principal

with a foreknown set of scoring rules that induce the agent

to pick all her actions. This is a strictly weaker assumption

than many existing online learning models in strategic envi-

ronments, which assume that the principal can predict the

best response of the agent, or know some parameters of the

agent’s utility function.

Assumption 3.1 (Action-informed oracle). We assume
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that there is an oracle which comes up with K scoring

rules (S̃1, · · · , S̃K) such that under S̃k, the agent’s best

response is action k for k ∈ [K]. Moreover, for the

agent’s profit g(k, S) = Eσ∼qkS(σ) − ck, we assume that

there exists ε > 0 such that for any k′ 6= k, we have

g(k, S̃k)− g(k′, S̃k) > ε.

With the oracle in Assumption 3.1, the principal is initially

aware of the K actions that the agent might respond, which

can be easily done by trying (S̃1, · · · , S̃K) one by one. In

addition, we assume that S̃k lies within the interior of the k-

th section Vk = {S ∈ S | g(k, S) ≥ g(k′, S), ∀k′ ∈ [K]}
and keeps some distance from the boundary of Vk. We re-

mark that having S̃k away from the boundary is essential

to induce desired behavior in the agent with high probabil-

ity when applying an approximating scoring rule based on

S̃k but with some errors. Notably, the assumption that the

agent has marginal gain ε by choosing k under S̃k also en-

sures a minimum radius of section Vk, which corresponds

to the non-degenerate assumption in strategic Stackelberg

games (Letchford et al., 2009). We first present an impos-

sible result for online learning the optimal proper scoring

rule without the oracle.

Lemma 3.2 (Impossible result). Suppose number of ac-

tions K ≥ 3 and the number of possible beliefs M ≥ 3.

Without the action-informed oracle, for any online algo-

rithm, there exists an instance such that Reg(T ) = Ω(T ).

See §E.1 for a construction of the hard instance. Without

the action-informed oracle, any online algorithm inevitably

suffers from a linear regret. The intuition behind the hard

instance is that without the oracle, any algorithm can fail

to locate a scoring rule that induces the desirable action

from the agent. This happens because the feasible region,

i.e., Vk in the space of bounded proper scoring rules for

this desirable action k, can be arbitrarily small. We next

give two examples that show the action-informed oracle is

amenable to practical implementation. The first example is

through random sampling, adapted from (Letchford et al.,

2009). To do so, we first define the class of strongly proper

scoring rules.

Definition 3.3 (Strongly proper scoring rules). A scoring

rule S : ∆(Ω)×Ω→ R is β-strongly proper if for all p, q ∈
∆(Ω), Eω∼q[S(q, ω)]− Eω∼q[S(p, ω)] ≥ β

2 ‖q − p‖21.

Let Sβ be the class of β-strongly proper scoring rules. We

sample from Sβ in the hope that after a small number of

samplings, e.g., log(T ) the action-informed oracle can be

constructed with high probability.

Example 3.4 (Action awareness via random sampling).

Let d1 = min1≤i<j≤M ‖σi − σj‖∞ and d2 =
min1≤k<k′≤K maxi∈[M ] [qk(i)− qk′(i)]. Since the proper

scoring rule class S has bounded norm, the β-strongly

proper scoring class also has bounded volume Vol(Sβ) <

∞. Set κ = d21β/2 and let Ṽk = {S ∈ Sβ | g(k, S) ≥
g(k′, S) + κ, ∀k′ 6= k, k′ ∈ [K]}. We suppose Vol(Ṽk) ≥
ηVol(Sβ) for k ∈ [K]. InitiateM = ∅ as the candidate

set. Each time, we randomly sample a β-strongly proper

scoring rule S ∈ Sβ and obtain the agent’s best response

k∗(S) with respect to S. Let ei(σ, ω) = 1(σ = σi) for i ∈
[M ]. By setting κ = d21 · β/2, we deploy {S − κei}i∈[M ]

and see if the agent still responds k∗(S). If so, Let S =
S ∪{S}; if not, reject S. AfterO(Mη−1K logK) rounds,

with high probability, S serves as a valid action-informed

oracle with parameter ǫ = d2 · κ.

See §E.2 for more details. In Example 3.4, we ensure a

set of scoring rules that successfully induces each action

by randomly sampling in S for up to O(MK logK) times.

We next show another example via use of linear contract

where the information structure satisfies some special prop-

erties.

Example 3.5 (Action awareness via linear scoring rule).

Suppose that these K actions are sorted in an increas-

ing order with respect to the cost. Define uk =
Eω∼σ,σ∼qk [u(a

∗(σ), ω)] and suppose uk > 0. We as-

sume the marginal information gain is strictly decaying,

i.e., there exists a ǫ > 0 such that

uK − uK−1

cK − cK−1
> ǫ, and

uk − uk−1

ck − ck−1
− uK − uk

cK − ck
> ǫ, ∀k = 2, · · · ,K − 1.

Moreover, we assume that (u2 − u1)/(c2 − c1) ≤ b. The

principal sets the scoring rule as S(σ, ω) = λu(a∗(σ), ω)
and conducts binary search on λ ∈ [0, 2/ǫ]. Specifi-

cally, the binary searches are iteratively conducted on all

the segments (λ1, λ2) with k∗(λ1u) 6= k∗(λ2u), where

λ1, λ2 are neighboring points on [0, 1/ǫ] that are previ-

ously searched. With the maximal searching depth m =
⌈log2(2b(b− ǫ)/ǫ2)⌉, we can identify all the agent’s ac-

tions. Suppose that (λk
1 , λ

k
2) is the largest segment with

λk
1 and λk

2 searched before and k∗(λk
1u) = k∗(λk

1u) = k.

By letting S̃k = (λk
1 + λk

2)u/2, we obtain an oracle

with ε = ǫu1/4b
2. The procedure takes O(K log2(ε

−1))
rounds.

See §E.3 for more details. In this example, we exploit the

power of linear contract (Dütting et al., 2019) to identify all

the agent’s actions and produce a set of scoring rules based

on the principal’s utility. Specifically, the assumption of

decaying marginal information gain is commonly seen in

real world practice, and it further guarantees that all the ac-

tions are inducible using linear contracts. To obtain such an

oracle, we just need at most O(K log2(ε
−1)) trials, which

is more efficient than random sampling. We remark that

these foreknown scoring rules obtained by the oracle do

not need to be optimal in each section Vk. They can even be
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obtained through random sampling from β-strongly proper

scoring rules (See Example 3.4) for general setting, or dis-

covered in a linear scoring rule class (See Example 3.5) if

the marginal information gain is strictly decaying.

3.3. OSRL-UCB Algorithm

The OSRL-UCB algorithm contains the following four

parts: (i) learning the belief distributions; (ii) learning the

pairwise cost differences; (iii) solving for the optimal pay-

ment/scoring rule in each Vk via optimistic linear program-

ming Opt-LPk and choosing the best “arm” via UCB; (iv)

applying a conservative scoring rule and conduct binary

search if kt 6= k∗t to refine our estimation on Vk. In this

subsection, we describe the OSRL-UCB algorithm in de-

tail.

Algorithm 1 Online Scoring Rule Learning with Upper

Confidence Bound (OSRL-UCB)

1: Input: S , (S̃1, · · · , S̃K).
2: while t ≤ T do

3: Estimate the belief distributions q̂tk by (3.4) and the

corresponding confidence intervals Itq(k) by (3.5);

4: Estimate the pairwise cost differences Ĉt(i, j) and

the corresponding confidence intervals Itc(i, j) by

(3.6);

5: Solve Opt-LPk in (3.7) and obtain the optimal value

ht
LP(k) and the optimal solution St

LP,k for k ∈ [K];

6: Choose the best arm k∗t ← argmaxk∈[K] h
t
LP(k) and

let S∗
t ← St

LP,k∗

t
;

7: Pay with the conservative scoring rule St ← αtS̃k∗

t
+

(1− αt)S
∗
t , and collect the agent’s responding ac-

tion kt;
8: if kt 6= k∗t then

9: Conduct binary search BS(St, S̃k∗

t
, k∗t , t) as spec-

ified in Algorithm 3;

10: end if

11: Move on to a new round t← t+ 1;

12: end while

Learning the Belief Distributions. Let nt
k denote the

total number of times the agent responds action k before

round t. Then, qk can be learned empirically as

q̂tk(σ) =
1

nt
k

t−1∑

τ=1

1(στ = σ, kτ = k), ∀σ ∈ Σ. (3.4)

Following from a standard concentration result in

Mardia et al. (2020), we define the confidence interval for

q̂tk as

Itq(k) =
√
2 log((K) · 2M t)/nt

k (3.5)

We state the concentration result in Lemma F.6. Under

q̂tk, the estimated payment of scoring rule S if the agent

responds action k is v̂tS(k) = 〈S(·), q̂tk(·)〉Σ.

Learning the Pairwise Cost Differences. We next illus-

trate how to learn the pairwise cost difference. For each

τ < t such that kτ = i and j 6= i, define

Ct
+(i, j) = min

τ<t:kτ=i
v̂Sτ

(i)− v̂Sτ
(j) +BS

(
Itq(i) + Itq(j)

)
,

Ct
−(i, j) = max

τ<t:kτ=j
v̂Sτ

(i)− v̂Sτ
(j)−BS

(
Itq(i) + Itq(j)

)
.

For each pair (i, j), we also define

θt(i, j) =
Ct

+(i, j) + Ct
−(i, j)

2
,

ϕt(i, j) =

[
Ct

+(i, j)− Ct
−(i, j)

2

]

+

.

Directly using θt(i, j) as the estimation of pairwise cost

difference is not the best option for two reasons: (i) For

θt(i, j) to be accurate, we need to detect Sτ such that Sτ

lies on the boundary Vi ∩ Vj . However, it can happen that

Vi ∩ Vj = ∅, thus producing a constant error. (ii) Even if

Vi ∩ Vj 6= ∅, finding Sτ ∈ Vi ∩ Vj for all (i, j) pairs can

be costly and potentially increase the algorithm complexity.

Instead, we observe that the number of unknown parame-

ters in the cost is at most K, thus it suffices to search in

a “tree” structure. Specifically, let G = (B, E) denote the

graph where the node set B corresponds to the K agent

actions and the edge set E corresponds to the pairwise cost

differences C(i, j) = ci−cj . In addition, we let ϕt(i, j) be

the “length” assigned to edge C(i, j), which corresponds

to the uncertainty of using θt to estimate the cost differ-

ence. Therefore, the problem of estimating C(i, j) with

minimal error becomes finding the shortest path between

bi and bj on the graph G, which can be efficiently han-

dled by Dijkstra’s algorithm or the Bellman-Ford algorithm

(Ahuja et al., 1990). In summary, the cost difference is es-

timated by

lij = shortest path(G, i, j), Ĉt(i, j) =
∑

(i′,j′)∈lij

θt(i′, j′),

Itc(i, j) =
∑

(i′,j′)∈lij

ϕt(i′, j′), (3.6)

where Itc(i, j) is the confidence interval for the pairwise

cost estimator Ĉt(i, j). Moreover, we can easily check

that Ĉt(i, j) = −Ĉt(j, i) since lij is the same as lji
and θt(i, j) = −θt(j, i) by definition. The validity of

Itc(i, j) serving as a confidence interval for Ĉt is proved

in Lemma F.7.

Solving for Opt-LP and Choosing the Best Arm. Note

that we have the estimator q̂tk for the belief distributions and

7
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the estimator Ĉt for the pairwise cost differences. We are

now able to solve the linear program (LP) given in (3.3) for

the best scoring rule corresponding to agent action bk. To

incorporate the optimism principle, we relax the constraint

of (3.3) using the confidence interval Itq , Itc obtained before.

Specifically, for agent action bk, we consider the following

optimistic linear program Opt-LPk,

Opt-LPk : max
S∈S

〈u, q̂tk〉Σ +BuI
t
q(k)− v,

s.t.
∣∣v − v̂tS(k)

∣∣ ≤ BS · Itq(k), (3.7)

v − v̂tS(i) ≥ Ĉt(k, i)−
(
Itc(k, i) +BS · Itq(i)

)
, ∀i 6= k.

Here, the optimization goal is to maximize the principal’s

profit under the agent’s best response bk, where we add

BuI
t
q(k) to upper bound the true value with high proba-

bility. The first constraint actually constructs a confidence

interval BSI
t
q(k) for the payment v, while the second con-

straint relax the initial boundary condition in (3.3) using Itc
and Itq. The relaxations in the constraints guarantee that

Opt-LPk is optimistic with high probability, as is verified

in Lemma F.1. Suppose that the optimal value and solu-

tion for Opt-LPk are ht
LP(k) and St

LP,k, respectively. If

Opt-LPk is infeasible, we just let ht
LP(k) = 〈u, q̂tk〉Σ −

Eσ∼q̂k S̃k(σ) + (BS + Bu)I
t
q(k) and St

k = S̃k. Next, by

viewing the problem as a K-arm bandit, we choose the best

“arm” that maximizes the principal’s optimistic expected

profit, k∗t = argmaxk∈[K] h
t
LP(k). For simplicity, we let

S∗
t := St

LP,k∗

t
.

Constructing Conservative Scoring Rules. However, it

happens that we can sometimes be “overoptimistic” about

the agent’s best response. That is, as we relax the boundary

constraint in Opt-LPk, the agent might not respond action

k∗t under scoring rule S∗
t . This fact suggests that we ought

to be conservative to a certain degree in the design of scor-

ing rule. In particular, we consider the conservative scoring

rule as, St = (1 − αt)S
∗
t + αtS̃k∗

t
. The intuition is that

since the agent strictly prefers the action k∗t under the scor-

ing rule S̃k∗

t
, combining S∗

t with S̃k∗

t
increases the agent’s

relative preference of choosing action k∗t . In Lemma F.2,

we show that with a choice of αt = O(t−1/3), we can guar-

antee with high probability that the agent would response

with action k∗t under the conservative scoring rule St. This

also means the optimism (reflected by the agent’s choice of

action k∗t ) is guaranteed.

Refining Parameter Estimations. Once St is deployed,

we consider two types of outcomes. If the agent responds

with action kt = k∗t , our estimates of agent’s decision

boundary Vk∗

t
is good enough, and we can simply proceed

to the next round. Otherwise, the agent responds with an-

other action kt 6= k∗t , and we need to improve our estima-

tions on Vk∗

t
by updating q̂t, Ĉt in order to successfully in-

duce the desired action k∗t in the future. Specifically, due to

the special conservative construction of St, it suffices to up-

date the boundary of Vk∗

t
that lies between St and S̃k∗

t
. To

achieve this, we conduct binary search on the segment con-

necting S̃k∗

t
and St and locate the first switch point where

the agent’s best response changes from action k∗t to another

action.

To be specific, in the process of searching the switching

point, there are two useful information that we can utilize:

Firstly, for the boundary of Vk∗

t
that lies on the segment

(S̃k∗

t
, St), we induce the two actions (i, j) that this bound-

ary separates at least once, thus their belief distribution es-

timator q̂ti and q̂tj will be updated. Secondly, and more im-

portantly, this switching point S lies near the boundary, we

can refine the cost difference by Ĉ(i, j) ≈ 〈q̂ti − q̂tj , S〉Σ in

(3.2). More details are available in Algorithm 3. Thus, this

binary search can refine both the belief estimator and the

cost difference estimator, which leads to a better estimation

of Vk∗

t
. Notably, such a binary search procedure achieves

sufficient accuracy within logarithmic searching time.

4. Theoretical Results

In this subsection, we provide the learning result for the

OSRL-UCB algorithm.

Theorem 4.1. Under Assumption 3.1 on the action-

informed oracle, with αt = min{Kt−1/3, 1}, the OSRL-

UCB algorithm 2 has regret

Reg(T ) = Õ
(
(BS +Bu)B

2
Sε

−2 ·K2CO · T 2/3
)
,

where BS and Bu bound the magnitudes of the scoring rule

and the utility function, respectively, ε is the marginal profit

gain given by the action informed oracle, K is the number

of the agent’s actions, and CO is the cardinality of the ob-

servation set.

Proof. We defer the detailed proof to §F.

Here, we use Õ to omit logarithmic factors. The regret

depends quadratically on the agent’s action number and lin-

early on the cardinality of the observation set. Notably, the

regret is independent of the size of the hidden state |Ω|. In

addition, we achieve a O(T 2/3) sublinear rate of regret in

terms of the principal’s accumulative profit for eliciting in-

formation under the scoring rule framework. Such a result

is achieved with a mild assumption of an action-informed

oracle that provides a set of scoring rules with marginal

profit gain for the agent that induce all the agent’s actions.

We do not assume the learner to have sufficient knowledge

about the other strategic player(s) in contrast to many exist-

ing works (Balcan et al., 2015; Guo et al., 2022; Wu et al.,

2022). In addition, we only assume the principal to have

knowledge of her utility and can observe the agent’s action

8
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choice. For discussion of the these two assumptions, we

refer the readers to the footnote in §2.

For the action-informed oracle with a set of foreknown

scoring rules, these foreknown scoring rules do not need

to be optimal in each section Vk. They can even be ob-

tained through random sampling from β-strongly proper

scoring rules (See Example 3.4) for general setting, or dis-

covered in a linear scoring rule class (See Example 3.5) if

the marginal information gain is strictly decaying. We also

give the following corollaries that characterize the regret

combined with the effort to find an action-informed oracle.

Corollary 4.2 (Regret with oracle from random sampling).

Let Ṽk = {S ∈ Sβ | g(k, S) ≥ g(k′, S) + κ, ∀k′ 6= k, k′ ∈
[K]} where Sβ ∈ S is the class of β-strongly proper scor-

ing rules, and suppose Vol(Ṽk) ≥ ηVol(Sβ) for k ∈ [K].
Running the oracle acquisition process in Example 3.4 for

T γ rounds before deploying the OSRL-UCB algorithm for

T − T γ rounds, the online regret is bounded by

Reg(T ) = Õ
(
(d2d

2
1β)

−2 ·KM · T 2/3
)

+O(KT exp(−T γη/M) + T γ),

where d1 = mini6=j,∀(i,j)∈[M ] ‖σi − σj‖∞, d2 =
mink′ 6=k,(k,k′)∈[K] maxi∈[M ] [qk(i)− qk′(i)], and M is the

cardinality of Σ.

And also we characterize the regret for the action-informed

oracle obtained by linear scoring rule.

Corollary 4.3 (Regret with oracle from linear scoring rule).

Suppose the model assumption that the marginal informa-

tion gain is strictly decaying in Example 3.5 holds. By

running the oracle acquisition process in Example 3.5 for

O(K log2(ε
−1)) rounds and the OSRL-UCB algorithm for

the remaining rounds, the online regret is bounded by

Reg(T ) = Õ
(
ε−2 ·K2CO · T 2/3

)
+O(K log2(ε

−1)),

where ε = ǫu1/4b
2, and ǫ, u1, b are constants defined in

Example 3.5.

Corollaries Corollary 4.2 and Corollary 4.3 both provide

regret bound without any using of oracle. Specifically,

Corollary 4.2 considers a more general framework under

the assumption of lower bounded action section volume

while Corollary 4.3 assumes marginal information decay,

which is commonly seen in real world practice. Specifi-

cally, Corollary 4.2 shows that by random sampling for T γ

rounds where 0 < γ < 2/3, it suffices for the principal

to have Õ(T 2/3) regret. In addition, γ can be significantly

small since the second term diminishes exponentially on

T γ . In addition, Corollary 4.3 shows that running constant

number of additional rounds in the oracle acquisition pro-

cess does not deteriorate the regret bound.

Following the discussion in Jin et al. (2018), our algorithm

also has PAC guarantee as the following.

Corollary 4.4 (PAC guarantee). For every ζ > 0, the

OSRL-UCB algorithm with action informed oracle finds a

ζ-optimal scoring rule using Õ(ε−6K6C3
Oζ

−3) samples.

Zhu et al. (2022) provides an O(T 2/3) regret lower bound

for the online learning problem towards the optimal con-

tract. Despite that standard contract design is a special

case of our model, their setting is different from ours in

that the agent may have possibly infinitely many actions.

So the regret lower bound of our problem remains an open

question. To close this gap, we believe the key question re-

mains to be answered is whether the decision boundary of

Vk∗ can be determined efficiently. That is, even if the best

action k∗ is known, the learner is still unable to solve the

optimal scoring rule from Opt-LPk∗ without enough knowl-

edge about Vk∗ . For now, we are able to construct a class of

instances where such boundary of Vk∗ can determine with

binary search and thus avoid the costly learning of qk for

every k ∈ [K]. However, it still remains unclear if these

efficient search techniques can possibly be generalized to

arbitrary instances — a definitive answer should close up

the regret lower and upper bound of this problem. We leave

this intriguing direction to future work.

5. Conclusion

We study the problem of incentivizing information acquisi-

tion through proper scoring rules under the principal-agent

framework with information asymmetry. We propose the

OSRL-UCB algorithm and show that with a mild oracle

assumption, it achieves a O(K2COT
2/3) sublinear regret.

Future direction includes establishing regret lower bound

and extensions to the contextual and dynamic settings.
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A. More Discussions on Related Work

Optimal Scoring Rules. This paper builds on a set of literature on optimizing scoring rules. Several papers consider the

model with multiple levels of effort. Neyman et al. (2021) design outcome-optimal scoring rule under a binary-state model,

and for integral levels of effort, where effort levels represent the number of samples drawn and are informationally ordered.

Hartline et al. (2022) design effort-optimal scoring rule, under a multi-dimensional binary-state model, and each dimension

of the effort corresponds to one of the independent multi-dimensional state. In contrast, our paper considers a general state

space, with multiple levels of effort not necessarily ordered or independent. Li et al. (2022); Papireddygari & Waggoner

(2022); Chen & Yu (2021) design optimal scoring rule for a binary effort model, which is different to our multiple-effort-

level model. Oesterheld & Conitzer (2020) design regret-optimal scoring rule for multiple agents in a single round when

the information structure is unknown to the principal, while our model only has one agent, and our learning algorithm

achieves diminishing regret over multiple rounds. Also, all the papers mentioned above model the state as exogenously

given, while in our paper, the prior of the state can potentially be affected by agent’s endogenous action.

The Principal-Agent Problem. Our model of information acquisition can be viewed as a class of principal-agent problem,

which has been established as a crucial branch of economics known as the contract theory (Grossman & Hart, 1992; Smith,

2004; Laffont & Martimort, 2009). Driven by an accelerating trend of contract-based markets deployed to Internet-based

applications, the principal-agent problem recently started to receive a surging interest especially from the computer science

community (Dütting et al., 2019; Dutting et al., 2021; Guruganesh et al., 2021; Alon et al., 2021; Castiglioni et al., 2021;

2022). As pointed out by Alon et al. (2021), this includes online markets for crowdsourcing, sponsored content creation,

affiliate marketing, freelancing and etc. The economic value of these markets is substantial and the role of data and

computation is pivotal. Different from the classic contract design problems, we focus on the design of contracts (i.e.,

scoring rules) that optimally elicit the information acquired by the agents at some cost.

Online Learning in Strategic Environment. More broadly, our work add to the literature on online learning in strategic

environments, which has gained popularity in recent years. In particular, the online learner’s utility at each round is deter-

mined by both her own action and the strategic response(s) of other player(s) in certain repeated game, and the typical goal

of this learner is to find her optimal strategy under some equilibrium These repeated games are adopted from the influen-

tial economic models including, but not limited to, the Stackelberg (security) game (Marecki et al., 2012; Balcan et al.,

2015; Haghtalab et al., 2022), auction design (Amin et al., 2013; Feng et al., 2018; Golrezaei et al., 2019; Guo et al.,

2022), matching (Jagadeesan et al., 2021), contract design (Zhu et al., 2022), Bayesian persuasion (Castiglioni et al., 2020;

Zu et al., 2021; Wu et al., 2022). Our model can be viewed as a generalized information elicitation problem in an online

learning setup. To our best knowledge, there is no previous work that considered any similar learning problem. In addition,

we remark that, in many of these existing works, e.g., Balcan et al. (2015); Guo et al. (2022); Wu et al. (2022), the learner

is assumed to have sufficient knowledge about the other strategic player(s), and her uncertainty is regarding the environ-

ment or her own utility. Assumptions of such kind can significantly simplify the problem into the standard online learning

problems, once the learner can almost predict the best response of other player(s). Our work, however, does not make any

of such assumption and the most challenging part of our learning algorithm design is indeed to ensure the desired agent

response under uncertainty. Camara et al. (2020) considers the online mechanism design problem, where both the principal

and the agent may learn over time from the state history. However, our paper assumes the agent is myopic in each round.

B. Contract Design as a Special Case of Scoring Rule Design

In this section, we compare the contract design framework to the scoring rule design framework and reduces the standard

contract designing problem to a special case of the scoring rule designing problem. In a contract designing problem, we

refer to Ω as the outcome space. Consider the following contract designing problem:

Contract designing problem in the principal-agent framework

At the t-th round, the principal and the agent play as the following:

1. The principal announces a contract Ct : Ω→ R+ to the agent.

2. Based on Ct, the agent chooses an action bkt
∈ B indexed by kt and bears a cost ckt

≥ 0. The action bkt

can be observed by the principal, but the cost ckt
is private to the agent.
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3. The stochastic environment then selects an outcome ωt ∈ Ω according to p(ωt | bkt
). The outcome ωt is

revealed as observation, but the generating process p(ωt | bkt
) is private to the agent.

4. The principal makes a decision at ∈ A based on ωt.

5. In the end, the principal obtains her utility u(at, ωt) and pays the agent by Ct(ωt).

The difference between this contract designing problem and the scoring rule designing problem is that ωt is revealing, and

the agent’s action influences the principal’s utility only through her action choice without giving any report. We remark

that we can replace u(at, ωt) by u(ωt) = u(a∗(ωt), ωt) if the principal knows about the utility function and always takes

the best action. In this contract design problem, the agent has an action policy π : C → [K], where C is the contract space.

The principal targets at designing the optimal contract that maximizes her profit, i.e., utility minus payment, subject to

the agent’s best response given by maximizing the agent’s profit, i.e., payment minus cost. The Stackelberg game for this

contract designing problem can be formulated as

max
C∈C

Eω∼p(· | bπ∗(C)) [u(ω)− C(ω)] ,

s.t. π∗(C) ∈ argmax
k∈[K]

Eω∼p(· | bk)C (ω)− ck,
(B.1)

In the sequel, we aim to show in the scoring rule designing problem: (i) If the hidden state is perfectly revealing, i.e.,

ot = ωt as the agent’s observation after taking her action, there exists a class of scoring rules such that the above contract

designing problem is equivalent to the scoring rule designing problem. (ii) Using proper scoring rules, the principal’s

optimal profit under the scoring rule framework is no less than the optimal profit under the contract framework.

To show (i), consider the scoring rule class

S
C = {S ∈ S |S(σ̂, ω) = 1(σ̂ = eω) · C(ω), ∀C ∈ C} ,

where eω′(ω) = 1(ω = ω′) ∈ ∆(Ω). Even though S ∈ S C might not be a proper scoring rule, the agent will always be

truth-telling, i.e., σ̂ = eω , since only by telling the truth can she gains nonzero payment. Therefore, this hidden state ωt

is also revealed to the principal through the agent’s report. The Stackelberg game in (2.2) in the scoring rule problem can

therefore be written as,

max
S∈S C

Eω∼p(ω | bk∗(S)) [u(ω)− S(eω, ω)] ,

s.t. k∗(S) ∈ argmax
k∈[K]

Eω∼p(· | bk)S (eω, ω)− ck,
(B.2)

By noting that S(eω, ω) = C(ω), we have that (B.2) and (B.1) are actually the same problem. We thus conclude that the

contract designing problem is perfectly reduced to this scoring rule designing problem.

We also remark that even if the hidden state is perfectly revealing, the principal need not be aware in advance. By sticking to

a proper scoring rule, the agent always tells the truth. Moreover, using the revelation principle stated in Lemma 2.2, for any

S ∈ S C , there always exists a proper scoring rule S̃ ∈ S that generates the same expected payment Eω∼p(· | bk)S̃(eω, ω) =

Eω∼p(· | bk)C(ω) for the agent, even though S̃(eω, ω) might not be equal to C(ω) pointwise. Therefore, statement (ii) is

also justified and we conclude that the (proper) scoring rule framework has more power than the contract framework by

asking one more question about the agent’s belief.

C. More Details on Preliminaries

C.1. Eliciting Information via Proper Scoring Rules

In this section, we provide a formal argument on the revelation principal in our model. That is, it is without loss of

generality to only design the proper scoring rules under which the agent is encouraged to be truth-telling.

Definition C.1 (Proper scoring rule). A scoring rule S : ∆(Ω) × Ω → R+ is proper if, for any belief σ ∈ ∆(Ω) and any

reported posterior σ̂ ∈ ∆(Ω), we have Eω∼σS(σ̂, ω) ≤ Eω∼σS(σ, ω). In addition, if the inequality holds strictly for any

σ̂ 6= σ, the scoring rule S is strictly proper.
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Let S be a proper scoring rule and fix the agent’s policy µ(·) for action selection. For a reporting scheme ν and any true

belief σ, it follows from definition 2.1 that

gµ,ν(S) = Eω∼σS(ν(S, σ, µ(S)), ω)− cµ(S) ≤ Eω∼σS(σ, ω)− cµ(S).

Therefore, the agent’s expected payment is maximized by always being truth-telling about her belief under the class of

proper scoring rule. In the following, we let S(σ̂, σ) = Eω∼σS(σ̂, ω). To give an example of proper scoring rules,

let us consider the binary hidden state space Ω = {0, 1} where the class of proper scoring rules admits the Schervish

representation (Gneiting & Raftery, 2007), i.e., S(p, 1) = G(p) + (1 − p)G′(p) and S(p, 0) = G(p) − pG′(p) where

p ∈ [0, 1] and G : [0, 1] → R+ is a convex function. Intuitively, the expected payment of a proper scoring rule S given

belief σ and report p is S(p, σ) = G(p) + (σ − p)G′(p), which corresponds to the supporting line of G at p. In this

example, the convexity of G guarantees that S(p, σ) = G(p) + (σ − p)G′(p) ≤ G(σ) = S(σ, σ). Moreover, the next

observation in Lemma 2.2 suggests that restricting to the class of proper scoring rules does not incur any loss of generality

for the principal’s purpose.

Lemma C.2 (Restatement of the revelation principle). There exists a proper scoring rule S∗ that is an optimal solution to

(2.1) if the agent is truth-telling under any proper scoring rule.

Proof. We first prove that for any scoring rule S such that ‖S‖∞ ≤ BS , there always exists a proper scoring rule

S′(σ̂, ω) = S(ν∗(S, σ̂, k), ω) such that they make the same payment to the agent for any σ ∈ ∆(Ω) and any agent’s

action choice. To prove that S′ is a proper scoring rule with norm bounded by BS , we have BS ≥ S(ν∗(S, σ̂, k), ω) =
S′(σ̂, ω) ≥ 0 and

S′(σ̂, σ) = S(ν∗(S, σ̂, k), σ) ≤ S(ν∗(S, σ, k), σ) = S′(σ, σ).

The fact that S′ makes the same payment can be verified by plugging in σ̂ = σ in the definition of S′ since the agent is

truth-telling under proper scoring rules, and taking expectation with respect to ω ∼ σ, i.e., S′(σ, σ) = S(ν∗(S, σ, k), σ),
which proves the first part.

Secondly, we prove that encouraging the agent to report the real belief σ makes the principal’s revenue nondecreasing.

Note that

max
ι

Eω∼σ,σ∼qk [u(ι(S, ν
∗(S, σ, k), k), ω)] ≤ max

ι
Eω∼σ,σ∼qk [u(ι(S, σ, k), ω)] = Eω∼σ,σ∼qk [u(a

∗(σ), ω)] ,

where a∗(σ) = argmaxa∈A Eω∼σu(a, ω). Here, the inequality holds by noting that ν∗(S, σ, k) is a function of σ, and the

equality holds by noting that ω ⊥⊥ (S, k) |σ. To conclude, by choosing S′ instead of S, the payment is exactly the same

while the principal’s revenue is nondecreasing. Thus, the principal’s profit is nondecreasing by choosing S′ and there must

exist a proper scoring rule that is also an optimal scoring rule.

Following Lemma 2.2, the principal’s optimal scoring rule lies within the class of proper scoring rules S with bounded

norm ‖S‖∞ ≤ BS . One concern about the use of proper scoring rules is that being truth-telling might not be the unique

maximizer to the agent’s utility. However, we note that the class of proper scoring rules is a convex hull with strictly proper

scoring rules as the interior. Thus, adding an infinitesimal portion of a strictly proper scoring rule to any proper scoring

rule always yields a strictly proper scoring rule. In this sense, we can safely make the assumption that the agent always

reports the true posterior under a proper scoring rule. The following table summarizes all the different information types

in our model.

Public Info Agent’s Private Info Principal’s Private Info Delayed Info

St, bkt
, σ̂t {ck}k∈[K], {qk}k∈[K], ot, σt u wt

Table 1. Table for the information types. Here, “Public Info” refers to the information that is observable to both the principal and the

agent at each round, “Agent’s Private Info” refers to the information that is private to the agent, “Principal’s Private Info” refers to the

information that is private to the principal, and “Delayed Info” only contains the hidden state ωt, which is unobservable when round t

proceeds but revealed when round t terminates.
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D. More Details on Algorithm

In this section, we give a summary of the OSRL-UCB algorithm in the following Algorithm 2. For details, we defer the

readers to §3.3.

Algorithm 2 Online Scoring Rule Learning with Upper Confidence Bound (OSRL-UCB)

1: Input: S , (S̃1, · · · , S̃K).
2: while t ≤ T do

3: Estimate the belief distributions q̂tk by (3.4) and the corresponding confidence intervals Itq(k) by (3.5);

4: Estimate the pairwise cost differences Ĉt(i, j) and the corresponding confidence intervals Itc(i, j) by (3.6);

5: Solve Opt-LPk in (3.7) and obtain the optimal value ht
LP(k) and the optimal solution St

LP,k for k ∈ [K];

6: Choose the best arm k∗t ← argmaxk∈[K] h
t
LP(k) and let S∗

t ← St
LP,k∗

t
;

7: Pay with the conservative scoring rule St ← αtS̃k∗

t
+ (1− αt)S

∗
t , and collect the agent’s responding action kt;

8: if kt 6= k∗t then

9: Conduct binary search BS(St, S̃k∗

t
, k∗t , t) as specified in Algorithm 3;

10: end if

11: Move on to a new round t← t+ 1;

12: end while

The details of Algorithm 3 are as follow:

Algorithm 3 Binary Search BS(S0, S1, k
∗(S1), t)

1: Input: S0, S1, k
∗(S1), t, kt, {Itq(k)}k∈[K];

2: Output: t;
3: if kt = k∗(S1) then

4: Break the binary search algorithm;

5: end if

6: Initiate λmin ← 0, λmax ← 1, t0 ← t;
7: while λmax − λmin ≥ It0q (kt) ∧ It0q (k∗(S1)) do

8: Start a new round t← t+ 1;

9: Pick λ← (λmin + λmax) /2 as the middle point;

10: The principal announces scoring rule St = (1− λ)S0 + λS1 and obtain the agent’s response kt;
11: if kt = k∗(S1) then

12: Update λmax ← λ;

13: else

14: Update λmin ← λ;

15: end if

16: end while

The binary searching algorithm at step t works on the segment connecting two scoring rules S0 and S1, where the agent’s

best response under S1 is k∗(S1). The goal of this binary search is to find the first switching point of the agent’s best

response from k1 to another action on this segment. The binary searching algorithm keeps updating on λmax and λmin as

the candidate interval that contains the first switching point. Note that any λ ∈ [0, 1] corresponds to a scoring rule on the

segment connecting S0, S1. Each time, the algorithm deploy a scoring rule corresponding to (λmin + λmax) /2 and the

candidate interval is thus cut by half. In addition, we consider binary searching to a finite depth m such that the searching

error respects the minimal uncertainty of q̂tk′ , q̂tk∗

t
, i.e., 2−m ≤ Itq(k

′) ∧ Itq(k
∗
t ) in Algorithm 3. Thus, the binary search

achieves sufficient accuracy with logarithmic searching time.

E. Proofs on Action-informed Oracle in Section 3.2

In this section, we prove the claims in Section 3.2.
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E.1. Proof of Lemma 3.2

Without loss of generality, we just need to construct a hard instance by considering the case K = 3 and M = 3. To

simplify the discussion, we consider two hidden states Ω = {ω1, ω2} and consider BS = 1 as the boxing condition for the

scoring rules. The idea of constructing the hard instance is as follows:

(i) Make sure that action a2 is the optimal agent’s response for the optimal scoring rule while any scoring rule not

inducing the agent to chose a2 yields a constant regret at least 1.

(ii) Let V2 be a ”single point” on the boundary of S and show that with a great chance, any algorithm can fail to find the

correct scoring rule located in V2 without the oracle.

Since Ω = {ω1, ω2}, we can equally represent σ1, σ2, σ3 by the their mass assigned to ω1. With a little abuse of notation,

we let σi denote σi(ω1) and 1 − σi denote σi(ω2). We consider the case Σ = {σ1 = (0, 1), σ2 = (.5, .5), σ3 = (1, 0)}
for M = 3. For simplicity, we let Si = EωS(σi, ω) for i = 1, 2, 3. Hence, the set of proper scoring rules is specified by

conditions:

0 ≤ S2 ≤
S1 + S3

2
, BS ≥ S1 ≥ 0, BS ≥ S3 ≥ 0. (E.1)

We remark that the first condition guarantees that the scoring rule is proper by requiring the curve of G(σ) = Eω[S(σ, ω)]
to be convex (Gneiting & Raftery, 2007), and the rest are just box conditions. In fact, one can easily construct a

proper scoring rule S(σ, ω) for any S = (S1, S2, S3) satisfying the above constraints using the Schervish representa-

tion (Gneiting & Raftery, 2007) by fitting a convex function G defined on [0, 1] passing through (0, S1), (.5, S2), (1, S3),
and consider the supporting hyperplanes of G at these three points.

To ensure that V2 is a single point on the boundary in (ii), we let q2 − q1 and q2 − q3 be

q2 − q1 = β · (0,−1, 1)⊤, q2 − q3 = β · (1, 1,−2)⊤,

where β should be considered a fixed constant and q1, q2, a3 are what we want to design. These conditions imply the

following expression for V2,

V2 = {S ∈ S | (0,−1, 1)S ≥ β−1(c2 − c1), (1, 1,−2)S ≥ β−1(c2 − c3)}.

We further let e1 = β−1(c2 − c1) and e2 = β−1(c2 − c3). One can easily verify that as long as e1 + e2 = 1 and

−1/2 ≤ e1 ≤ 0, V2 shrinks to a single point given by S∗ = (1,−e1, 0) and the conditions in Equation (E.1) are always

satisfied. Hence, we can safely restrict ourselves to the instances specified by parameter e1 and c1, c2, c3 can be adjusted

accordingly. Hence, we are actually considering a single parameter linear system.

To ensure (i), i.e., the optimality of a2, we first need to ensure that a2 beats a1 and a2 at S∗ by some constant γ ≥ 1:

〈q2 − q1, u− S∗〉 ≥ γ,

〈q2 − q3, u− S∗〉 ≥ γ,
(E.2)

where S∗ ∈ V2. Note that since q2 − q1 does not lie on the same line with q2 − q3, we can always choose u such that (E.2)

holds regardless of what S∗ is. For any S ∈ V1, we can verify that for the principal’s profit,

〈q2, u− S∗〉 − 〈q1, u− S〉 = 〈q2 − q1, u− S∗〉+ 〈q1, S − S∗〉 ≥ γ − 1,

where the last inequality is a direct result of (E.2) and the fact that each entry of S should be within [0, 1]. The same holds

for S ∈ V3. Hence, it suffices to find an instance satisfying (E.2) with γ = 2.

Construction of the hard instance: Following the above discussion, we construct the instance by letting γ = 2, β = 1/16,

and
q1 = (3/4, 3/16, 1/16),

q2 = (3/4, 1/8, 1/8),

q3 = (11/16, 1/16, 1/4)

u = (96, 0, 32) + (1,−e1, 0).
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Here, the only thing unknown is the cost c1, c2, c3, where the effect of the unknown cost is encoded in e1 ∈ [−1/2, 0],
which only affects the position of S∗.

Since we are considering a one parameter linear system with the second coordinate of S∗ undetermined, it is without loss

of generality to consider finding the optimal scoring rule on the line l = (1, λ, 0) where 0 ≤ λ ≤ 1/2. Suppose we assign

scoring rule St = (1, bt, 0) at step t and the agent responses at ∈ A = {a1, a2, a3}. In fact, for any bt < e1, the agent

will response a1 and for any bt > e1, the agent will response a3. Then, we assert that any online strategy of the principal

can result in linear regret since no algorithm can decide the exact position of e1 under the feedback of the agent’s actions

only (Perhaps the best one can do is binary searching for e1, which does not help either). In addition, any bt 6= e1 yields

a suboptimality at least 1 at each round. Moreover, we remark that letting V2 shrink to a point still makes S∗ the optimal

scoring rule by the tie-breaking rule which is in favor of the principal. Nevertheless, one can always make V2 an interval

around e1 as small as possible. Hence, we conclude that for any algorithm, there always exists a hard instance that yield a

linear regret Reg ≥ Ω(T ). We finish the proof of Lemma 3.2.

E.2. Proof of Example 3.4

To ensure the scoring rules we sample are ǫ better on the induced action, we sample from the strongly proper scoring rules.

Definition E.1 (Strongly proper scoring rules). A scoring rule S : ∆(Ω) × Ω → R is β-strongly proper if for all p, q ∈
∆(Ω), Eω∼q[S(q, ω)]− Eω∼q[S(p, ω)] ≥ β

2 ‖q − p‖21.

Example E.2 (Restatement of Example 3.4). Let d1 = min1≤i<j≤M ‖σi − σj‖∞ and d2 =
min1≤k<k′≤K maxi∈[M ] [qk(i)− qk′(i)]. Since the proper scoring rule class S has bounded norm, the β-strongly

proper scoring class also has bounded volume Vol(Sβ) < ∞. Set κ = d21β/2 and let Ṽk = {S ∈ Sβ | g(k, S) ≥
g(k′, S) + κ, ∀k′ 6= k, k′ ∈ [K]}. We suppose Vol(Ṽk) ≥ ηVol(Sβ) for k ∈ [K]. InitiateM = ∅ as the candidate set.

Each time, we randomly sample a β-strongly proper scoring rule S ∈ Sβ and obtain the agent’s best response k∗(S) with

respect to S. Let ei(σ, ω) = 1(σ = σi) for i ∈ [M ]. By setting κ = d21 · β/2, we deploy {S − κei}i∈[M ] and see if

the agent still responds k∗(S). If so, Let S = S ∪ {S}; if not, reject S. After O(Mη−1K logK) rounds, with high

probability, S serves as a valid action-informed oracle with parameter ǫ = d2 · κ.

Note that the volumn of Ṽk is continuous, decreasing in β, and goes to Vol(Ṽk) as β → 0. Hence, if Vk has a constant

fraction of total volumn, we can find β such that Ṽk has a constant fraction of total volumn.

Proof. First, if κ = d21 · β/2, {S − ǫei}i∈[M ] is also proper since S is β-strongly proper.

Next, let d2 = mink′ maxi [qk(i)− qk′(i)]. we show that any each time the probability of hitting a scoring rule in Ṽk is at

least η. Suppose S is not rejected if for all i ∈ [M ], the agent prefers action k to k′: g(k, S − κei) − g(k′, S − κei) ≥ 0.

By properness of S − κei,

g(k, S − κei)− g(k′, S − κei) = 〈S − κei, qk − qk′〉 − (ck − ck′)

= 〈S, qk − qk′〉 − κ(qk(i)− qk′(i))− (ck − ck′) ≥ 0.

If this holds for any i ∈ [M ] and k′ ∈ [K], it means 〈S, qk − qk′〉 − (ck − ck′) ≥ maxi∈[M ] κ(qk(i)− qk′(i)) ≥ κd2. One

the other hand, if S is in set Ṽk, it never gets rejected.

After c
ηK logK rounds, the probability that one action is not induced is (1 − η)

c
η
K logK = ( 1

K )cK . Taking a union

bound, the probability that any action is not induced is at most ( 1
K )cK−1. Setting c large enough, this probability will be

sufficiently small. To conclude, after O(Mη−1K logK) rounds, we get an oracle with parameter ǫ = d2 · κ.

E.3. Proof of Example 3.5

Example E.3 (Restatement of Example 3.5). Suppose that these K signals are sorted in the increasing order of the cost.

Define uk = Eω∼σ,σ∼qk [u(a
∗(σ), ω)] and suppose uk > 0. We assume the marginal information gain is strictly decaying,

17



Learning to Incentivize Information Acquisition

i.e., there exists a ǫ > 0 such that

uK − uK−1

cK − cK−1
> ǫ, and

uk − uk−1

ck − ck−1
− uk+1 − uk

ck+1 − ck
> ǫ, ∀k = 2, · · · ,K − 1.

Moreover, we assume that (u2 − u1)/(c2 − c1) ≤ b. The principal sets the scoring rule as S(σ, ω) = λu(a∗(σ), ω) and

conducts binary search on λ ∈ [0, 2/ǫ]. Specifically, the binary searches are iteratively conducted on all the segments

(λ1, λ2) with k∗(λ1u) 6= k∗(λ2u), where λ1, λ2 are neighboring points on [0, 1/ǫ] that are previously searched. With the

maximal searching depth m = ⌈log2(2b(b− ǫ)/ǫ2)⌉, we can identify all the agent’s actions. Suppose that (λk
1 , λ

k
2) is the

largest segment with λk
1 and λk

2 searched before and k∗(λk
1u) = k∗(λk

2u) = k. By letting S̃k = (λk
1 + λk

2)u/2, we obtain

an oracle with ε = ǫu1/4b
2. The procedure takes O(K log2(ε

−1)) rounds.

Proof. First, we show that by setting λ = λi = (ci − ci−1) / (ui − ui−1) for any i = 2, . . . ,K, the agent is indifferent

between taking actions i and i − 1. In addition, we let λ1 = 0 and λK+1 = 2/ǫ. For any λ ∈ (λi, λi+1), the agent best

responds with action bi. In addition, λ2 = (c2 − c1)/(u2 − u1) ≥ 1/b and λK = (cK − cK−1)/(uK − uK−1) ≤ 1/ǫ.
Thus, by searching in λ ∈ [0, 2/ǫ], all the actions are guaranteed to be induced by this linear contract.

Since the sequence (ui − ui−1) / (ci − ci−1) is strictly decaying, λi is strictly increasing and λi − λi−1 is lower bounded

by 1/ (b− ǫ) − 1/b = ǫ/b(b− ǫ), where the lower bound is reached by λ2 = 1/b and λ3 = 1/(b − ǫ). Combined with

the fact that search is conducted on [0, 2/ǫ], we get the maximal searching depth m = ⌈log2(2b(b− ǫ)/ǫ2)⌉ such that the

neighboring searching points has a gap no more than ǫ/2b(b − ǫ). Therefore, using the fact that λi − λi−1 ≥ ǫ/b(b − ǫ),
we can guarantee that all the actions are induced by this binary search.

For the chosen λk
1 and λk

2 such that k∗(λk
1u) = k∗(λk

2u) = k, we can guarantee that λk ≤ λk
1 ≤ λk + ǫ/2b(b − ǫ) and

λk+1 − ǫ/2b(b − ǫ) ≤ λk
2 ≤ λk+1. Hence, λk + ǫ/4b(b − ǫ) ≤ (λk

1 + λ2
2)/2 ≤ λk+1 − ǫ/4b(b − ǫ). Therefore, by

setting λ = (λk
1 + λk

2)/2, the marginal profit for choosing bk over other actions is lower bounded by ǫ/4b(b − ǫ) · uk ≥
ǫ/4b(b− ǫ) · u1 ≥ ǫu1/4b

2. Hence, we obtain the oracle with ε = ǫu1/4b
2.

F. Proof of Theorem 4.1

Proof of Theorem 4.1. Here we give a high-level analysis of the Õ(K2T−2/3) regret for Algorithm 2. We consider two

types of events in T rounds, 1(kt = k∗t ) or 1(kt 6= k∗t ). In the first type of events, by the construction of St, the

suboptimality gap at each round can be decoupled into components contributed by (1 − αt)S
∗
t or αtS̃k∗

t
. The cumulative

regret from (1 − αt)S
∗
t follows the optimism principle of UCB and is on the order of T 1/2. The cumulative regret from

αtS̃k∗

t
is on the order of T 2/3, since αt = t−1/3 and the suboptimality gap of Sk∗

t
is constant. Meanwhile, for the second

type of events, we can bound the total number of rounds such event occurs in the worst case as Õ(K2T 2/3). This requires

some involved arguments, though it is intuitively the sample complexity to learn ‖q̂k − qk‖ ≤ t−1/3 for every k ∈ [K].
This corresponds to the worst case where these signals are competitive and nk,t grows at the same rate for any k ∈ [K],
which means that we have to precisely learn the belief distributions and costs for all the actions. Therefore, based on the

dominating term, the total regret is Õ(KT 2/3).

We analyze the regret by the following two cases: (i) rounds t such that the agent responds with action kt = k∗t ; (ii) rounds

t such that the agent responds with action kt 6= k∗t . Let SubOpt(k, St) = maxS∈S h(S) − Eω∼σ,σ∼qk [u(a
∗(σt), ωt) −

St(σt, ωt)] be the regret of implementing scoring rule St with the agent selecting action bk in a single round. We have for

the online regret that,

Regπ(T ) = Eπ

[
T∑

t=1

(
max
S∈S

h(S)− Eωt∼σt,σt∼qkt
[u(a∗(σt), ωt)− St(σt, ωt)]

)]

=

T∑

t=1

E [1(kt = k∗t )SubOpt(kt, St)]︸ ︷︷ ︸
At

+

T∑

t=1

E [1(kt 6= k∗t )SubOpt(kt, St)]︸ ︷︷ ︸
Bt

.
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Here and in the sequel, we always use E to denote the expectation taken with respect to the data generating process

described in (2.3).

Bounding regret At. Since St = αtS̃k∗

t
+ (1− αt)S

∗
t , it follows from the linearity of SubOpt(kt, St) that

SubOpt(kt, St) = αtSubOpt(kt, S̃k∗

t
) + (1− αt)SubOpt(kt, S

∗
t ). (F.1)

Here, the first term SubOpt(kt, S̃k∗

t
) is bounded by constant C1 = 2(BS + Bu), and the second term SubOpt(kt, S

∗
t ) is

bounded by 2 (‖S∗
t ‖∞ +Bu) I

t
q,k∗

t
with probability at least 1− 1/t by the following lemma.

Lemma F.1. Define event Et as Et =
{
‖qk − q̂tk‖1 ≤ Itq(k), ∀k ∈ [K]+

}
. Then event Et holds with probability at least

1− 1/t and it holds on event Et that

uk∗

t
− vS∗

t
(k∗t ) + 2 (BS +Bu) I

t
q(k

∗
t ) ≥ max

S∈S
h(S),

where h(S) = Eω∼σ,σ∼qk∗(S)
[u(a∗(σ), ω)− S(σ, ω)] and k∗(S) is the agent’s best response.

Proof. See §F.1 for a detailed proof.

The first term on the right-hand side of (F.1) can be directly bounded by αtC1. For the second term on event Et, it can be

bounded by C1I
t
q(k

∗
t ) using Lemma F.1. If event Et does not hold, the second term is still bounded by C1 with probability

at most 1/t. Thus, we have for αt = Kt−1/3 ∧ 1 that

T∑

t=1

At ≤
T∑

t=1

C1

(
αt +

1

t
+ Itq(k

∗
t )

)

≤ C1


K

(
3

2
T 2/3 + 1

)
+ (log T + 1) +

∑

k∈[K]+

∑

t:k∗

t =k

√
2 log(K · 2M t)

nt
k




≤ C1

(
K

(
3

2
T 2/3 + 1

)
+ log T + 1

)
+ C1

√
2 log(K · 2MT ) ·

∑

k∈[K]+

(
2
√
nT
k + 1

)

≤ O(T 2/3) +O(
√
|M |+ log(KT ) ·

√
KT ), (F.2)

where the first equality follows from our previous discussions on (F.1), the second inequality holds from the definition of

Itq , and the last inequality holds by the Jensen’s inequality that
∑

k∈[K]+

√
nT
k /K ≤

√∑
k∈[K]+ nT

k /K.

Bounding regret Bt. We characterize regret
∑T

t=1 Bt by bounding the expected number of rounds that kt 6= k∗t . To do

so, we invoke the following lemma.

Lemma F.2. For any fixed i 6= k∗t , under the condition that

αt ≥ 2ε−1
(
Itc(k

∗
t , i) +BS

(
Itq(i) + Itq(k

∗
t )
))

:= ∆t(k
∗
t , i),

the agent must respond kt 6= i under the scoring rule St = αtS̃k∗

t
+ (1− αt)S

∗
t on event Et.

Proof. See §F.2 for a detailed proof.

Under the condition kt 6= k∗t , the algorithm must be doing binary search. Now, we introduce the notations that will be used

in bounding Bt. Compare to the definition in Algorithm 3, we instead define BS(S0, S1, λ̃min, λ̃max, τ0, τ1, k0, k1, t0, t1)

for a binary search (BS), where (S0, S1) is the initial segment that this BS is conducted on, (λ̃min, λ̃max) corresponds

to the value of (λmin, λmax) that this BS ends with, τ0, τ1 correspond to the rounds in which (1 − λ̃min)S0 + λ̃minS1

and (1 − λ̃max)S0 + λ̃maxS1 are played, respectively, k0, k1 are the best response under (1 − λ̃min)S0 + λ̃minS1 and
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(1 − λ̃max)S0 + λ̃maxS1, and t0, t1 are the starting round and the ending round of this BS. Notably, k0 is not necessarily

the best response under S0 but k1 is guaranteed to be the best response under both S1 and (1− λ̃max)S0 + λ̃maxS1.

For the BS that lasts until round t, we let t0(t) be the first round of the BS (if round t is not doing BS, we just let t0(t) = t),
(k0(t), k1(t)) be the best response that this BS ends with, (S0(t), S1(t)) be the segment that this BS searches on. We

consider the following two situations for the case kt 6= k∗t : (i) ∆t0(t)(k0(t), k1(t)) ≤ αt0(t); (ii) ∆t0(t)(k0(t), k1(t)) >
αt0(t). Following such an idea, we have

T∑

t=1

Bt =
T∑

t=1

E [1(kt 6= k∗t )SubOpt(kt, St)]

≤ C1

[
T∑

t=1

E
[
1(BS = 1,∆t0(t)(k0(t), k1(t)) ≤ αt0(t))

]
+

T∑

t=1

E
[
1(BS = 1,∆t0(t)(k0(t), k1(t)) > αt0(t))

]
]

≤ C1

( T∑

t=1

1

t0(t)
︸ ︷︷ ︸
(B.1)

+

T∑

t=1

E
[
1(BS = 1,∆t0(t)(k0(t), k1(t)) > αt0(t))

]

︸ ︷︷ ︸
(B.2)

)
,

where the first inequality holds by SubOpt(kt, St) ≤ C1, the second inequality holds by Lemma F.2. Specifically, when

doing a binary search, the deployed scoring rule St must lie on the segment (S0(t), S1(t)), where S0(t) = αt0(t)S̃k∗

t0(t)
+

(1− αt0(t))S
∗
t0(t)

and S1(t) = S̃k∗

t0(t)
. Hence, St can be equivalently expressed as

S0(t) = α′
tS̃k∗

t0(t)
+ (1− α′

t)S
∗
t0(t)

,

where α′
t ≥ αt0(t). Therefore, under the condition that ∆t0(t)(k0(t), k1(t)) ≤ αt0(t) and that the agent responds k0(t) 6=

k1(t) in this binary search, we can use Lemma F.2 to bound the probability by 1/t0(t).

To bound (B.2), we define a concept called essential binary search.

Definition F.3 (Essential binary search). We call a binary search BS(S0, S1, λ̃min, λ̃max, τ0, τ1, k0, k1, t0, t1) an essential

binary search (essential BS) if αt0 < ∆t0(k0, k1) where αt = Kt−1/3 ∧ 1.

The following lemma bounds the total rounds of essential BSs.

Lemma F.4. Consider binary search BS(S0, S1, λ̃min, λ̃max, τ0, τ1, k0, k1, t0, t1). Suppose that the total number of essen-

tial binary searches in T rounds is N . Then, we have

N ≤ K ·
(
12ε−1BS

)2
2 log

(
K2MT

)
T 2/3. (F.3)

Proof. See §F.3 for a detailed proof.

Let m be the maximal rounds in a binary search, i.e., t0(t) ≥ t−m. Using the terminal criteria for binary search, we have

m ≤ max
t,k
− log2

(
Itq(k)

)
= O(log(T )).

The term (B.1) is directly bounded by

(B.1) ≤ log(T ) +m = O(log(T )).

The term (B.2) is bounded using Lemma F.4,

(B.2) ≤ m ·K ·
(
12ε−1BS

)2
2 log

(
K2MT

)
T 2/3 = O(ε−2B2

S(M + log(KT ))mKT 2/3).

which finishes the proof.
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F.1. Proof of Lemma F.1

Lemma F.5 (Restatement of Lemma F.1). Define event Et as Et =
{
‖qk − q̂tk‖1 ≤ Itq(k), ∀k ∈ [K]+

}
. Then event Et

holds with probability at least 1− 1/t and it holds on event Et that

〈qk∗

t
, u− S∗

t 〉Σ + 2 (BS +Bu) I
t
q(k

∗
t ) ≥ max

S∈S
h(S),

where h(S) = Eω∼σ,σ∼qk∗(S)
[u(a∗(σ), ω)− S(σ, ω)], vS(k) = 〈qk, S〉Σ and k∗(S) is the agent’s best response.

Proof of Lemma F.1. We first state the concentration result from Mardia et al. (2020).

Lemma F.6 (Mardia et al. (2020), Lemma 1, Concentration for empirical distribution). Let p be a probability distribution

supported in a finite set with cardinality at most M and pn be the empirical distribution of n i.i.d. samples from p. Then,

for all sample size n ∈ N+ and 0 < δ < 1,

P

(
‖p− pn‖1 ≥

√
2 log (2M/δ)

n

)
≤ δ.

By Lemma F.6 and taking a union bound, with probability at least 1− 1/t, we have ‖q̂tk − qk‖1 ≤ Itq(k) for all k ∈ [K]+,

which gives event Et. In the sequel, we discuss under the condition that event Et holds. We can verify for vS(k) = 〈qk, S〉Σ
that ∣∣v̂tS(k)− vS(k)

∣∣ =
∣∣〈q̂tk − qk, S〉Σ

∣∣ ≤ BSI
t
q(k). (F.4)

To study the confidence interval for Ĉt(i, j), we invoke the following lemma.

Lemma F.7. Under event Et =
{
‖qk − q̂tk‖1 ≤ Itq(k), ∀k ∈ [K]+

}
, we have

∣∣∣Ĉt(i, j)− C(i, j)
∣∣∣ ≤ Itc(i, j), ∀(i, j) ∈ [K].

Proof. A direct corollary of (F.4) is

Ct
+(i, j) ≥ min

τ<t:kτ=i
vSτ

(i)− vSτ
(j) ≥ C(i, j),

Ct
−(i, j) ≤ max

τ<t:kτ=j
vSτ

(i)− vSτ
(j) ≤ C(i, j).

(F.5)

Using the fact in (F.5), we have

∣∣∣Ĉt(i, j)− C(i, j)
∣∣∣ =

∣∣∣∣∣∣

∑

(i′,j′)∈lij

Ct
+(i

′, j′) + Ct
−(i

′, j′)

2
− C(i′, j′)

∣∣∣∣∣∣

≤ 1

2

∑

(i′,j′)∈lij

(∣∣Ct
+(i

′, j′)− C(i′, j′)
∣∣+
∣∣Ct

−(i
′, j′)− C(i′, j′)

∣∣)

=
1

2

∑

(i′,j′)∈lij

∣∣Ct
+(i

′, j′)− Ct
−(i

′, j′)
∣∣ = Itc(i, j), (F.6)

where the inequality holds by triangular inequality, the second equality holds by (F.5), and the last equality holds by

definition of ItC .

let k∗ and S∗ be the best response and the optimal scoring rule that achieves the optimal objective supS∈S h(S) in (2.2),

respectively. Recall the linear programming Opt-LPk,

Opt-LPk : max
S∈S

〈u, q̂tk〉Σ +BuI
t
q(k)− v,

s.t.
∣∣v − v̂tS(k)

∣∣ ≤ BS · Itq(k),
v − v̂tS(i) ≥ Ĉt(k, i)−

(
Itc(k, i) +BS · Itq(i)

)
, ∀i 6= k.
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It is easy to verify that S∗ satisfies all the constraint in Opt-LPk∗ using (F.4) and (F.6) with v = vS∗(k∗) and k = k∗. Also,

〈u, q̂tk〉Σ + BuI
t
q(k) ≥ 〈u, qk〉Σ for ∀k ∈ [K]+. Therefore, by noting that k∗t = argmaxk∈[K]+ ht

LP(k), we conclude that

ht
LP(k

∗
t ) ≥ ht

LP(k
∗) ≥ h(S∗). Also, let v∗LP be the solution to Opt-LPk∗

t
and recall that S∗

t = St
LP,k∗

t
we have

ht
LP(k

∗
t ) = 〈u, q̂tk∗

t
〉Σ +BuI

t
q(k

∗
t )− v∗LP

≤ (Bu +BS)I
t
q(k

∗) + Eω∼σ,σ∼q̂k∗

t
[u(a∗(σ), ω)− S∗

t (σ, ω)]

≤ 2(Bu +BS)I
t
q(k

∗) + Eω∼σ,σ∼qk∗

t
[u(a∗(σ), ω)− S∗

t (σ, ω)] ,

where the first inequality holds by noting that
∣∣v∗LP − v̂S∗

t
(k∗t )

∣∣ ≤ BSI
t
q(k

∗
t ), and the second inequality holds by definition

of event Et. Thus, we finish the proof.

F.2. Proof of Lemma F.2

Lemma F.8 (Restatement of Lemma F.2). For ∀i 6= k∗t , under the condition that

αt ≥ 2ε−1
(
Itc(k

∗
t , i) +BS

(
Itq(i) + Itq(k

∗
t )
))

:= ∆t(k
∗
t , i),

the agent will not respond kt = i under the scoring rule St = αtS̃k∗

t
+ (1− αt)S

∗
t on event Et.

Proof of Lemma F.2. On event Et, for any i 6= k∗t , if αt ≥ ∆t(k
∗
t , i), we aim to show the agent prefers action bk∗

t
to action

bi. Recall St = αtS̃k∗

t
+ (1− αt)S

∗
t . The expected profit for the agent generated by responding action bi is

vSt
(i)− ci ≤ αtvS̃k∗

t

(i) + (1− αt)v̂
t
S∗

t
(i)− ci + (1− αt)BSI

t
q(i),

and the expected utility generated by responding action bk∗

t
is

vSt
(k∗t )− ck∗

t
≥ αtvS̃k∗

t

(k∗t ) + (1− αt)v̂
t
S∗

t
(k∗t )− ck∗

t
− (1− αt)BSI

t
q(k

∗
t ).

By Assumption 3.1, we already have (vS̃k∗

t

(k∗t )−ck∗

t
)−(vS̃k∗

t

(i)−ci) > ε. Since S∗
t is the solution to Opt-LPk∗

t
, following

the constraints of Opt-LPk∗

t
we have

v̂tS∗

t
(k∗t )− v̂tS∗

t
(i) ≥ Ĉt(k∗t , i)− Itc(k

∗
t , i)−BS(I

t
q(i) + Itq(k

∗
t )).

Combining the above inequalities, we get

[
vSt

(k∗t )− ck∗

t

]
− [vSt

(i)− ci] ≥ αt · ε+ (1− αt)
(
Ĉt(k∗t , i)− C(k∗t , i)− Itc(k

∗
t , i)−BS(I

t
q(i) + Itq(k

∗
t ))
)

− (1− αt)BS

(
Itq(k

∗
t ) + Itq(i)

)

≥ αt · ε+ 2(1− αt)
[
−Itc(k∗t , i)−BS(I

t
q(i) + Itq(k

∗
t ))
]

> αt · ε− 2
[
Itc(k

∗
t , i) +BS(I

t
q(i) + Itq(k

∗
t ))
]
,

where the second inequality holds by recalling that we have proved C(k∗t , i) ≤ Ĉt(k∗t , i) + Itc(k
∗
t , i) in (F.6) under Et,

and the last inequality holds by noting that 0 < αt ≤ 1. When αt ≥ 2ε−1
(
Itc (k

∗
t , i) +BS

(
Itq(i) + Itq(k

∗
t )
))

, the above[
vSt

(k∗t )− ck∗

t

]
− [vSt

(i)− ci] > 0, which means the agent prefers action k∗t to i.

F.3. Proof of Lemma F.4

In the sequel, Proposition F.9 shows essential BS reduces confidence interval, while Proposition F.10 states the stopping

criteria of essential BS. Combining Proposition F.9 and Proposition F.10, we can bound the total rounds in essential BS.

Proposition F.9. For a binary search BS(S0, S1, λ̃min, λ̃max, τ0, τ1, k0, k1, t0, t1), we have

Itc(k0, k1) ≤ 2
√
2 log(K · 2MT )BS


 1√

nt1
k0

+
1√
nt1
k1


 . (F.7)
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Proof of Proposition F.9. By definition of Itc(k0, k1), for any t > t1,

Itc(k0, k1) =
∑

(i′,j′)∈lk0k1

ϕt(i′, j′) ≤ ϕt(k0, k1),

where the inequality holds by noting that lk0k1
is the “shortest path” with ϕt being the “length” of each edge. Using the

definition of ϕt, we conclude that

Itc(k0, k1) ≤
1

2

[
Ct

+(k0, k1)− Ct
−(k0, k1)

]
+

=
1

2

[
min

τ ′<t:kτ′=k0

(
v̂tSτ′

(k0)− v̂tSτ′
(k1)

)
− max

τ ′<t:kτ′=k0

(
v̂tSτ′

(k0)− v̂tSτ′
(k1)

)]

+

+BS

(
Itq(k0) + Itq(k1)

)

≤ 1

2

[
v̂tSτ0

(k0)− v̂tSτ0
(k1)− v̂tSτ1

(k0) + v̂tSτ1
(k1)

]
+
+BS

(
Itq(k0) + Itq(k1)

)
,

where the last inequality holds by noting that t > t1 ≥ (τ0, τ1). Consequently, we have by the definition of v̂tS that,

Itc(k0, k1) ≤
1

2

∣∣〈Sτ0 − Sτ1 , q̂
t
k0
− q̂tk1

〉Σ
∣∣+BS

(
Itq(k0) + Itq(k1)

)

=
(λ̃max − λ̃min)

2

∣∣〈S1 − S0, q̂
t
k0
− q̂tk1

〉Σ
∣∣+BS

(
Itq(k0) + Itq(k1)

)

≤
min

(
It1q (k0), I

t1
q (k1)

)

2

(∣∣〈S1 − S0, q̂
t
k0
〉Σ
∣∣+
∣∣〈S1 − S0, q̂

t
k1
〉Σ
∣∣)+BS

(
Itq(k0) + Itq(k1)

)
,

where λ̃max and λ̃min are the values of λmax and λmin when this BS terminates, respectively. Here, the last inequality

holds by the terminal criteria of the BS. Furthermore, we can upper bound the right-hand side by

Itc(k0, k1) ≤ min
(
It1q (k0), I

t1
q (k1)

)
BS +BS

(
Itq(k0) + Itq(k1)

)

≤



√

2 log(K · 2MT ) ·


 1√

nt1
k0

+
1√
nt1
k1

+
1√

max
{
nt1
k0
, nt1

k1

}




BS

≤ 2BS



√
2 log(K · 2MT ) ·


 1√

nt1
k0

+
1√
nt1
k1




 ,

where the first inequality holds by noting that q̂tk is an empirical probability and the fact that ‖S1 − S0‖∞ ≤ BS since S is

nonnegative, and the second inequality holds by noting that nt
k is nondecreasing and t1 < t.

Proposition F.10. For a binary search BS(S0, S1, λ̃min, λ̃max, τ0, τ1, k0, k1, t0, t1), if

min{nt1
k0
, nt1

k1
} ≥

(
12ε−1BS

)2
2 log

(
K2MT

)
T 2/3 =:N∗, (F.8)

then we have t−1/3 ≥ ∆t(k0, k1) for any t1 < t ≤ T and no more essential BS ending with the same (k0, k1) is possible.

Proof of Proposition F.10. For any t1 < t ≤ T , we have

t−1/3 ≥ T−1/3 =
(
12ε−1BS

)
√

2 log (K2MT )

N∗

≥ 2
(
ε−1BS

)√
2 log (K2MT )


2

1√
nt1
k0

+ 2
1√
nt1
k1

+
1√
nt
k0

+
1√
nt
k1




≥ 2ε−1
(
BS

(
Itq(k0) + Itq(k1)

)
+ Itc(k0, k1)

)
= ∆t(k0, k1),
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where the equality holds by definition of N∗, the second inequality holds by our condition min{nt1
k0
, nt1

k1
} ≥ N∗, and

the last inequality holds by using Proposition F.9. Therefore, we conclude that by letting αt = Kt−1/3 ∧ 1 ≥ t−1/3, the

condition for an essential BS, i.e., αt < ∆t(k0, k1) no longer holds for any t such that t1 < t ≤ T .

Now, we are ready to prove Lemma F.4.

Lemma F.11 (Restatement of Lemma F.4). Consider binary search BS(S0, S1, λ̃min, λ̃max, τ0, τ1, k0, k1, t0, t1). Suppose

that the total number of essential binary searches in T rounds is N . Then, we have

N ≤
(
12ε−1BS

)2
2 log

(
K2MT

)
KT 2/3 = KN∗. (F.9)

Proof of Lemma F.4. To prove Lemma F.4, we first introduce another concept called critical binary search (critical BS).

Definition F.12 (Critical binary search). For an essential binary search BS(S0, S1, λ̃min, λ̃max, τ0, τ1, k0, k1, t0, t1), we

consider it to be critical if min{nt1
k0
, nt1

k1
} ≥ N∗.

Critical BSs. We claim that the number of critical BS is no more than K. Suppose the opposite holds, i.e., number of

critical BS no less than K + 1. Consider a graph G = (V,E) where V = [K]∗ and E is formed by the set the critical BSs

ending with (k0, k1) ∈ V . We claim that one of the following two cases must hold

(i) There exists (i, j) ∈ [K]+ such that there are at least two critical BSs ending with (k0, k1) = (i, j);

(ii) There is a loop in G formed by the critical BSs.

We prove that both (i) and (ii) must not happen. For (i), following from the definition of critical BS that min{nt1
k0
, nt1

k1
} ≥

N∗ where t1 is the ending round of a critical BS and using Proposition F.10 that there should be no more essential BSs end-

ing with (k0, k1) after t1, we directly have (i) impossible. For (ii), suppose that BS(S0, S1, λ̃min, λ̃max, τ0, τ1, k0, k1, t0, t1)
is the first that creates a loop. Then before t0, there must be a path ℓ′k0k1

of critical BSs. For any edge (k′0, k
′
1) on ℓ′k0k1

,

there must be a critical Binary search BS(S′
0, S

′
1, λ̃

′
min, λ̃

′
max, τ

′
0, τ

′
1, k

′
0, k

′
1, t

′
0, t

′
1) with t′1 < t0. Using Proposition F.10

again, we have

t
−1/3
0 ≥ ∆t0(k

′
0, k

′
1), ∀(k′0, k′1) ∈ ℓ′k0,k1

.

Since a path in G has length at most K, we conclude that

αt0 = Kt
−1/3
0 ≥

∑

(k′

0,k
′

1)∈ℓ′
k0k1

∆t0(k
′
0, k

′
1)

=
∑

(k′

0,k
′

1)∈ℓ′
k0k1

2ε−1
(
BS

(
It0q (k′0) + It0q (k′1)

)
+ It0c (k′0, k

′
1)
)

≥ 2ε−1
(
BS

(
It0q (k0) + It0q (k1)

)
+ It0c (k0, k1)

)
= ∆t0(k0, k1),

where the last inequality holds by noting that It0c (k′0, k
′
1) ≤ ϕt0(k′0, k

′
1) and It0c is obtained by the shortest path algorithm

with edge length ϕt0 . Such a fact again suggests that there cannot be any essential BR ending with (k0, k1) that starts at t0.

Thus, a loop also cannot be formed, and we prove our claim that the total number of critical BSs is no more than K.

Essential but noncritical BSs. Next, we count the number of BSs that are essential but not critical. Recall the graph

G = (V,E) where V = [K]∗ and E is formed by the set the critical BSs ending with (k0, k1) ∈ V . Let wt(i, j) be the total

number of essential BSs ending with (k0, k1) = (i, j) before round t and let w(i, j) = wT (i, j). Let dtk =
∑

k′ 6=k w(k, k
′)

be the total weights for node k ∈ V . For any pair (k0, k1) ∈ V , if dtk1
∧ dtk2

≥ N∗, there should be no more essential

BSs after t by Proposition F.10. On the other hand, any BS ending with (k0, k1) guarantees that dtk0
and dtk1

increase at

least by 1. Hence, the problem of counting the number of essential but noncritical BSs can be described as the following

weight-placing game,

(i) initiate dk = 0 for ∀k ∈ V ;

24



Learning to Incentivize Information Acquisition

(ii) at each round, select an edge (k0, k1) ∈ V such that dk0
∧ dk1

< N∗ and add 1 to both dk0
and dk1

;

(iii) the game ends if no more edge can be selected.

The total rounds of this weight-placing game upper bound the total number of essential but noncritical BSs. We have the

following proposition that gives the maximal number of rounds in this weight-placing game.

Proposition F.13 (Weight-placing game). For the previously described weight-placing game, the total number of rounds

should not exceed (|V | − 1)(N∗ − 1).

Proof. We prove this proposition by induction on |V |. The case |V | = 1 is trivial. For |V | = 2 the result is obvious since

there is only one edge to choose. Suppose that the result holds for |V | ≤ v−1. For |V | = v, suppose that (v−1)(N∗−1)+1
rounds are played. We study the quantity d− = mink∈V dk.

• If there exists k ∈ V such that dk ≤ N∗−2, then for the subgraph Gk = G\{k}, we have at least (v−2)(N∗−1)+2
rounds played on Gk. However, since Gk only has v − 1 nodes, we have from the induction that there should be no

more than (v − 2)(N∗ − 1) rounds played on Gk, which causes a contradictory. Thus, we have d− ≥ N∗ − 1 if

(v − 1)(N∗ − 1) + 1 rounds are played.

• If d− ≥ N∗, then the last round in this play should be mistakenly played following rules (ii) and (iii).

Therefore, we conclude that d− = N∗ − 1 and we are able to choose a node k ∈ V such that dk = N∗ − 1. On the

subgraph Gk = G\{k}, we have by induction that at most (v − 2)(N∗ − 1) rounds can be played. Therefore, the total

rounds played on G is no more than

(v − 2)(N∗ − 1) + dk = (v − 1)(N∗ − 1),

which contradicts our assumption that (v − 1)(N∗ − 1) + 1 rounds are played. Thus, for |V | = v, no more than (v −
1)(N∗ − 1) rounds can be played. By induction, we conclude that the proposition holds for any |V |.

Hence, the total number of essential but noncritical BSs is bounded by K(N∗ − 1). Given that the number of critical BSs

bounded by K, the total number of essential BSs is thus bounded by KN∗.
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