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Abstract

Offline model-based optimization aims to maxi-
mize a black-box objective function with a static
dataset of designs and their scores. In this paper,
we focus on biological sequence design to maxi-
mize some sequence score. A recent approach em-
ploys bidirectional learning, combining a forward
mapping for exploitation and a backward mapping
for constraint, and it relies on the neural tangent
kernel (NTK) of an infinitely wide network to
build a proxy model. Though effective, the NTK
cannot learn features because of its parametriza-
tion, and its use prevents the incorporation of pow-
erful pre-trained Language Models (LMs) that can
capture the rich biophysical information in mil-
lions of biological sequences. We adopt an alter-
native proxy model, adding a linear head to a pre-
trained LM, and propose a linearization scheme.
This yields a closed-form loss and also takes into
account the biophysical information in the pre-
trained LM. In addition, the forward mapping and
the backward mapping play different roles and
thus deserve different weights during sequence
optimization. To achieve this, we train an aux-
iliary model and leverage its weak supervision
signal via a bi-level optimization framework to
effectively learn how to balance the two mappings.
Further, by extending the framework, we develop
the first learning rate adaptation module Adaptive-
η, which is compatible with all gradient-based
algorithms for offline model-based optimization.
Experimental results on DNA/protein sequence
design tasks verify the effectiveness of our algo-
rithm. Our code is available here.
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1. Introduction
Offline model-based optimization aims to maximize a black-
box objective function with a static dataset of designs and
their scores. This offline setting is realistic since in many
real-world scenarios we do not have interactive access to
the ground-truth evaluation. The design tasks of interest
include material, aircraft, and biological sequence (Trabucco
et al., 2021). In this paper, we focus on biological sequence
design, including DNA/protein sequence, with the goal of
maximizing some specified property of these sequences.

A wide variety of methods have been proposed for biological
sequence design, including evolutionary algorithms (Sinai
et al., 2020; Ren et al., 2022), reinforcement learning
methods (Angermueller et al., 2019), Bayesian optimiza-
tion (Terayama et al., 2021), search/sampling using gener-
ative models (Brookes et al., 2019; Chan et al., 2021), and
GFlowNets (Jain et al., 2022). Recently, gradient-based
techniques have emerged as an effective alternative (Tra-
bucco et al., 2021). These approaches first train a deep neu-
ral network (DNN) on the static dataset as a proxy and then
obtain the new designs by directly performing gradient as-
cent steps on the existing designs. Such methods have been
widely used in biological sequence design (Norn et al., 2021;
Tischer et al., 2020; Linder & Seelig, 2020). One obstacle is
the out-of-distribution issue, where the trained proxy model
is inaccurate for the newly generated sequences.

To mitigate the out-of-distribution issue, recent work pro-
poses regularization of the model (Trabucco et al., 2021; Yu
et al., 2021; Fu & Levine, 2021) or the design itself (Chen
et al., 2022c). The first category focuses on training a better
proxy by introducing inductive biases such as robustness (Yu
et al., 2021). The second category introduces bidirectional
learning (Chen et al., 2022c), which consists of a forward
mapping and a backward mapping, to optimize the design
directly. Specifically, the backward mapping leverages the
high-scoring design to predict the static dataset and vice
versa for the forward mapping, which distills the informa-
tion of the static dataset into the high-scoring design. This
approach achieves state-of-the-art performances on a vari-
ety of tasks. Though effective, the proposed bidirectional
learning relies on the neural tangent kernel (NTK) of an
infinite-width model to yield a closed-form loss, which is a
key component of its successful operation. The NTK can-
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not learn features due to its parameterization (Yang & Hu,
2021) and thus the bidirectional learning cannot incorpo-
rate the wealth of biophysical information from Language
Models (LMs) pre-trained over a vast corpus of unlabelled
sequences (Elnaggar et al., 2021; Ji et al., 2021).

To solve this issue, we construct a proxy model by combin-
ing a finite-width pre-trained LM with an additional layer.
We then linearize the resultant proxy model, inspired by the
recent progress in deep linearization (Achille et al., 2021;
Dukler et al., 2022). This scheme not only yields a closed-
form loss but also exploits the rich biophysical information
that has been distilled in the pre-trained LM. In addition, the
forward mapping encourages exploitation in the sequence
space and the backward mapping serves as a constraint to
mitigate the out-of-distribution issue. It is vital to maintain
an appropriate balance between exploitation and constraint,
and this can vary across design tasks as well as during the
optimization process. We introduce a hyperparameter γ to
control the balance. However, how to properly select γ is
challenging because of the problem’s offline optimization
nature. Thus, we develop a bi-level optimization framework
Adaptive-γ. In this framework, we train an auxiliary model
and leverage its weak supervision signal to effectively up-
date γ. To sum up, we propose BIdirectional learning for
model-based Biological sequence design (BIB).

Since the offline nature prohibits standard cross-validation
strategies for hyperparameter tuning, all current gradient-
based offline model-based algorithms preset the learning
rate η. There is a danger of poor selection, and to address
this, we propose an Adaptive-η module, which effectively
adapts the learning rate η via the weak supervision signal
from the trained auxiliary model. To the best of our knowl-
edge, Adaptive-η is the first learning rate adaptation module
for gradient-based algorithms for offline model-based opti-
mization. We discuss the relationship between the Adaptive
modules and previous hyperparameter optimization work in
Sec. 5. Experiments on DNA and protein sequence design
tasks verify the effectiveness of BIB and Adaptive-η.

To summarize, we propose a novel, highly effective and
robust biological sequence design method which consists of
deep linearization to incorporate rich biophysical informa-
tion from the pre-trained model and Adaptive- modules to
reduce the sensitivity of the hyper-parameter choice. Our
contributions are three-fold:

• Instead of adopting the NTK, we construct a proxy model
by combining a pre-trained biological LM with an addi-
tional trainable layer. We then linearize the proxy model,
leveraging the recent progress on deep linearization. This
yields a closed-form loss computation in bidirectional
learning and allows us to exploit the rich biophysical
information distilled into the LM via pre-training over
millions of biological sequences.

• We propose a bi-level optimization framework Adaptive-γ
where we leverage weak signals from an auxiliary model
to achieve a satisfactory trade-off between design exploita-
tion and constraint.

• We further extend this bi-level optimization framework
to Adaptive-η. As the first learning rate tuning scheme
in offline model-based optimization, Adaptive-η allows
learning rate adaptation for any gradient-based algorithm.

2. Preliminaries
2.1. Offline Model-based Optimization

Offline model-based optimization aims to find a design X
to maximize some unknown objective f(X). This can be
formally written as,

X∗ = argmax
X

f(X) , (1)

where we have access to a size-N dataset D =
{(X1, y1)}, · · · , {(XN , yN )} with Xi representing a cer-
tain design and yi denoting the design score. In this paper,
Xi represents a biological sequence design, including DNA
and protein sequences, and yi represents a property of the
biological sequence such as the fluorescence level of the
green fluorescent protein (Sarkisyan et al., 2016).

2.2. Biological Sequence Representation

Following (Norn et al., 2021; Killoran et al., 2017; Linder &
Seelig, 2021), we adopt the position-specific scoring matrix
to represent a length-L protein sequence as X ∈ RL×20,
where 20 represents 20 different kinds of amino acids. For
a real-world protein, X[l, :] (0 ≤ l ≤ L− 1) is a one-hot
vector denoting one kind of amino acid. During optimiza-
tion, X[l, :] is a continuous vector and softmax(X[l, :])
represents the probability distribution of all 20 amino acids
in the position l. Similarly, for a DNA sequence, we have
X ∈ RL×4 where 4 represents 4 different DNA bases.

The protein sequence X is fed into the embedding layer of
the LM, which produces the embedding,

e = EMB(softmax(X)) . (2)

The main block of the LM takes e as input and outputs
biophysical features. The DNA LM, which adopts the k-
mer representation, is a little different from protein LMs.
See Appendix 7.1 for details.

2.3. Gradient Ascent on Sequence

A common approach to the posed offline model-based opti-
mization is to train a proxy fθ(X) on the offline dataset,

θ∗ = argmin
θ

1

N

N∑
i=1

(fθ(Xi)− yi)
2 . (3)
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Then we can obtain the high-scoring design Xh by T gradi-
ent ascent steps:

Xt+1 = Xt + η∇Xfθ∗(X)|X=Xt
, for t ∈ [0, T − 1] ,

(4)
where the high-scoring design Xh can be obtained as XT .

Considering the discrete nature of biological sequences,
the input of fθ(·) should be discrete one-hot vectors. Fol-
lowing (Norn et al., 2021), we can perform the following
conversion and predict the score via:

X̂i = softmax(Xi) , (5)

Zi = onehot(argmax(X̂i)) , (6)
ŷ = fθ(Zi) . (7)

Then the gradient regarding Xi can be approximated as,

dfθ(Zi)

dxi
≈ dfθ(Zi)

dzi

dx̂i

dxi
, (8)

where we unroll the matrices Xi, X̂i and Zi as vectors xi,
x̂i and zi for notational convenience. This approximation
allows us to use backpropagation directly from the proxy
to the sequence design Xi. For brevity, we will still use
fθ(Xi) to represent the proxy.

2.4. Bidirectional Learning

As shown in Figure 1, bidirectional learning (Chen et al.,
2022c), consists of two mappings: the forward mapping
leverages the static dataset (Xl, yl) to predict the score yh
of the high-scoring design Xh, and the backward mapping
leverages the high-scoring design data (Xh, yh) to predict
the static dataset (Xl, yl). The forward mapping loss is

Ll2h(Xh) = ∥yh − f l
θ∗(Xh)∥2 , (9)

where θ∗ is given by

θ∗ = argmin
θ

∥yl − f l
θ(X l)∥2 + β∥θ∥2 , (10)

where β > 0 is a regularization parameter. The backward
mapping loss can be written as

Lh2l(Xh) = ∥yl − fh
θ∗(Xh)

(X l)∥2 , (11)

where θ∗(Xh) is given by

θ∗(Xh) = argmin
θ

∥yh − fh
θ (Xh)∥2 + β∥θ∥2 . (12)

The high-scoring design Xh is optimized against the bidi-
rectional learning loss L(Xh) = Ll2h(Xh) + Lh2l(Xh).

2.5. Deep Linearization

The deep linearization (Mu et al., 2020) is a first-order Tay-
lor expansion of the proxy model with respect to its parame-
ters. As shown in (Bai et al., 2020), for any neural network
fθ(X) and a given initialization θ0, assuming sufficient
smoothness, we can expand fθ(X) around θ0 as

fθ(X) = fθ0(X)+∇θfθ0(X)(θ−θ0)+ o(∥θ−θ0∥). (13)

Since the fine-tuning does not significantly change θ0, the
term o(∥θ − θ0∥) can be neglected and thus we have the
local approximation as the deep linearization:

fθ(X) ≈ fθ0
(X) +∇θfθ0

(X)(θ − θ0). (14)

3. Method
In this section, we first illustrate how to leverage deep lin-
earization to compute the bidirectional learning loss in a
closed form. Subsequently, we introduce a hyperparameter
γ to control the balance between the forward mapping and
the backward mapping. We then develop a novel bi-level op-
timization framework Adaptive-γ, which leverages a weak
supervision signal from an auxiliary model to effectively
update γ. Last but not least, we extend this framework to
Adaptive-η, which enables us to adapt the learning rate η
for all gradient-based offline model-based algorithms. In
summary, we introduce a novel, highly effective, and robust
method for biological sequence design, using deep lineariza-
tion to incorporate rich biophysical information from the
pre-trained model and Adaptive- modules to reduce hyper-
parameter sensitivity. We summarize it in Algorithm 1.

3.1. Deep Linearization for Bidirectional Learning

In bidirectional learning, the backward mapping loss is in-
tractable for a finite neural network, so Chen et al. (2022c)
employ a neural network with infinite width, which yields
a closed-form loss via the NTK. This however makes it
impossible to incorporate the rich biophysical information
that has been distilled into a pre-trained LM (Yang & Hu,
2021). Considering this, we construct a proxy model by
combining a finite-width pre-trained LM with an additional
layer. We then linearize the resultant proxy model, inspired
by the recent progress in deep linearization which has estab-
lished that an overparameterized DNN model is close to its
linearization (Achille et al., 2021; Dukler et al., 2022).

Denote by θ0 = (θpt,θ
lin
init) ∈ RD×1 the proxy model

parameters derived by combining the parameters of the
pre-trained LM θpt and a random initialization of the lin-
ear layer θlin

init. In this paper, we adopt the pre-trained
DNABERT (Ji et al., 2021) and Prot-BERT (Elnaggar et al.,
2021) models, and compute the average of token embed-
dings as the extracted feature, which is fed into the linear
layer to build the proxy. We also study how our method
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Figure 1. Illustration of bidirectional learning Chen et al. (2022c) where (Xl, yl) denotes the static dataset, yh is a large predefined target
score and Xh is the high-scoring design we aim to find.

performs as a function of the pre-trained LM quality in Ap-
pendix 7.2. Then we can construct a linear approximation
for the proxy model:

fθ(X) ≈ fθ0(X) +▽θfθ0(X) · (θ − θ0) , (15)

where fθ(X), fθ0(X) ∈ R, ▽θfθ0(X) ∈ R1×D and
▽θfθ0(X) ∈ RD×1. Intuitively, if the fine-tuning does
not significantly change θ0, then this linearization is a good
approximation. By leveraging this linearization, we can
obtain a closed-form solution for Eq.(12) as:

θ∗(Xh) = (▽θfθ0(Xh)
⊤ ▽θ fθ0(Xh) + βI)−1

▽θ fθ0(Xh)⊤(yh − fθ0(Xh)) + θ0.
(16)

Building on this result, we can compute the bidirectional
learning loss as:

Lbi(Xh) =
1

2
(∥yh −KXhXl

(KXlXl
+ βI)−1

(yl − fθ0(X l))∥2 + ∥yl−
KXlXh

(KXhXh
+ βI)−1(yh − fθ0(Xh))∥2) ,

(17)
where K(Xi,Xj) = ▽θfθ0(Xi)⊤▽θ fθ0(Xj). Follow-
ing (Dukler et al., 2022), we can also only linearize the
last layer of the network for simplicity, which defines the
following kernel,

K(Xi,Xj) = BERT (Xi)
⊤BERT (Xj), (18)

where BERT (X) denotes the feature of the sequence X
extracted by BERT. Its kernel nature makes this approach
suitable for small-data tasks (Arora et al., 2020), especially
in drug discovery with high labeling cost of DNA/proteins.

3.2. Adaptive-γ

The forward mapping and the backward mapping play differ-
ent roles in the sequence optimization process: the forward

Algorithm 1 Bidirectional Learning for Offline Model-
based Biological Sequence Design
Input: The static dataset D = (X l,yl), the predefined target
score yh = 10, # iterations T , the pre-trained biological
LM parameterized by θ0, the auxiliary model faux(·), the
regularization β.

Initialize X0 as the sequence with the highest score in D
for τ = 0 to T − 1 do

Leverage Adaptive-γ in Sec 3.2 to update the balance
γ by Eq. (23)
if Adapt learning rate then

Leverage Adaptive-η in Sec 3.3 to update the learn-
ing rate η by Eq. (25)

end if
Optimize X by minimizing the bidirectional learning
loss Lbi(Xτ , γ) in Eq. (19):

Xτ+1 = Xτ − ηOPT (∇XLbi(Xτ , γ))
end for
Return X∗

h = XT

mapping encourages the high-scoring sequence to search
for a higher target score (exploitation) and the backward
mapping serves as a constraint. Since different sequences
require different degrees of constraint, we introduce an extra
hyperparameter γ ∈ [0, 1] to control the balance between
the corresponding terms in the loss function:

Lbi(Xh, γ) = γLl2h(Xh) + (1− γ)Lh2l(Xh) . (19)

Thus γ = 1.0 corresponds to the forward mapping alone,
γ = 0 results in backward mapping, and γ = 0.5 leads to
the bidirectional loss of (Chen et al., 2022c).

It is non-trivial to determine the most suitable value for γ
since we do not know the ground-truth score for a new de-
sign. One possible solution is to train an auxiliary faux(·) to
serve as a proxy evaluation. A reasonable auxiliary is a sim-
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ple regression model fitted to the offline dataset. Although
this auxiliary model cannot yield ground-truth scores, it
can provide weak supervision signals to update γ, since the
auxiliary model and the bidirectional learning provide com-
plementary information. This is similar to co-teaching (Han
et al., 2018) where two models leverage each other’s view.

Formally, we introduce the Adaptive-γ framework. Given
a good choice of γ, the produced Xh is expected to have a
high score faux(Xh), based on which we can choose γ. To
make the search for γ more efficient, we can formulate this
process as a bi-level optimization problem:

γ∗ = argmax
γ

faux(X
∗
h(γ)) , (20)

s.t. X∗
h(γ) = argmin

Xh

Lbi(Xh, γ) . (21)

We can then use the hyper-gradient ∂faux(X
∗
h(γ))

∂γ to update
γ. Specifically, the inner level solution can be approximated
via a gradient descent step with a learning rate η:

X∗
h(γ) = Xh − η

dLbi(Xh, γ)

dX⊤
h

. (22)

For the outer level, we update γ by hyper-gradient ascent:

γ = γ + η
′ dfaux(X

∗
h(γ))

dγ
= γ + η

′ dfaux(Xh)

dxh

dx∗
h(γ)

dγ

= γ + η
′
η
dfaux(Xh)

dxh

dLh2l(Xh)− Ll2h(Xh)

dx⊤
h

,

(23)
where we unroll the matrix form Xh as a vector form xh

for better illustration.

3.3. Adaptive-η

We now extend the Adaptive-γ framework to Adaptive-
η. As the first learning rate adaptation module for offline
model-based optimization, Adaptive-η is compatible with
all gradient-based algorithms and can effectively finetune
the learning rate η via the auxiliary model’s weak super-
vision signal. All gradient-based methods that maximize
Lθ(X) with respect to X have the following general form:

Xt+1 = Xt+ηOPT (∇XLθ(X)|X=Xt) , for t ∈ [0,T−1] ,
(24)

where η represents the learning rate of the optimizer. For
methods such as simple gradient ascent (Grad), COMs (Tra-
bucco et al., 2021), ROMA (Yu et al., 2021) and NEMO (Fu
& Levine, 2021), Lθ(·) is related to the proxy model fθ(·);
for BDI (Chen et al., 2022c) and our proposed method, BIB,
Lθ(·) is the negative of the bidirectional learning loss, i.e.,
Lθ = −Lbi.

Though the learning rate η can be adapted in some optimiz-
ers such as Adam (Kingma & Ba, 2015), these adaptations
rely on only the past optimization history and do not con-
sider the weak supervision signal from the auxiliary model.

Our Adaptive-η optimizes η by solving:

η∗ = argmax
η

faux(X
∗
h(η)) , (25)

where η can be updated via gradient ascent methods. Con-
sidering the sequence optimization procedure is highly sen-
sitive to the learning rate η, we reset η to η0 at each iteration
and update η from η0,

η = η0 − η
′ dfaux(X

∗
h(η))

dη
. (26)

In general, this stabilizes the optimization procedure.

4. Experiments
We conduct extensive experiments on DNA and protein
design tasks, and aim to answer three research questions:
(1) How does BIB compare with state-of-the-art algorithms?
(2) Is every design component necessary in BIB? (3) Does
the Adaptive-η module improve gradient-based methods?

4.1. Benchmark

We conduct experiments on two DNA tasks: TFBind8(r)
and TFBind10(r), following (Chen et al., 2022c) and three
protein tasks: avGFP, AAV and E4B, in (Ren et al., 2022)
which have the most data points. See Appendix 7.3 for
more details on task definitions and oracle evaluations. We
further explore the performance of our method in relation
to varying task dataset sizes and its computational cost in
Appendix 7.4 and Appendix 7.5, respectively.

Following (Trabucco et al., 2021), we select the top N =
128 most promising sequences for each comparison method.
Among these sequences, we report the maximum normal-
ized ground truth score as the evaluation metric follow-
ing (Ren et al., 2022).

4.2. Comparison Methods

We compare BIB with two groups of baselines: the gradient-
based methods and the non-gradient-based methods. For
a fair comparison, the pre-trained LM is used for all meth-
ods involving a proxy and we don’t finetune the LM. The
gradient-based methods include: 1) Grad: gradient ascent on
existing sequences to obtain new sequences; 2) COMs (Tra-
bucco et al., 2021): lower bounds the DNN model by
the ground-truth values and then applies gradient ascent;
3) ROMA (Yu et al., 2021): incorporates a smoothness
prior into the DNN model before gradient ascent steps; 4)
NEMO (Fu & Levine, 2021): leverages the normalized
maximum-likelihood estimator to bound the distance be-
tween the DNN model and the ground-truth values; 5)
BDI (Chen et al., 2022c): adopts the infinitely wide NN
and its NTK to compute bidirectional learning loss.
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The non-gradient-based methods include: 1) BO-qEI (Wil-
son et al., 2017): builds an acquisition function for sequence
exploration; 2) CMA-ES (Hansen, 2006): estimates the co-
variance matrix to adjust the sequence distribution towards
the high-scoring region; 3) AdaLead (Sinai et al., 2020): per-
forms a hill-climbing search on the proxy and then queries
the sequences with high predictions; 4) CbAS (Brookes
et al., 2019): builds a generative model for sequences above
a property threshold and gradually adapts the distribution by
increasing the threshold; 5) PEX (Ren et al., 2022): priori-
tizes the evolutionary search for protein sequences with low
mutation counts; 6) GENH (Chan et al., 2021): enhances
the score through a learned latent space.

4.3. Training Details

We follow the training setting in (Chen et al., 2022c) if not
specified. We choose OPT as the Adam optimizer (Kingma
& Ba, 2015) for all gradient-based methods. We implement
the auxiliary model as a linear layer with the feature from
the pre-trained LM. We set the number of iterations T as
25 for all experiments following (Norn et al., 2021) and η0
as 0.1 following (Chen et al., 2022c). We run every setting
over 16 trials and report the mean and standard deviation.
See Appendix 7.6 for other training details.

4.4. Results and Analysis

We report all experimental results in Table 1 and plot the
ranking statistics in Figure 2. We make the following ob-
servations. (1) As shown in Table 1, BIB consistently out-
performs the Grad method on all tasks, which demonstrates
that our BIB can effectively mitigate the out-of-distribution
issue. (2) Furthermore, BIB outperforms BDI on 4 out of
5 tasks, which demonstrates the effectiveness of the pre-
trained biological LM over NTK. We have conducted exper-
iments, reported in Appendix 7.7, to verify that the ranking
of prediction performance is NN > linearized pre-trained
LM > NTK. The reason why BDI outperforms BIB on TF-
Bind10(r) may be that short sequences do not rely much on
the rich sequential information from the pre-trained LM. (3)
As shown in Figure 2, the gradient-based methods generally
perform better than the non-gradient-based methods, as also
observed by (Trabucco et al., 2021). (4) The gradient-based
methods are inferior for the AAV task. One possible rea-
son is that the design space of AAV (2028) is much smaller
than those of avGFP (20239) and E4B (20102), which makes
the generative modeling and evolutionary algorithms more
suitable. (5) This conjecture is also supported by the experi-
mental results on two DNA design tasks. We compute the
average ranking of gradient-based methods and non-grad-
based methods on TFBind10(r) as 3.5 and 9.5, respectively,
and the average ranking of gradient-based methods and non-
grad-based methods on TFBind8(r) as 5.8 and 6.8, respec-
tively. The advantage of gradient-based methods are larger

1 2 3 4 5 6 7 8 9 101112
Rank

BO-qEI
CMA-ES

AdaLead
CbAS

PEX
GENH
Grad

COMs
ROMA
NEMO

BDI
BIB(ours)

Figure 2. Rank minima and maxima are represented by whiskers;
vertical lines and black triangles denote medians and means.

(9.5−3.5 = 6.0) in TFBind10(r) than that (6.8−5.8 = 1.0)
in TFBind8(r). (6) The generative modeling methods CbAS
and GENH yield poor results on all tasks, probably because
the high-dimensional data distribution is very hard to model.
(7) Overall, BIB attains the best performance in 3 out of
5 tasks and achieves the best ranking results as shown in
Table 1 and Figure 2.

We also visualize the trend of performance (the maximum
normalized ground truth score) and trade-off γ as a function
of T on TFBind8(r) in Figure 3(a) and avGFP in Figure 3(b).
The performance generally increases with the time step T
and then stabilizes, which demonstrates the effectiveness
and robustness of BIB. Furthermore, we find that the γ val-
ues of TFBind8(r) and avGFP generally increase at first.
This means that BIB reduces the impact of the constraint to
encourage a more aggressive search for a high target value
during the initial phase. Then γ of TFBind8(r) continues to
increase while the γ of avGFP decreases. We conjecture that
the difference is caused by the sequence length. Small mu-
tations of a biological sequence are enough to yield a good
candidate (Ren et al., 2022). For the length-239 protein in
avGFP, dramatic mutations 1) are not necessary and 2) can
easily lead to out-of-distribution points. The weak supervi-
sion signal from the auxiliary model therefore encourages a
tighter constraint towards the static dataset. By contrast, the
DNA sequence is relatively short and a more widespread
search of the sequence space can yield better results. To
investigate this conjecture, we further visualize the trend of
E4B in Figure 3(c). E4B also has long sequences (102) and
we can observe its similar first-increase-then-decrease trend,
although it is not as pronounced.

4.5. Ablation Studies

In this subsection, we conduct ablation studies to verify the
effectiveness of the forward mapping, the backward map-
ping, and the Adaptive-γ module of BIB. We stress that
forward mapping and backward mapping are not our con-
tributions. In this paper, we propose deep linearization for
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Table 1. Experimental results (maximum normalized ground truth score) for comparison.
Method TFBind8(r) TFBind10(r) avGFP AAV E4B Rank Mean Rank Median
D(best) 0.242 0.248 0.314 0.452 0.224
BO-qEI 0.940± 0.032 0.595± 0.028 0.888± 0.015 0.591 ± 0.002 0.436± 0.004 6.0/12 7.0/12

CMA-ES 0.930± 0.034 0.617± 0.031 0.909± 0.004 0.470± 0.006 0.748± 0.009 6.6/12 6.0/12
AdaLead 0.941± 0.032 0.602± 0.028 0.885± 0.016 0.581± 0.002 0.433± 0.003 6.2/12 8.0/12

CbAS 0.878± 0.049 0.610± 0.035 0.785± 0.057 0.543± 0.002 0.349± 0.003 9.0/12 10.0/12
PEX 0.924± 0.041 0.612± 0.026 0.874± 0.033 0.588± 0.002 0.397± 0.004 7.2/12 8.0/12

GENH 0.323± 0.000 0.448± 0.000 0.793± 0.000 0.452± 0.000 0.228± 0.000 11.4/12 11.0/12
Grad 0.941± 0.026 0.630± 0.029 0.913± 0.027 0.463± 0.005 1.219± 0.061 5.0/12 5.0/12

COMs 0.921± 0.039 0.637± 0.065 0.938± 0.048 0.511± 0.005 0.829± 0.026 5.0/12 5.0/12
ROMA 0.926± 0.032 0.634± 0.061 0.975± 0.133 0.471± 0.005 1.198± 0.042 4.8/12 4.0/12
NEMO 0.930± 0.038 0.632± 0.024 0.914± 0.026 0.505± 0.005 1.036± 0.046 4.8/12 5.0/12

BDI 0.823± 0.000 0.678 ± 0.000 0.873± 0.000 0.452± 0.000 0.224± 0.000 9.0/12 11.0/12

BIB(ours) 0.952 ± 0.033 0.639± 0.032 1.060 ± 0.016 0.501± 0.007 1.255 ± 0.029 2.4/12 1.0/12
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(c) E4B.

Figure 3. Trend of performance and trade-off γ as a function of T .

Table 2. Ablation studies on BIB components.
Task γ = 0.0 γ = 1.0 γ = 0.5 γ = 0.5 + Joint BIB BIB + Ada-η

TFB8(r) 0.936 0.933 0.947 0.935 0.952 0.956
TFB10(r) 0.611 0.637 0.616 0.622 0.639 0.639

avGFP 0.920 0.966 1.018 1.006 1.060 1.082
AAV 0.449 0.458 0.480 0.420 0.501 0.525
E4B 0.778 0.903 1.198 1.176 1.255 1.301

bidirectional mappings. This section explores whether both
mappings remain effective after deep linearization has been
performed. We report the experimental results in Table 2.

Forward mapping & Backward mapping. We can ob-
serve that bidirectional learning (γ = 0.5) performs bet-
ter than both forward mapping (γ = 1.0) and backward
mapping (γ = 0.0) alone in most tasks, which demon-
strates the effectiveness of forward mapping and backward
mapping. The advantage of bidirectional mappings over
the forward mapping is larger in the long-sequence tasks
like avGFP (238) and E4B (102) compared with the short-
sequence tasks. A possible explanation is that the constraint
is more important for long sequence tasks than short se-
quence design since the search space is large and many
mutations can easily go out of distribution.

Adaptive-γ. BIB learns γ and this leads to improvements
over bidirectional mappings (γ = 0.5) for all tasks, verify-

ing the effectiveness of Adaptive-γ. We also consider the
following variant,

X∗ = argmin
Xh

Lbi(Xh, 0.5)− faux(Xh) , (27)

which jointly optimizes the bidirectional learning loss
Lbi(Xh, 0.5) and the auxiliary term faux(Xh). We found
this yields similar or even worse results than pure bidirec-
tional learning. The reason may be that the weak supervision
signal from faux(Xh) can serve as a guide to update the
scalar γ but not as a component of the main optimization
objective that directly updates the sequence.

In the final column of Table 2, we examine the Adaptive-η
module. Adding this module leads to improvements on all
five tasks, which demonstrates its effectiveness.

4.6. Adaptive-η

In this subsection, we aim to further demonstrate the effec-
tiveness of the Adaptive-η module on all six gradient-based
methods. We conduct experiments on two tasks: TFBind8(r)
and avGFP, concurrently undertaking investigations on tasks
within a broader domain to establish our method’s broader
applicability, as detailed in Appendix 7.8. Since the use
of the infinitely wide neural network leads to poor perfor-
mance for BDI, we modify its implementation via deep
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linearization so that it can make use of the pre-trained LM.

As shown in Table 3, Adaptive-η provides a consistent gain
for all scenarios, which demonstrates the widespread ap-
plicability and effectiveness of the module. Furthermore,
Adaptive-η leads to a maximum improvement of 1.4% in
TFBind8(r) and 12.5% in avGFP. ROMA is the algorithm
that benefits the most. One possible explanation is that
ROMA incorporates a local smoothness prior that leads to
more stable gradients, with which Adaptive-η can be more
effective. Similar to Sec 4.5, we consider the variant,

X∗ = argmax
Xh

Lθ(Xh) + faux(Xh) , (28)

which performs joint optimization instead of bi-level op-
timization on two objectives. As shown in Table 3, joint
optimization generally deteriorates the performance. This
again verifies that the auxiliary model can only serve as a
guide instead of contributing to the main objective.

5. Related Work
Biological sequence design. There has been a wide range
of algorithms for biological sequence design. Evolutionary
algorithms (Sinai et al., 2020; Ren et al., 2022) leverage
the learned surrogate model to provide evolution guidance
towards the high-scoring region. (Angermueller et al., 2019)
propose a flexible reinforcement learning framework where
sequence design is a sequential decision-making problem.
Bayesian optimization methods propose candidate solutions
via an acquisition function (Terayama et al., 2021). Deep
generative model methods design sequences in the latent
space (Chan et al., 2021) or gradually adapt the distribu-
tion towards the high-scoring region (Brookes et al., 2019).
GFlowNets (Jain et al., 2022) amortize the cost of search
over learning and encourage diversity. Gradient-based meth-
ods leverage a surrogate model and its gradient information
to maximize the desired property (Chen et al., 2022c; Norn
et al., 2021; Tischer et al., 2020; Linder & Seelig, 2020).
Our proposed BIB belongs to the last category and leverages
the rich biophysical information (Ji et al., 2021; Elnaggar
et al., 2021) to directly optimize the biological sequence.

Offline model-based optimization. A majority of sequence
design algorithms (Angermueller et al., 2019; Sinai et al.,
2020; Ren et al., 2022) focus on the online setting where
wet-lab experimental results in the current round are ana-
lyzed to propose candidates in the next round. The problem
of this setting is that wet-lab experiments are often very
expensive, and thus a pure data-driven, offline approach
is attractive and has received substantial research attention
recently (Trabucco et al., 2022; Kolli et al., 2022; Beckham
et al., 2022). Gradient-based methods have proven to be ef-
fective (Trabucco et al., 2021; Yu et al., 2021; Fu & Levine,
2021; Chen et al., 2022c). Among these algorithms, (Chen
et al., 2022c) propose bidirectional mappings to distill in-

formation from the static dataset into a high-scoring design,
which achieves state-of-the-art performances on a variety of
tasks. However, this bidirectional learning is designed for
general tasks, like robot and material design, and the rich
biophysical information in millions of biological sequences
is ignored. In this paper, we leverage recent advances in
deep linearization to incorporate the rich biophysical infor-
mation into bidirectional learning.

Bi-level optimization for hyperparameter optimization.
Gradient-based bi-level optimization (Liu et al., 2021; Chen
et al., 2022a; Giovannelli et al., 2021; Choe et al., 2022) has
been widely used in hyperparameter optimization (Maclau-
rin et al., 2015; Franceschi et al., 2017; Pedregosa, 2016;
Chen et al., 2022b; Li et al., 2022; Lorraine et al., 2020;
Chen et al., 2021; Micaelli & Storkey, 2021; Zhong et al.,
2022; Chi et al., 2022; Bohdal et al., 2021; Baydin et al.,
2017). As shown in the model training scenario of Table 4,
the inner level optimizes model parameters by minimizing
the training loss, and the outer level optimizes hyperparam-
eters by minimizing the validation loss. More specifically,
(Maclaurin et al., 2015) exactly reverse the optimization
dynamics to compute hyperparameter gradients. (Luketina
et al., 2016) locally adjust hyperparameters to minimize val-
idation loss. (Franceschi et al., 2018) unify hyperparameter
optimization and meta-learning via bi-level optimization.
(Donini et al., 2019) use past optimization information to
simulate future behavior and compute the hypergradients ef-
ficiently. All of these previous works aim to improve model
training and belong to the model training scenario in Table 4.
By contrast, our Adaptive-γ and Adaptive-η belong to the
second scenario: design optimization.

In our setting of offline model-based optimization, there is
no validation set to provide hypergradient information to
update hyperparameters, including the trade-off parameter
γ and the learning rate η. Instead, inspired by previous
work (Angermueller et al., 2019; Trabucco et al., 2021;
Chan et al., 2021) that uses an auxiliary model to select
candidates, we use the auxiliary to provide a weak supervi-
sion signal for hyperparameter optimization. This leads to a
bi-level optimization task: the inner level optimizes design
parameters by minimizing the training loss (bidirectional
learning loss), and the outer level optimizes hyperparame-
ters by maximizing the auxiliary score. As we can see, our
formulation is different from that of previous work and thus
can not compare with them directly.

6. Conclusion
In this paper, we propose bidirectional learning for offline
model-based biological sequence. Our work is built on
the recently proposed bidirectional learning approach (Chen
et al., 2022c), which is designed for general inputs and relies
on the NTK of an infinitely wide network to yield a closed-

8



Bidirectional Learning for Offline Model-based Biological Sequence Design

Table 3. Adaptive-η on all gradient-based methods.

Method TFBind8(r) avGFP

Grad COMs ROMA NEMO BDI BIB Grad COMs ROMA NEMO BDI BIB
Normal 0.941 0.921 0.926 0.930 0.947 0.952 0.913 0.938 0.975 0.914 1.018 1.060

Joint 0.941 0.921 0.931 0.932 0.935 0.925 0.913 0.905 0.923 0.906 1.006 1.009
Gain 0.000 0.000 0.005 0.002 −0.008 −0.027 0.000 −0.033 −0.052 −0.008 −0.012 −0.051

Ada-η 0.941 0.928 0.939 0.935 0.951 0.956 0.916 0.952 0.998 0.920 1.024 1.082
Gain 0.000 0.007 0.013 0.005 0.004 0.004 0.003 0.014 0.023 0.006 0.006 0.022

Table 4. Hyperparameter optimization from a gradient-based bi-level optimization view.
Scenario Inner variables Inner Objective Outer variables Outer Objective

model training model params minimize training loss (e.g. cross-entropy loss) hyperparams minimize validation loss
design optimization design params minimize training loss (e.g. bidirectional learning loss) hyperparams maximize auxiliary score

form loss computation. Though effective, the NTK cannot
learn features. We build a proxy model using the pre-trained
LM model with a linear head and apply the deep lineariza-
tion scheme to the proxy, which can yield a closed-form
loss and incorporate the wealth of biophysical information
at the same time. In addition, we propose Adaptive-γ to
maintain a proper balance between the forward mapping and
the backward mapping by leveraging a weak supervision
signal from an auxiliary model. Based on this framework,
we further propose Adaptive-η, the first learning rate adap-
tation strategy compatible with all gradient-based offline
model-based algorithms. Experimental results on DNA and
protein sequence design tasks verify the effectiveness of
BIB and Adaptive-η. In forthcoming research, our intention
is to leverage the capabilities of more advanced, pre-trained
protein models (Zhang et al., 2023a; 2022; 2023b; Chen
et al., 2023) to further refine and optimize the process of
protein design. We discuss potential negative impacts in Ap-
pendix 7.9, reproducibility in Appendix 7.10 and limitations
of our research work in Appendix 7.11.
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7. Appendix
7.1. DNA Embedding

To incorporate richer contextual information, the DNA LM
(Ji et al., 2021) adopts the k-mer sequence representation,
which is widely used in DNA sequence analysis. For exam-
ple, the sequence ATGGCT has its 3-mer representation
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Table 5. Experimental results on different pre-trained LMs for com-
parison.

Pre-trained LM avGFP AAV E4B
ProtAlbert 0.907± 0.004 0.478± 0.004 0.552± 0.023

ProtBert(adopted) 1.060± 0.016 0.501± 0.007 1.255± 0.029
ProtBert-BFD 1.119± 0.116 0.549± 0.009 1.880± 0.054

as {ATG, TGG,GGC,GCT}. In this paper, we adopt its
3-mer representation and compute the probability of the
3-mer token by multiplying the probabilities of the three
individual bases. The 3-mer representation is then sent to
the pre-trained DNA LM.

7.2. Different Pretrained LMs

As shown in Table 5, we have tested the ProtBERT, ProtAl-
bert, and ProtBert-BFD models and found that better-quality
models generally work better. The publicly available pre-
trained DNA models are limited and thus we only perform
experiments on the protein tasks. (Elnaggar et al., 2021)
demonstrate that the language model performances follow
the ordering: ProtBert-BFD > ProtBert > ProtAlbert. We
can see that the performance ranks over the three protein
tasks avGFP, AAV, and E4B are the same in Table 5.

7.3. Task Details

We conduct experiments on two DNA tasks following (Chen
et al., 2022c) and three protein tasks in (Ren et al., 2022)
which have the most data points. We report the dataset
details in Table 6.

DNA Task 1 TFBind8(r). The goal is to find a length-
8 DNA sequence to maximize the binding activity score
with a particular transcription factor, SIX6REFR1 (Barrera
et al., 2016). We sample 5000 data points for the offline
algorithms following (Chen et al., 2022c).

DNA Task 2 TFBind10(r). The task TFBind10(r) is the
same as TFBind8(r) except that the goal is to find a length-10
DNA sequence. Both DNA tasks measure the entire search
space and we adopt these measurements as the approximate
ground-truth evaluation.

Protein Task 1 avGFP. This task aims to find a protein
sequence with approximately 239 amino acids to maximize
the fluorescence level of Green Fluorescent Proteins (Sark-
isyan et al., 2016). The task oracle is constructed by using
the full unobserved dataset (around 52,000 points) follow-
ing (Ren et al., 2022). The oracle passes the average of the
residue embeddings from the pre-trained Prot-T5 (Elnag-
gar et al., 2021) into a linear layer and then fits the dataset.
The following two task oracles take the same form. Offline
algorithms can only access the lowest-scoring 26,000 points.

Protein Task 2 AAV. The goal is to engineer a 28-amino
acid segment (positions 561–588) of the VP1 protein to
remain viable for gene therapy (Bryant et al., 2021). We use
the entire 284, 000 data points to build the oracle and the
lowest-scoring 142, 000 points for the offline algorithms.

Protein Task 3 E4B. This task aims to design a pro-
tein (around 102 amino acids) to maximize the ubiquiti-
nation rate to the target protein (Starita et al., 2013). The
full dataset with around 100, 000 points is used to build the
oracle and the bottom half is used for the offline algorithms.

(Lee & Yu, 2023) evaluate the sequence generation and
structure conservation simultaneously with the help of Al-
phafold2, which provides a more accurate evaluation.

Oracle Parameterization. The parameterization of the
oracle is different from that of the regression model from
two aspects: 1) model architecture; 2) pre-trained infor-
mation source. First, the oracle adopts the Prot-T5 model
which consists of an encoder and a decoder, while the re-
gression model adopts the Prot-BERT model which only
has an encoder. Second, Prot-T5 is trained on the BFD and
UniRef100 datasets and ProtBert is trained on the UniRef50
dataset. These two points demonstrate that the oracle and
the regression model are different function classes. We
choose the Prot-T5 model as the oracle because this is the
state-of-the-art protein LM to extract features and recent
work (Elnaggar et al., 2021) has demonstrated its effective-
ness. In order to test how related the Prot-T5 (oracle)/Prot-
BERT(proxy) models are, we trained them on a sampled
training dataset and compared the test predictions of the
testing set. By evaluating the Pearson correlation coefficient
(PCC) between the two prediction errors PCC(ProtT5 pre-
dictions - test labels, ProtBERT predictions -test labels), we
obtain 0.0104 on avGFP, −0.0005 on AAV, and −0.0062
on E4B. These results suggest that the two models are not
strongly related in terms of the predictions they form.

Following (Trabucco et al., 2021), we select the top N =
128 most promising sequences for each comparison method.
Among these sequences, we report the maximum normal-
ized ground truth score as the evaluation metric follow-
ing (Ren et al., 2022).

7.4. Different Dataset Size

We have tested the performance of BIB as a function of
dataset size (N= 20, 40, 60, 80, 100) in all tasks. As shown
in Table 7, the proposed approach BIB performs reasonably
well even with a small initial dataset size of N=20/40, and
its performance improves gradually as we increase N, which
demonstrates the effectiveness and robustness of BIB.

Moreover, we have also included the performance of the
ROMA method as a function of the initial dataset size in
Table 8, which shows that the performances of ROMA are
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Table 6. Dataset details.
Task Metric Min of D Max of D Min of Dentire Max of Dentire

TFBind8(r) binding activity 0.000 0.242 0.000 1.000
TFBind10(r) binding activity −1.859 −0.869 −1.859 2.129

avGFP fluorescence level 1.283 2.175 1.283 4.123
AAV viruses viability −11.176 −1.814 −11.176 9.536
E4B ubiquitination rate −3.589 −0.770 −3.589 8.998

generally worse than our proposed BIB, highlighting the
effectiveness of our approach.

7.5. Computational Cost

The computational time of BIB consists of three parts:
the pre-computation, the Adaptive-γ, and the gradient up-
date. All experiments are performed on one NVIDIA
32G V100 in the same cluster. We report the computa-
tional time of three parts in Table 9. The pre-computation
results in a time complexity of O(N3), where N is the
size of the static dataset D. It is worth noting that for
datasets with larger sizes such as AAV, the pre-computation
time of our method is much higher compared to smaller
datasets such as TFBind8(r). However, the pre-computed
(KXlXl

+βI)−1(yl−fθ0(X l)) can be used for every gra-
dient update iteration in different trials. Since N is typically
not very large in our experiments, the computational time is
usually reasonable.

We further report the computational time of every iteration
for all gradient-based offline MBO methods. As shown in
Table 10, the computational time of all methods is at the
same scale, with the exception of the high computation time
of BIB on TFBind8(r) and TFBind10(r). We suspect that
this is caused by its encoding strategy, as we explain in
Appendix 7.1.

In this biological sequence design setting, the majority of the
time in the production cycle will be spent on evaluating the
unknown objective function. As a result, the time difference
between the methods for obtaining the high score design is
less significant in a real production environment.

7.6. Training Details

We use Pytorch (Paszke et al., 2019) to run all experiments
on one V100 GPU. Following the setting in (Norn et al.,
2021), we introduce a length-L protein sequence as a contin-
uous random matrix Xh ∈ RL×20 (Xh ∈ RL×4 for DNA),
initialized using a normal distribution with the mean 0 and
the standard deviation of 0.01. To make this sequence cor-
respond correctly to the candidate, we exchange the largest
value in X[l, :] with the value in the amino acid index.

We set the initial learning rate as 0.1 for all tasks, following
the practice in (Chen et al., 2022c). We conduct additional

experiments with different learning rates (0.05 and 0.20) on
two design tasks TFBind8(r) and avGFP using the baseline
ROMA and our method. The results of TFBind8(r) and
avGFP are reported in Table 11 and Table 12, respectively.
While there is still a visible performance gap between dif-
ferent learning rates in the non-adaptive version, the use
of our Adaptive-η module generally improves performance
and greatly reduces this gap.

7.7. Ranking Performance

As for prediction performances, the rank should be: a NN
> linearized pre-trained LM > NTK. We have conducted
experiments to verify this. We sample half of the data, train
a model to predict another half data, and report the mean
squared loss here and in Table 13. A small mean squared
loss indicates a good prediction performance; thus, we have
verified the above ranking order.

7.8. Broader Applicability

We have conducted experiments on four additional design
tasks in the design-bench (Trabucco et al., 2021), namely Su-
perconductor, Ant Morphology, D’Kitty Morphology, and
Hopper Controller. These tasks have different character-
istics from the biological sequence design task, and thus
provide a more diverse set of experiments to evaluate the ef-
fectiveness of the Adaptive-η module. The results, as shown
in Table 14, Table 15, Table 16 and Table 17, demonstrate
that the Adaptive-η module can improve the performance of
gradient-based methods in a wider range of offline model-
based optimization tasks. These findings underscore the
broader applicability of our method within the realm of
offline model-based optimization.

7.9. Negative Impact

Protein sequence design aims to find a protein sequence
with a particular biological function, which has a broad ap-
plication scope. This can lead to improved drugs that are
highly beneficial to society. For instance, designing the anti-
body protein for SARS-COV-2 can potentially save millions
of human lives (Kumar et al., 2021) and designing novel
anti-microbial peptides (short protein sequences) is central
to tackling the growing public health risks caused by anti-
microbial resistance (Murray et al., 2022). Unfortunately,

13



Bidirectional Learning for Offline Model-based Biological Sequence Design

Table 7. Experimental results of BIB as a function of the dataset size.
Dataset size 20 40 60 80 100
TFBind8(r) 0.849± 0.027 0.883± 0.036 0.890± 0.033 0.911± 0.042 0.923± 0.049

TFBind10(r) 0.248± 0.000 0.596± 0.035 0.602± 0.023 0.616± 0.024 0.632± 0.036
avGFP 0.902± 0.013 0.901± 0.009 0.905± 0.003 0.906± 0.000 0.909± 0.007
AAV 0.410± 0.003 0.399± 0.002 0.413± 0.002 0.456± 0.003 0.480± 0.009
E4B 0.574± 0.048 0.603± 0.034 0.853± 0.043 0.864± 0.022 0.997± 0.034

Table 8. Experimental results of ROMA as a function of the dataset size.
Dataset size 20 40 60 80 100
TFBind8(r) 0.783± 0.062 0.782± 0.051 0.869± 0.040 0.886± 0.029 0.891± 0.022

TFBind10(r) 0.545± 0.016 0.580± 0.012 0.592± 0.021 0.580± 0.004 0.598± 0.019
avGFP 0.905± 0.003 0.906± 0.004 0.906± 0.001 0.906± 0.002 0.906± 0.001
AAV 0.304± 0.024 0.360± 0.020 0.379± 0.022 0.410± 0.020 0.432± 0.029
E4B 0.255± 0.021 0.451± 0.025 0.693± 0.044 0.733± 0.032 0.696± 0.020

it is possible to direct the research results towards harmful
purposes such as the design of biochemical weapons. As
researchers, we believe that we must be aware of the poten-
tial harm of any research outcomes, and carefully consider
whether the possible benefits outweigh the risks of harmful
consequences. We also must recognize that we cannot con-
trol how the research may be used. In the case of this paper,
we are confident that there is a much greater chance that the
research outcomes will have a beneficial effect. We do not
consider that there are any immediate ethical concerns with
the research endeavour.

7.10. Reproducibility Statement

We provide the code implementation of BIB and Adaptive-
η here and we also attach the code in the supplementary
material. We describe DNA/protein benchmarks in Sec. 4.1
and training details in Sec. 4.3. We explain how to obtain
the sequence embedding from the pre-trained LM and how
to perform gradient ascent on the sequence in Sec. 2.

7.11. Limitations

We note that, due to the nature of offline optimization, we
propose designs that are outside the available datasets. Eval-
uation of the performance of such designs must then rely
on training an oracle model based on the entire available
data. We are careful to ensure that (i) the oracle is signifi-
cantly structurally different from the model(s) used within
the optimization algorithm, (ii) the oracle is accurate, espe-
cially in terms of rank correlation; and (iii) oracle residuals
and regression model residuals are uncorrelated. However,
even after these measures are taken, there is a danger that
the proposed designs are not biologically optimal, i.e., that
the oracle performance is not genuinely reflective of perfor-
mance that would be observed in experiments. This concern
can only be alleviated via further biological experiments that

examine how well off-line optimization algorithms perform
in practice.
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Table 9. Computational time of BIB on all tasks.
Method TFBind8(r) TFBind10(r) avGFP AAV E4B

N 5000 5000 26000 142000 100000
Pre-computation (s) 1.05 0.95 6.02 2772.76 118.71

Ada-γ per iteration (s) 40.43 57.90 3.83 3.89 4.95
Grad-update per iteration (s) 44.15 52.13 4.55 4.01 3.90

Table 10. Gradient update time per iteration.
Method TFBind8(r) TFBind10(r) avGFP AAV E4B
Grad (s) 6.48 7.81 4.01 5.06 3.76

COMs (s) 6.86 7.89 3.66 3.35 4.75
ROMA (s) 6.31 7.65 3.82 3.51 3.64
NEMO (s) 12.57 14.12 4.17 3.79 3.92

BDI (s) 10.23 10.99 13.97 31.96 27.61
BIB (s) 84.58 110.03 8.38 7.90 8.85

Table 11. Results for TFBind8(r)
Lr 0.05 0.10 0.20

ROMA 0.914 0.926 0.943
ROMA + Ada-eta 0.938 0.939 0.946

BIB 0.922 0.952 0.955
BIB + Ada-eta 0.947 0.956 0.956

Table 12. Results for avGFP
Lr 0.05 0.10 0.20

ROMA 0.941 0.975 0.978
ROMA + Ada-eta 0.972 0.998 0.998

BIB 0.999 1.060 1.015
BIB + Ada-eta 1.063 1.082 0.974
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Table 13. Mean squared prediction losses for comparison.
Method TFBind8(r) TFBind10(r) avGFP AAV E4B

Finetuned NN 0.101± 0.001 1.130± 0.041 0.323± 0.006 5.148± 0.074 0.683± 0.012
Linearized NN 0.107± 0.000 1.618± 0.000 3.956± 0.000 23.041± 0.000 1.050± 0.000

NTK 0.111± 0.000 1.840± 0.000 4.866± 0.000 24.451± 0.000 1.075± 0.000

Table 14. Results for Task 1 - Superconductor
Task Grad COMs ROMA NEMO BDI

Normal 0.483 0.487 0.476 0.488 0.520
Ada 0.494 0.486 0.524 0.513 0.521
Gain 0.011 −0.001 0.048 0.025 0.001

Table 15. Results for Task 2 - Ant Morphology
Task Grad COMs ROMA NEMO BDI

Normal 0.764 0.866 0.814 0.814 0.962
Ada 0.906 0.842 0.885 0.943 0.958
Gain 0.142 −0.024 0.071 0.129 −0.004

Table 16. Results for Task 3 - D’Kitty Morphology
Task Grad COMs ROMA NEMO BDI

Normal 0.888 0.835 0.905 0.924 0.941
Ada 0.909 0.896 0.903 0.954 0.958
Gain 0.021 0.061 −0.002 0.030 0.017

Table 17. Results for Task 4 - HopperController
Task Grad COMs ROMA NEMO BDI

Normal 0.989 1.224 1.849 1.959 1.989
Ada 1.060 1.111 1.901 1.950 2.012
Gain 0.071 −0.113 0.052 −0.009 0.023
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