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Abstract
Learning to denoise has emerged as a prominent
paradigm to design state-of-the-art deep genera-
tive models for natural images. How to use it to
model the distributions of both continuous real-
valued data and categorical data has been well
studied in recently proposed diffusion models.
However, it is found in this paper to have lim-
ited ability in modeling some other types of data,
such as count and non-negative continuous data,
that are often highly sparse, skewed, heavy-tailed,
and/or overdispersed. To this end, we propose
learning to jump as a general recipe for genera-
tive modeling of various types of data. Using a
forward count thinning process to construct learn-
ing objectives to train a deep neural network, it
employs a reverse count thickening process to
iteratively refine its generation through that net-
work. We demonstrate when learning to jump is
expected to perform comparably to learning to
denoise, and when it is expected to perform better.
For example, learning to jump is recommended
when the training data is non-negative and ex-
hibits strong sparsity, skewness, heavy-tailedness,
and/or heterogeneity.

1. Introduction
Learning how to generate realistic artificial data from ran-
dom noise is a foundational problem in statistics and ma-
chine learning. A common practice to address this problem
is to employ deep generative models (DGMs), which in-
clude variational auto-encoders (VAEs) (Kingma & Welling,
2013; Rezende et al., 2014), autoregressive models (van
Den Oord et al., 2016; van den Oord et al., 2017; Ramesh
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et al., 2021; 2022), and generative adversarial networks
(GANs) (Goodfellow et al., 2014) as representative exam-
ples. These DGMs usually generate a random data sample
by forward propagating a random noise through a decoder,
empowered by deep neural networks, or producing the el-
ements of a sequence in an autoregressive manner, via the
use of a recurrent neural network (Hochreiter & Schmidhu-
ber, 1997; Graves & Schmidhuber, 2008) or a Transformer
(Vaswani et al., 2017; Radford et al., 2018).

Different from previous generative modeling frameworks,
learning to denoise, which generates a sample through it-
erative refinement, has recently emerged as a prominent
paradigm in designing DGMs (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b).
In this paradigm, one first corrupts the clean data with noise
at various signal-to-noise ratios (SNRs), and then learns how
to iteratively denoise the noisy data, using the same deep
neural network that is made aware of the corresponding
SNR (Kingma et al., 2021). In general, DGMs built under
this learning-to-denoise framework are shown to convinc-
ingly outperform previous ones in training stability, mode
coverage, and generation quality (Dhariwal & Nichol, 2021;
Rombach et al., 2022; Saharia et al., 2022).

Commonly formulated as either denoising diffusion proba-
bilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020) or score-based generative models (Hyvärinen,
2005; Vincent, 2011; Song & Ermon, 2019; 2020), learning-
to-denoise-based DGMs have been successfully used to
model high-dimensional distributions of both continuous
real-valued data (Dhariwal & Nichol, 2021; Ho et al., 2022;
Ramesh et al., 2022; Rombach et al., 2022; Saharia et al.,
2022) and categorical data (Hoogeboom et al., 2021; Austin
et al., 2021; Gu et al., 2022; Hu et al., 2022). Despite be-
ing relatively new, they have already been deployed into a
diverse set of applications, including personalized image
editing (Ruiz et al., 2022), audio synthesis (Chen et al., 2021;
Kong et al., 2021; Yang et al., 2023), text generation (Li
et al., 2022), uncertainty quantification in classification and
regression (Han et al., 2022), learning expressive policies in
reinforcement learning (Wang et al., 2023), and generation
of chemical and biological compounds (Shi et al., 2021; Luo
et al., 2022; Jing et al., 2022), to name a few.
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While learning to denoise so far has been successfully ap-
plied to both continuous real-valued and categorical data,
non-trivial modifications to this framework are in general
required on a case-by-case basis to accommodate every new
type of data, such as count and sparse non-negative data. To
be more specific, let’s consider the case of modeling sparse
data, which is prevalent in numerous real-world applications.
Examples include users’ ratings of movies, consumers’ pur-
chases of products, term-frequency vectors in documents,
next-generation RNA-sequencing data, and graph adjacency
matrices, among others. Gaussian-based denoising diffusion
models, however, are known to be inherently restrictive in
modeling exact sparsity, as will also be illustrated in our
experiments.

Distinct from learning to denoise, we propose learning to
jump, as depicted in Figure 1, that exploits the thinning and
thickening of latent counts under the Poisson distribution to
build a general framework for deep generative modeling. We
refer to the DGMs built under this new framework as JUMP
models, which are suitable for any type of data that takes
non-negative values, such as count, binary, and sparse non-
negative continuous data. While existing DGMs often start
their generation from random noise and move to distinct
states when the generation ends, the proposed thinning and
thickening-based JUMP models start the data generation
process from exact zeros and can stay at exact zeros when
the generation ends.

JUMP models are implemented under a Bayesian framework
equipped with a multi-stochastic-layer generative network,
each layer of which shares the same deep neural network-
based generator. We first show any univariate non-negative
observation can be recovered from a Poisson-distributed
count according to the strong law of large numbers, and
hence any univariate non-negative observation can be con-
verted into a latent count with a controllable accuracy to
recover its original value. We show in this latent count
space, one can first thin the latent counts for model training
and then iteratively thicken the latent counts with discrete
non-negative jumps for data generation.

More specifically, we define the decoder of a JUMP model
via a Poisson distribution-based Markov chain, with the
inference network defined via a forward Poisson thinning
process. The Poisson Markov chain performs iterative re-
finement through a deep neural network. At each refine-
ment step, the input consists of the cumulative count of
all previous steps and the time embedding of the current
step, while the output is a shifted Poisson-distributed ran-
dom count. To train this deep neural network, we draw a
Poisson-distributed count based on the observation and send
it through a forward Poisson thinning process that gradually
thins each count towards zero. Therefore, the number of
non-zero locations during training (generation) is monoton-

ically decreasing (increasing) as the number of diffusion
(reverse-diffusion) steps increases.

The major contributions of the paper include: 1) Introducing
learning to jump as a novel framework to build DGMs; 2)
Revealing that learning to denoise has limited ability in mod-
eling non-negative data that exhibit one or multiple features
from the following list: sparsity, skewness, heavy-tailedness,
and overdispersion; 3) Demonstrating the ability of learning-
to-jump-based DGMs in modeling complex data.

2. Learning to Jump
The proposed jump diffusion probabilistic models, as de-
picted in Figure 1, can be roughly described as follows. First,
we re-scale the data observations by a positive constant
and then encode the re-scaled observations into Poisson-
distributed latent counts. The applied encoding can be loss-
less and admits a simple approximate inverse. Second, we
decrease the latent counts towards zeros through a series of
binomial distribution-based thinning operations. Third, we
reverse the thinning process via a count-thickening jump
process, which increases the latent counts by a series of
Poisson-distributed discrete jumps. We also note that if
the data itself is already count-valued (i.e., non-negative
integers), then the initial operation of re-scaling and random-
ization via Poisson is not necessary. We defer the detailed
discussion of that specific case into Appendix C.

2.1. Poisson-based Data Randomization

Let us denote N0 := {0, 1, 2, . . .} as the set of non-negative
integers and express the distribution of the observed non-
negative data as

x0 ∼ P0 .

We first encode the observation x0 into a count variable
z0 ∈ N0 via the Poisson distribution, whose rate is defined
by the re-scaled observation λx0 where λ > 0:

z0 ∼ Pois(λx0) .

The resulting latent count distribution can be viewed as a
mixed Poisson distribution (Karlis & Xekalaki, 2005) of
which the mixing distribution is the data distribution and is
identifiable1.

For x0 > 0, the standard-deviation-to-mean ratio monotoni-
cally decreases towards zero as λ increases to infinity:

std(z0)
E(z0)

=
1

(
√
λx0)

→ 0 .

Moreover, when P0 is a Dirac distribution δ(x0) and λ is

1The term “identifiable” means being able to identify the mix-
ing distribution of a mixture.
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Figure 1. Illustrative comparison of learning to denoise, which adds noise for model training and denoise for data generation, and learning
to jump, which thins the counts for model training and thickens the counts with Poisson jumps for data generation.

sufficiently large, approximately we have

z0
λ
∼ N (x0, σ

2), σ :=

√
x0

λ
.

When λ approaches infinity, according to the strong law of
large numbers, we have

lim
λ→∞

z0
λ

= x0

with probability one. Therefore, as λ increases, z0
λ tends

to provide a more and more accurate approximation to x0.
Next, we will show that the same is true for general data
distributions under certain regularity conditions.

Theorem 1. Suppose z0 ∼ Pois(λx0), x0 ∼ P0, and the
moment generating function Ex0

[etx0 ] exists for |t| < h,
where h > 0, then random variable

x̂0 = z0/λ

converges in distribution to P0 as λ goes to infinity.

Proof. The moment-generating function of x̂0 = z0/λ can
be expressed as

E[et
z0
λ ] = Ex0

Ez0∼Pois(λx0)[e
t
z0
λ ]

= Ex0 [exp(λx0(e
t
λ − 1))]. (1)

Since limλ→∞ λ(e
t
λ − 1) = t, we have

lim
λ→∞

E[et
z0
λ ] = Ex0

[etx0 ],

where the right-hand side is the moment generating function
of x0 ∼ P0.

Therefore, we will focus on modeling the distribution of
latent count z0 ∈ N0, from which we can recover x0 as

x̂0 = g
(z0
λ

)
,

where g(y) is a function that maps its input y into the domain
of x0 and the scaling parameter λ controls the mapping
accuracy. For example, if x0 ∈ R≥0, then g(y) = y; if
x0 ∈ N0 is a count variable, then g(y) = round(y), which
rounds its input y to the nearest integer; if x0 ∈ {0, 1} is a
binary variable, then g(y) = 1(y > 0); if x0 is a categorical
variable represented as a one-hot vector, then g(y) outputs a
one-hot vector whose non-zero location is at the dimension
that y takes its maximum value; and if x0 is a simplex-
constrained probability vector, then g(y) = y/∥y∥1.

In practical scenarios, the scaling parameter λ does not
necessarily need to be extremely large in order to achieve a
good approximation. For instance, considering a distribution
with a mean of 0.5, using a scaling parameter of 10 or 100
would result in a signal-to-noise ratio of 5 or 50, as measured
by the following expression:

Ex0

[
(E[z0 | x0])

2

Var(z0 | x0)

]
= λE[x0].

2.2. Thinning Can be Reversed with Shifted Poisson

A well-known property of the Poisson distribution is that
using a binomial distribution, one can thin a Poisson ran-
dom variable into another Poisson random variable with a
lower rate (e.g., see page 163 of Casella & Berger (2021)).
Specifically, thinning

p(x) = Pois(x;λ)
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via
p(y | x) = Binomial(y;x, π),

where π ∈ [0, 1], leads to

p(y) = Ex∼p(x)[p(y | x)] = Pois(y;πλ).

Denote x ∼ Poism(λ) as a shifted Poisson distribution with
probability mass function

Pr(x = k) =
λk−me−λ

(k −m)!
, k ∈ {m,m+ 1, . . .}.

To reverse from p(y) to p(x), we show what is needed is a
shifted Poisson distribution as

p(x | y) = Poisy(x; (1− π)λ),

which is the same as adding a random discrete jump of
Pois((1 − π)λ) into y to generate x. In other words, we
have the following Lemma:

Lemma 1. The Poisson-binomial bivariate count distribu-
tion and shifted-Poisson Poisson bivariate count distribution
shown below are equivalent to each other:

p(x, y | λ, π) = Binomial(y;x, π)Pois(x;λ)
= Shifted-Poisy(x; (1− π)λ)Pois(y;πλ). (2)

The proof is straightforward by computing the probability
mass functions of these two bivariate count distributions
and showing they are equivalent to each other. We also
note that Lemma 1 presented here can be considered as a
specific instance of Lemma 4.1 in Zhou et al. (2012). The
aforementioned lemma shows the equivalence between two
scenarios: 1) drawing a total Poisson-distributed random
count and allocating it among K distinct categories via
a multinomial distribution, and 2) independently drawing
K Poisson-distributed random counts. In the context of
learning to jump, Lemma 1 serves as a restatement of that
lemma, tailored to the framework and constraints of this
specific problem, with the particular configuration of K = 2
representing the number of categories at each jump step.

2.3. Count-thinning-based Encoder

Starting by drawing a latent count z0 ∼ q(z0 | x0) =
Pois(z0;λx0) and then gradually thinning it towards zero,
we define a forward thinning process of T time steps as

q(z1:T | z0) =
∏T

t=1 q(zt | zt−1)

=
∏T

t=1 Binomial
(
zt; zt−1,

αt

αt−1

)
, (3)

where {αt}0,T is the set of thinning coefficients satisfying

1 = α0 > α1 > . . . > αT → 0.

By construction, we have

q(zt | z0) = Binomial (zt;x0, αt) .

As αT → 0, we have

q(zT | z0) = Binomial (zT ;x0, αT )→ δ0(zT ),

which becomes a point mass at zT = 0. In other words,
the Poisson thinning process possesses an absorbing state
precisely at zero.

A key property of the forward thinning process, as suggested
by Lemma 1, is that the marginal distribution of the latent
count at any t remains to follow a Poisson distribution as

q(zt | x0) = Ez0∼Pois(λx0)[q(zt | z0)]
= Pois(zt;λαtx0). (4)

With (2) and (4), we can show another key property of
the thinning process: The thinning from zt−1 to zt can be
reversed by a conditional posterior following the shifted-
Poisson distribution as

q(zt−1 | zt, x0)

=
Binomial

(
zt; zt−1,

αt

αt−1

)
Pois(zt−1;λαt−1x0)

Pois(zt;λαtx0)

= Poiszt(zt−1;λ(αt−1 − αt)x0), (5)

which is key to deriving a tractable variational lower bound.

2.4. Count-thickening-based Decoder

Let us denote
fθ(zt, t) ≥ 0

as a non-negative nonlinear function whose input consists
of the count at time step t and the time embedding for t.
We start the count-thickening process at zt = 0, and at time
step t− 1, we add a jump of

Pois(λ(αt−1 − αt)fθ(zt, t))

into the previous accumulative count zt to arrive at the up-
dated accumulative count zt−1 at time t− 1. More specifi-
cally, starting at zT ∼ Pois(0), which means zT = 0 almost
surely, we define a decoder with T count-thickening steps,
each of which corresponds to a shifted Poisson distribution,
expressed as

p(z0:T−1 | zT = 0) =

T∏
t=1

pθ(zt−1 | zt)

=

T∏
t=1

q(zt−1 | zt, x̂0 = fθ(zt, t))

=

T∏
t=1

Poiszt(zt−1;λ(αt−1 − αt)fθ(zt, t)). (6)
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2.5. Auto-encoding Variational Inference

Below we provide the key steps of variational inference.
While it is intractable to compute the marginal distribution
p(x0) = Epθ(z0:T )[p(x0 | z0:T )], similar to the optimization
in DDPMs (Sohl-Dickstein et al., 2015; Ho et al., 2020), we
can minimize a negative evidence lower bound (ELBO) as

L = −Ex0∼P0Eq(z0:T |x0)

[
ln

pθ(z0:T , x0)

q(z0:T | x0)

]
= Ex0∼P0

[
L−1 +

T∑
t=1

Lt−1 + LT

]
, (7)

where

Lt−1 = Eq(zt|x0)[KL(q(zt−1 | zt, x0) ∥ pθ(zt−1 | zt))]
(8)

for 1 ≤ t ≤ T and

L−1 = Eq(z0|x0)[− ln pθ(x0 | z0)] (9)
LT = Eq(z0|x0)[KL(q(zT | z0) ∥ p(zT ))]. (10)

As LT ≈ 0, it can be ignored. In practice, we do not con-
sider L−1 since Ex0

[L−1] minimizes when pθ(x0 | z0) =
q(x0 | z0), which can be well approximated by a deter-
ministic mapping g( z0λ ) when the scaling parameter λ is
sufficiently large.

The Kullback–Leibler (KL) divergence term in (8) has an
analytic expression as

KL (q(zt−1 | zt, x0) ∥ p(zt−1 | zt))
= λ(αt−1 − αt)

× [x0(lnx0 − ln fθ(zt, t))− (x0 − fθ(zt, t))]

= λ(αt−1 − αt)Dφ(x0, fθ(zt, t)),

where Dφ(p, q) is the relative entropy, which is a Bregman
divergence (Banerjee et al., 2005) induced by the differen-
tiable, strictly convex function φ(x) = x ln(x) such that

Dφ(p, q) = φ(p)− φ(q)− (p− q)T∇qφ(q)

= p(ln p− ln q)− (p− q). (11)

We divide Lt−1 by λ(αt−1 − αt) to define a re-weighted
negative ELBO as

L̃ = Ex0∼P0

[
T∑

t=1

L̃(x0, t)

]
L̃(x0, t) = Ez0∼q(z0|x0)Eq(zt|z0)[Dφ(x0, fθ(zt, t))]. (12)

As Dφ(p, q) ≥ 0, we have L̃ ≥ 0 and hence we can mon-
itor how close L̃ is to zero to assess convergence. Since
Ex0∼P0

[L̃(x0, t)] can also be written as

Ezt∼q(zt)Ex0∼q(x0|zt)[Dφ(x0, fθ(zt, t))],

Algorithm 1 Training

Require: Dataset D, Mini-batch size B, Scaling parame-
ter λ, timesteps T , thinning coefficients {αt}Tt=1, and
decoder deep network fθ

1: repeat
2: Draw a mini-batch X0 = {x(i)

0 }Bi=1 from D
3: for i = 1 to B do
4: ti ∼ Uniform({1, . . . , T})
5: z

(i)
t ∼ Poisson(λαtix

(i)
0 )

6: Compute loss Li = Dφ(x
(i)
0 , f(z

(i)
t , ti))

7: end for
8: Perform SGD with 1

B∇θ

∑B
i=1 Li

9: until converge

using the property of the Bregman divergence (Banerjee
et al., 2005), we also know that the loss is minimized at θ∗

when fθ∗(zt, t) = E[x0 | zt, t] for all zt ∼ q(zt).

Our algorithm is straightforward to implement:

1) Sample t ∈ {1, . . . , T} uniformly at random and draw

zt ∼ Pois(λαtx0), x0 ∼ P0(x0);

2) Optimize θ with gradient

∇θDφ(x0, fθ(zt, t)) = ∇θ[fθ(zt, t)− x0 ln fθ(zt, t)].

Note that (12) can be readily extended to continuous time as∫ 1

0

Ex0∼P0Eq(zt|x0)[Dφ(x0, fθ(zt, t))]dt,

where q(zt | x0) = Pois(zt;λαtx0) and αt = α(t) is a
monotonically-decreasing function defined on [0, 1] such
that α(0) = 1, α(1) ≈ 0, and 1 > αs > αt > 0 for
0 < s < t < 1.

For data generation, we let zT = 0, perform ancestral sam-
pling via (6) to draw z0, and then let either x̂0 = g(z0/λ)
or x̂0 = fθ(z1, 1) to produce a random generation. We sum-
marize the training and sampling algorithms in Algorithms 1
and 2, respectively.

3. Related Work
The proposed learning to jump provides a new framework to
construct DGMs. Below we discuss several representative
DGMs and how JUMP models differ from them.

VAEs and GANs. Both VAEs and GANs utilize deep neu-
ral networks in their data-generating process. They typically
forward propagate a random noise once through an encoder,
parameterized by a deep neural network, to generate a ran-
dom data sample. This is different from learning to jump,
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Algorithm 2 Sampling

Require: Scaling parameter λ, timesteps T , thinning coeffi-
cients {αt}Tt=1, decoder deep network fθ and constraint
function g

1: Initialize a mini-batch zT = 0
2: zt ← zT
3: for t = T to 1 do
4: x̂0 ← fθ(zt, t)
5: zt−1 ∼ zt + Poisson(λ(αt−1 − αt)x̂0)
6: end for
7: x0 ← g(z0/λ), or x0 = g(x̂0)
8: return x0

which needs to iterate its generation through the same deep
neural network multiple times before producing a single
realistic sample in the original data space. VAEs (Kingma
& Welling, 2013; Rezende et al., 2014) are learned by maxi-
mizing the lower bound of an intractable log marginal likeli-
hood, whereas GANs (Goodfellow et al., 2014) are learned
under a min-max adversarial game between a discriminator
and a generator. When applied to image generation, VAEs
are known to generate blurry images while GANs are known
to be susceptible to training instability and dropping data
density modes.

A wide variety of techniques have been developed over the
years to improve their performance. For VAEs, a consider-
able amount of effort has been spent on constructing more
expressive tractable variational posteriors (Ranganath et al.,
2016; Huszár, 2017; Yin & Zhou, 2018; Zhang et al., 2018;
Molchanov et al., 2019; Titsias & Ruiz, 2019) and improv-
ing the decoder architecture to generate more photo-realistic
images (Razavi et al., 2019; Maaløe et al., 2019; Vahdat &
Kautz, 2020). Whereas for GANs, steady progress has been
made on improving training stability (Arjovsky et al., 2017;
Gulrajani et al., 2017; Miyato et al., 2018; Mescheder et al.,
2018), generation fidelity (Radford et al., 2015; Brock et al.,
2019; Karras et al., 2019; Sauer et al., 2022), and mode
coverage and data efficiency (Zhao et al., 2020; Karras et al.,
2020; Yang et al., 2021; Wang et al., 2022).

Learning to denoise. Both score-based generative mod-
els (Song & Ermon, 2019) and DDPMs (Ho et al., 2020)
can be considered as representative DGMs developed under
the learning-to-denoise framework, which generates a ran-
dom sample by iteratively refining its generation through a
deep neural network. From the Bayesian perspective, the
method of learning to denoise can be implemented under
an auto-encoding variational inference framework. Defin-
ing data generation via a multi-stochastic-layer generative
network and introducing a fixed hierarchical variational en-
coder for inference, one may construct an ELBO of the log
marginal likelihood to derive both the training and inference
algorithms (Sohl-Dickstein et al., 2015; Ho et al., 2020).

Specifically, as in DDPMs, one may take a Markov diffusion
chain as the encoder, which gradually corrupts the data
towards pure Gaussian noise by repeatedly mixing it with
Gaussian noise at various scales. This provides the training
data to supervise the learning of a reverse Markov diffusion
chain. After being trained, this reverse chain iterates through
the same deep neural network, whose inputs include the time
embedding of the current diffusion step, to gradually refine
a Gaussian noise into a noise-free data generation.

We note that DDPMs can also be formulated as either per-
forming denoising score matching in a discrete-time setting
or solving stochastic differential equations in a continuous-
time setting (Song et al., 2021b). While the development
of the JUMP models under the learning-to-jump framework
mimics that of DDPMs under the learning-to-denoise frame-
work, the JUMP models can be viewed as neither score
matching nor stochastic differential equations. This is be-
cause the generations of JUMP models take count values
that are not continuous.

Learning to denoise has also been generalized to model
categorical data, where the noise corruption corresponds
to randomly transiting a categorical observation to some
other category under a pre-defined transition probability
matrix (Hoogeboom et al., 2021; Austin et al., 2021). In-
spired by the success of masked language models in natural
language processing (Devlin et al., 2018), one may further
augment the existing categories with a mask category whose
self-transition probability is one (Austin et al., 2021). In
other words, the mask category is an absorbing category.
Consequently, unmasking becomes an essential part of the
denoising process for data generation. When combined with
an appropriate pretrained encoder-decoder with a tokenized
discrete latent space, such as that provided by VQ-VAE
(van den Oord et al., 2017) or VQ-GAN (Esser et al., 2021),
learning to unmask and/or denoise in this discrete space has
led to strong performance in both unconditional and text-
conditioned image generation (Gu et al., 2022; Hu et al.,
2022; Chang et al., 2022; 2023). Related to learning to
unmask which has the mask category as its unique absorb-
ing state, the proposed learning to jump also has a unique
absorbing state, which is 0. A distinction is that the mask
category is a nonexistent fictitious category, while 0 is a
possible true data value in learning to jump.

Learning to reverse other types of corruptions. Several
recent works have all tried to come up with a method that
mimics learning to denoise but changes the data corrup-
tion from adding Gaussian noise to another type of corrup-
tion. Representative examples include learning to de-blur
(Hoogeboom & Salimans, 2023), learning to reverse heat
dissipation (Rissanen et al., 2023), and learning to reverse
arbitrary and even noiseless/cold image transforms (Bansal
et al., 2022; Daras et al., 2022). These variations of learning
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to denoise ultimately all boil down to minimizing an L2

loss between the clean data and the predicted reconstruction
of the corrupted version of the data. From this perspective,
learning to jump differs from all of them in having a relative
entropy-based loss, as shown in (12), that is different from
an L2 loss. Another notable difference is that the starting
point of the reverse chain in learning to jump is a point
mass at 0, rather than some random noise from a fixed prior
distribution.

4. Experiments
To demonstrate the power and versatility of the proposed
learning-to-jump framework for generative modeling, we
evaluate JUMP models on a diverse set of non-negative
data, ranging from univariate non-negative data of various
types, document term-frequency count vectors and TF-IDF
vectors obtained from two representative text corpora, to
natural images whose pixel values lie between 0 and 255.
For data such as natural images that typically exhibit no
strong sparsity, skewness, heavy-tailedness, or overdisper-
sion, learning-to-denoise-based DGMs, such as DDPMs,
have already been proven to perform well. In this case,
we don’t expect JUMP models to provide unique advan-
tages in faithfully regenerating the original data distribution.
However, when the data is highly sparse, skewed, heavy-
tailed, and/or overdispersed, we expect the proposed JUMP
models to behave differently, potentially providing distinct
advantages in data regeneration, as confirmed by a rich
set of experiments shown below. Our code is available at
https://github.com/tqch/poisson-jump.

4.1. Univariate Non-negative Data

We consider three types of univariate non-negative data x,
including x ∈ N0, x ∈ [0,∞), and x ∈ [0, 1]. For x ∈ N0,
we synthesize three count datasets, which are characteristic
of sparsity, skewness, and overdispersion, from a bi-modal
Poisson mixture (PoisMix)

0.9 · Pois(1) + 0.1 · Pois(100),

a bi-modal negative binomial (Nbinom) mixture (Nbinom-
Mix)

0.75 · Nbinom(1, 0.9) + 0.25 · Nbinom(10, 0.1),

and a beta-negative-binomial (BNB) distribution with prob-
ability mass

P (k) =

∫ 1

0

Nbinom(k; 1, p)Beta(p; 1.5, 1.5)dp, k ∈ N0 .

We also experiment on continuous non-negative data
from either skewed or heavy-tailed distributions, including
Gamma(0.5, 0.05), a half-Cauchy with probability density

p(x) ∝ (1 + x2)−1, x ≥ 0,

Table 1. Wasserstein-1 distances between the empirical discrete
distribution of the generated random samples and Top: the true
training distribution, Middle & Bottom: the empirical distribution
of the training set. The unit in the Bottom table is 10−2.

Discrete x ∈ N0

PoisMix NbinomMix BNB

DDPM (Ho et al., 2020) 1.48± 0.37 2.17± 0.77 4.49± 4.41
D3PM Unif (Austin et al., 2021) 23.53± 0.48 22.31± 0.09 2.53± 0.02

D3PM Gauss (Austin et al., 2021) 17.29± 1.41 19.57± 0.67 2.59± 0.02
JUMP (ours) 0.85± 0.41 1.84± 0.44 1.11± 0.35

Continuous x ∈ [0,∞)

Gamma Half-Cauchy Half-t

DDPM (Ho et al., 2020) 0.85± 0.26 17.05± 18.58 0.51± 0.76
JUMP (ours) 0.60± 0.27 3.56± 0.76 0.11± 0.02

Continuous x ∈ [0, 1]

Uniform Beta(0.5, 0.5) Beta(2, 2)

DDPM (Ho et al., 2020) 1.40± 0.26 1.24± 0.44 1.49± 0.35
JUMP (ours) 1.39± 0.42 1.57± 0.17 1.30± 0.34

and a half-t distribution with probability density

p(x) ∝
(
1 +

x2

2

)− 3
2

, x ≥ 0.

We further consider x ∈ [0, 1] drawn from Uniform(0, 1),
Beta(0.5, 0.5), or Beta(2, 2), which correspond to flat, con-
vex, and concave shaped probability density functions, re-
spectively, that are all symmetric around the mean x = 0.5.

We draw 100,000 random samples from each distribution
to form the training data. All the evaluated models in the
experiment use the same 3-layer MLP architecture with
128 hidden units and leaky-ReLU activation. For D3PMs
(Austin et al., 2021), we truncate the distributions at their
0.999 quantiles to ensure the number of states is finite. For
the proposed JUMP, we set λ to 10 for all the univariate
datasets except for Uniform, Beta(0.5, 0.5) and Beta(2, 2),
where we use λ = 100.

We report the mean and standard deviation of the
Wasserstein-1 distances between the true/empirical distri-
bution of the training data and the empirical distribution of
100,000 generated samples over 5 independent runs. We
compute Wasserstein-1 (Peyré & Cuturi, 2019) as

W1(p, q) ≜
∫
R×R
|x− y|dπ(x, y) =

∫
R
|P −Q|(x)dx,

where p, q are arbitrary univariate distributions, π(x, y) is
their coupling, and P,Q are cumulative distribution func-
tions of p, q respectively. When p, q are two empirical
distributions with the same size n, it reduces to compute
∥sort(X) − sort(Y )∥1/n, where X,Y are n-dimensional
data vectors of p, q.

We summarize the results in Table 1 and Figure 2. The
results on Gamma(0.5, 0.05) and the 3 datasets supported
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Figure 2. Visual comparison of the true and regenerated probability distributions by both DDPM and JUMP, across 9 univariate synthetic
datasets described in Section 4.1.

on [0, 1] all suggest that when the data is well behaved in
the sense that there is no strong sparsity, skewness, heavy-
tailedness, or overdispersion, the proposed JUMP has com-
parable performance to DDPM in terms of the Wasserstein-
1 metric. However, the results on the other 5 training
datasets, which all clearly exhibit sparsity, skewness, heavy-
tailedness, and/or overdispersion, show that the proposed
JUMP convincingly outperforms DDPM (and also D3PM
on discrete data).

4.2. Sparse and Heterogeneous Data

Bag-of-words (BOW) and term frequency-inverse document
frequency (TF-IDF) are two common types of document
representations. Both are known to be highly sparse and
heterogeneous. We prepare two datasets for the document
generation task: 20 Newsgroups2 and NeurIPS3.

The 20 Newsgroups dataset comprises 18,846 news posts on
20 topics. The NeurIPS dataset is a collection of 7241 papers
published in NeurIPS from 1987 to 2016. After standard
preprocessing (e.g., removing stop-words), we represent
each document in 20 Newsgroup and NeurIPS with a count /
TF-IDF vector of 8934 and 12038 dimensions, respectively.
We set λ as 10 for both datasets. For the evaluation of
BOW, we consider two summary statistics of the documents,

2http://qwone.com/˜jason/20Newsgroups/
3https://www.kaggle.com/datasets/

benhamner/nips-papers

Table 2. Top: Wasserstein-1 distances of summary statistics (spar-
sity and length) between true samples and generated samples in
BOW representations. Bottom: Wasserstein-1 distances of sum-
mary statistics (sparsity and ℓ1-norm) between true data and gen-
erated samples in TF-IDF representations.

BOW

20 Newsgroup NeurIPS

Sparsity (‰) Length Sparsity (%) Length

DDPM (Ho et al., 2020) 5.49± 0.04 81.80± 10.2 3.46± 0.38 191.86± 98.4
JUMP (ours) 2.65± 0.46 35.43± 4.16 2.40± 0.29 95.56± 29.36

TF-IDF

20 Newsgroup NeurIPS

Sparsity (‰) ℓ1-norm Sparsity (%) ℓ1-norm

DDPM (Ho et al., 2020) 693.21± 5.45 0.65± 0.02 66.59± 1.74 0.20± 0.02
JUMP (ours) 3.18± 0.06 0.41± 0.02 6.23± 0.00 0.26± 0.00

including the sparsity and the length between the true data
and generated samples, while for TF-IDF we consider the
sparsity and the ℓ1-norm.

We report the Wasserstein-1 distances of the summary statis-
tic distributions in Table 2. The results show that JUMP
has done extremely well in recovering the inherent spar-
sity of document-type data. In contrast, DDPM has almost
completely failed in capturing the sparsity patterns of the TF-
IDF documents. Overall, JUMP consistently outperforms
DDPM in all scenarios and metrics except for the ℓ1-norm
of the NeurIPS dataset using TF-IDF representation, where
the performance is comparable to that of DDPM.
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4.3. Natural Images

Images are by nature high-dimensional data with 256 ordi-
nal pixel values. Typically, the pixel values in images are
neither sparse nor heavy-tailed, and hence as analyzed in
Section 4.1, we do not expect JUMP to outperform DDPM.
Our experiments show that while JUMP currently under-
performs DDPM in modeling natural images, using the
same UNet architecture and diffusion schedule that have
been well-tuned to suit DDPM, it can nevertheless generate
realistic-looking natural images and achieve comparable
evaluation results on standard metrics, including Fréchet
Inception distance (FID) (Heusel et al., 2017) and Inception
score (IS) (Salimans et al., 2016), to diffusion models that
operate on non-integer latent states. We present uncurated
randomly-generated images in Figure 3 and report the FID
and IS metrics in Table 3.

5. Limitations and Future Work
A notable limitation of the learning-to-denoise framework
is that it often needs to iterate through the same denois-
ing deep neural network hundreds or even thousands of
times to refine its generation, which increases the computa-
tional cost of data generation by orders of magnitude com-
pared to VAEs and GANs of similar sizes. The proposed
learning-to-jump framework has the same limitation, as it
also requires iterating T times through fθ(zt, t) to gener-
ate a single output, where T often needs to be sufficiently
large, e.g, T = 1000, especially for high-dimensional data
whose different dimensions exhibit complex dependencies.
For learning to denoise, a variety of methods have been
proposed to accelerate the generation, but often at the ex-
pense of somewhat compromised generation quality when
T is limited to a small number (Song et al., 2021a; Luhman
& Luhman, 2021; Kong & Ping, 2021; Xiao et al., 2022;
Salimans & Ho, 2022; Zheng et al., 2023; Lu et al., 2022).
How these acceleration techniques developed for learning to
denoise can be extended for the proposed learning-to-jump
framework is a research topic worth further investigation.

Another limitation, as shown by the results in Figure 2 and
Table 1 and the image generation results in Table 3, is that
for “normal” data that are not sparse, skewed, heavy-tailed,
or heterogeneous, JUMP often trails behind DDPM, under
the same UNet architecture and diffusion schedule that have
been tailored for DDPM. How to further improve JUMP for
“normal” data, such as by developing a customized model
architecture and optimizing the diffusion schedule, is worth
further investigation.

6. Conclusion
Iterative-refinement-based deep generative models (DGMs)
are typically developed under a learning-to-denoise frame-

Figure 3. Uncurated randomly-generated samples by JUMP trained
on CIFAR-10.

Table 3. Comparison of different models on CIFAR-10.
Latent space Model FID (↓) IS (↑)

Real DDPM (Ho et al., 2020) 3.17 9.46
Bit Diffusion (Chen et al., 2023) 3.48 -

Categorical D3PM Gauss+Logistic (Austin et al., 2021) 7.34 8.56
τLDR-10 (Campbell et al., 2022) 3.74 9.49

Integer JUMP (ours) 4.80 9.04

work, which includes diffusion and score-based generative
models as representative examples. They have shown im-
pressive performance in capturing the high-dimensional
distribution of natural images, but may not perform that
well when the data is characterized by sparsity, skewness,
heavy-tailedness, overdispersion, and/or heterogeneity. To
this end, we propose learning to jump as a novel generative-
modeling framework, which is well suited to model sparse,
skewed, heavy-tailed, overdispersed, and/or heterogeneous
data, and hence generalizes the applicability of DGMs into
broader settings. Experimental results on a diverse set of
data of various types demonstrate the unique behaviors and
modeling potentials of the learning-to-jump-based DGMs.
In particular, for high-dimensional data, we recommend
using learning-to-jump in lieu of learning-to-denoise when
the training data are highly sparse and heterogeneous.
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Learning to Jump: Appendix

A. Hyperparameter Settings
A.1. Diffusion Schedule

We have not conducted an extensive tuning of the diffusion schedule. As a default choice, we utilize the beta-linear schedule
introduced in the work of Ho et al. (2020). We set β1 to 0.001 by default. The value of βT is selected such that the log-SNR
(Signal-to-Noise Ratio) will be approximately −12 on average at the end of the forward chain, ensuring that the loss of the
last time step LT is approximately 0.

A.2. Scaling Parameter

Intuitively speaking, the scaling parameter λ controls how close the initial latent count distribution and original data
distribution are. Specifically, the larger λ is, the more precise the transform f : z0 7→ z0/λ will be to recover the x0 in
distribution. Based on our practical observations, we have found that starting with values of 10 or 100 for the noise schedule
parameter is often suitable for most datasets, excluding image data. These values have shown promising performance as
initial choices in our experiments. However, it is important to note that for image datasets, larger values often yield better
results, and further experimentation and tuning are recommended to determine the optimal scaling parameter for a specific
image dataset. Indeed, we find out that the Fréchet Inception Distance (FID) (Heusel et al., 2017) is highly sensitive to noise,
even when the noise becomes imperceptible to humans. Figure 4 illustrates the relationship between the scaling parameter λ
and the corresponding FID between the data distribution of CIFAR-10 and the reconstructed distribution obtained from the
initial latent counts, i.e., Poisson-randomized data.

Figure 4. Relationship between FID of the initial latent count distribution and the scaling parameter λ on CIFAR-10

A.3. Training

For all the univariate and document-type datasets, our models are trained for 600 epochs using the Adam optimizer (Kingma
& Ba, 2015). We use a fixed learning rate of 0.001 and the default values for the parameters β1 = 0.9 and β2 = 0.999.

In the case of CIFAR-10 image generation, we utilize the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning
rate of 0.0002 and a weight decay of 0.001. The JUMP model is trained for 3600 epochs. Unlike DDPM, we do not employ
any learning rate warmup schedule in our training process.
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B. Model Architectures
In the case of univariate and document datasets, we employ a Multi-Layer Perceptron (MLP) model architecture composed
of three blocks. Each block consists of two fully-connected layers and one time embedding projection layer. Intermediate
layers use Leaky-ReLU activation along with layer normalization (Ba et al., 2016). For CIFAR-10 image generation, we use
a UNet model architecture similar to the one used by Nichol & Dhariwal (2021). Our UNet model has three stages through
downsampling and upsampling, which correspond to spatial dimensions of 32× 32, 16× 16, and 8× 8. Each stage of the
model consists of 3 residual blocks with 128 hidden channels followed by a self-attention layer except for the first stage. In
addition, we use a dropout rate of 0.2 for extra regularization.

C. Binomial JUMP for Count Data
We also consider a variant of the proposed JUMP model when the original data are already counts and hence Poisson
randomization may not be necessary. Specifically, we remove the Poisson randomization step used by default in Poisson
JUMP, resulting in a JUMP variant where the conditional posteriors of the reverse process follow the shifted-binomial
distributions. We refer to this variant as binomial JUMP. The definition of the forward process of binomial JUMP can be
expressed as

q(z1:T | x0) =

T∏
t=1

q(zt | zt−1), (13)

q(zt | zt−1) = Binomial
(
zt; zt−1,

αt

αt−1

)
, (14)

where z0 = x0, 1 = α0 > α1 > . . . > αT . It immediately follows that the marginal distribution of zt given x0 is binomial:

q(zt | x0) = Binomial(zt;x0, αt).

If we know zt and x0, then we have zt ≤ zt−1 ≤ x0 almost surely. Thus, with Bayes’ rule, we have

q(zt−1 = m | zt, x0) ∝ Binomial(m;x0, αt−1)Binomial
(
zt;m,

αt

αt−1

)
(15)

∝ x0!

m!(x0 −m)!
αm
t−1(1− αt−1)

x0−m m!

zt!(m− zt)!

(
αt

αt−1

)zt (
1− αt

αt−1

)m−zt

(16)

∝ 1

(x0 −m)!(m− zt)!

(
αt−1 − αt

1− αt−1

)m

(17)

∝ (x0 − zt)!

(x0 −m)!(m− zt)!

(
αt−1 − αt

1− αt

)m−zt (
1− αt−1 − αt

1− αt

)x0−m

(18)

= Binomial
(
m− zt;x0 − zt,

αt−1 − αt

1− αt

)
, (19)

where zt ≤ m ≤ x0. Therefore, the conditional posterior is a shifted-Binomial distribution as

q(zt−1 | zt, x0) = Shifted-Binomialzt (x0 − zt, pt) , pt =
αt−1 − αt

1− αt
. (20)

However, in this case, we cannot simply let pθ(zt−1 | zt) = q(zt−1 | zt, x̂0 = fθ(zt, t)). This is because, in order for the
KL divergence from the approximated conditional posterior to the true one to be well defined, we will need to ensure that
both fθ(zt, t) is a count and fθ(zt, t) ≥ x0, which are difficult to realize in practice using a non-linear function defined by
the deep neural network-based fθ. To address this issue, noticing that a binomial distribution x ∼ Binomial(n, p) can often
be well approximated by a Poisson distribution x ∼ Pois(np) when n is large and np is small, we propose to approximate
the shifted-binomial distribution in (20) with a shifted-Poisson distribution as

q̂(zt−1 | zt, x0) = Shifted-Poiszt (zt−1; pt(x0 − zt)) ,
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and define a Markovian reverse process as pθ(z0:T−1 | zT = 0) =
∏T

t=1 pθ(zt−1 | zt), where

pθ(zt−1 | zt) =
∑
nt

Shifted-Binomialzt (zt−1;nt, pt)Pois(nt; max(fθ(zt, t)− zt, 0)) (21)

= Shifted-Poiszt (zt−1; pt max(fθ(zt, t)− zt, 0)) . (22)

Similar to the derivation of Equation (7), the approximated negative ELBO loss of binomial jump can be expressed as
follows:

L = −Ex0
Eq(z1:T |x0)

[
ln

pθ(z1:T , x0)

q(z1:T | x0)

]
= Ex0

[
L0 +

T∑
t=2

Lt−1 + LT

]
(23)

where

L0 = Eq(z1|x0) [− ln pθ(x0 | z1)] (24)
Lt−1 = Eq(zt|x0) [Dφ (pt (x0 − zt) , pt max(fθ(zt, t)− zt, 0))] , for t = 2, . . . , T (25)
LT = KL(q(zT | x0) ∥ p(zT )) (26)

where Dφ(·, ·) denotes the relative entropy defined in (11). More specifically, ignoring pt in (25), we have

Dφ (x0 − zt,max(fθ(zt, t)− zt, 0)) = (x0 − zt) ln
x0 − zt

max(fθ(zt, t)− zt, 0)
− [(x0 − zt)−max(fθ(zt, t)− zt, 0)].

We observe that the relative entropy-based loss function of the binomial JUMP, as illustrated above, shares a close connection
with the loss function of the Poisson JUMP, as shown in (12), with a clear distinction: In the binomial JUMP, we have
zt ∼ Binomial(x0, αt), resulting in zt ≤ x0, whereas in the Poisson JUMP, we have zt ∼ Pois(λαtx0), allowing zt to
potentially exceed x0.
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