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Abstract

The proliferation of pretrained models, as a re-
sult of advancements in pretraining techniques,
has led to the emergence of a vast zoo of pub-
licly available models. Effectively utilizing these
resources to obtain models with robust out-of-
distribution generalization capabilities for down-
stream tasks has become a crucial area of research.
Previous research has primarily focused on identi-
fying the most powerful models within the model
zoo, neglecting to fully leverage the diverse induc-
tive biases contained within. This paper argues
that the knowledge contained in weaker models is
valuable and presents a method for leveraging the
diversity within the model zoo to improve out-of-
distribution generalization capabilities. Specif-
ically, we investigate the behaviors of various
pretrained models across different domains of
downstream tasks by characterizing the variations
in their encoded representations in terms of two
dimensions: diversity shift and correlation shift.
This characterization enables us to propose a new
algorithm for integrating diverse pretrained mod-
els, not limited to the strongest models, in order to
achieve enhanced out-of-distribution generaliza-
tion performance. Our proposed method demon-
strates state-of-the-art empirical results on a va-
riety of datasets, thus validating the benefits of
utilizing diverse knowledge.

1. Introduction
Although remarkable success has been achieved on multiple
benchmarks, machine learning models encounter failures
in their real-world applications (Volk et al., 2019; Beery
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et al., 2018b; Dai & Van Gool, 2018). A central cause for
such failures has been recognized as the vulnerability to
the distribution shifts of the test data (Arjovsky et al., 2019;
Gulrajani & Lopez-Paz, 2021). This can occur when test
data is collected under new conditions such as different
weather (Volk et al., 2019), locations (Beery et al., 2018b),
or light conditions (Dai & Van Gool, 2018), resulting in a
distribution that differs from the training set.

To address this challenge, the task of domain generalization
(DG) has gained significant attention, where models are
trained on multiple source domains in order to improve their
generalizability to unseen domains (Gulrajani & Lopez-Paz,
2021). Multiple DG algorithms have been proposed from
various perspectives. However, this problem is still far from
being resolved. For example, Ye et al. (2022) have identified
two distinct categories of data distribution shifts, namely di-
versity shift and correlation shift, and empirically observed
that the majority of existing algorithms are only able to
surpass the simple empirical risk minimization (ERM) in at
most one of the categories.

Exploiting pretrained models (PTMs) has shown to be one of
the most promising directions for addressing the challenge
of DG tasks (Wiles et al., 2022; Ye et al., 2022). Research
has demonstrated that pretraining can provide a significant
improvement in performance for DG tasks (Wiles et al.,
2022). The growing PTM hubs further bring in great op-
portunities. With the thriving of pretraining technologies,
we now have a huge amount of pretrained models (PTMs)
published. For example, Hugging Face Hub (2023) contains
over 80K models that vary in data sources, architectures, and
pretraining frameworks. Such a zoo of PTMs thus enjoys
both high transfer ability and diversity. By selecting optimal
PTMs for given DG datasets from a zoo of PTMs, Dong et
al. (2022) boosted the state-of-the-art DG performance on
some benchmarks for over 14%.

While utilizing PTMs has proven to be a promising ap-
proach for domain generalization, it remains unclear how
to effectively leverage the diverse inductive biases present
in different PTMs. Ensemble methods of PTMs have been
explored (Dong et al., 2022; You et al., 2021), however,
these methods typically only consider the top-performing
models based on performance ranking scores. For exam-
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ple, Dong et al. (2022) proposed a feature selection method
on the concatenated features of the top-3 ranked PTMs.
However, without incorporating diversity, such ensembles
can perform worse than single models. Although some
previous studies have examined certain characteristics of
different PTMs (Gontijo-Lopes et al., 2022; Idrissi et al.,
2022), they are not specified for DG tasks but focus on the
in-distribution behavior of the models. This makes it un-
clear how to effectively utilize these analyses for tackling
DG tasks.

To address this challenge, it is crucial to first investigate the
compatibility of different PTMs on specific DG tasks and to
understand their inductive biases as thoroughly as possible.
To achieve this, we propose to profile the shift behaviors of
each PTM when conditioned on a given DG task, and then
to design an ensemble algorithm that can effectively utilize
the profiled shift types. Specifically, similar to the definition
presented in (Ye et al., 2022), we interpret the behaviors
of PTMs across different domains of downstream tasks by
characterizing the variation in their encoded representations
from two dimensions, namely feature diversity shift and fea-
ture correlation shift. Through this design, we empirically
demonstrate that the differences in shift patterns not only
exist among datasets but also among different PTMs.

Such profiling provides guidance for utilizing the inductive
bias of poorly performed models which have typical shift
patterns on one of the dimensions. As these models capture
features that induce a specific kind of distribution shift, we
can design ensemble algorithms that prevent the classifier
from encountering similar failures, thus improving the out-
of-distribution (OOD) generalization ability.

To accomplish this, we introduce two key components in our
ensemble algorithm: the sample reweight module and the
independence penalization module. The sample reweight
module utilizes the output of a correlation shift-dominated
model to balance the weights of sub-populations, while the
independence penalization module requires the main clas-
sifier’s output to be independent of features that encounter
significant diversity shifts among domains. These ensemble
procedures are applied during the training process, introduc-
ing no additional computational cost for inference.

We empirically verify the value of such model zoology on
image classification benchmarks, with a model zoo that
consists of 35 PTMs varying in architecture, pretraining al-
gorithm, and datasets. The results of our empirical analysis
demonstrate the effectiveness of our approach in leveraging
poor models to enhance performance, as our new algorithm
outperforms top model ensembles. We show that the se-
lected models are different across different datasets, which
indicates that our method is adaptive to the specific DG
tasks.

Our contributions can be summarized as follows.

• We propose a novel methodology for profiling the be-
havior of pretrained models (PTMs) on a given domain
generalization (DG) task by quantifying the distribu-
tion shift of the features from two dimensions, namely
feature diversity shift and feature correlation shift.

• We introduce a new ensemble algorithm that leverages
the insights from the profiled shift types to effectively
utilize the diverse inductive bias among different PTMs
for DG tasks.

• Through extensive experiments on image classifica-
tion DG benchmarks, we demonstrate the effective-
ness of our proposed approach, which outperforms
top-performing PTM ensembles.

This work provides a new perspective on how to effectively
leverage the diverse inductive bias of PTMs for domain
generalization tasks and highlights the importance of under-
standing the shift behaviors of models for such tasks.

2. Related Works
Domain generalization. Numerous domain generaliza-
tion algorithms have been proposed to alleviate the accuracy
degradation caused by distribution shifts via exploiting train-
ing domain information (Arjovsky et al., 2019; Krueger
et al., 2021; Li et al., 2018; Bai et al., 2021a; Kuang et al.,
2018; Bai et al., 2021b; Cha et al., 2021; Wang et al., 2022;
Yi et al., 2023). However, (Gulrajani & Lopez-Paz, 2021)
empirically show that recent domain generalization algo-
rithms show no improvement compared with ERM. More
fine-grained analyses are further conducted (Ye et al., 2022;
Wiles et al., 2022), where distribution shifts are decomposed
into multiple categories. Ye et al. (2022) empirically ob-
served that the majority of the algorithms are only able to
surpass the simple ERM in at most one kind of distribu-
tion shift. Wiles et al. (2022) show that progress has been
made over a standard ERM baseline. Though best methods
are not consistent over different data shifts, pretraining and
augmentations usually offer large gains.

PTMs for domain generalization. Methods leveraging
pretraining models have shown promising improvements in
domain generalization performance (Wiles et al., 2022; Li
et al., 2022; Arpit et al., 2021; Dong et al., 2022; Wortsman
et al., 2022; Rame et al., 2022; Ramé et al., 2022). Among
them, ensemble methods combined with PTMs show further
advantages. Weight averaging methods combine weights of
PTMs of the same architecture over different runs (Rame
et al., 2022; Wortsman et al., 2022) or tasks (Ramé et al.,
2022). Arpit et al. (2021) ensemble the predictions of mov-
ing average models. Recent methods (Li et al., 2022; Dong
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et al., 2022) further consider the ensemble of models with
different architectures to exploit the growing large PTM
hubs. Specifically, Li et al. (2022) ensemble predictions
of multiple different PTMs via instance-specific attention
weights. ZooD (Dong et al., 2022) releases the inference
cost by only concatenating the representations of top mod-
els selected from a diverse model zoo and further conducts
Bayesian feature selection. However, as shown in (Dong
et al., 2022), such an ensemble does not always outperform
the single model. The diversity in the model zoo has not
been fully understood and exploited, which is the focus of
this paper.

Understanding PTMs. The paradigm of PTM reusing
triggers the need for understanding the behavior of a PTM
on a given downstream task. Recently, studies on the differ-
ence in PTM features have been proposed (Gontijo-Lopes
et al., 2022; Idrissi et al., 2022), which focus on the in-
distribution behavior of models. Gontijo-Lopes et al. (2022)
suggest that models under different pretraining techniques
learn diverse features. They propose that the correct pre-
dictions of high-accuracy models do not dominate those
of low-accuracy models, and model ensembles with di-
verse training methodologies yield the best downstream
performance. Idrissi et al. (2022) introduced ImageNet-
X, which is a set of human annotations pinpointing failure
types for the ImageNet (Russakovsky et al., 2015a) dataset.
ImageNet-X labels distinguishing object factors (e.g. pose,
color) for each image in the validation set and a random sub-
set. They found that most models when trained, fine-tuned,
or evaluated on ImageNet, have the same biases. However,
this paper shows different observations on the DG datasets,
which will be further discussed in Section 3.3.

3. Model Exploration
To effectively leverage diversity within a model zoo, we
need to understand the difference between PTMs condi-
tioned on each specific DG task. To accomplish this, we
propose analyzing and describing the changes in PTM fea-
ture distributions across downstream domains.

3.1. Feature Diversity and Correlation Shifts

Consider a dataset D that contains samples collected under
multiple domains E , i.e., D = {De}e∈E . De = {xe

i , y
e
i }

ne

i=1

contains instances of random variables (X,Y ) that are
i.i.d. sampled from the probability distribution Pe(X × Y).
Consider a PTM that can be viewed as a feature encoder
ϕ : X → Zϕ. To understand the behavior of such an
encoder between different domains, we are in fact con-
cerned with the difference between the distributions of
(ϕ(X), Y ) on different Pe,∀e ∈ E . As Pe(ϕ(X), Y ) =
Pe(Y |ϕ(X))Pe(ϕ(X)), the variation of Pe(ϕ(X), Y ) can
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Figure 1. The distribution of feature diversity and correlation shift
scores of 35 PTMs on 5 datasets in the DomainBed.

be decomposed into the shift of Pe(ϕ(X)) and the shift
of Pe(Y |ϕ(X)), namely the feature diversity shift and the
feature correlation shift.

In this paper, we use the following two metrics for measur-
ing the diversity shift and correlation shift of ϕ : x 7→ z
between a pair of domains e, e′, respectively:

Fdiv(ϕ, e, e
′) =

1

2

∫
S
|pe(z)− pe′(z)|dz,

Fcor(ϕ, e, e
′) =

1

2

∫
T
p̃e,e′(z)

∑
y∈Y

|pe(y|z)− pe′(y|z)|dz,

where p̃e,e′ is an geometric average of pe and pe′ . S and T
are partitions of the image set Zϕ of ϕ defined as follows:

S(ϕ, e, e′) := {z ∈ Zϕ|pe(z) · pe′(z) = 0},
T (ϕ, e, e′) := {z ∈ Zϕ|pe(z) · pe′(z) ̸= 0}.

Intuitively, Fdiv describes the proportion of values of fea-
tures ϕ(x) not shared between two domains. Fcor measures
how the correlation between the features and the target label
changes between domains. Such definitions are similar to
that of diversity shift and correlation shift of datasets in
OOD-Bench (Ye et al., 2022). Note that the two metrics
in this paper are defined for general feature encoders, not
a specific encoder Z2 which encodes the latent spurious
variable assumed in the data generating process as in (Ye
et al., 2022). By specific to that encoder, (Ye et al., 2022)
view the two metrics as a characteristic of the dataset itself.
In contrast, we focus on the difference between general en-
coders on a given dataset. That generality requires a new
design for the estimation methods of the two metrics than
that in (Ye et al., 2022). We further introduce the practical
estimation method we proposed in Section 3.2.

Relation with OOD performance. For diversity shift, the
model’s decision on data from the set S depends on the
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classification layer’s extrapolation behavior, which is hard
to infer with in-distribution data. For correlation shift, it di-
rectly causes the change of prediction precision and results
in the gap between in-distribution and out-of-distribution
performance. As a result, we would prefer a representation
with both low diversity and correlation shifts so that the
in-distribution training controls the out-of-distribution error.
Note that by splitting the data into S and T , we leave out
the part that is affected by the classification layer’s extrap-
olation behavior in the correlation shift estimation and the
in-domain density shift in the diversity shift estimation. This
is the main difference from the scores designed in ZooD.

3.2. Practical Estimation

In this section, we show how the two metrics can be com-
puted practically for general latent features of an arbitrary
PTM.

Diversity shift. Denote Se(e
′, ϕ) := {z ∈ Zϕ|pe(z) >

0, pe′(z) = 0}, Se′(e, ϕ) := {z ∈ Zϕ|pe(z) = 0, pe′(z) >
0}, Fdiv(ϕ, e, e

′) can be written as

Fdiv(ϕ, e, e
′) =

1

2
(Pe[Se(e

′, ϕ)] + Pe′ [Se′(e, ϕ)]).

We design the following empirical estimation of
Pe[Se(e

′, ϕ)]:

P̂e[Ŝe(e
′, ϕ)] := P̂e({x ∈ De|p̂e′(z) < ϵe′ , z = ϕ(x)}).

Intuitively, we estimate the no-overlap set Se(e
′, ϕ) using

the estimated probability of the instance in the estimated
distribution p̂e′ . When the probability is lower than a given
small threshold ϵe′ , it is considered as in the set Se(e

′, ϕ).
The threshold ϵe′ is estimated by

P̂e′({x ∈ Ve′ |p̂e′(z) < ϵe′ , z = ϕ(x)}) = 0.01.

We approximate pe with a Gaussian distribution N (µe,Σe),
and estimate the parameters with empirical statistics on De.
In the same way we can get the estimation of Pe′ [Se′(e, ϕ)].
The empirical diversity metric is then the average of the two
estimations.

Correlation shift. For each pair of domain e, e′. We have
the empirical set T̂ (ϕ, e, e′) := (De \ Ŝe(e

′, ϕ)) ∪ (De′ \
Ŝe′(e, ϕ)). Denote pe,e′ =

1
2 (pe + pe′) and

D̂cor =
1

2

∑
x∈T̂

p̂e,e′(x)
∑
y∈Y

|p̂e(y|ϕ(x))− p̂e′(y|ϕ(x))|.

As De, De′ are independently sampled, p̂e,e′(x) can be
estimated by the empirical distribution, i.e., p̂e,e′(x) =
1/|De∪D′

e|. To estimate p̂e(y|ϕ(x)), we first get a primary
estimation p̃e(y|ϕ(x)) with the following equation, where

the coefficient matrices (M0,M1, . . . ,M|Y|) are estimated
by minimizing the empirical evidence as in LogME (You
et al., 2021), i.e.,

p̃e(y|ϕ(x)) := m(M0ϕ(x),M1ϕ(x), . . . ,M|Y|ϕ(x)),

where m denotes the normalization operator. We then cali-
brate p̃e(y|ϕ(x)) with the empirical accuracy estimated on
T̂ (ϕ, e, e′) to get the final estimation p̂e(y|ϕ(x)). More
details are provided in Appendix A.1.

3.3. Observations

In this section, we present the results of our empirical anal-
ysis on the distribution shifts of PTMs for different DG
datasets. We quantify these shifts using the metrics previ-
ously described and discuss the various patterns observed.

We conduct experiments on five domain generalization
benchmarks: PACS (Li et al., 2017), VLCS (Fang et al.,
2013), Office-Home (Venkateswara et al., 2017), TerraIncog-
nita (Beery et al., 2018a), DomainNet (Peng et al., 2019).
According to (Ye et al., 2022), PACS, OfficeHome, and
TerraIncognita all only encounter diversity shifts, while Do-
mainNet shows both diversity and correlation shifts. We
adopt the model zoo constructed in (Dong et al., 2022),
which consists of 35 PTMs with diverse architectures, pre-
training methods, and pre-training datasets. The two shift
scores for each model are the average of the two metrics in
Section 3.1 computed on each pair of domains in the dataset.
More details are provided in Appendix A.2.

The primary findings in this section are as follows.

• Within a specific DG dataset, the shift patterns of PTMs
exhibit substantial diversity.

• The architectural diversity contributes to distinct shift
patterns, and their interrelationships tend to maintain
consistency across datasets.

• The influence of pretraining frameworks on shift behav-
ior is noteworthy. Particularly, self-supervised learning
leads to relatively higher feature diversity shifts.

• An increase in the size of the pretraining data results
in a decrease in the feature correlation shift.

We introduce those findings in detail in the following para-
graphs.

Different shift patterns of PTMs on the datasets. As
shown in (Ye et al., 2022), different datasets exhibit different
trends of shifts. A natural question is how the distribution
shift of data interacts with the shift in the feature space of
a PTM. The observations in this section show that the shift
patterns of PTMs can have a great variety within a given DG
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Figure 2. Results of PTMs with different architectures pretrained under the empirical risk minimization framework on ImageNet-1K.
Details of these PTMs are provided in Table 5.
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Figure 3. Results comparing ResNet-50s pretrained on ImageNet under different pretraining frameworks. Type denotes different pretraining
types, including ERM (empirical risk minimization), AT (adversarial training), and SSL (self supervised learning). Alg denotes the
specific pretraining algorithm.

dataset. Specifically, we compute the average shift metric
scores between domain pairs on each dataset. The results
are shown in Figure 1. On Terra Incognita, the diversity shift
of models varies from 0.21 to 0.89. Notably, some PTMs
encounter significant correlation shifts on Terra Incognita,
which is different from the dataset correlation shift shown
in (Ye et al., 2022).

We further compare the results within the following 3 groups
of models to show the effect of architectures, training frame-
works, and datasets on shift behavior. The details of the 3
groups are introduced in Appendix A.2.

Architectures. We compare models with different archi-
tectures but pre-trained with the same framework on the
same dataset. As shown in Figure 2, when comparing
PTMs pretrained under the ERM framework on ImageNet-
1K (Russakovsky et al., 2015a), we found that the variation
of architectures resulted in a wide range of shift patterns.
It can be observed that across different datasets, ResNet-
152 generally exhibits a larger diversity shift compared to
ResNet-50, and a smaller correlation shift. Additionally,
after fine-tuning, ResNet-152 achieves higher OOD accu-
racy than ResNet-50. These findings suggest an interesting
observation that while ResNet-152 captures domain-specific

features, they do not result in a geometric skew (Nagarajan
et al., 2021).

Pretraining frameworks. To show the effect of pretrain-
ing frameworks, we compare models with a fixed architec-
ture but trained with different optimization objectives on the
same dataset. Figure 3 shows the results comparing ResNet-
50s pretrained on ImageNet under different frameworks,
i.e., ERM, self-supervised learning (SSL), and adversarial
training (AT) (Madry et al., 2018). We can find models pre-
trained using SSL methods exhibit overall higher diversity
shifts. This is not unexpected, as SSL methods tend to learn
features that maximally preserve the original information
of the raw input, including the domain-specific part. For
example, generative-based SSL such as the Masked autoen-
coder (He et al., 2021) learns to reconstruct images with only
a small fraction of the pixels. Additionally, contrastive learn-
ing methods have been observed to suffer from the negative
transfer phenomenon (Liu et al., 2022), where the learned
features perform poorly on downstream tasks. Furthermore,
the use of cosine similarity in contrastive learning has been
noted to result in overly complex feature maps (Hu et al.,
2022a), which can negatively impact out-of-distribution gen-
eralization. Among SSL methods, PIRL (Misra & van der
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Figure 4. Results of Swin transformers (Liu et al., 2021) pretrained
on ImageNet-1K and both ImageNet-1K and ImageNet-22K on 5
datasets.

Maaten, 2020) and InsDis (Wu et al., 2018) usually have
the most significant diversity shifts and worse OOD perfor-
mance on these datasets (Dong et al., 2022).

Datasets. To demonstrate the impact of dataset size on
the distribution shifts of PTMs, we compare the perfor-
mance of Swin transformers (Liu et al., 2021) pretrained
on ImageNet-1K and both ImageNet-1K and ImageNet-
22K (Russakovsky et al., 2015b), as shown in Figure 4. It
indicates that the use of larger pretraining data results in
a significant decrease in correlation shift, which may be
attributed to the increased complexity of the supervised
pretraining tasks.

4. Model Zoo Exploitation
In this section, we demonstrate how the characteristic of
diversity in models can be employed to enhance the do-
main generalization performance of strong models. In the
previous section, we established that models exhibit two
distinct types of shift patterns. Our observations indicate
that some PTMs are dominated by one type of shift, for
example, PIRL on TerraIncognita. This insight inspires
the design of an ensemble algorithm that addresses the two
dimensions of feature shifts. By leveraging two auxiliary
models that are dominated by the two shifts respectively,
we design corresponding algorithms to resolve the specific
shifts.

4.1. Diversity Ensemble Method

To prevent potential failure caused by the diversity shift,
we utilize the auxiliary model which encodes features that
encounter significant diversity shifts. We propose to re-
quire the prediction of the main model to be independent of
those features thus mitigating the effect of diversity shift on
the predictor. To constraint the independence, we adopt a

differentiable independence measure, the Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2007). The
idea of using HSIC is inspired by the algorithm proposed
in (Bahng et al., 2020), where HSIC is used for penalizing
the dependency between the predicts of the main model and
multiple biased models.

Formally, denote Zl = lm ◦ fM (X), where lm : ZM → Zl

is the classifier on the top of the main model fM : X →
ZM . Denote Zd = fd(X), where fd : X → Zd is the
diversity auxiliary model. Our target is then to constrain
the dependency between Zl and Zd. Denote k as a kernel
function on Zd×Zd, l as a kernel function on Zl×Zl. The
HSIC statistic between the main model fM and the auxiliary
model fd is defined as follows:

HSIC(fM , fd) :=E [k (Zd, Z
′
d) l (Zl, Z

′
l)] +

E [k (Zd, Z
′
d)]E [l (Zl, Z

′
l)]

− 2E
[
EZ′

d
[k (Zd, Z

′
d)]EZ′

l
[l (Zl, Z

′
l)]

]
.

Instead of the unbiased estimator in (Bahng et al., 2020), we
used the biased empirical estimate HSICb (Gretton et al.,
2007):

HSICb(fM , fd) :=
1

m2
trace(KHLH),

where we suppose the sample size is m, K denotes the m×
m matrix with entries kij := k(fd(xi), fd(xj)), L denotes
the m ×m matrix with entries lij := l(lm ◦ fM (xi), lm ◦
fM (xj)). H = I− 1

m11T , where 1 is an m× 1 vector of
ones.

The final training objective of the main model writes as
follows:

L(fM ) := min
fM

EX,Y∼PD [Lc(Y, fM (X))

+ λHSICd(fM , fd)].

In our implementation, we use the Gaussian kernel
l(z, z′) = exp(−γ1∥z − z′∥2), k(z, z′) = exp(−γ2∥z −
z′∥2). To mitigate the effect of the dimension, we rescale
γ1 and γ2 by dividing by the dimension of the representa-
tion z in the calculation. Following methods in invariant
learning literature (Chen et al., 2022), we introduce an addi-
tional hyperparameter Nwarm-up which controls the number
of warm-up steps before the HSIC penalty is added to the
loss.

4.2. Correlation Ensemble Method

To prevent potential failure caused by the correlation shift,
we adopt the auxiliary model which encodes features that
encounter significant correlation shifts. In this module,
we reweight training instances to weaken the correlation
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Table 1. Comparison of test domain accuracy between our method and SOTA OOD methods. The results of SWAD are from (Cha et al.,
2021), and results denoted with † are from (Gulrajani & Lopez-Paz, 2021). The results of three versions of ZooD are from (Dong et al.,
2022) (denoted with ∗). Our results are average of three trials.

Method PACS VLCS OfficeHome TerraInc. DomainNet Avg
ERM† 85.5 77.5 66.5 46.1 40.9 63.3
IRM† 83.5 78.6 64.3 47.6 33.9 61.6
GroupDRO† 84.4 76.7 66.0 43.2 33.3 60.7
I-Mixup† 84.6 77.4 68.1 47.9 39.2 63.4
MMD† 84.7 77.5 66.4 42.2 23.4 58.8
SagNet† 86.3 77.8 68.1 48.6 40.3 64.2
ARM† 85.1 77.6 64.8 45.5 35.5 61.7
VREx† 84.9 78.3 66.4 46.4 33.6 61.9
RSC† 85.2 77.1 65.5 46.6 38.9 62.7
SWAD 88.1 79.1 70.6 50.0 46.5 66.9

ZooD
Single∗ 96.0 79.5 84.6 37.3 48.2 69.1
Ensemble∗ 95.5 80.1 85.0 38.2 50.5 69.9
F. Selection∗ 96.3 80.6 85.1 42.3 50.6 71.0

Ours
Single + Rew 96.3 81.2 84.0 52.0 48.2 72.3
+ HSIC 96.7 81.5 85.2 52.3 49.2 72.8
+ Both 96.7 81.4 85.3 53.0 49.2 73.1

Table 2. Main and auxiliary models. HSIC aux. denotes the auxiliary models that are dominated by the diversity shift and adopted for
computing the HSIC constraint. Rew. aux. denotes the auxiliary models that are dominated by the correlation shift. The metric values are
averaged over each pair of domains in the dataset. Details of the model configuration are provided in Appendix B.1.

Datasets PACS VLCS OfficeHome TerraInc. DomainNet

Main model CLIP-ViT CLIP-ViT Swin-B-22 Swin-B-22 ResNext-101
Fdiv 0.37 0.36 0.11 0.71 0.35
Fcor 0.05 0.11 0.19 0.11 0.41

HSIC aux. ResNet50-ss ResNet50-InsDis ResNet50-InsDis ResNet50-PIRL ViT-B
Fdiv 0.65 0.33 0.17 0.89 0.47
Fcor 0.10 0.21 0.57 0.05 0.22

Rew. aux. BEiT-base BEiT-base deepcluster-v2 inception-v3 ResNet50-sws
Fdiv 0.33 0.06 0.09 0.21 0.45
Fcor 0.38 0.29 0.52 0.47 0.40

between the features and the target labels. By that, we
avoid the predictor from skewing to that unstable correla-
tion across domains.

Specifically, denote the auxiliary model as fc and its un-
certainty output for instance x as pc(x). We follow the
classical strategy which has been proven effective in the de-
bias literature (Xiong et al., 2021) to reweight the instance
loss with

wc(x, y) = p(y)/pc(x)y,

where pc(x)y is the y-th component of pc(x). During train-
ing steps, the weights in each batch are smoothed with a
hyperparameter T and normalized (Yi et al., 2021). The

loss on a batch |B| is then

LB(fM ) :=
1

|B|
∑

(x,y)∈D

m(
p(y)

pc(x)y · T
)Lc(y, fM (x)),

where m denotes the normalization operation over samples
in B. We introduce an additional hyperparameter Nanneal
which controls the number of annealing steps where T is
infinitely large, i.e., before the adjusted weights are attached
to the samples.
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5. Experiments
We conduct experiments on domain generalization bench-
marks to evaluate the effectiveness of our proposed zoo
exploiting method. Our results demonstrate that it consis-
tently outperforms single top models and improves the per-
formance of top model ensembles, highlighting the benefits
of exploiting model diversity. Additionally, we analyze the
correlation between OOD accuracy and the feature diversity
and correlation shifts of the fine-tuned classifiers.

5.1. Experiment Settings

Datasets. We conduct experiments on five domain gener-
alization benchmarks: PACS (Li et al., 2017), VLCS (Fang
et al., 2013), OfficeHome (Venkateswara et al., 2017) , Ter-
raIncognita (Beery et al., 2018a), and DomainNet (Peng
et al., 2019). During training on each dataset, one of the
domains is chosen as the target domain and the remaining
are the training domains, where 20% samples are used for
validation and model selection. The final test accuracy on
the dataset is the mean of the test results on each target
domain.

Baselines. We compare the proposed algorithm with pre-
vious SOTA OOD methods and three versions of ZooD,
including 1) Single: fine-tune the top-1 model ranked by
ZooD; 2) Ensemble: fine-tune an ensemble of the top-K
models; 3) F. Selection: fine-tune an ensemble of the top-K
models with feature selection, which is the expected result
using ZooD. Our algorithm also has three versions. 1) Sin-
gle+Rew: fine-tune the top-1 model ranked by ZooD with
reweight auxiliary; 2) Single+HSIC: fine-tune the top-1
model with HSIC auxiliary; 3) Single+Both: fine-tune the
top-1 model with both kinds of auxiliary.

Configurations. We follow the setting of ZooD to con-
struct a model zoo consisting of 35 PTMs. As discussed
in Section 3.3, these models vary in architectures, pretrain-
ing methods, and datasets. For auxiliary models, we select
models that are extreme at one shift metric. For the main
model, we use the Top-1 model ranked by ZooD. The de-
tailed statistics of selected auxiliary models and the main
models are shown in Table 2. We use a 3-layer MLP as the
prediction head on the top of the main model and fine-tune
it on the downstream tasks. Following ZooD, we adopt the
leave-one-domain-out cross-validation setup in DomainBed
for hyper-parameter selection and run 3 trials. More details
on the experimental setup are in Appendix B.1.

5.2. Experiment Results

Table 1 presents the main results of our proposed methods
on the five datasets of the DomainBed benchmark. The
results indicate that the incorporation of the independence

Table 3. Results on the ensemble of Top-3 models. Results denoted
with ∗ are from (Dong et al., 2022).

Datasets OfficeHome DomainNet

Ensemble∗ 85.0 50.5
F. Selection∗ 85.1 50.6

Ensemble+Rew 85.1 50.6
+HSIC 86.0 51.4

Table 4. Shift scores of the last layer representation of main predic-
tors. ERM, HSIC, Rew. and Two denote the scores for the logits
of the main predictor.

Datasets VLCS TerraInc.

Model CLIP-ViT Swin-B-22
Test Env. 1 0

ERM Fdiv 0.11 0.34
Fcor 0.06 0.16

HSIC Fdiv 0.095 0.27
Fcor 0.041 0.17

Rew. Fdiv 0.101 0.33
Fcor 0.054 0.15

Two Fdiv 0.098 0.28
Fcor 0.050 0.16

penalization module and the combination of reweight and
independence penalization modules consistently improve
the performance of the single top model. On average, the
combination of both methods (Single+Both) results in an
approximate 6% improvement in accuracy. Notably, on the
PACS, VLCS, and TerraIncognita datasets, our proposed
methods even outperform the F. Selection method. This
observation highlights the potential of utilizing model induc-
tive bias to leverage weak models in boosting performance,
rather than relying solely on strong models.

On the OfficeHome and DomainNet datasets, the proposed
methods do not show significant improvements over top-
3 ensembles (the Ensemble version of ZooD). To further
investigate this, we also conducted experiments using our
methods on top-3 ensembles. The results, presented in
Table 3, reveal that compared to the F. Selection method,
the incorporation of the independence penalization module
can significantly enhance the overall accuracy.

It is worth noting that, unlike the independence penalization
module, the improvements brought by the reweight mod-
ule are only significant on the VLCS and TerraIncognita
datasets. For the PACS dataset, this may be attributed to
the fact that the Fcor of the main model is already non-
significant, as reported in Table 2. For the OfficeHome and

8



Explore and Exploit the Diverse Knowledge in Model Zoo for Domain Generalization

DomainNet datasets, this may be due to the limited effec-
tiveness of the reweighting strategy when the number of
classes is large (65 and 345). Previous literature has only
validated its success on tasks with a number of classes lower
than 10 (Xiong et al., 2021).

To further interpret the results, we analyze the shift pattern
of the main predictor. Table 4 shows the scores comparison
of the last layer features (logits) of the main predictor. The
results are obtained using the following hyperparameter
set: λ = 100, Nwarm-up = 500, γ1 = 0.5, γ2 = 0.25, T =
1, Nanneal = 2000. As expected, compared to the results
obtained using ERM, HSIC, and Rew. lead to a decrease in
Fdiv and Fcor, respectively. The results obtained using both
modules show a compromise between the two modules. It
is worth noting that the use of HSIC on the VLCS dataset
leads to a significant decrease in Fcor, which can explain the
result in Table 1 where incorporating the reweight module
in Two does not further improve the results of HSIC.

6. Conclusion
In this work, we have presented a novel approach for uti-
lizing the diverse knowledge present in a model zoo for
domain generalization tasks. The main takeaway findings
of this study are two-fold. Firstly, it emphasizes that even
the most powerful models have the potential for further en-
hancements in downstream DG tasks. Secondly, it illustrates
that the enhancements do not solely come from powerful
models, but rather from a combination of models with di-
verse characteristics, a weak model can also contribute to the
enhancement of an already strong model. This highlights
the importance of maintaining a diverse zoo of pretrained
models for the community. It is worth emphasizing that our
proposed profiling method is general and can be applied to
other tasks and domains, making it an interesting avenue
for further research. Overall, this work provides a new per-
spective on how to better utilize the diverse knowledge in
a model zoo and opens up new possibilities for improving
performance on out-of-distribution tasks.
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A. Shift metrics
A.1. Practical Estimation

In this section, we show how the two metrics can be computed practically for general latent features of an arbitrary PTM.

Notations. Consider a dataset D that contains samples collected under multiple domains E , i.e., D = {De}e∈E . De =

{xe
i , y

e
i }

ne

i=1 contains instances of random variables (X,Y ) that are i.i.d. sampled from the probability distribution Pe(X×Y).
A PTM is denoted as a feature encoder ϕ : X → Zϕ. Suppose the dimension of ϕ(x) is d. The feature matrix on the domain
De is denoted as

Φe :=
(
ϕ(xe

1), ϕ(x
e
i2), . . . , ϕ(x

e
ne)

)⊤ ∈ Rne×d.

Diversity shift. Denote Se(e
′, ϕ) := {z ∈ Zϕ|pe(z) > 0, pe′(z) = 0}, Se′(e, ϕ) := {z ∈ Zϕ|pe(z) = 0, pe′(z) > 0},

Fdiv(ϕ, e, e
′) can be written as

Fdiv(ϕ, e, e
′) =

1

2
(Pe[Se(e

′, ϕ)] + Pe′ [Se′(e, ϕ)]).

We design the following empirical estimation of Pe[Se(e
′, ϕ)]:

P̂e[Ŝe(e
′, ϕ)] := P̂e({x ∈ De|p̂e′(z) < ϵe′ , z = ϕ(x)}).

Intuitively, we estimate the no-overlap set Se(e
′, ϕ) using the estimated probability of the instance in the estimated

distribution p̂e′ . When the probability is lower than a given small threshold ϵe′ , it is considered as in the set Se(e
′, ϕ). The

threshold ϵe′ is estimated by

P̂e′({x ∈ Ve′ |p̂e′(z) < ϵe′ , z = ϕ(x)}) = 0.01.

For each e ∈ E , we approximate pe with a Gaussian distribution N (µe,Σe), and estimate the parameters with empirical
statistics on De. Specifically,

µ̂e =
1

ne
Φ⊤

e 1ne Σ̂e =
1

ne
(Φe − 1ne µ̂⊤

ϕ )
⊤(Φe − 1ne µ̂⊤

ϕ ),

Given the estimated distribution N (µ̂e, Σ̂e), the probability density at a given point z ∈ Zϕ is computed as

p̂e(z) = p̂e(z|µ̂e, Σ̂e) =

√
1

(2π)d|Σ̂e|
exp

(
−1

2
(z− µ̂e)

⊤Σ̂−1
e (z− µ̂e)

)
.

Denote Ce := (2π)−d/2|Σ̂e|1/2, d̂e(z) := (z− µ̂e)
⊤Σ̂−1

e (z− µ̂e), we have p̂e(z) = Ce exp(− 1
2 d̂e(z)). As Ce is constant

for any z, and the exponential function is monotonic, we can empirically estimate Pe[Se(e
′, ϕ)] using d̂e′ instead as follows:

P̂e[Ŝe(e
′, ϕ)] := P̂e({x ∈ De|d̂e′(z) > ϵe′ , z = ϕ(x)}),

where ϵe′ satisfies
P̂e′({x ∈ Ve′ |d̂e′(z) > ϵe′ , z = ϕ(x)}) = 0.01.

Note that it connects to the common practice in OOD detection methods where the Mahalanobis distance is estimated (Lee
et al., 2018).

The estimation of Pe′ [Se′(e, ϕ)] is defined in the same way. The empirical diversity metric is then the average of the two
estimations, i.e.,

F̂div(ϕ, e, e
′) =

1

2

(
P̂e[Ŝe(e

′, ϕ)] + P̂e′ [Ŝe′(e, ϕ)]
)
.

13
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Correlation shift. For each pair of domain e, e′. We have the empirical set T̂ (ϕ, e, e′) := (De \ Ŝe(e
′, ϕ)) ∪ (De′ \

Ŝe′(e, ϕ)). Denote pe,e′ =
1
2 (pe + pe′) and

D̂cor =
1

2

∑
x∈T̂

p̂e,e′(x)
∑
y∈Y

|p̂e(y|ϕ(x))− p̂e′(y|ϕ(x))|.

As De, De′ are independently sampled, p̂e,e′(x) can be estimated by the empirical distribution, i.e., p̂e,e′(x) = 1/|De ∪D′
e|.

To estimate p̂e(y|ϕ(x)), we first get a primary estimation p̃e(y|ϕ(x)) with the following equation:

p̃e(y|ϕ(x)) := m(M0ϕ(x),M1ϕ(x), . . . ,M|Y|ϕ(x)), (1)

where m denotes the normalization operator. The coefficient matrices (M0,M1, . . . ,M|Y|) are estimated by minimizing
the empirical evidence on De as in LogME (You et al., 2021). Specifically, denote K := |Y|, y ∈ RK is the one-hot label
vector . Denote yi as the i-th component. We adopt the following linear model assumption:

yi = w⊤
i ϕ(x) + ϵ, wi ∈ Rd, ϵ ∈ R,

where ϵ is the Gaussian noise variable with variance β−1. As we assume that the prior distribution of weights wi is an
isotropic Gaussian distribution with zero mean and parameterized by α, i.e.

wi ∼ N (0, α−1Id),

and the conditional distribution of yi given ϕ(x) is

yi
∣∣ϕ(x),wi ∼ N (w⊤

i ϕ(x), β
−1),

then according to the definition of evidence,

p(yi|ϕ(x), α, β) =
∫
wi∈Rd

p(wi|α)p(yi|ϕ(x),wi, β)dwi.

Denote Φe ∈ Rne×d as the feature matrix of all training samples in the environment e, and ye
i ∈ Rne as the label vector

composed by yi. Denote A = αI + βΦ⊤
e Φe,m = βA−1Φ⊤

e y
e
i , we have the following log likelihood:

L(α, β) = log p(ye
i |Φe, α, β)

=
ne

2
log β +

d

2
logα− ne

2
log 2π

− β

2
∥Φem− ye

i ∥22 −
α

2
m⊤m− 1

2
log |A|.

Solve (α∗, β∗) = argmaxα,β L(α, β) by using the same iterative approach as in (You et al., 2021), we can get an estimate
of wi:

ŵi = β∗(α∗I + β∗Φ⊤
e Φe)

−1Φ⊤
e y

e
i .

Substituting the above estimate into the formula 1, we get the estimate p̃e(y|ϕ(x)). Alternatively, we can also consider
directly using square loss for classifying the features and estimating the conditional probability (Hu et al., 2022b). We then
calibrate p̃e(y|ϕ(x)) with the empirical accuracy estimated on T̂ (ϕ, e, e′) to get the final estimation p̂e(y|ϕ(x)). Specifically,
denote B0,B1, . . . ,Bb as b average sized blocks in [0, 1]. We define

Bi(ϕ, e, y) = {(x, y) ∈ De ∩ T̂ (ϕ, e, e′)|p̃e(y|ϕ(x)) ∈ Bi}.

We then estimate p̂e(y|ϕ(x)) for x ∈ Bi(ϕ, e, y) as follows:

p̂e(y|ϕ(x)) :=
|{(x, yx) ∈ Bi(ϕ, e, y)|yx = y}|

|Bi(ϕ, e, y)|
.

The final D̂cor is then computed with the estimated p̂e(y|ϕ(x)) and p̂e′(y|ϕ(x)).
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Table 5. Details of the model zoo proposed in (Dong et al., 2022). The first column corresponds to the numbers we have used for
subsequent tables. The rest of the table describes architectures, pre-training datasets, and pre-training algorithms as well as the group and
source of each model.

Number Architecture Dataset Algorithm Group Source
1 ResNet-50 ImageNet-1K ERM Group 1 Paszke et al. (2019)
2 ResNet-152 ImageNet-1K ERM Group 1 Paszke et al. (2019)
3 ResNeXt-50 ImageNet-1K ERM Group 1 Paszke et al. (2019)
4 DenseNet-169 ImageNet-1K ERM Group 1 Paszke et al. (2019)
5 DenseNet-201 ImageNet-1K ERM Group 1 Paszke et al. (2019)
6 Inception v1 ImageNet-1K ERM Group 1 Paszke et al. (2019)
7 Inception v3 ImageNet-1K ERM Group 1 Paszke et al. (2019)
8 MobileNet v2 ImageNet-1K ERM Group 1 Paszke et al. (2019)
9 EfficientNet-B2 ImageNet-1K ERM Group 1 Paszke et al. (2019)

10 EfficientNet-B4 ImageNet-1K ERM Group 1 Paszke et al. (2019)
11 Swin-T ImageNet-1K Swin Group 1 Liu et al. (2021)
12 Swin-B ImageNet-1K Swin Group 1 Liu et al. (2021)
13 ResNet-50 ImageNet-1K Adv. ℓ2 (ϵ = 0.5) Group 2 Salman et al. (2020)
14 ResNet-50 ImageNet-1K Adv. ℓ∞ (ϵ = 4) Group 2 Salman et al. (2020)
15 ResNet-50 ImageNet-1K BYOL Group 2 Ericsson et al. (2021)
16 ResNet-50 ImageNet-1K MoCo-v2 Group 2 Ericsson et al. (2021)
17 ResNet-50 ImageNet-1K InsDis Group 2 Ericsson et al. (2021)
18 ResNet-50 ImageNet-1K PIRL Group 2 Ericsson et al. (2021)
19 ResNet-50 ImageNet-1K DeepCluster-v2 Group 2 Ericsson et al. (2021)
20 ResNet-50 ImageNet-1K PCL-v2 Group 2 Ericsson et al. (2021)
21 ResNet-50 ImageNet-1K SeLa-v2 Group 2 Ericsson et al. (2021)
22 ResNet-50 ImageNet-1K SwAV Group 2 Ericsson et al. (2021)
23 ResNet-18 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. (2019)
24 ResNet-50 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. (2019)
25 ResNeXt-50 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. (2019)
26 ResNeXt-101 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. (2019)
27 ResNet-18 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. (2019)
28 ResNet-50 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. (2019)
29 ResNeXt-50 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. (2019)
30 ResNeXt-101 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. (2019)
31 Swin-B ImageNet-1K + ImageNet-22K Swin Group 3 Liu et al. (2021)
32 BEiT-B ImageNet-1K + ImageNet-22K BEiT Group 3 Wolf et al. (2020); Bao et al. (2021)
33 ViT-B/16 ImageNet-1K + ImageNet-22K ViT Group 3 Wolf et al. (2020); Wu et al. (2020)
34 ResNet-50 WebImageText CLIP Group 3 Radford et al. (2021)
35 ViT-B/16 WebImageText CLIP Group 3 Radford et al. (2021)

A.2. The Model Zoo

We follow the model zoo setting of ZooD (Dong et al., 2022) which consists of 35 PTMs having diverse architectures,
pre-training methods, and pre-training datasets. A summary of the PTMs can be found in Table 5. Dong et al. (2022) divide
the models into three groups. In the main paper, we also introduce 3 subsets of models, with results shown in Figure 2, 3,
and Figure 4, respectively.

Figure 2 contains results for models of 10 different architectures (CNNs) trained on ImageNet-1K with ERM. The
architectures are as follows: ResNet-50, ResNet-152 (He et al., 2016), ResNeXt-50 (Xie et al., 2017), DenseNet-169,
DenseNet-201 (Huang et al., 2017), Inception v1 (Szegedy et al., 2015), Inception v3 (Szegedy et al., 2016), MobileNet
v2 (Sandler et al., 2018), EfficientNet-B2, EfficientNet-B4 (Tan & Le, 2019).

Figure 3 contains 10 ResNet-50s trained via following pre-training methods: Adversarial Training (Madry et al., 2018),
BYOL (Grill et al., 2020), MoCo-v2 (Chen et al., 2020), InsDis (Wu et al., 2018), PIRL (Misra & van der Maaten, 2020),
DeepCluster-v2 (Caron et al., 2018), PCL-v2 (Li et al., 2021), SeLa-v2 (Asano et al., 2020; Caron et al., 2020), SwAV (Caron
et al., 2020).

Figure 4 shows the results of 2 different versions of Swin-B (Liu et al., 2021) pre-trained on ImageNet-1K or on both
ImageNet-1K and ImageNet-22K (Russakovsky et al., 2015b).
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Table 6. Dataset Statistics and model information. feature dim. denotes the feature dimension of each model. Results denoted with † are
from (Dong et al., 2022).

Datasets PACS VLCS OfficeHome TerraInc. DomainNet

#samples 7995 8584 12472 19832 469262
#domains 4 4 4 4 6
#classes 7 5 65 10 345

Main model CLIP-ViT CLIP-ViT Swin-B-22 Swin-B-22 ResNext-101
feature dim. 512 512 1024 1024 2048
finetuned† 96.0 79.5 84.6 37.3 48.8
rank (ZooD)† 1 1 1 1 1

HSIC aux. ResNet50-ss ResNet50-InsDis ResNet50-InsDis ResNet50-PIRL ViT-B
feature dim. 2048 2048 2048 2048 768
finetuned† 75.7 65.6 22.7 18.4 34.1
rank (ZooD)† 6 30 34 32 13

Rew. aux. BEiT-base BEiT-base deepcluster-v2 inception-v3 ResNet50-sws
feature dim. 768 768 2048 2048 2048
finetuned† 47.1 68.4 61.0 23.8 46.3
rank (ZooD)† 31 34 24 25 3

B. Experiments
B.1. Experiment Details

Datasets. Details of the five datasets in our experiments are introduced as follows. PACS (Li et al., 2017): This dataset
contains a total of 9,991 images, drawn from four distinct domains (art, cartoons, photos, sketches), and encapsulates seven
different classes. VLCS (Fang et al., 2013): This compilation features 10,729 images from four domains (Caltech101,
LabelMe, SUN09, VOC2007), comprising five distinct classes. Office-Home (Venkateswara et al., 2017): This dataset
includes images from four domains (art, clipart, product, real), primarily illustrating common objects in office and home
environments. It is composed of a total of 15,588 images distributed across 65 classes. TerraIncognita (Beery et al., 2018a):
This dataset encompasses photographs of wildlife captured by camera traps at four different locations. It contains a total of
24,788 images across 10 classes. DomainNet (Peng et al., 2019): Recognized as one of the most challenging DG datasets, it
comprises 586,575 images from six diverse domains (clipart, infographics, painting, quickdraw, real, sketch), spanning 345
classes.

Main and auxiliary models. For the main model, we use the Top-1 model ranked by ZooD. For the auxiliary model,
we select models that are extreme at one shift metric on that dataset. Table 6 shows some detailed statistics of selected
auxiliary models and the main models. finetuned denotes the averaged OOD accuracy of the linear classifier on the top of
the corresponding PTM when finetuned on the dataset. rank (ZooD) denotes the rank of the PTM according to the ZooD
evaluation metric. According to the results in Table 6, the finetuned performance of the selected auxiliary models are mostly
weak.

We use a 3 layers MLP as the prediction head on the top of the main model and fine-tune it on the downstream tasks.
The dimension of the first hidden layer is half of that of the output of the main model. The dimension of the second
layer is set to 256 for all the main models except for ResNext-101, which is set to 512. The last layer is linear with the
outputs of the same dimension as the class numbers. For the reweight auxiliary model, we use a linear layer on top of it
and fine-tune it as the classifier. The reweight auxiliary classifier is trained under the following hyperparameter setting:
learning rate = 1 × 10−5, batch size = 16, dropout = 0,weight decay = 0, steps = 1000. For DomainNet, the training
steps are increased to 5000.
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Table 7. Hyperparameters, their default values, and the search range.

Dataset Parameter Default value Range

PACS & VLCS
learning rate 5× 10−5 -
weight decay 0 -
γ1, γ2 0.1, 0.5 -

OfficeHome
learning rate 5× 10−5 -
weight decay 1× 10−4 -
γ1, γ2 0.5, 0.5 -

TerraIncognita
learning rate 2× 10−4 -
weight decay 3× 10−6 -
γ1, γ2 0.5, 0.5 -

All above

steps 5000 -
T 1 [0.5, 1, 2, 4, 8]
Nanneal 1000 [100, 500, 1000, 2000]
λ 1 [1, 5, 10, 50, 100, 200]
Nwarm-up 100 [50, 100, 200, 500, 1000, 2000]

DomainNet

learning rate 2× 10−4 -
weight decay 3× 10−6 -
γ1, γ2 0.1, 0.5 -
steps 15000 -
T 1 [0.5, 1, 2, 4, 8, 16]
Nanneal 1000 [1000, 2000, 5000, 10000]
λ 1 [10, 50, 100, 200, 500, 1000]
Nwarm-up 100 [500, 1000, 2000, 5000, 10000]

All dropout 0 -
batch size 16 -

Table 8. Classification accuracy on TerraIncognita. Results denoted with † are from ZooD (Dong et al., 2022).

Method Terra Incognita
L100 L38 L43 L46 Avg

Single† 33.7 37.1 40.3 37.9 37.3
Ensemble† 35.2 34.1 45.6 37.9 38.2

F. Selection† 40.0 46.1 45.1 37.8 42.3

Single+rew 58.9 +/- 2.7 50.5 +/- 0.3 53.5 +/- 0.4 45.1 +/- 3.1 52.0 +/- 1.3
Single+hsic 59.1 +/- 0.8 48.5 +/- 2.5 53.2 +/- 0.3 48.3 +/- 1.4 52.3 +/- 0.9
Single+both 61.7 +/- 1.4 47.6 +/- 2.0 53.0 +/- 0.9 49.5 +/- 0.5 53.0 +/- 0.9

Hyperparameters. Following ZooD, we adopt the leave-one-domain-out cross-validation setup in DomainBed for hyper-
parameter selection and run 3 trials. We list all hyperparameters, their default values, and the search range for each
hyperparameter in our grid search sweeps, in Table 7. All models are optimized using Adam (Kingma & Ba, 2014). Note
that The hyperparameters γ1 and γ2 are intrinsic to each PTM and define the bandwidth of the Gaussian kernel in HSIC.
They are manually set to ensure the penalty term’s initial value falls within the proper range [0, 1], which is influenced by the
PTM’s feature scale and range. Consequently, the value of γ1 varies with the choice of the main model. For CLIP-ViT and
ResNext-101, γ1 is set to 0.1, while for Swin-B, it is set to 0.5. Empirically, we observe that results are not very sensitive to
small deviations ( 0.25) from these chosen values.
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Table 9. Classification accuracy on VLCS. Results denoted with † are from ZooD (Dong et al., 2022).

Method VLCS
C L S V Avg

Single† 99.9 60.5 72.3 85.4 79.5
Ensemble† 99.7 63.4 76.5 80.9 80.1

F. Selection† 100.0 63.0 77.0 82.4 80.6

Single+rew 99.9 +/- 0.0 63.4 +/- 1.1 76.9 +/- 0.9 84.4 +/- 0.2 81.2 +/- 0.4
Single+hsic 99.7 +/- 0.1 65.7 +/- 0.5 75.4 +/- 0.4 85.2 +/- 0.1 81.5 +/- 0.1
Single+both 99.8 +/- 0.1 64.6 +/- 1.0 76.4 +/- 0.4 84.7 +/- 0.2 81.4 +/- 0.3

B.2. Detailed Results

We include some detailed results of the experiments on the DomainBed. Table 8 shows the classification accuracy on
Terra-Incognita. Table 9 show the classification accuracy on VLCS. It shows that our proposed scheme outperforms ZooD
on each target domain in the dataset.
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