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Abstract
We study (ε, δ)-differentially private (DP)
stochastic convex optimization under an r-th
quantile loss function taking the form c(u) =
ru+ + (1 − r)(−u)+. The function is non-
smooth, and we propose to approximate it with a
smooth function obtained by convolution smooth-
ing, which enjoys both structure and bandwidth
flexibility and can address outliers. This leads
to a better approximation than those obtained
from existing methods such as Moreau Enve-
lope. We then design private algorithms based
on DP stochastic gradient descent and objec-
tive perturbation, and show that both algorithms
achieve (near) optimal excess generalization risk

O(max{ 1√
n
,

√
d ln(1/δ)

nε }). Through objective
perturbation, we further derive an upper bound

O(max{
√

d
n ,
√

d ln(1/δ)
nε }) on the parameter esti-

mation error under mild assumptions on data gen-
erating processes. Some applications in private
quantile regression and private inventory control
will be discussed.

1. Introduction
Stochastic convex optimization (SCO) under a lin-
ear quantile loss function, minθ∈Rd L(θ;P) :=
E(x,y)∼P [ℓ(θ;x, y)] where ℓ(θ;x, y) := c(y − θ⊤x)
and c(u) := ru+ + (1 − r)(−u)+, is a fundamental
problem in machine learning, and has many applications,
such as support vector machine (Suthaharan & Suthaharan
2016), quantile regression (Koenker et al. 2017) and
inventory control (Ban & Rudin 2019). Compared to
symmetric loss functions (for example, squared function
c(u) = u2), the r-th quantile loss function allows imposing
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asymmetric weights on positive and negative values of u,
providing insights into distributional relationships between
feature x and dependent variable y.

In practice, SCO is closely related to the Empirical
Risk Minimization (ERM) problem, minθ∈Rd L̂(θ;D) :=
1
n

∑n
i=1 ℓ(θ;xi, yi) on a dataset D := {(xi, yi)}ni=1 of

n i.i.d. data points drawn from unknown P. The goal
is to output a high-quality estimator θ̂, from solving an
ERM, of θ∗ := argminθ∈Rd L(θ;P). An estimator’s
quality is usually measured by excess generalization risk
L(θ̂;P)−L(θ∗;P) or mean absolute error E

[∥∥∥θ̂ − θ∗
∥∥∥
2

]
.

The former measure plays an important role in optimization,
while the latter is more relevant to statistical inference.

Given a private dataset, estimators may reveal critical infor-
mation and are at risk of being exploited by attackers. We
study the problem under the constraint of differential pri-
vacy, a mathematically rigorous measure of privacy, which
guarantees that the distribution over an algorithm’s output
is insensitive to a slight change in the dataset. In the private
setting, extensive studies have been done to investigate the
impact of privacy (Kifer et al. 2012, Bassily et al. 2014,
Wang et al. 2017, Bassily et al. 2019, Bassily et al. 2020,
Feldman et al. 2020, Bassily et al. 2021b, Bassily et al.
2021a, Asi et al. 2021, Kulkarni et al. 2021, Han et al.
2022).

However, the body of work mentioned above mostly as-
sumes that the loss function ℓ(θ;x, y) is differentiable and
smooth for all θ, which is not the case for a quantile loss
function. The quantile loss function is essentially a piece-
wise linear function with a knot at the origin, at which
the curvature is infinite, implying non-differentiability and
nonsmoothness. The nonsmoothness will lead to an unsta-
ble estimator, prevent gradient-based optimization meth-
ods from being efficient, and invalidate uniform stability
(Shalev-Shwartz & Ben-David 2014), a crucial property for
theoretical analysis.

Some recent works endeavour to address nonsmooth loss
functions in DP-SCO. For example, Bassily et al. (2019) and
Bassily et al. (2020) proposed to adopt the Noisy Gradient
Descent framework, i.e. use a noisy gradient instead of
a true gradient to update the estimator in each iteration.
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Feldman et al. (2020) proposed an iterative localization
approach, where an ERM with a localized regularization
term is solved for updating estimators in each iteration. Asi
et al. (2021) and Kulkarni et al. (2021) extended the iterative
localization approach to more general situations. A closely
related work, Bassily et al. (2021a) studied Generalized
Linear Models with a nonsmooth but bounded loss function
while we do not assume boundedness. All these methods
were developed for general nonsmooth functions. Though
some of them can address the nonsmoothness of a quantile
loss, they fail to exploit its special structure, engendering
significant performance gaps in practice.

To better take advantage of the structure of a quantile loss,
Horowitz (1998) proposed to smooth out the quantile loss
function by replacing the implicit indicator function in a
quantile loss. However, Horowitz’s smooth function gains
smoothness at the cost of convexity, i.e. it is no longer glob-
ally convex unless r = 1/2. Another stream of works
(Whang 2006, Kaplan & Sun 2017) proposed to use a
smoothed estimating equation estimator, which is essen-
tially the solution to smoothed moment conditions. The
solution can be obtained by replacing the implicit indica-
tor function with a kernel counterpart. In this paper, we
adopt convolution smoothing (Hirschman & Widder 2012)
to directly smooth out the entire quantile loss function, re-
sulting in a much smoother and much less variable function
(Fernandes et al. 2021). We noticed that a similar convolu-
tion smoothing idea was used by Feldman et al. (2018) and
Kulkarni et al. (2021) in a DP setting. However, the former
only considered Gaussian kernel, while the latter applied
it to a strongly convex function whereas the quantile loss
function is not strongly convex.

By considering a quantile loss function, our work is also
closely related to DP quantile estimation and regression.
There is a long history on DP quantile estimation (Dwork
& Lei 2009, Dwork et al. 2010, Chan et al. 2011, Bun et al.
2015, Kaplan et al. 2020, Gillenwater et al. 2021, Kaplan
et al. 2022). However, these works do not explicitly take
regression into consideration, leaving a huge gap in the
literature. Our work attempts to fill the gap by considering
DP linear quantile regression.

1.1. Our Contributions

The first contribution is the adoption of convolution smooth-
ing for addressing the nonsmoothness of a quantile loss
function under a DP context (Section 3.1). We find that,
for DP-SCO under a quantile loss, convolution smoothing
is preferred over existing methods such as Moreau Enve-
lope. The insight is that convolution smoothing allows us to
properly choose both kernel function (structure) and band-
width (parameter), while Moreau Envelope only allows the
choice of smoothness parameter. Discussions on this insight

can be found at the end of Section 3.1. Secondly, we find
that with convolution smoothing, both gradient perturba-
tion and objective perturbation can achieve (near) optimal
excess generalization risks (Theorem 3.4, Theorem 3.6)
under very mild assumptions. The third contribution is
that we derive an upper bound on the mean absolute er-

ror, that is O(max{
√

d
n ,
√

d ln (1/δ)
nε }), between the private

quantile estimator from objective perturbation and the true
optimal θ∗ (Theorem 4.5). Lastly, we discuss some appli-
cations in statistics and management, and run simulations
to demonstrate the superior performance of our approaches
empirically. All proofs are deferred to Appendix A and B.

Though quantile loss is specific, it has many applications,
for instance, support vector machine (when r = 1/2, Sutha-
haran & Suthaharan 2016), quantile regression (Koenker
et al. 2017), inventory control (Ban & Rudin 2019), and
serving as clipping thresholds (Andrew et al. 2021). Our in-
depth research may pave the way for a deeper understanding
on these topics and guide advanced private algorithm design.
More importantly, the insight into the superior performance
of convolution smoothing may inspire further exploration
on other nonsmooth losses.

Notation: We use X × Y ⊆ B(Bx) × R to denote the
data domain, where B(B) is a Euclidean ball with radius
B. The r-th quantile loss function is c(u) = ru+ + (1 −
r)(−u)+,∀u ∈ R where u+ := max{0, u}, and we de-
note ℓ(θ;x, y) := c(y − θ⊤x), a loss function that takes
a vector θ ∈ Rd and a data point (x, y) ∈ X × Y as in-
puts and outputs a real value. The empirical risk of any
θ ∈ Rd w.r.t. loss ℓ and dataset D := {xi, yi}ni=1 is de-
fined as L̂(θ;D) := 1

n

∑n
i=1 ℓ(θ;xi, yi). The generaliza-

tion risk of θ w.r.t. loss ℓ and distribution P is defined as
L(θ;P) := E(x,y)∼P [ℓ(θ;x, y)]. Shorthand L̂(θ) andL(θ)
are used for the empirical and generalization risk when the
dependence is clear from context.

2. Preliminaries
Definition 2.1 (Differential privacy). A randomized algo-
rithmM : Xn × Yn → Z is (ε, δ)-differential private if,
for any pair of neighboring datasets D ∼ D′ that differ in
one data point, and for any subset S ⊆ Z , we have

Pr [M(D) ∈ S] ≤ eε · Pr [M(D′) ∈ S] + δ.

Definition 2.2 (L-Lipschitz continuity). Let L > 0. A
function ℓ : Rd → R is L-Lipschitz with respect to norm
∥·∥2 over a set B if for every θ1,θ2 ∈ B, we have

|ℓ(θ1)− ℓ(θ2)| ≤ L · ∥θ1 − θ2∥2 .

Definition 2.3 (α-strongly convexity). Let α > 0. A func-
tion ℓ : Rd → R is α-strongly convex over a set B if for
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every θ1,θ2 ∈ B, we have

ℓ(θ1) ≥ ℓ(θ2) + ⟨∇ℓ(θ2),θ1 − θ2⟩+
α

2
∥θ1 − θ2∥22 .

Definition 2.4 (β-smoothness). Let β > 0. A function
ℓ : Rd → R is β-smooth over a set B if for every θ1,θ2 ∈ B,
we have

ℓ(θ1) ≤ ℓ(θ2) + ⟨∇ℓ(θ2),θ1 − θ2⟩+
β

2
∥θ1 − θ2∥22 .

Definition 2.5 (τ -uniform stability). A randomized algo-
rithm θ̂ : Xn × Yn → Rd is τ -uniform stable with respect
to function ℓ : Rd × X × Y → R if for any pair of neigh-
boring datasets D ∼ D′ that differ in one data point only,
we have

sup
x,y

E
[
ℓ(θ̂(D);x, y)− ℓ(θ̂(D′);x, y)

]
≤ τ,

where the expectation is taken over algorithm’s randomness.

Lemma 2.6. (Bousquet & Elisseeff, 2002) Let θ̂ : Xn ×
Yn → Rd be a τ -uniformly stable algorithm w.r.t. loss
function ℓ : Rd ×X ×Y → R. Let P be a distribution over
X × Y , and D ∼ Pn be samples i.i.d. drawn from P. Then,
we have

E
[
L(θ̂(D);P)− L̂(θ̂(D);D)

]
≤ τ,

where the expectation is taken over both data sampling
D ∼ Pn and algorithm’s randomness.

Of particular interest is the excess generalization risk of a
given differentially private algorithm π:

R(π;P) := ED∼Pn,π

[
L(θ̂π)

]
− L(θ∗),

where L(θ) := E(x,y)∼P [ℓ(θ;x, y)] is the expected loss
of a given vector θ, and θ∗ is the optimal vector that an
oracle with full information of P can achieve. Following
literature in learning theory, the excess generalization risk
can be decomposed into two parts,

R(π;P) = E
[
L(θ̂π)− L̂(θ̂π)

]
+ E

[
L̂(θ̂π)− L(θ∗)

]
= E

[
L(θ̂π)− L̂(θ̂π)

]
+ E

[
L̂(θ̂π)− L̂(θ∗)

]
,

(1)

where all expectations are taken over D and π, and the
second equality comes from L(θ∗) = EPn

[
L̂(θ∗)

]
. The

above risk decomposition follows a framework in learning
theory that, loosely speaking, uniform stability plus shrink-
ing ERM imply learnability. Our risk analysis will heavily
rely on (1).

3. Private Algorithms with Convolution
Smoothing

In this section, we first show how convolution smoothing
works and its impact. Then, DP stochastic gradient descent
and objective perturbation algorithms are applied, along
with privacy analysis and excess generalization risk analysis.

3.1. Convolution Smoothing

Convolution smoothing is a powerful tool to approximate a
nonsmooth function with a smooth function generated from
the convolution between the original function and a properly
chosen Kernel Function (also known as Approximate Iden-
tity). The idea is also used for Kernel Density Estimation
and Fourier analysis.
Condition 1 (Kernel Functions). Let K : R → R+ be a
nonnegative function having following properties

• Integrate to 1:
∫
K = 1;

• Symmetry: K(u) = K(−u) for all u ∈ R;

• Monotonicity: K(u) ≤ K(v), ∀ |u| ≥ |v| ∈ R.

• Finite absolute moments: κ1 :=
∫∞
−∞ |u|K(u) du <

∞, κ2 :=
∫∞
−∞ u2K(u) du < ∞, and K :=

supu K(u) <∞.

Any function that satisfies Condition 1 is suitable for our
problems. Commonly used kernels are Gaussian Kernel,
Logistic Kernel, Uniform Kernel, and Epanechnikov Kernel,
summarized in Table 1 under column “K(u)”.

Given a bandwidth h > 0, and a kernel function K, we
follow notations in literature and denote, for any u ∈ R,
Kh(u) := K(u/h)/h, K(u) :=

∫ u

−∞ K(v) dv, Kh(u) :=
K(u/h). Then, against the quantile loss functon c(u) =
ru+ + (1− r)(−u)+ = |u| /2+ (r− 1/2)u, the smoothed
loss function obtained via convolution smoothing is

ch(u) := (c ∗Kh)(u)

=

∫ ∞

−∞
c(v)Kh(u− v) dv

=
h

2

∫ ∞

−∞

∣∣∣u
h
+ v
∣∣∣K(v) dv+

(
r − 1

2

)
u. (2)

Intuitively, the value ch(u) is a weighted average over u’s
neighbors, and the weights are given by the adjusted kernel
function Kh(·) so that a closer neighbor has a higher weight.
With previously mentioned kernel functions, the integral of
the first term in (2) has closed forms as shown under the
third column in Table 1.

To illustrate the impact of convolution smoothing, we visu-
alize ch in Figure 1. Mathematically, it can be shown that
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Table 1. Kernel Functions
Kernels K(u)

∫∞
−∞ |u/h+ v|K(v) dv Kh(u)

Gaussian 1√
2π

e
−u2

2

√
2
π e

− (u/h)2

2 + u/h(1− 2Φ(−u/h)) Φ(u/h)

Logistic e−u

(1+e−u)2
u/h+ 2 ln

(
1 + e−u/h

)
(1 + e−u/h)−1

Uniform 1{|u|≤1}
2

{
u2

2h2 + 1
2 , if |u/h| ≤ 1

|u/h| , o.w.
min{(u/h+ 1)/2, 1}1 {u/h ≥ −1}

Epanechnikov 3
4 (1− u2)1 {|u| ≤ 1}

{
− u4

8h4 + 3u2

4h2 + 3
8 , if |u/h| ≤ 1

|u/h| , o.w.

{
− u3

4h3 + 3u
4h + 1

2 , if |u/h| ≤ 1
1 {u/h ≥ 1} , o.w.
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(a) Bandwidth Impact
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(b) Structure Impact
Figure 1. Convolution Smoothing. r = 0.7

ch(·) is convex, epi-graphically converges to c(·) as h→ 0,
and second-order differentiable (Fernandes et al. 2021):

c′h(u) = Kh(u) + r − 1; c′′h(u) = Kh(u) ≥ 0.

These properties are graphically confirmed by Figure 1(a).
Specifically, in Figure 1(a), a smaller bandwidth leads to
a better approximation, demonstrating the impact of band-
width. Moreover, Figure 1(b) highlights the impact of kernel
function structure on approximation quality, i.e. a kernel
with lighter tails leads to a better approximation.

Similarly, the regression loss function ℓh(θ;x, y) := ch(y−
θ⊤x) possesses the same properties, and we provide a sum-
mary below for later reference.

Lemma 3.1 (Properties of ℓh). Suppose kernel function K
satisfies Condition 1. And define ℓh(θ;x, y) := ch(y −
θ⊤x), then function ℓh : Rd × X × Y → R satisfies the
following properties. For any θ,x, y,

1. function ℓh is second-order differentiable in θ with

∇ℓh(θ;x, y) =
[
Kh

(
θ⊤x− y

)
− r
]
· x;

∇2ℓh(θ;x, y) = Kh

(
y − θ⊤x

)
· xx⊤ ≽ 0;

2. function ℓh is r̄Bx =: L-Lipschitz continuous and
KB2

x/h =: β-smooth in θ with respect to ∥·∥2;

3. function ℓh is upper and lower bounded by affine func-
tions of ℓ,

ℓ(θ;x, y) ≤ ℓh(θ;x, y) ≤ ℓ(θ;x, y) +
1

2
hκ1.

Comparison to Moreau Envelope: Moreau Envelope
(Parikh et al. 2014) is a powerful tool to address nonsmooth-
ness and is widely utilized in DP context (Bassily et al. 2019,
Feldman et al. 2020, Bassily et al. 2021a). It approximates
an original nonsmooth function with a smooth function ob-
tained from infimal convolution cβ(u) := (f□gβ)(u) :=

infx{f(x) + gβ(u− x)} by fixing gβ as β
2 ∥·∥

2
2. As shown

in Figure 2, Moreau approximates a quantile function from
below. But when u is away from 0, the approximation gap
is large. In contrast, convolution smoothing approximates
a quantile function from above and can tolerate extreme
values of u better. Furthermore, Moreau leaves the param-
eter β freely chosen while convolution smoothing, recall
the definition ch(u) :=

∫
f(x) · gh(u− x) dx, allows us to

choose the g function in addition to bandwidth parameter
h, providing both structure flexibility and parameter flexi-
bility. Lastly, since convolution smoothing approximates
from above, it naturally provides an upper bound that leads
to tighter risk bounds. This idea is explicitly employed in
the proof of Theorem 3.6 part 2.

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8
Gaussian ConvSm (h=1)
Gaussian ConvSm (h=0.5)
Quantile Loss c(u)
Moreau Envelope (β=2)
Moreau Envelope (β=1)

Figure 2. Convolution Smoothing v.s. Moreau Envelope. r = 0.7

More General Nonsmooth Functions: Convolution
smoothing can also be applied to other nonsmooth func-
tions, such as piecewise linear functions with more than
two pieces, as shown in Figure 3. One can expect that the
smoothed function should possess similar properties. How-
ever, obtaining analytical results will require more effort
because of multiple pieces.

With the smooth approximation function from convolution,
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Figure 3. Smoothing Piecewise Linear Function

we next show that some standard differentially private algo-
rithms are suitable for DP-SCO under a quantile loss, and
can achieve (near) optimal excess generalizaiton risks.

3.2. DP-Stochastic Gradient Descent

The DP-Stochastic Gradient Descent (DP-SGD) algorithm
(Bassily et al. 2014) is based on classic stochastic gradient
descent by injecting a carefully calibrated Gaussian noise
into the gradient in each iteration. We apply DP-SGD to
smoothed quantile loss function ℓh rather than ℓ. The nuance
appears in Step 5 of Algorithm DP-SGD formally given
below.

Algorithm 1 DP-Stochastic Gradient Descent (DP-SGD)
Input: Private dataset D, privacy parameters ε ≤ 1,
δ ≥ 0, kernel function K with bandwidth h > 0, Lip-
schitz parameter L = r̄Bx, smoothness parameter β =
KB2

x/h, noise variance σ2 = 8L2 ln (1/δ)/ε2, step size
η > 0.

1: Set initial point θ̂h,1 = 0
2: for t = 1 to n2 − 1 do
3: Uniformly sample a record (x(t), y(t)) from D with

replacement
4: Sample a noise vector wt ∼ N (0, σ2Id×d)

5: θ̂h,t+1 ← θ̂h,t − η · (∇ℓh(θ̂h,t;x(t), y(t)) +wt)
6: end for
7: Return θ̂SGD

h ← 1
n2

∑n2

t=1 θ̂h,t

We now state privacy and excess generalization risk guaran-
tees.

Theorem 3.2. Algorithm DP-SGD is (ε, δ)-differentially
private.

The privacy guarantee follows from Bassily et al. (2020,
Theorem 5.1).

Now, we come to analyze the excess generalization risk.
Applying part 3 in Lemma 3.1 to the second term in (1), we

have:

R(DP-SGD;P) ≤ E
[
L(θ̂SGD

h )− L̂(θ̂SGD
h )

]
+ E

[
L̂h(θ̂

SGD
h )− L̂h(θ

∗)
]
+

1

2
hκ1.

It suffices to show upper bounds for the three terms sep-
arately. The key step is to show the uniform stability of
Algorithm DP-SGD w.r.t. ℓ. Since ℓ is L-Lipschitz continu-
ous, it remains to control the expected distance between two
returned vectors θ̂ and θ̂′ trained on a pair of neighboring
datasets. The distance can be controlled if loss function is
smooth, and step size is not too large. We formally state the
intermediate result in the following lemma.

Lemma 3.3. In Algorithm DP-SGD, suppose that η ≤
2/β, where β is the smoonthness parameter of ℓh. Then

Algorithm DP-SGD is
(

L2η·(1+n2)
n

)
-uniformly stable with

respect to ℓ(·;x, y) for any x, y.

The proof utilizes the non-expansiveness property of gradi-
ent update rules (Hardt et al., 2016). Combining Lemma 2.6
and Lemma 3.3, we successfully controlled the first term
in the excess generalization risk. The second term can be
bounded by a classic risk analysis of gradient descent with a
fixed step size. Moreover, bounding the third term amounts
to properly choosing bandwidth h that adapts to sample size
n. Combining these three parts, we arrive at another main
contribution of our work.

Theorem 3.4. Suppose that θ∗ ∈ B(Bθ). Let step size

η = Bθ/
√
2L2n3 + (dσ2 + L2 + κ1KB2

x/2)n
2 + 2L2n,

bandwidth h = ηKB2
x/2 for Algorithm DP-SGD, then, for

any distribution P over X × Y , we have

R(DP-SGD;P) ≤ O

(
max

{
1√
n
,

√
d ln (1/δ)

nε

})
.

This theorem confirms asymptotic optimality of Algorithm
DP-SGD with convolution smoothing. More importantly,
we will show in Section 3.4 that the rate is (near) opti-
mal, indicating that the approximation error by convolution
smoothing is controllable and does not harm convergence
rates.

3.3. Objective Perturbation

We further propose a differentially private algorithm based
on objective perturbation (Kifer et al. 2012), which is
formally described below. The algorithm boils down
to solving a regularized convex optimization problem
minθ∈Rd L̂OP

h (θ;D) := L̂h(θ;D) + λ ∥θ∥22 + b⊤θ
n with

a perturbed objective function by a noise vector b. Note
that the objective perturbation algorithm is applied to the
smoothed function L̂h instead of the original function L̂. As
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Algorithm 2 Objective Perturbation (OP)

Input: Private dataset D, privacy parameters ε > 0, δ ≥ 0,
kernel function K with bandwidth h > 0, Lipschitz parame-
ter L = r̄Bx, smoothness parameter β = KB2

x/h, variance
σ2 = L2 (8 ln (2/δ) + 4ε) /ε2

1: Set any λ ≥ β
nε

2: Sample a noise vector b ∼ N (0, σ2Id×d)

3: θ̂OP
h (b)← argminθ∈Rd L̂h(θ;D) + λ ∥θ∥22 +

b⊤θ
n

4: Return: θ̂OP
h (b)

a result, the algorithm preserves DP according to Kifer et al.
(2012, Theorem 2).

Theorem 3.5. Algorithm OP is (ε, δ)-differentially private.

Before we characterize the excess generalization risk of OP,
we introduce an additional condition on kernel functions.
Condition 2. The kernel function K : R → R+ has a
light tail, i.e., there exists a value v > 0 such that K(u) ≤
1/u3,∀ |u| ≥ v.

Theorem 3.6. Assume θ∗ ∈ B(Bθ). In Algorithm OP,

1. if we set λ = 1
Bθ

√
2L2

n + dσ2

n2 +
κ1KB2

x

2nε , h =
KB2

x

λnε ,
then, for any distribution P over X × Y , its excess
generalization risk satisfies

R(OP;P) ≤ O

(
max

{
1√
nε

,

√
d ln (1/δ)

nε

})
.

2. if kernel function K further satisfies Condition 2 and
the residue u := y−θ∗⊤x has a finite expected recipro-

cal Eu [1/ |u|] < ∞. Then, set λ = 1
Bθ

√
2L2

n + dσ2

n2 ,

h =
KB2

x

λnε , we will have

R(OP;P) ≤ O

(
max

{
1√
n
,

√
d ln (1/δ)

nε

})
,

when ε4 + d ln (1/δ)ε2 ≥ Ω( 1n ).

The proof follows the same proof idea for Theorem 3.4.
Specifically, uniform stability is a straightforward result of
the regularizer ∥·∥22; and shrinking ERM can be derived
from empirical risk analysis for regularized optimization
problems.

It is remarkable that OP can achieve optimal rates under
mild assumptions as shown in part 2 of Theorem 3.6, which
is not observed in nonsmooth DP-SCO literature. The addi-
tional condition on kernel functions further highlights the
importance of structure flexibility. In fact, the condition is
not restrictive since all kernels in Table 1 are qualified. The

optimality of OP naturally motivates a deeper analysis on
OP because the estimators obtained from OP are private M -
estimators satisfying first order conditions (FOCs). These
FOCs will play a critical role in private quantile regression
that will be discussed in Section 4.1

3.4. Lower Bounds

In this subsection, we prove that the convergence rate that
our proposed algorithm can achieve is (near) optimal up
to logarithmic factors ln d and ln 1/δ. Though previous
studies (Bassily et al. 2019, Asi et al. 2021) have explored
lower bounds for DP-SCO, they use mean estimation to
prove the lower bounds, which may not necessarily lead to a
lower bound for DP-SCO with quantile functions. To fill the
gap, we provide a detailed proof in the Appendix to show
the optimality of our algorithms. The optimality claim is
formally stated in the following theorem.

Theorem 3.7. The minimax risk of DP-SCO under a quan-
tile loss function is given as

inf
π∈Fε,δ

sup
P∈P(X×Y)

R(π;P) ≥ Ω̃

(
max

{
1√
n
,

√
d

nε

})
,

where Ω̃ hides the term ln d in the denominator of the second
term in max operator; Fε,δ is the set of all (ε, δ)-DP map-
pings from dataset space to estimator space; and P(X ×Y)
is the set of all distributions supported on X × Y .

The proof follows a bootstrapping idea in Bassily et al.
(2019) but we customize dataset construction. This result
confirms that our algorithms with convolution smoothing
are (near) optimal. The lower bound in Theorem 3.7 is
state-of-the-art in nonsmooth DP-SCO literature, and how
to close the gap remains an interesting open question.

4. Applications
4.1. The Private Quantile Regression

Linear quantile regression is one of the most basic and
important methods to understand the heterogeneous effect
of x on y for a prefixed quantile level r. We assume the
underlying true data generating process follows a linear
model taking the form y = ⟨θ⋆,x⟩+ ϵ⋆(x) with a prefixed
finite θ⋆ but without any restrictions on the endogenous
error term ϵ⋆(x). Thus, y could be unbounded because
of the error term, even when x is bounded. Under the
linearity assumption, the data generating process can be
reformulated as y = ⟨θ∗,x⟩ + ϵ(x) with F−1

ϵ|x (r) = 0
(Koenker et al. 2017), where Fϵ|x is the conditional cumu-
lative distribution function of ϵ(x) conditional on x; and
θ∗ = argminθ∈Rd L(θ;P) = E(x,y)∼P

[
c(y − θ⊤x)

]
. Us-

ing the reformulated form is common in quantile regression
literature (Chen et al. 2020, He et al. 2021), and we follow
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this convention.

Of particular interest in private quantile regression is to
find a private estimator to θ∗. Note that the formulation
is exactly the same as SCO we considered in the previ-
ous section. Thus, we can employ algorithms in Section 3
to generate DP quantile estimators. Since Algorithm OP
is optimal and always returns a private minimizer, we re-
strict our attention to OP only. The measurement of in-
terest is the mean absolute error EOP

[∥∥∥θ̂OP
h − θ∗

∥∥∥
2

]
. De-

note θ̂#
h = argminθ∈Rd L̂#

h (θ) := L̂h(θ) + λ ∥θ∥22, and
θ∗
h = argminθ∈Rd Lh(θ), Then, the estimation error can

be decomposed into three parts,

EOP

[∥∥∥θ̂OP
h − θ∗

∥∥∥
2

]
≤ EOP

[∥∥∥θ̂OP
h − θ̂#

h

∥∥∥
2

]
+
∥∥∥θ̂#

h − θ∗
h

∥∥∥
2
+ ∥θ∗

h − θ∗∥2 ,∀D,

where the three parts are privacy-induced error, estimation
error due to sampling, and approximation error due to con-
volution smoothing, respectively.

Before proceeding, we make some mild assumptions about
the true data generating process.

Assumption 4.1. The unknown underlying joint distribution
P of (x, ϵ(x)) satisfies

• (Standardized x): x1 ≡ 1, and E[xi] = 0,∀i =
2, . . . , d.

• (Lipschitz continuous pdf): For any x ∈ X , the
conditional pdf fϵ|x of ϵ(x) exists, and is l1-Lipschitz
continuous.

• (Locally strictly positive slope): There exists a con-
stant f > 0 such that fϵ|x (0) ≥ f , for all x ∈ X .

• (Widely spread x): Matrix Σ := Ex

[
xx⊤] ≻ 0 is

positive definite, and has a minimal eigenvalue ρ1 > 0.

The first assumption incorporates an intercept term and does
not lose generality. The second assumption is mild as it
at least admits Gaussian noise ϵ that is independent of x.
The third assumption ensures the uniqueness of θ∗. The
last assumption is common in literature to help improve
estimation accuracy as one can expect to observe x along
all directions with reasonable probabilities. Now, we are
ready to control the three terms.

Lemma 4.2. Suppose θ∗ ∈ B(Bθ) and Assumption 4.1
holds. Let bandwidth h > 0 be small enough such that
f − hl1(κ1 +

√
B3

xκ2/ρ1) > 0. Then, we have

∥θ∗
h − θ∗∥2 ≤

h2l1κ2

ρ1
(
f − hl1κ1

) .

This lemma confirms that convolution smoothing does not
significantly affect estimation, and the error reduces to 0 at
a quadratic rate in h. The proof exploits the special structure
of the quantile loss function.

Lemma 4.3. Suppose θ∗ ∈ B(Bθ). For any dataset
D ∼ Pn and P that satisfies Assumption 4.1, if λ ≍
1
Bθ
·
√

κ1KB2
x

nε + dσ2

n2 is set as the same value in Theorem

3.6 part 1, then the estimator θ̂OP
h given by Algorithm OP

satisfies

EOP

[∥∥∥θ̂OP
h − θ̂#

h

∥∥∥
2

]
≲

LBθ

Bx

√
κ1K

·
√

d ln (1/δ)

nε
,

where κ1 and K are values induced from kernel function.

The proof exploits strong convexity of L̂OP
h .

Lemma 4.4. Suppose θ∗ ∈ B(Bθ). Under Assumption 4.1,
if we set h ≤ o(1) and λ ≤ o(1) such that B2

θλ
2 ≳ h2l1κ2,

then with probability at least 1−γ,∀γ ∈ (0, 1) over random
draw of samples, we have

∥∥∥θ̂#
h − θ∗

h

∥∥∥
2
≲

1

ρ1f
·

(
L

√
d+ ln (1/γ)

n
+Bθλ

)
.

The proof sketch is as follows. We first notice that proving
the lemma is equivalent to proving D̂#

h (δ,θ∗
h) := L̂

#
h (θ

∗
h +

δ)−L̂#
h (θ

∗
h) > 0,∀δ ∈ ∂B(r0) := {δ ∈ Rd : ∥δ∥2 = r0}

with a radius r0 chosen as the value on the r.h.s. of the
inequality in Lemma 4.4 (Wainwright 2019, Lemma 9.21).
We then obtain a lower bound on D̂#

h (δ,θ∗
h), which is a

positive term minus some terms. And these subtrahend
terms can be further upper bounded through Rademacher
Complexity and covering arguments. With vanishing h and
λ, the overall lower bound is finally found to be strictly
positive with high probability.

Combining the preceding three lemmas, we can derive the
following upper bound for the overall estimation error.
Theorem 4.5. Let K be a kernel function satisfying Con-
dition 1, and assume privacy parameter δ ≍ n−w for some

w > 0. In Algorithm OP, if λ ≍ 1
Bθ
·
√

κ1KB2
x

nε + dσ2

n2 and
h = KB2

x/(λnε) as the same values in Theorem 3.6 part
1, then for any distribution P that satisfies Assumption 4.1,
with probability at least 1− γ,∀γ ∈ (0, 1) over the random
draw of dataset D, the private estimator θ̂OP

h obtained from
Algorithm OP satisfies

EOP

[∥∥∥θ̂OP
h − θ∗

∥∥∥
2

]
≲

1

ρ1f
·max

{√
d

n
,

√
d ln (1/δ)

nε

}
,

where we omit an additive term
√
ln (1/γ)/n in the first

term of the max operator.
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The Theorem gives an upper bound on estimation error
w.r.t. ∥·∥2.The requirement on δ ensures B2

θλ
2 ≳ h2l1κ2

so that we can employ Lemma 4.4. Dependencies on other
constants are omitted. It is well known that, by Bayes risk
arguments, the statistical estimation error is at order

√
d/n.

Our derived bound introduces an additional term involving
privacy parameters. To our best knowledge, our work is the
first to characterize the estimation error of a private quantile
estimator in DP context.

4.2. The Private Newsvendor Problem

The Newsvendor problem is the most fundamental problem
in inventory control. A newsvendor must decide an order
quantity q before daily demand y is realized. After the de-
mand is realized, if q ≤ y, an underage cost cu · (y− q) will
be incurred; if q > y, an overage cost co · (q − y) will be
incurred, where cu, co > 0 are the unit underage cost and
the unit overage cost, respectively. The newsvendor aims
to minimize the expected cost minq∈R Ey [C(y − q)] with
C(u) := cu·u++co·(−u)+ = (cu+co)·c(u), where c(u) is
the cu

cu+co
-th quantile loss function. The private newsvendor

problem further requires the order quantity q to be differ-
entially private. When demand y follows the same linear
model in Section 4.1, we are safe to restrict the ordering
rule to a linear form q = θ̂⊤x (Ban & Rudin 2019). Thus,
solving a private newsvendor problem amounts to finding a
private estimator θ̂ to minimize the excess expected cost

C(θ̂;P) := (cu + co) ·
[
Eθ̂,(x,y)∼P

[
c(y − θ̂⊤x)

]
− E(x,y)∼P

[
c(y − θ∗⊤x)

] ]
,

Note that the excess expected cost is the same as that of a
DP-SCO under a quantile loss function, up to a constant
factor cu + co. Hence, all proposed algorithms in Section 3
are suitable for the private newsvendor problem. Therefore,
we have the following conclusions.
Theorem 4.6. 1. Running Algorithm DP-SGD with the

same settings as in Theorem 3.4 for the private
newsvendor problem yields

C(SGD;P) ≤ cu+o·O

(
max

{
1√
n
,

√
d ln (1/δ)

nε

})
,

where cu+o := cu + co.

2. Running Algorithm OP with the same settings as in
part 2 of Theorem 3.6 for the private newsvendor prob-
lem yields

C(OP;P) ≤ cu+o ·O

(
max

{
1√
n
,

√
d ln (1/δ)

nε

})
,

when corresponding assumptions in Theorem 3.6 part
2 are satisfied, where cu+o := cu + co.

These statements are corollaries of results in Section 3, and
no proof is needed. Moreover, the differential privacy of
order quantity q is ensured by DP’s post-processing lemma.

5. Experiments
We run simulations on synthetic datasets to demonstrate
our theoretical findings empirically. Seven algorithms are
implemented, including a non-private regularized model
minθ∈Rd L̂(θ) + λ ∥θ∥22, our proposed private algorithms
OP and DP-SGD, an empirical (DP-)SGD without smooth-
ing, Moreau envelope (Bassily et al. 2019, Theorem 4.4,
Algorithm 1), Phased-ERM (Feldman et al. 2020, Theorem
4.8, Algorithm 3), and Phased-SGD (Bassily et al. 2021a,
Theorem 5, Algorithm 4). We examine the excess gener-
alization risk of an estimator θ̂ relative to the risk of true
optimal θ∗, i.e., L(θ̂)−L(θ∗)

L(θ∗) , and the relative estimation

error
∥θ̂−θ∗∥

2

∥θ∗∥2
in Figure 4, 5 (exogenous error term) and

Figure 6, 7 (endogenous error term). Shadow areas represent
standard deviations.
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Figure 4. Relative excess generalization risks. Data generating pro-
cess follows y = 10+5x1−2x2+ϵ, where x1 ∼ N (0, 22), x2 ∼
N (0, 32) with (x1, x2) ∈ B(Bx), Bx = 10, and ϵ ∼ N (0, 32).
Quantile level r = 0.7, and in this case θ∗ = (11.41, 5,−2). We
set Bθ = 2 ∥θ∗∥2. Privacy parameters ε is set accordingly, and
δ = 10−2. Logistic kernel is used. Simulations are repeatedly run
50 times with gradually increasing sample size n.
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Figure 5. Relative estimation errors. Settings are the same as in
Figure 4.

We can see from Figure 4 that under all privacy levels, our
convolution smoothing based algorithms OP and DP-SGD
outperform existing private methods, and are as good as
empirical SGD without smoothing. This is because our
approaches exploit the special structure of a quantile loss
function explicitly, while others do not. Nevertheless, the au-
thors still respect the universal applicability of other existing
methods in tackling nonsmoothness, since our convolution
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Figure 6. Relative excess generalization risks. Settings are the
same as in Figure 4, except ϵ(x) = N (0, 32)+x1−x2+ |x1x2|.
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Figure 7. Relative estimation errors. Settings are the same as in
Figure 6.

smoothing is exclusively designed for a quantile loss func-
tion. In Figure 5, we show the relative estimation errors,
and our algorithms still perform better. When the error term
is endogenous (Figure 6 and 7), trends remain the same. We
defer other large-scale simulation results to Appendix C.

For completeness, we report computational time for solv-
ing models in Table 2. Remarkably, the solving time of
Algorithm OP does not increase massively compared to its
non-private counterpart, while other methods’ solving time
increases significantly.

6. Conclusions and Future Directions
This work examined differentially private stochastic convex
optimization under a quantile loss function. To deal with the
nonsmoothness of a quantile function, we proposed to ap-
proximate it with a smooth function obtained by convolution
smoothing. Convolution smoothing enjoys both structure
and parameter flexibility, resulting in a better approximation
over existing methods. Based on the smoothed function, we
applied DP-SGD and OP, and studied their performances
theoretically and empirically. We found that DP-SGD and
OP can both achieve (near) optimal excess generalization
risks, and are practically appealing. We also derived an
estimation error in parameters.

Following our idea, it would be interesting to apply convo-
lution smoothing to more general nonsmooth losses such
as general piecewise linear functions, and design private
algorithms and derive analytical results accordingly.
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A. Proofs for Section 3
A.1. Proof of Lemma 3.1

Proof. Gradients and Hessian matrix in part 1 of this Lemma can be easily calculated from function ch(·).

As for part 2, the L-Lipschitz continuity is by noticing supθ,x,y ∥∇ℓh(θ;x, y)∥2 = r̄Bx; the β-smoothness
is by noticing the supremum of maximum eigenvalue of Hessian matrix supθ;x,y λmax

(
∇2ℓh(θ;x, y)

)
=

supθ;x,y λmax

(
Kh

(
y − θ⊤x

)
· xx⊤) ≤ KB2

x/h.

To prove part 3, it is equivalent to show c(u) ≤ ch(u) ≤ c(u) + 1
2hκ1,∀u ∈ R. Recall that c(u) = |u| /2 + (r − 1/2)u.

Let gh(u) := ch(u) − c(u), we have g′h(u) = Kh(u) ≥ 0,∀u < 0 and g′h(u) = Kh(u) − 1 ≤ 0,∀u > 0. Since gh(·)
is continuous on R, it takes maximum value at u = 0 with gh(0) = ch(0) − c(0) = h

2

∫∞
−∞ |v|K(v) dv, which proves

the right-hand-side in part 3. Moreover, this upper bound is tight by our argument. It remains to show, for any h > 0,
limu→∞ gh(u) ≥ 0 and limu→−∞ gh(u) ≥ 0. To prove this result, we can first calculate gh(u) explicitly:

2gh(u) =

∫ ∞

−∞
|u+ vh|K(v) dv− |u| = 2h

∫ ∞

|u|/h
vK(v) dv+u ·

∫ u/h

−u/h

K(v) dv− |u| , ∀u ∈ R.

We notice that, when u tends to positive or negative infinity, both limits of gh(u) exist and equal 0, which completes the
proof.

A.2. Proof of Lemma 3.3

Proof. Because of L-Lipschitz continuity of ℓ, we have

ESGD

[
ℓ(θ̂SGD

h (D);x, y)− ℓ(θ̂SGD
h (D′);x, y)

]
≤ L · E

[∥∥∥θ̂SGD
h (D)− θ̂SGD

h (D′)
∥∥∥
2

]
, ∀x, y,D ∼ D′;

therefore, it suffices to control the expected deviation between returned vectors trained on two neighboring datasets. For
notation brevity, the superscribe SGD and dependences on D are omitted throughout this proof, and we use θ̂h := θ̂SGD

h (D)
and θ̂′

h := θ̂SGD
h (D′). We follow the same idea in Bassily et al. (2019, Lemma 3.4) to complete our proof. We use θ̂h,t and

θ̂′
h,t to represent vectors in t-th iteration trained on D and D′, respectively. Firstly, it can be shown that, when step size

η ≤ 2/β, we have

ESGD

[∥∥∥θ̂h,t − θ̂′
h,t

∥∥∥
2

]
≤ 2Lηt

n
, ∀t = 1, . . . , n2. (3)

This can be proved by induction. When t = 1, by the setting of initial points θ̂h,1 = θ̂′
h,1 = 0, obviously it is true. Then

suppose that it is true for t-th iteration, it remains to check (t+1)-th iteration. Let us fix a sequence of noise vector {wt}n
2

t=1,
then, ∥∥∥θ̂h,t+1 − θ̂′

h,t+1

∥∥∥
2
=
∥∥∥(θ̂h,t − η(∇ℓh(θ̂h,t;x(t), y(t)) +wt)

)
−
(
θ̂′
h,t − η(∇ℓh(θ̂′

h,t;x
′
(t), y

′
(t)) +wt)

)∥∥∥
2

=
∥∥∥(θ̂h,t − η · ∇ℓh(θ̂h,t;x(t), y(t))

)
−
(
θ̂′
h,t − η · ∇ℓh(θ̂′

h,t;x
′
(t), y

′
(t))
)∥∥∥

2
(4)

Notice that (x(t), y(t)) and (x′
(t), y

′
(t)) are uniformly drawn from D and D′, it implies that, with probability 1/n, we

have (x(t), y(t)) ̸= (x′
(t), y

′
(t)); and with probability 1 − 1/n, we have (x(t), y(t)) = (x′

(t), y
′
(t)). When not equal,

(4) ≤
∥∥∥θ̂h,t − θ̂′

h,t

∥∥∥
2
+ 2ηL because of triangular inequality. When equal, gradient update rule is 1-expansive, i.e.,

(4) ≤
∥∥∥θ̂h,t − θ̂′

h,t

∥∥∥
2

(Hardt et al. 2016, Lemma 3.6). Consequently, taking expectation over the randomness of algorithm,
we have

ESGD

[∥∥∥θ̂h,t+1 − θ̂′
h,t+1

∥∥∥
2

]
≤
(
1− 1

n

)
ESGD

[∥∥∥θ̂h,t − θ̂′
h,t

∥∥∥
2

]
+

1

n
ESGD

[∥∥∥θ̂h,t − θ̂′
h,t

∥∥∥
2
+ 2ηL

]
≤ ESGD

[∥∥∥θ̂h,t − θ̂′
h,t

∥∥∥
2

]
+

2ηL

n

≤ 2ηL(t+ 1)

n
.

11



DPSCO under a Quantile Loss Function

Therefore, by induction, our argument is true. Recall that θ̂h = 1
n2

∑n2

t=1 θ̂h,t is the averaged vector over all iterations, thus,

ESGD

[∥∥∥θ̂h − θ̂′
h

∥∥∥
2

]
≤ 1

n2

n2∑
t=1

ESGD

[∥∥∥θ̂h,t − θ̂′
h,t

∥∥∥
2

]
≤ 1

n2

n2∑
t=1

2ηLt

n
=

(1 + n2)ηL

n

A.3. Proof of Theorem 3.4

Proof. The excess generalization risk is

R(SGD;P) ≤ ED,SGD

[
L(θ̂SGD

h )− L̂(θ̂SGD
h )

]
+ ED,SGD

[
L̂h(θ̂

SGD
h )− L̂h(θ

∗)
]
+

1

2
hκ1.

By Lemma 3.3, we know that θ̂SGD
h is uniformly stable w.r.t. ℓ, and therefore according to Lemma 2.6, the first term is upper

bounded by L2η·(1+n2)
n . Now, we fix a dataset D and come to bound the second term:

ESGD

[
L̂h(θ̂

SGD
h )− L̂h(θ

∗)
]
≤ 1

n2
· ESGD

 n2∑
t=1

(
L̂h(θ̂h,t)− L̂h(θ

∗)
)

≤ 1

n2
· ESGD

 n2∑
t=1

〈
θ̂h,t − θ∗,∇L̂h(θ̂h,t)

〉 .

=
1

n2
· ESGD

 n2∑
t=1

〈
θ̂h,t − θ∗,∇ℓh(θ̂h,t,x(t), y(t)) +wt

〉
≤ 1

n2
· ESGD

∥θ∗∥22
2η

+
η

2

n2∑
t=1

∥∥∥∇ℓh(θ̂h,t,x(t), y(t)) +wt

∥∥∥2
2

 ,

≤
∥θ∗∥22
2n2η

+
ηL2

2
+

ηdσ2

2
,

where first two lines are due to convexity of L̂h; the third line comes from the fact that wt is drawn from a zero-mean
Gaussian distribution and is independent of θ̂h,t, and∇ℓh(θ̂h,t;x(t), y(t)) is an unbiased gradient to∇L̂h(θ̂h,t); the forth
line follows from a classic gradient descent analysis (Shalev-Shwartz & Ben-David 2014, Lemma 14.1) and from the
gradient descent update rule in our algorithm; the last line is due to L-Lipschitz continuity of ℓh and Gaussian vector’s upper
bounds.

Plugging back into the risk expression, letting h = ηKB2
x/2 (which ensures ηβ = 2, making Lemma 3.3 hold), and

replacing ∥θ∗∥2 with Bθ, we obtain

R(SGD;P) ≤ L2η · (1 + n2)

n
+

B2
θ

2n2η
+

ηL2

2
+

ηdσ2

2
+

ηκ1KB2
x

4
, ∀η ≥ 0.

It is easy to find η∗ = Bθ/
√
2L2n3 + (dσ2 + L2 + κ1KB2

x/2)n
2 + 2L2n minimizes the r.h.s, and gives

R(SGD;P) ≤ BθL

√
2

n
+

1 + 8d ln (1/δ)/ε2 + κ1KB2
x/2

n2
+

2

n3
≲ max

{
1√
n
,

√
d ln (1/δ)

nε

}
.

Lastly, we note that the above reasoning can be applied to any distribution P over X × Y , which completes the proof.

A.4. Proof of Theorem 3.5

Proof. The Theorem directly follows from Kifer et al. (2012, Theorem 2). According to Kifer et al. (2012, Theorem 2), the
minimizer θ̂OP

h (b) will satisfy (ε, δ)-DP if1 (1) Hessian matrix ∇2L̂h is continuous and at most rank-1 (2) loss function ℓh

1conditions are rephrased to be consistent with our context

12



DPSCO under a Quantile Loss Function

is L-Liptschiz continuous and β-smooth (3) noise vector b is sampled from a multivariate Gaussian N (0, σ2Id×d) with
variance σ2 ≥ L2 (8 ln (2/δ) + 4ε) /ε2; (4) and the regularization coefficient λ ≥ β/(nε). It is easy to check that all four
conditions are satisfied in our settings.

A.5. Proof of Theorem 3.6

Before proceeding, we summarize all notations for analyzing objective perturbation algorithm in Table 3.

Table 3. Notations for Objective Perturbation
Type Description Abbr. Functions Minimizers

Empirical ERM L̂(θ) 1
n

∑n
i=1 ℓ(θ;xi, yi) θ̂

Regularized ERM L̂#(θ) 1
n

∑n
i=1 ℓ(θ;xi, yi) + λ ∥θ∥22 θ̂#

Private regularized ERM L̂OP(θ; b) 1
n

∑n
i=1 ℓ(θ;xi, yi) + λ ∥θ∥22 +

b⊤θ
n θ̂OP

Smoothed ERM L̂h(θ)
1
n

∑n
i=1 ℓh(θ;xi, yi) θ̂h

Regularized ERM L̂#
h (θ)

1
n

∑n
i=1 ℓh(θ;xi, yi) + λ ∥θ∥22 θ̂#

h

Private regularized ERM L̂OP
h (θ; b) 1

n

∑n
i=1 ℓh(θ;xi, yi) + λ ∥θ∥22 +

b⊤θ
n θ̂OP

h

Proof. •We first prove part 1 in the Theorem. It suffices to separately bound excess generalization risk’s three terms:

R(OP;P) ≤ ED,OP

[
L(θ̂OP

h )− L̂(θ̂OP
h )
]
+ ED,OP

[
L̂h(θ̂

OP
h )− L̂h(θ

∗)
]
+

1

2
hκ1. (5)

In following analysis, we notationally suppress the dependences unless explicitly manipulating D and b.

1. Because L-Lipschitz continuity of ℓ implies ℓ(θ̂OP
h (D)) − ℓ(θ̂OP

h (D′)) ≤ L
∥∥∥θ̂OP

h (D)− θ̂OP
h (D′)

∥∥∥
2
, it suffices

to control the distance between minimizers trained on two neighboring datasets D ∼ D′. By classic stability
analysis for strongly convex optimization problem with a regularizer ∥·∥22 (Bousquet & Elisseeff, 2002), we have∥∥∥θ̂OP

h (D)− θ̂OP
h (D′)

∥∥∥
2
≤ 2L

nλ , ∀D ∼ D
′, b. Therefore, Algorithm OP is 2L2

nλ -uniform stable w.r.t. ℓ. By Lemma 2.6,
we know that

ED,OP

[
L(θ̂OP

h )− L̂(θ̂OP
h )
]
≤ 2L2

nλ
. (6)

2. We now fix a dataset D and a noise vector b, and come to bound L̂h(θ̂
OP
h )− L̂h(θ

∗). By strong convexity of L̂OP
h and

Cauchy’s inequality, we have

λ
∥∥∥θ̂#

h − θ̂OP
h

∥∥∥2
2
≤ L̂OP

h (θ̂#
h )− L̂OP

h (θ̂OP
h ) = L̂#

h (θ̂
#
h )− L̂#

h (θ̂
OP
h ) +

b⊤θ̂#
h

n
− b⊤θ̂OP

h

n
≤
∥b∥2

∥∥∥θ̂#
h − θ̂OP

h

∥∥∥
2

n
,

which gives
∥∥∥θ̂#

h − θ̂OP
h

∥∥∥
2
≤ ∥b∥2

nλ . We further notice that

L̂h(θ̂
OP
h )− L̂h(θ

∗) ≤ L̂#
h (θ̂

OP
h )− L̂#

h (θ̂
#
h ) + λ

(
∥θ∗∥22 −

∥∥∥θ̂OP
h

∥∥∥2
2

)
≤

[
L̂OP
h (θ̂OP

h )− b⊤θ̂OP
h

n

]
−

[
L̂OP
h (θ̂OP

h )− b⊤θ̂OP
h

n

]
+ λ ∥θ∗∥22

≤
∥b∥2 ·

∥∥∥θ̂#
h − θ̂OP

h (b)
∥∥∥
2

n
+ λ ∥θ∗∥22

≤
∥b∥22
n2λ

+ λ ∥θ∗∥22 ,
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DPSCO under a Quantile Loss Function

where the first inequality is because θ̂#
h is the minimizer to L̂#

h ; the second inequality is by plugging in minimizer θ̂OP
h

into the second bracket, and dropping a negative term −λ
∥∥∥θ̂OP

h

∥∥∥2
2
. The reasoning here holds for any D and b, and

therefore we have

ED,OP

[
L̂h(θ̂

OP
h )− L̂h(θ

∗)
]
≤

Eb

[
∥b∥22

]
n2λ

+ λ ∥θ∗∥22 ≤
dσ2

n2λ
+ λB2

θ . (7)

Plugging (6) and (7) back into (5), we obtain

R(OP;P) ≤ 2L2

nλ
+

dσ2

n2λ
+ λB2

θ +
1

2
hκ2, ∀λ > 0.

Lastly, setting h =
KB2

x

λnε , and optimizing over λ, we get the optimal λ∗ = 1
Bθ

√
2L2

n + dσ2

n2 +
κ1KB2

x

2nε , and

R(OP;P) ≤ 2Bθ

√
2L2

n
+

dL2(8 ln (2/δ) + 4ε)

n2ε2
+

κ1KB2
x

2nε
≲ max

{
1√
nε

,

√
d ln (1/δ)

nε

}
,

which completes the proof for part 1.

• As to part 2, we decompose the excess generalization risk of OP in a different way:

R(OP;P) = ED,OP

[
L(θ̂OP

h )− L̂(θ̂OP
h )
]
+ ED,OP

[
L̂(θ̂OP

h )− L̂(θ∗)
]
, (by (1))

≤ ED,OP

[
L(θ̂OP

h )− L̂(θ̂OP
h )
]
+ ED,OP

[
L̂h(θ̂

OP
h )− L̂(θ∗)

]
, (since ℓh ≥ ℓ)

= ED,OP

[
L(θ̂OP

h )− L̂(θ̂OP
h )
]
+ ED,OP

[
L̂h(θ̂

OP
h )− L̂h(θ

∗)
]
+ ED

[
L̂h(θ

∗)− L̂(θ∗)
]

= ED,OP

[
L(θ̂OP

h )− L̂(θ̂OP
h )
]
+ ED,OP

[
L̂h(θ̂

OP
h )− L̂h(θ

∗)
]
+ Lh(θ

∗)− L(θ∗). (8)

The first and second terms are well-studied above. We only need to focus on the third term. Note that Lh(θ
∗)− L(θ∗) =

E(x,y)∼P
[
ch(y − θ∗⊤x)− c(y − θ∗⊤x)

]
=: Ex,ϵ(x) [gh(ϵ(x))]. From the proof of part 3 of Lemma 3.1, we know function

gh(u) has a closed-form:

gh(u) = h

∫ ∞

|u|/h
vK(v) dv+

1

2

(
u ·
∫ u/h

−u/h

K(v) dv− |u|

)
, ∀u ∈ R

≤ h

∫ ∞

|u|/h
vK(v) dv (since negative in parenthese)

≤ h

∫ ∞

|u|/h

1

v2
dv (K(·) light tail & h small enough)

≤ h2

|u|
.

As a result, the difference Lh(θ
∗)− L(θ∗) is upper bounded as

Lh(θ
∗)− L(θ∗) ≤ h2 · Ex,ϵ(x)

[
1

|ϵ(x)|

]
=: h2M, (9)

which is well-defined by our assumption. Substituting (6), (7), (9) back into (8) and setting h =
KB2

x

λnε , we obtain:

R(OP;P) ≤ 2L2

nλ
+

dσ2

n2λ
+ λB2

θ +
K2B4

xM

λ2n2ε2
, ∀λ > 0.

Lastly, set λ = 1
Bθ

√
2L2

n + dσ2

n2 , we get

R(OP;P) ≤ 2Bθ

√
2L2

n
+

dσ2

n2
+

K2B4
xMB2

θ

2L2nε2 + dσ2ε2
.
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DPSCO under a Quantile Loss Function

To ensure the first term on the r.h.s. dominates the second term, it suffices to have
√

1
n + dσ2

n2 ≥ Ω
(

1
nε2

)
. A sufficient

condition to make it true is ε4 + d ln (1/δ)ε2 ≥ Ω( 1n ). Consequently,

R(OP;P) ≤ O

(
1√
n
+

√
d ln (1/δ)

nε

)
,

if ε4 + d ln (1/δ)ε2 ≥ Ω( 1n ). It is easy to check, under these parameters, bandwidth h→ 0 as n→∞, validating (9).

A.6. Proof of Theorem 3.7

Proof. The proof includes four steps. In first three steps, we gradually find out better lower bounds for the minimax risk
of a (ε, δ)-DP algorithm A : Xn × Yn → C, where C := B(Bθ). These lower bounds finally lead to a minimax risk of a
(ε′, δ′)-DP d-dimensional classification problem. The sample complexity of DP classification problems for achieving a
certain accuracy is well studied, from which we can derive the accuracy under a specific sample size. Consequently, the
accuracy provides an overall lower bound.

1. Step 1: relax the feasible region of the inf problem & restrict the feasible region of the sup problem
We first lower bound the minimax risk by relaxing the feasible region of the inf problem. Note that, in the minimax
risk infA∈Fε,δ

supP∈P(X×Y)R(A;P), the inf is taken over Fε,δ, a set of mappings from Xn × Yn to an Euclidean
ball C = B(Bθ) :=

{
θ ∈ Rd : ∥θ∥2 ≤ Bθ

}
. If we relax the output space from an Euclidean ball C to a superset

C1 :=
{
θ ∈ Rd : |θj | ≤ Bθ,∀j = 1 . . . d

}
a box set, the corresponding feasible set of mappings F1

ε,δ , which includes
all DP mappings from Xn × Yn to C1, is therefore much larger. Thus, we get a lower bound by relaxing the feasible
region of the inf problem:

inf
A∈Fε,δ

sup
P∈P(X×Y)

R(A;P) ≥ inf
A∈F1

ε,δ

sup
P∈P(X×Y)

R(A;P) (10)

We further discover a lower bound by restricting the feasible region of the sup problem. Specifically, we restrict P to a
smaller set of probability measures PS where S ∈ Xn × Yn is a n-samples dataset with a specific structure, and PS is
a distribution generated from the given dataset S by assigning each sample probability 1/n:

(10) ≥ inf
A∈F1

ε,δ

sup
PS

R(A;PS)

The inequality holds as S will be restricted to a specific structure to be elaborated later. As a result of that, PS is
optimized over a more restrictive region, leading to a smaller objective value. Therefore, the r.h.s in above inequality is
a lower bound.

The dataset S is constructed as follows: let contextual matrix X := {xi}ni=1 be an n× d matrix, where xi ∈ X :=
{−Bx√

d
, Bx√

d
}d. Denote the average vector x = 1

n

∑n
i=1 xi, and its sign vector sign(x) := (sign(x1), . . . , sign(xd)) ∈

{−1, 1}d. Then, the dataset S is constructed as

S = (X · sign(x) ·Bθ,X).

By our construction, dataset S depends only on contextual matrix X , therefore, the supPS
is actually optimizing over

X . We will use S(X) to indicate such dependence when necessary. We conclude this step by writing out the lower
bound explicitly for later reference:

inf
A∈Fε,δ

sup
P∈P(X×Y)

R(A;P) ≥ inf
A∈F1

ε,δ

sup
PS

R(A;PS)

= inf
A∈F1

ε,δ

sup
PS

EA,D∼Pn
S
[L(A(D);PS)]− min

θ∈C1

L(θ;PS), (11)

whereR(A;PS) is the excess generalization risk of A under distribution PS .
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2. Step 2: reduce excess generalization risk to excess empirical risk
We notice that, since PS is an n-valued distribution generated from S , for any θ, the population risk L(θ;PS) w.r.t. PS
is equal to an empirical risk L̂(θ;S) w.r.t. S by definitions of L and L̂. Therefore,

(11) = inf
A∈F1

ε,δ

sup
PS

EA,D∼Pn
S

[
L̂(A(D);S)

]
− min

θ∈C1

L̂(θ;S)

= inf
A∈F1

ε,δ

sup
PS

EA

[
ED∼Pn

S

[
L̂(A(D);S)

]]
− min

θ∈C1

L̂(θ;S) (12)

The inner expectation in the first term is taken over D ∼ Pn
S , that is, we i.i.d. draw n samples with replacement from a

given S. Thus, we can treat “subsampling D from S, then run A(D)” as a new algorithm B, which takes S as the
input and outputs an estimator A(D). By a mild revision of notations only, we have

(12) = inf
B: subsampling, then run A,
where A ∈ F1

ε,δ

sup
S

EB

[
L̂(B(S);S)

]
− min

θ∈C1

L̂(θ;S). (13)

It would be helpful to check whether algorithm B is DP. Following the definition of DP, we consider two neighboring
dataset T := ((x1, y1), . . . , (xk, yk), · · · , (xn, yn)) and T ′ := ((x1, y1), . . . , (x

′
k, y

′
k), · · · , (xn, yn)) that differ in

k-th sample only. Datasets T and T ′ here not necessarily follow the specific structure in Step 1; instead, they are
conceptual here for checking if B is DP only. Denote the set I ∈ {1, . . . , n}n as an index set with indices from i.i.d.
sampling with replacement, and let T (I) be the resulting dataset with index set I. Denote the number of different
samples between T (I) and T ′(I) as ∆(I) := |T (I)\T ′(I)|. As T and T ′ are neighboring and differ in k-th sample
only, the value ∆(I) follows an n-trial Binomial distribution with success probability 1/n; thus, it should be small
with high probability. Specifically, we should have

PrI [∆(I) ≥ z + 1] = Pr [Binomial(n, 1/n) ≥ z + 1] ≤ exp
(
−z2/3

)
, ∀z > 0,

where the inequality follows from multiplicative Chernoff upper tail bound. Equivalently, the above implies that
∆(I) ≥ 3

√
ln (1/γ) + 1 := u with probability at most γ. Now, we are ready to check if B is DP by definition: for any

subset U of the output space of B(T ), we have

PrB [B(T ) ∈ U ] ≤ PrB|I [B(T ) ∈ U|∆(I) ≤ u] · PrI [∆(I) ≤ u] + γ

= PrA|I [A(T (I)) ∈ U|∆(I) ≤ u] · PrI [∆(I) ≤ u] + γ

≤
(
e∆(I)·εPrA|I [A(T ′(I)) ∈ U|∆(I) ≤ u] + ∆(I)δe∆(I)ε

)
· PrI [∆(I) ≤ u] + γ

≤ euεPrB|I [B(T ′) ∈ U|∆(I) ≤ u] · PrI [∆(I) ≤ u] + (uδeuε + γ)

≤ eε
′
PrB [B(T ′) ∈ U ] + δ′,

where the third line follows from the fact that A is (ε, δ)-DP and Group Privacy Lemma (Vadhan 2017, Lemma 2.2).
Therefore, the algorithm B is (ε′, δ′)-DP with ε′ := uε and δ′ := uδeuε + γ. However, algorithm B is very restrictive
as it must follow a “subsampling, then run A” framework. If we remove the framework requirement and only require
B ∈ F1

ε′,δ′ a set of (ε′, δ′)-DP mappings from Xn × Yn to C1, we will get a lower bound to (13):

(13) = inf
B ∈ F1

ε′,δ′ : subsampling, then run A,
where A ∈ F1

ε,δ

sup
S

EB

[
L̂(B(S);S)

]
− min

θ∈C1

L̂(θ;S)

≥ inf
B∈F1

ε′,δ′

sup
S

EB

[
L̂(B(S);S)

]
− min

θ∈C1

L̂(θ;S). (14)

3. step 3: convert excess empirical risk to DP binary classification error

Now, we start to analyze the excess empirical risk EB

[
L̂(B(S);S)

]
− minθ∈C1 L̂(θ;S) for any given dataset S.

Recall that the dataset S is constructed as (X · sign(x) · Bθ,X) in Step 1. Hence, the empirical minimizer is

16



DPSCO under a Quantile Loss Function

θ̂ := argminθ∈C1
L̂(θ;S) = sign(x) ·Bθ ∈ C1, and the empirical risk L̂(θ̂;S) = 0. We therefore only need to focus

our attention on EB

[
L̂(B(S);S)

]
. It is straightforward to show

EB

[
L̂(B(S);S)

]
= EB

[
1

n

n∑
i=1

(
r · (yi − B(S)⊤xi)

+ + (1− r) · (B(S)⊤xi − yi)
+
)]

≥ min{r, 1− r}EB

[
1

n

n∑
i=1

∣∣∣(sign(x) ·Bθ − B(S))⊤ xi

∣∣∣]
≥ min{r, 1− r}EB

[∣∣(sign(x) ·Bθ − B(S))⊤x
∣∣] (by triangular inequality)

By simple algebra, the absolute value in the expectation operator is

∣∣(sign(x) ·Bθ − B(S))⊤x
∣∣ =

∣∣∣∣∣∣
d∑

j=1

[sign(x)j ·Bθ − B(S)j ] · sign(x)j |xj |

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

j=1

|xj | (Bθ − B(S)j · sign(x)j)

∣∣∣∣∣∣
=

d∑
j=1

|xj | (Bθ − B(S)j · sign(x)j) (Since |B(S)j | ≤ Bθ)

≥ Bθ ·
d∑

j=1

|xj |1 {sign(x)j ̸= sign(B(S)j)} .

Putting above analysis together, we further obtain a lower bound:

(14) ≥ min{r, 1− r}Bθ · inf
B∈F1

ε′,δ′

sup
S

EB

 d∑
j=1

|xj |1 {sign(x)j ̸= sign(B(S)j)}


= min{r, 1− r}Bθ · inf

B∈F1
ε′,δ′

sup
X∈Xn

EB

 d∑
j=1

|xj |1 {sign(x)j ̸= sign(B(S(X))j)}


≥ min{r, 1− r}Bθ · inf

C : Xn → {−1, 1}d;
C is (ε′, δ′)-DP

sup
X∈Xn

EC

 d∑
j=1

|xj |1 {sign(x)j ̸= C(X)j}

 , (15)

where the second line is due to the dependence between S and X that S does not provide more information than X ;
the third line follows a similar idea to (14), and C : Xn → {−1, 1}d is a DP binary classification algorithm. The
expectation term in (15) can be thought of as the worst-case expected error of estimating the sign vector of the average
vector of X when using a DP binary classification algorithm C.

4. step 4: bounding the classification error with sample complexity

To facilitate further analysis, we denote Error(C,X) := EC

[∑d
j=1 |xj |1 {sign(x)j ̸= C(X)j}

]
as the expected

error of a DP binary classification algorithm C for a given n× d matrix X . Denote the smallest number of samples to
achieve a certain minimax risk α > 0 as the sample complexity:

S(α, ε, δ) := min{n : inf
C∈Fε,δ,classifier C

sup
X∈Xn

Error(C,X) ≤ α}

By Proposition 1 and Lemma D.2 in (Asi et al., 2021), for ε′, δ′ defined in step 3, the sample complexity satisfies

S(α, ε′, δ′) ≥ Ω

( √
d

αε′ ln d

)
.
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The lower bound on sample complexity implies a lower bound on the minimax risk:

inf
C∈Fε′,δ′ ,classifier C

sup
X∈Xn

Error(C, X) ≥ Ω

( √
d

nε′ ln d

)
= Ω

( √
d

nε ln d

)
.

Combing preceding four steps, we obtain

inf
A∈Fε,δ

sup
P∈P(X×Y)

R(A;P) ≥ Ω̃

(√
d

nε

)
, (16)

where a logarithmic factor ln d is hidden. Moreover, since the oracle complexity of stochastic convex optimization is Ω( 1√
n
),

the minimax risk is therefore further lower bounded by the maximum between oracle complexity and (16):

inf
A∈Fε,δ

sup
P∈P(X×Y)

R(A;P) ≥ Ω̃

(
max

(
1√
n
,

√
d

nε

))
,

which is the desired bound.

B. Proofs for Section 4
B.1. Proof of Lemma 4.2

Proof. We first compute the following expected value conditional on x,

Eϵ|x
[
K(−ϵ/h)

∣∣x] = ∫ ∞

−∞
K(−t/h) dFϵ|x(t)

=
1

h

∫ ∞

−∞
Fϵ|x(t)K(−t/h) dt (integration by parts)

=

∫ ∞

−∞
Fϵ|x(−uh)K(u) du (let u = −t/h)

= r +

∫ ∞

−∞

[
Fϵ|x(−uh)− Fϵ|x(0)

]
K(u) du (Fϵ|x(0) = r and

∫
K = 1)

= r +

∫ ∞

−∞
K(u)

[∫ −uh

0

fϵ|x(t)− fϵ|x(0) dt

]
du

≤ r +

∫ ∞

−∞
K(u)

∫ |−uh|

0

l1t dt du (fϵ|x is l1-Lipschitz)

= r +
1

2
h2l1

∫ ∞

−∞
u2K(u) du︸ ︷︷ ︸
=:κ2

. (17)

By above calculation, we can upper bound ∇Lh(θ
∗) as below:

∇Lh(θ
∗) = Ey,x

[[
Kh(θ

∗⊤x− y)− r
]
x
]

= Ex

[
Eϵ|x

[
K(−ϵ/h)− r

∣∣x] · x]
≤ 1

2
h2l1κ2Ex[x]. (by (17)) (18)

Since we assume E [x] = [1, 0, . . . , 0]⊤, naturally we have

∥∇Lh(θ
∗)∥2 ≤

1

2
h2l1κ2. (19)

18
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Thus, we can upper bound the following value

⟨∇Lh(θ
∗
h)−∇Lh(θ

∗),θ∗
h − θ∗⟩ ≤ ∥∇Lh(θ

∗)∥2 · ∥θ
∗
h − θ∗∥2 (since ∇Lh(θ

∗
h) = 0)

≤ 1

2
h2l1κ2 · ∥θ∗

h − θ∗∥2 . (20)

In addition, we can lower bound the left-hand-side of (20), but before showing that, we first lower bound the Hessian matrix
∇2Lh(θ),∀θ.

It can be shown that, for a given θ,

Ey|x
[
Kh(y − θ⊤x)

∣∣x] = ∫ ∞

−∞

1

h
K

(
θ∗⊤x− θ⊤x− t

h

)
dFϵ|x(t)

=

∫ ∞

−∞
K(u)fϵ|x(−δ⊤x− uh) du (δ := θ − θ∗; let u =

−δ⊤x− t

h
)

≥
∫ ∞

−∞
K(u)

(
fϵ|x(0)− l1

∣∣δ⊤x+ uh
∣∣) du (fϵ|x is l1-Lipschitz)

≥ f − hl1

∫ ∞

−∞
|u|K(u) du︸ ︷︷ ︸
=:κ1

−l1
∣∣δ⊤x∣∣ .

Therefore, the Hessian matrix of function Lh at point θ ∈ Rd satisfies

∇2Lh(θ) = Ex

[
Ey|x

[
Kh(y − θ⊤x)

∣∣x] · xx⊤] ≽ Ex

[(
f − hl1κ1 − l1

∣∣δ⊤x∣∣) · xx⊤] ,
where δ := θ − θ∗ is a vector that originates from θ∗ to θ. By mean value theorem for vector-valued functions, we know
that ,

∇Lh(θ)−∇Lh(θ
∗) =

∫ 1

0

∇2Lh(θ
∗ + λδ) dλ ·δ, ∀θ.

By plugging the expression of Hessian matrix∇2Lh, we are able to show that, for any finite δ := θ − θ∗,

⟨∇Lh(θ)−∇Lh(θ
∗),θ − θ∗⟩ = δ⊤ ·

∫ 1

0

∇2Lh(θ
∗ + λδ) dλ ·δ

≥
∫ 1

0

Ex

[(
f − hl1κ1 − l1

∣∣λδ⊤x∣∣) · (δ⊤x)2] dλ
= Ex

[∫ 1

0

(
f − hl1κ1 − l1

∣∣λδ⊤x∣∣) dλ · (δ⊤x)2]
≥ ρ1(f − hl1κ1) ∥δ∥22 −

1

2
l1B

3
x ∥δ∥

3
2 , (21)

where the switch of integrals in third line holds from Fubini’s Theorem. Thus, if we consider δ∗h := θ∗
h − θ∗, we get

⟨∇Lh(θ
∗
h)−∇Lh(θ

∗),θ∗
h − θ∗⟩ ≥ ρ1(f − hl1κ1) ∥δ∗h∥

2
2 −

1

2
l1B

3
x ∥δ∗h∥

3
2 . (22)

Combining upper bound (20) and lower bound (22) gives

1

2
l1B

3
x︸ ︷︷ ︸

=:a>0

∥δ∗h∥
3
2 − ρ1(f − hl1κ1)︸ ︷︷ ︸

=:b>0

∥δ∗h∥
2
2 +

1

2
h2l1κ2︸ ︷︷ ︸
=:c>0

∥δ∗h∥2 ≥ 0,

solving which results in three solutions,

∥δ∗h∥2 ≥ 0; or ∥δ∗h∥2 ≤
2c

b+∆1/2
; or ∥δ∗h∥2 ≥

b+∆1/2

2a
,
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provided that ∆ := b2 − 4ac > 0. We can rule out the third solution by contradiction. Suppose that the third solution is true,
then ∥δ∗h∥2 > b/(2a) >

√
c/a. Since ∥δ∗h∥2 >

√
c/a, there exists α ∈ (0, 1) such that α · ∥δ∗h∥2 =

√
c/a. With this α,

let us denote θα := (1− α)θ∗ + αθ∗
h. We notice that, by (20),

⟨−∇Lh(θ
∗),θα − θ∗⟩ = ⟨∇Lh(θ

∗), αδ∗h⟩ ≤ cα ∥δ∗h∥2 . (23)

Moreover, since ⟨∇Lh(θα),θα − θ∗⟩ ≤ 0, we also have

⟨−∇Lh(θ
∗),θα − θ∗⟩ ≥ ⟨∇Lh(θα)−∇Lh(θ

∗),θα − θ∗⟩

≥ b ∥θα − θ∗∥22 − a ∥θα − θ∗∥32 (by (21))

= α2 ∥δ∗h∥
2
2

(
b− a ·

√
c/a
)

(24)

Combining (23) and (24) together and cancelling out α ∥δ∗h∥2 on both sides, we obtain

α ∥δ∗h∥2 ≤
c

b−
√
ac

, (25)

which is true without the need of changing inequality symbol as ∆ > 0 implying both sides are positive. However, we
further have √

c/a = α ∥δ∗h∥2 ≤
c

b−
√
ac

<
c√
ac

=
√

c/a,

a contradiction. Therefore, we are safe to rule out the third solution. As a result,

0 ≤ ∥δ∗h∥2 ≤
2c

b+∆1/2
≤ 2c

b
,

provided that ∆ > 0 and b > 0, for which a sufficient condition is f − hl1(κ1 +
√
B3

xκ2/ρ1) > 0.

B.2. Proof of Lemma 4.3

Proof. By strong convexity of L̂OP
h , for any fixed D and b, we have

λ
∥∥∥θ̂#

h − θ̂OP
h (b)

∥∥∥2
2
≤ L̂OP

h (θ̂#
h )− L̂OP

h (θ̂OP
h (b))

= L̂#
h (θ̂

#
h )− L̂#

h (θ̂
OP
h (b)) +

b⊤θ̂#
h

n
− b⊤θ̂OP

h (b)

n

≤
∥b∥2

∥∥∥θ̂#
h − θ̂OP

h (b)
∥∥∥
2

n
,

which implies
∥∥∥θ̂#

h − θ̂OP
h (b)

∥∥∥
2
≤ ∥b∥2 /(nλ). And further replacing λ ≍ 1

Bθ
·
√

κ1KB2
x

nε + dσ2

n2 and taking expectation
over b, we have

Eb

[∥∥∥θ̂OP
h (b)− θ̂#

h

∥∥∥
2

]
≲ Bθ ·

Eb [∥b∥2]

n ·
√

κ1KB2
x

nε + dσ2

n2

≲
LBθ

Bx

√
κ1K

·
√

d ln (1/δ)

nε
.

B.3. Proof of Lemma 4.4

Lemma B.1 (Lemma 9.21 in Wainwright (2019), rephrased). Denote θ∗ := argminθ L(θ), θ̂ := argminθ L̂(θ). For any

given radius r0, if L̂(θ∗ + δ)− L̂(θ∗) > 0, ∀δ ∈ {δ ∈ Rd : ∥δ∥2 = r0}, then
∥∥∥θ̂ − θ∗

∥∥∥
2
≤ r0.
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Proof. For any δ ∈ Rd and θ ∈ Rd, we define the population-level zero-order Taylor expansion remainder of Lh(θ + δ) at
point θ as Dh(δ,θ) = Lh(θ+δ)−Lh(θ), the first-order remainder as Rh(δ,θ) = Dh(δ,θ)−∇Lh(θ)

⊤δ. Correspondingly,
the sample-level remainders are defined as D̂h(δ,θ) = L̂h(θ + δ)− L̂h(θ) and R̂h(δ,θ) = D̂h(δ,θ)−∇L̂h(θ)

⊤δ. And
similarly for regularized variants, D̂#

h (δ,θ) = L̂#
h (θ + δ)− L̂#

h (θ) and R̂#
h (δ,θ) = D̂#

h (δ,θ)−∇L̂#
h (θ)

⊤δ.

With these notations, for any δ ∈ Rd, we have

D̂#
h (δ,θ∗

h) = Rh(δ,θ
∗) +∇Lh(θ

∗)⊤δ −Dh(δ,θ
∗)︸ ︷︷ ︸

=0

+D̂#
h (δ,θ∗

h)

= Rh(δ,θ
∗) +∇Lh(θ

∗)⊤δ −
(
Dh(δ,θ

∗)− D̂#
h (δ,θ∗)

)
−
(
D̂#

h (δ,θ∗)− D̂#
h (δ,θ∗

h)
)

To find an upper bound r0 on
∥∥∥θ̂#

h − θ∗
h

∥∥∥
2
, by Lemma 9.21 in Wainwright (2019) (i.e. Lemma B.1), it suffices to show that

the upper bound r0 satisfies D̂#
h (δ,θ∗

h) > 0,∀δ ∈ ∂B(r0) :=
{
δ ∈ Rd : ∥δ∥2 = r0

}
. Our proof strategy is to first lower

bound D̂#
h (δ,θ∗

h) and show this lower bound is strictly greater than 0 for any δ ∈ ∂B(r0) with our choice of r0. Note that

D̂#
h (δ,θ∗

h) ≥ Rh(δ,θ
∗)− ∥∇Lh(θ

∗)∥2 ∥δ∥2 −
(
Dh(δ,θ

∗)− D̂#
h (δ,θ∗)

)
−
(
D̂#

h (δ,θ∗)− D̂#
h (δ,θ∗

h)
)
. (26)

Hence, it suffices to lower bound first term, and upper bound last three terms. Keep δ ∈ ∂B(r0) in mind, we address them
one by one. For notational brevity, we use same notations as in Appendix B.1 and denote

a :=
1

2
l1B

3
x, b := ρ1(f − hl1κ1), and c :=

1

2
h2l1κ2.

Note that all three values are positive for finite but large enough n due to the setting h ≤ o(1).

1. Following the same argument for (21), we can show that

Rh(δ,θ
∗) ≥ ρ1(f − hl1κ1) ∥δ∥22 −

1

2
l1B

3
x ∥δ∥

3
2 = −ar30 + br20 (27)

2. By (19), we know that ∥∇Lh(θ
∗)∥2 ≤

1
2h

2l1κ2; thus,

∥∇Lh(θ
∗)∥2 ∥δ∥2 ≤ cr0. (28)

3. The third term Dh(δ,θ
∗)− D̂#

h (δ,θ∗) is well-studied in Lemma B.2. Specifically, we know from Lemma B.2 that,
for any given r0 ∈ (0, 2 ∥θ∗∥2), and γ ∈ (0, 1), with high probability at least 1− γ,

sup
δ∈∂B(r0)

{
Dh(δ,θ

∗)− D̂#
h (δ,θ∗)

}
≤ 3r0L

√
4d+ ln (1/γ)

n
+ 2λr0 ∥θ∗∥2 − λr20. (29)

4. By L-Lipschitz continuity of L̂h, we can show that, for any δ ∈ ∂B(r0),

D̂#
h (δ,θ∗)− D̂#

h (δ,θ∗
h) =

[
L̂h(θ

∗ + δ)− L̂h(θ
∗
h + δ)

]
+
[
L̂h(θ

∗
h)− L̂h(θ

∗)
]

+ λ ∥θ∗ + δ∥22 − λ ∥θ∗
h + δ∥22 + λ ∥θ∗

h∥
2
2 − λ ∥θ∗∥22

≤ 2L · ∥θ∗
h − θ∗∥2 + 2λ (θ∗ − θ∗

h)
⊤
δ

≤ (2L+ 2λr0) ∥θ∗ − θ∗
h∥2

≤ (4L+ 4λr0) · c/b (30)

Plugging (27), (28), (29), and (30) into (26) and replacing ∥θ∗∥2 with its upper bound Bθ, we obtain by rearranging that,
for any γ ∈ (0, 1), with probability at least 1− γ, the following inequality holds for any δ ∈ ∂B(r0),

D̂#
h (δ,θ∗

h) ≥ −ar30 + (b+ λ)r20 −

(
3L

√
4d+ ln (1/γ)

n
+ c+ 4λc/b+ 2λBθ

)
r0 − 4cL/b

≥ −ar30 + br20 −

(
3L

√
4d+ ln (1/γ)

n
+ 2λBθ

)
r0 − (4λcr0/b+ cr0 + 4cL/b) . (31)
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Denote C := 3L
√

4d+ln (1/γ)
n + 2λBθ. We conjecture that r0 ≍ C/b is a valid radius. Please keep in mind that we require

h ≤ o(1) and λ ≤ o(1), this implies r0 ↘ 0 when n tends to infinity. Plugging r0 ≍ C/b into (31), we obtain that, by
removing dominated terms r30 , λcr0 and cr0,

(31) ≍ C2

b
− cL

b

≍ 1

ρ1f
· (C2 − h2l1κ2L)

≍ L

ρ1f
·
(
L · d+ ln (1/γ)

n
+B2

θλ
2 − h2l1κ2

)
≳ 0,

where the last inequality is from our assumptions that B2
θλ

2 ≳ h2l1κ2. Therefore, the radius

r0 ≍ C/b =
1

ρ1f
·

(
L

√
d+ ln (1/γ)

n
+ h2l1κ1 + λBθ

)
≍ 1

ρ1f
·

(
L

√
d+ ln (1/γ)

n
+Bθλ

)

is valid, which completes the proof.

Lemma B.2. Given any n ≥ 2, γ ∈ (0, 1) and r0 ∈ (0, 2 ∥θ∗∥2), with probability at least 1− γ, the inequality

sup
δ∈∂B(r0)

{
Dh(δ,θ

∗)− D̂#
h (δ,θ∗)

}
≤ 3r̄r0Bx

√
4d+ ln (1/γ)

n
+ 2λr0 ∥θ∗∥2 − λr20,

holds, where Dh(δ,θ) := Lh(θ+ δ)−Lh(θ), D̂
#
h (δ,θ) := L̂#

h (θ+ δ)− L̂#
h (θ), ∂B(r0) :=

{
δ ∈ Rd

∣∣ ∥δ∥2 = r0
}

, and
r̄ := max{1− r, r}.

Proof. We follow the same proof idea for Lemma C.1 in He et al. (2021) to complete our proof. For any given radius r0 > 0,
denote αϵ(r0) =

n(1−ϵ)
2r̄r0

, and define a new random variable

∆ϵ(r0) := αϵ(r0) sup
δ∈∂B(r0)

{
Dh(δ,θ

∗)− D̂#
h (δ,θ∗)

}
,

parameterized by a constant ϵ ∈ (0, 1) to be determined later. To investigate the tail performance of ∆ϵ(r0), we apply
Chernoff bound and obtain

P [∆ϵ(r0) ≥ u] ≤ inf
k>0

{
exp

(
lnED[ek∆ϵ(r0)]−ku

)}
, ∀u > 0. (32)

Hence, we can first control the moment generating function (MGF) of ∆ϵ(r0). Define g (δ,θ∗) = ∥θ∗ + δ∥22−∥θ∗∥22, then
the moment generating function is, for any k > 0,

ED

[
ek∆ϵ(r0)

]
= ED

[
exp

(
kn(1− ϵ)

2r̄r0
sup

δ∈∂B(r0)

{
Dh(δ,θ

∗)− D̂h(δ,θ
∗)− λg (δ,θ∗)

})]

≤ ED

[
exp

(
kn(1− ϵ)

2r̄r0
sup

δ∈∂B(r0)

{
Dh(δ,θ

∗)− D̂h(δ,θ
∗)
}
− kλαϵ(r0) inf

δ∈∂B(r0)
g (δ,θ∗)

)]

= ED

[
exp

(
kn(1− ϵ)

2r̄r0
sup

δ∈∂B(r0)

{
Dh(δ,θ

∗)− D̂h(δ,θ
∗)
})]

· exp (kλαϵ(r0)β(r0)) . (33)

The last line comes from the fact

inf
δ∈∂B(r0)

g (δ,θ∗) = inf
δ∈∂B(r0)

∥δ∥22 + 2δ⊤θ∗ = −(−r20 + 2r0 ∥θ∗∥2) =: −β(r0) ≤ 0,
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where −β(r0) ≤ 0 is due to r0 ∈ (0, 2 ∥θ∗∥2). By Rademacher Symmetrization Lemma (see, for example, Proposition 4.11
in Wainwright 2019) and noticing that the exponential function is convex and increasing, we can further upper bound (33)
with Rademacher Complexity as shown below,

(33) ≤ ED,zi

[
exp

(
kn(1− ϵ)

r̄r0
sup

δ∈∂B(r0)

{
1

n

n∑
i=1

zidh(δ,θ
∗;xi, yi)

})]
· exp (kλαϵ(r0)β(r0)) , (34)

where zi,∀i ∈ {1, 2, . . . , n} are independent Rademacher random variables. Note that the function dh(δ,θ
∗;xi, yi) =

ℓh (δ + θ∗;xi, yi) − ℓh (θ
∗;xi, yi) = ch

(
yi − θ∗⊤xi − δ⊤xi

)
− ch

(
yi − θ∗⊤xi

)
is r̄-lipschitz continuous in ⟨δ,xi⟩,

and dh(·) = 0 when ⟨δ,xi⟩ = 0. Therefore, by Ledoux-Talagrand contraction inequality (see Theorem 11.6 in Boucheron
et al. 2013), we have

(34) ≤ ED,zi

[
exp

(
kn(1− ϵ)

r0
sup

δ∈∂B(r0)

{
1

n

n∑
i=1

zi ⟨δ,xi⟩

})]
· exp (kλαϵ(r0)β(r0))

= ED,zi

[
exp

(
k(1− ϵ)

∥∥∥∥∥
n∑

i=1

zixi

∥∥∥∥∥
2

)]
· exp (kλαϵ(r0)β(r0)) , (35)

where the second line is obtained by cancelling out n and then plugging in the maximizer δ∗ = r0 ·
∑n

i=1 zixi

∥∑n
i=1 zixi∥

2

.

Denote w :=
∑n

i=1 zixi. Now, we focus on the ℓ2-norm term ∥w∥2.Let a set of d-dimensional points {p1,p2, . . . ,pNϵ
}

with cardinality Nϵ be the ϵ-covering of a unit ball B with respect to ℓ2 norm. Then, we know that there must exist a point
pj ∈ B, j ∈ {1, 2, . . . , Nϵ} such that

(1− ϵ) ∥w∥2 ≤ ⟨pj ,w⟩ ;

otherwise, the unit ball B is not covered by the given ϵ-covering {p1,p2, . . . ,pNϵ}. Therefore, we are able to further upper
bound (35) with

(35) ≤ ED,zi

[
exp

(
k · max

j∈{1,...,Nϵ}
⟨pj ,w⟩

)]
· exp (kλαϵ(r0)β(r0))

≤ exp (kλαϵ(r0)β(r0)) ·
Nϵ∑
j=1

ED,zi [exp (k · ⟨pj ,w⟩)] (36)

For any given pj ∈ B, we note that ED,zi [exp (k · ⟨pj ,w⟩)] = ED,zi [exp (k
∑n

i=1 vi,j)] is the MGF of the sum over n
independent zero-mean random variable vi,j := ⟨pj , zixi⟩ ,∀i = 1, . . . , n. Moreover, since we assume x ∈ B(Bx), the
random variable vi,j is bounded almost surely as |vi,j | ≤ Bx. Thus, vi,j belongs to SubGaussian(σ2) with σ2 = B2

x, and

ED,zi [exp (k · ⟨pj ,w⟩)] ≤ exp

(
nk2σ2

2

)
, ∀pj ∈ B,∀k > 0, (37)

Plugging (37) into (36), and combining (33), (34), (35), and (36) all together, we finally obtain an upper bound for the MGF
of ∆ϵ(r0) as below,

ED

[
ek∆ϵ(r0)

]
≤ exp (kλαϵ(r0)β(r0)) ·

Nϵ∑
j=1

exp

(
nk2σ2

2

)
,∀ϵ ∈ (0, 1),∀r0 ∈ (0, 2 ∥θ∗∥2),∀k > 0, (38)

with αϵ(r0) =
n(1−ϵ)
2r̄r0

> 0 and β(r0) = −r20 + 2r0 ∥θ∗∥2 > 0.

Replacing the MGF of ∆ϵ(r0) in (32) with its upper bound (38), we obtain that, for any u > 0,

P [∆ϵ(r0) ≥ u] ≤ inf
k>0

{
exp

(
kλαϵ(r0)β(r0) + lnNϵ +

nk2σ2

2
− ku

)}
≤ inf

k>0

{
exp

(
kλαϵ(r0)β(r0) + d ln

(
1 +

2

ϵ

)
+

nk2σ2

2
− ku

)}
(39)
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where the second inequality is by the fact that the covering number Nϵ is known to satisfy Nϵ ≤ (1 + 2
ϵ )

d. After replace u

with αϵ(r0) ·
(

2
√
2r̄r0σ
1−ϵ

√
v
n + λβ(r0)

)
for any v > 0, (39) becomes, for any v > 0,

P

[
sup

δ∈B(r0)

{
Dh(δ,θ

∗)− D̂#
h (δ,θ∗)

}
≥ 2
√
2r̄r0σ

1− ϵ

√
v

n
+ λβ(r0)

]

≤ inf
k>0

{
exp

(
d ln

(
1 +

2

ϵ

)
+

nk2σ2

2
− kσ

√
2vn

)}
= exp

(
d ln

(
1 +

2

ϵ

)
− v

)
, (40)

where the last line is by taking k∗ = 1
σ ·
√

2v
n . Lastly, if we set ϵ = 2

e4−1 , then 2
√
2

1−ϵ ≤ 3 and the right-hand-side of (40)
becomes exp (4d− v). Set exp (4d− v) = γ and solve for v, we get the desired lemma.

B.4. Proof of Theorem 4.5

Proof. This Theorem is a direct conclusion from combing Lemma 4.2, 4.3, and 4.4. Specifically, if we set λ ≍ 1
Bθ
·√

κ1KB2
x

nε + dσ2

n2 and h = KB2
x/(λnε) as same values in Theorem 3.6, then we have:

1. By Lemma 4.2, we have

∥θ∗
h − θ∗∥2 ≤

h2l1κ2

ρ1
(
f − hl1κ1

) ≲
1

ρ1f
· l1κ2KB2

x

κ1
· 1

nε
. (41)

2. By Lemma 4.3, we have

EOP

[∥∥∥θ̂OP
h − θ̂#

h

∥∥∥
2

]
≲

LBθ

Bx

√
κ1K

·
√

d ln (1/δ)

nε
. (42)

3. Note that if we set λ and h as stated, it implies

λ ≍ 1

Bθ
·

√
κ1KB2

x

nε
+

d ln (1/δ)

n2ε2
; h ≍ KB2

x√
nεκ1KB2

x + d ln (1/δ)
.

To employ Lemma 4.4, we must ensure B2
θλ

2 ≳ h2l1κ2, or equivalently,

κ1KB2
x

nε
+

d ln (1/δ)

n2ε2
− l1κ2KB2

x

nεκ1 + d ln (1/δ)/(KB2
x)

≳ 0.

A sufficient condition to make above statement true is δ ≍ n−w for some w > 0, since the third term is at the rate
1/(nε+ dw ln (n)), which will be cancelled out by the first term whose rate is 1/(nε). Therefore, under the condition
δ ≍ n−w, by Lemma 4.4, we obtain that, with probability at least 1− γ,∥∥∥θ̂#

h − θ∗
h

∥∥∥
2
≲

1

ρ1f
·

(
L

√
d+ ln (1/γ)

n
+Bθλ

)

≲
1

ρ1f
·

L

√
d+ ln (1/γ)

n
+

√
κ1KB2

x

nε
+

d ln (1/δ)

n2ε2

 (43)

Combining three parts (41), (42), and (43) together, we obtain

Eb

[∥∥∥θ̂OP
h (b)− θ∗

∥∥∥
2

]
≲

1

ρ1f
·max

{√
d+ ln (1/γ)

n
,

√
d ln (1/δ)

nε

}
.
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C. More Simulations
In the main body, we have shown simulation results when d = 3. Now, we consider a data generating process with larger
d = 51, and let y = 10 + θ⊤x+ ϵ, where elements of θ ∈ R51 take values ascendingly from [-2, 5] with even steps. The
feature vector x ∼ N (µx,Σx) with mean µx = [1, 0, . . . , 0] ∈ R51 and covariance matrix Σx = Diag([0, 1√

50
, . . . , 1√

50
]).

We set the error term ϵ ∼ N (0, 32). Quantile level r = 0.7. Other settings are the same as in Figure 4. We can see from Figure
8 and 9 that our private algorithms outperform existing algorithms. We note that Phased-ERM does not appear in any pictures
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Figure 8. Relative excess generalization risks (d=51, exogenous error term)
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Figure 9. Relative estimation errors (d=51, exogenous error term)

because its relative risk (or relative estimation error) is beyond y-axis’s range. The conjectured reason is as follows. In i-th

iteration of Phased-ERM, the estimator is updated as θ̂t = argminθ∈R
1
ni

∑ni

t=1 ℓ(θ;xi, yi) +
1

niηi

∥∥∥θ − (θ̂t−1 + ξt−1)
∥∥∥2
2
,

where ξt−1 ∼ N (0, σ2I) with σ = 4L(ηi/ε)
√
ln (1/δ), ni = 2−in, and ηi = 4−iη. That implies the coefficient of ∥·∥22-

regularizer 1
niηi

is 23i

nη , which increases exponentially fast in iteration counter i. The dramatically increasing regularizer’s

coefficient anchors θ̂t around estimators in first few iterations, but the estimators in first few iterations are seriously affected
by injected noises. As a consequence, the final estimator’s practical performance is unappealing. Nevertheless, when sample
size keeps increasing, the excess generalization risk of Phased-ERM will still converge (see Figure 10)

Now, we switch to a case with an endogenous error term ϵ(x) = N (0, 32) + x1 − x2 + |x1x2|. Other settings remain
unchanged. Figure 11 shows the relative excess generalization risks while Figure 12 shows the relative estimation errors. It
is clear that our private algorithms still perform better among all private algorithms.
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Figure 11. Relative excess generalization risks (d=51, endogenous error term)
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