
Bidirectional Looking with A Novel Double Exponential Moving Average to
Adaptive and Non-adaptive Momentum Optimizers

Yineng Chen † 1 Zuchao Li † 1 2 Lefei Zhang 1 2 Bo Du 1 2 Hai Zhao 3

Abstract

Optimizer is an essential component for the suc-
cess of deep learning, which guides the neural
network to update the parameters according to
the loss on the training set. SGD and Adam are
two classical and effective optimizers on which
researchers have proposed many variants, such
as SGDM and RAdam. In this paper, we in-
novatively combine the backward-looking and
forward-looking aspects of the optimizer algo-
rithm and propose a novel ADMETA (A Double
exponential Moving averagE To Adaptive and
non-adaptive momentum) optimizer framework.
For backward-looking part, we propose a DEMA
variant scheme, which is motivated by a metric
in the stock market, to replace the common ex-
ponential moving average scheme. While in the
forward-looking part, we present a dynamic looka-
head strategy which asymptotically approaches
a set value, maintaining its speed at early stage
and high convergence performance at final stage.
Based on this idea, we provide two optimizer im-
plementations, ADMETAR and ADMETAS, the
former based on RAdam and the latter based on
SGDM. Through extensive experiments on di-
verse tasks, we find that the proposed ADMETA
optimizer outperforms our base optimizers and
shows advantages over recently proposed com-

† Equal contribution. This work was supported by the
Fundamental Research Funds for the Central Universities (No.
2042023kf1033), the Special Fund of Hubei Luojia Laboratory
under Grant 220100014, and the National Science Fund for Dis-
tinguished Young Scholars under Grant 62225113. Hai Zhao was
funded by the Key Projects of National Natural Science Founda-
tion of China (U1836222 and 61733011). 1National Engineering
Research Center for Multimedia Software, School of Computer
Science, Wuhan University, Wuhan, 430072, P. R. China 2Hubei
Luojia Laboratory, Wuhan 430072, P. R. China 3Department of
Computer Science and Engineering, Shanghai Jiao Tong Univer-
sity, Shanghai, 200240, P. R. China. Correspondence to: Zuchao
Li <zcli-charlie@whu.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

petitive optimizers. We also provide theoretical
proof of these two algorithms, which verifies the
convergence of our proposed ADMETA.

1. Introduction
The field of training neural network is dominated by gradi-
ent decent optimizers for a long time, which use first order
method. Typical ones include SGD (Robbins & Monro,
1951) and SGD with momentum (SGDM) (Sutskever et al.,
2013), which are simple yet efficient algorithms and enjoy
even better resulting convergence than many recently pro-
posed optimizers. However, it suffers the disadvantage of
low speed in initial stage and poor performance in sparse
training datasets. This shortcoming can not be ignored since
with the development of deep learning, the amount of data
becomes much larger, and the model becomes much more
complex. The time to train a network is also considered an
important metric when evaluating an optimizer. To address
this issue, optimizers with adaptive learning rate have been
proposed which use nonuniform stepsizes to scale the gradi-
ent while training, and the usual implementation is scaling
the gradient by square roots of some kind of combination
of the squared values of historical gradients. By far the
most used are Adam (Kingma & Ba, 2014) and AdamW
(Loshchilov & Hutter, 2017) due to their simplicity and
high training speed in early stage. Despite their popularity,
Adam and many variants like of it (such as RAdam (Liu
et al., 2019)) is likely to achieve worse generalization ability
than non-adaptive optimizers, observing that their perfor-
mance quickly plateaus on validation sets.

To achieve a better tradeoff, researchers have made many
improvements based on SGD and Adam family optimiz-
ers. One attempt is switching from adaptive learning rate
methods to SGD, based on the idea of complementing
each other’s advantages. However, a sudden change from
one optimizer to another in a set epoch or step is not ap-
plicable because different algorithms make characteristic
choices at saddle points and tend to converge to final points
whose loss functions nearby have different geometry (Im
et al., 2016). Therefore, many optimizers based on this
idea seek for a smooth switch. The representative ones

1

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

are AdaBound (Luo et al., 2019) and SWATS (Keskar &
Socher, 2017). The second attempt is proposing new method
to further accelerate SGDM, including introducing power
exponent (pbSGD (Zhou et al., 2020a)), aggregated mo-
mentum (AggMo (Lucas et al., 2018)) and warm restarts
(SGDR (Loshchilov & Hutter, 2016)). The third attempt is
modifying the process of optimizers with adaptive learning
rate to achieve better local optimum, which is the most pop-
ular field in recent researches (Zhuang et al., 2020; Li et al.,
2020a). Due to space constraints, please see more related
work in Appendix A.

We focus in this paper on the use of historical and future
information about the optimization process of the model,
both of which we argue are important for models to reach
their optimal points. To this end, we introduce a bidirec-
tional view, backward-looking and forward-looking. In the
backward-looking view, EMA is an exponentially decreas-
ing weighted moving average, which is used as a trend-type
indicator in terms of the optimization process. And since
the training uses a mini-batch strategy, each batch is likely
to have deviations from the whole, so it may mislead the
model to the local optimal point. Inspired by stock market
indicators, DEMA (Mulloy, 1994) is an exponential average
calculated on the traditional EMA and current input, which
can effectively maintain the trend while reducing the impact
caused by short-term bias. We thus replace the traditional
exponential moving average (EMA) with double exponen-
tial moving average (DEMA). It is worth noting that our
usage is not equivalent to the original DEMA, but rather a
variant of it. In the forward-looking part, since we observe
that a constant weight adopted by the original Lookahead
optimizer (Zhang et al., 2019) to control the scale of fast
weights and slow weights in each synchronization period
makes the early stage training slow and lossy, we propose a
new dynamic strategy which adopts an asymptotic weight
for improvement. By applying these two ideas, we pro-
pose ADMETA optimizer with ADMETAR and ADMETAS
implementations based on RAdam and SGDM respectively.

Extensive experiments have been conducted on computer
vision (CV), natural language processing (NLP) and au-
dio processing tasks, which demonstrate that our method
achieves better convergence results compared to other re-
cently proposed optimizers. Further analysis shows that
ADMETAS achieves higher performance than SGDM and
ADMETAR achieves better convergence results and main-
tains high speed in the initial stage compared to other
adaptive learning rate methods. We further find that the
DEMA and dynamic looking strategy can improve perfor-
mance compared to EMA and constant strategy, respec-
tively. In addition, we provide convergence proof of our
proposed ADMETA in convex and non-convex optimiza-
tions. The code is available at https://github.com/
Chernyn/Admeta-Optimizer.

2. Admeta
2.1. Background

The role of the optimizer in model training is to minimize the
loss on the training set and thus drive the learning of model
parameters. Formally, consider a loss function f : Rd → R
that is bounded below greater than zero, where R represents
the field of real numbers, d denotes the dimension of the
parameter and thus Rd denotes d-dimensional Euclidean
space. The optimization problem can be formulated as:
minθ∈F f(θ), where θ indicates a parameter whose domain
is F and F ⊂ Rd. If we define the optimum parameter of
the above loss function as θ∗, then the optimization objective
can be written as:

θ∗ = argmin
θ∈F

f(θ). (1)

Optimizers iteratively update parameters to make them close
to the optimum as training step t increases, that is to make:
limt→∞ ∥θt − θ∗∥ = 0.

The stochastic gradient algorithm SGD (Robbins & Monro,
1951) optimizes f by iteratively updating parameter θt at
step t in the opposite direction of the stochastic gradient
g(θt−1; ξt) where ξt is the input variables of the t-th mini-
batch in training datasets. For the sake of clarity, we ab-
breviate g(θt−1; ξt) as gt for the rest of the paper unless
specified. SGD optimization aims to calculate the updated
model parameters based on the previous model parameters,
the current gradient and the learning rate. Define the learn-
ing rate as αt, the update process is summarized as follows:

θt = θt−1 − αtgt. (2)

Original SGD tends to vibrate along the process due to the
mini-batch strategy and not using of past gradients. What’s
more, this disadvantage also results in its long-time plateaus
in valleys and saddle points, thus slowing the speed. To
smooth the oscillation and speed up convergence rate, mo-
mentum, also known as Polyak’s Heavy Ball (Polyak, 1964),
is introduced to modify SGD. Momentum at step t is often
denoted as mt and obtained by iterative calculation with a
dampening coefficient β. Thus, the update process of SGD
with momentum (SGDM) (Sutskever et al., 2013) becomes
as follows:

mt = βmt−1 + (1− β)gt, (3)
θt = θt−1 − αtmt, (4)

Although momentum works well, the uniform stepsize on
every parameter is also another factor to limit the speed,
especially in large datasets and sparse datasets. To further
accelerate the update, adaptive learning rate optimizer is
introduced which adopts an individual stepsize for each
parameter based on their unique update process. Since a

2

https://github.com/Chernyn/Admeta-Optimizer
https://github.com/Chernyn/Admeta-Optimizer

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

smoothing mechanism is employed in the calculation of
stepsize, two dampening coefficients, β1 and β2, are intro-
duced for balancing the current and historical information.
Adam (Kingma & Ba, 2014), a typical adaptive learning
rate optimizer, is implemented as follows:

mt = β1mt−1 + (1− β1)gt, (5)

vt = β2vt−1 + (1− β2)g
2
t , (6)

θt = θt−1 − αtmt/
√
vt, (7)

where mt indicates the first momentum, corresponding to
the momentum in SGDM; vt indicates the second momen-
tum.

To emphasize the functionality of vt, we call it adaptive item
for the rest of the paper. Adam may sometimes converge
to bad local optimum, partly due to its large variance in
the early stage. To fix this issue, RAdam (Liu et al., 2019)
introduces a further rectified item rt and splits the update
process into two sub-processes sequentially connected:

ρ∞ = 2/(1− β2)− 1, (8)

ρt = ρ∞ − 2tβt
2/(1− βt

2), (9)

rt ←

√
(ρt − 4)(ρt − 2)ρ∞
(ρ∞ − 4)(ρ∞ − 2)ρt

, (10)

θt =

{
θt−1 − αtmt, ρt ≤ 4
θt−1 − αtrtmt/

√
vt, ρt > 4

. (11)

2.2. Backward-looking

In fact, the calculation of momentum mt in Eq. (3) and Eq.
(5) is an exponential moving average (EMA) on gradient gt.
EMA, also known as exponential weighted moving average,
can be used to estimate the local mean value of variables,
so that the update of variables is related to historical values
over a period of time. Formally, EMA is expressed as:

St = βSt−1 + (1− β)pt, (12)

where the variable S is denoted as St at time t and pt are the
newly assigned values. Particularly, St = pt without using
EMA. In Eq. (3), SGDM employs EMA to take a moving
average of the past gradients. While in Eq. (5), Adam and
RAdam further apply EMA on the square of past gradients
to construct the adaptive item. In the EMA, the moving
average of the variable S at time t is roughly equal to the
average of the values p over the past 1/(1− β) steps. This
makes the moving average vary more at the beginning, so a
bias correction is proposed and used in Adam (Eq. (7)) and
in RAdam (Eq. (11)) when ρ > 4.

EMA can be regarded as obtaining the average values of the
variables over time. Compared with the direct assignment of
values to variables, the change curve of the values obtained

by moving average is smoother and less jittery, and the
moving average does not fluctuate greatly when inputting
outliers, which is very important for the optimization using
sampled mini-batch. Although efficient, EMA is not nec-
essarily the best strategy for using historical information
when it comes to the backward-looking part. Although it
can effectively suppress the vibration caused by mini-batch
training by performing the moving average on gt, it also
brings a lag time that affects the convergence speed and
increases with the length of the moving average. What’s
more, it can result in the overshoot problem (An et al., 2018),
one possible reason is that EMA might make the wrong use
of historical gradients in the final stage and thus have a
“burden” to converge to optimum.

Double Exponential Moving Average (DEMA), first pro-
posed by (Mulloy, 1994), is a faster moving average strategy
and was invented to reduce the lag time of EMA. Thus, mo-
tivated by the advantage of DEMA, we developed a DEMA
variant for the model optimization. It is worth noting DEMA
is not simply taking a moving average of historical gradients
twice, instead, it takes the moving average of the linear com-
bination of the current gradient the moving average of past
gradients. The form of our DEMA variant can be written as:

DEMA = EMAout(µEMAin + κgt), (13)

where µ and κ are coefficients that control the scale of
current gradient and only depend on β.

From the formula EMA = Σn
i=1β

n−igi, past gradients
follow a fixed proportionality, that is, the ratio of gradient
weight at one time to gradient weight at the previous time is
β.

Due to the use of minibatch training strategy, the input is
randomly sampled. The effect of each minibatch towards
optimization is varied. Therefore, applying a fixed propor-
tionality to past gradients is not a reasonable approach since
it does not take into account the changeable situation. The
disadvantage of overshoot that EMA usually has may also
be caused by the above reasons (An et al., 2018). Thus, we
deal with the relationship between the historical gradients
and the current gradient more flexibly by further controlling
the proportion of past gradients. Our design of coefficients
in DEMA is also for this purpose. Based on Eq. (13), our
actual implementation on algorithm is:

It = λIt−1 + gt, (14)
ht = κgt + µIt + ν, (15)
mt = βmt−1 + (1− β)ht, (16)

where It is the output of EMAin with a 0 initial value and
mt is the output of EMAout also initiated with 0. λ and β
are dampening coefficients of inner EMA and outer EMA
respectively, ν is a bias item, which is set to a small amount

3

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

that decreases exponentially to 0 and chosen as λtg1. The
bias item does not affect the convergence proof, so for the
sake of brevity, it is omitted for the rest of this paper and
the details can be seen in the code. Please refer to Appendix
B for more comparison and discussion between EMA and
DEMA.

2.3. Forward-looking

Focusing on gradient history, that is, backward-looking, the
optimizer is conducive to alleviating the vibration problem
in the optimization process and preventing it from being
misled by local noise information. However, since the opti-
mization problem of the deep neural network is very com-
plex, the optimizer can make the optimization process more
robust by pre-exploration, so as to obtain better optimization
results, which is called forward-looking.

Based on Reptile algorithm and advances in understanding
the loss surface, (Zhang et al., 2019) proposed Lookahead
optimizer, which introduces two update processes and aver-
ages fast and slow weights periodically. The algorithm can
be expressed as the cycle of the following process:

Pre-exploration : θt = OPTIM(θt−1)

Synchronization : (every k steps)

ϕt = ϕt−k + η(θt−1 − ϕt−k)

θt = ϕt

where OPTIM(·) denotes a chosen optimizer, k denotes the
synchronization period, or in other words, the period of
forward-looking, ϕt denotes the slow weights , θt denotes
the fast weight updated with a chosen optimizer, and η is
a constant coefficient controlling the proportion of slow
weights and fast weights in each synchronization. Generally,
the chosen optimizer can be arbitrary.

We can get an intuitive explanation of Lookahead optimizer
from the pseudo code above: Guided by fast weight θt,
the slow weight ϕt updates by taking linear interpolation
between itself and the fast weight. Every time the fast
weight updates k steps, the slow weight updates 1 step. The
update direction of slow weight can be regarded as θt − ϕt

from the equation. Therefore, η can also be interpreted as
the stepsize of slow weight in each synchronization. In
order not to be confused with the stepsize of fast weight,
we rename the stepsize of slow weight as stepsizes. The
recommended value of η in (Zhang et al., 2019) is 0.5 and
0.8.

In the original Lookahead optimizer implementation, the
fast and slow optimization processes were synchronized
according to a given period, and parameters are fused at a
fixed ratio during synchronization. However, optimization
is a continuous process. In different optimization stages,
fast optimization steps have different guiding effects on

parameters. We argue that using fixed stepsizes in each
synchronization is not an optimal strategy, and may even
lead to negative effects. For this consideration, we turn the
constant η into a ηt that changes over step monotonously and
asymptotically. Generally, ηt is a function that starts from 1
and converges to a set value and depends only on the step t.
In this setting, the proportion of slow weights increases and
this part gradually turns into the original Lookahead method.
In other words, the slow weights in our method adopt a faster
stepsizes at the beginning, and it asymptotically slows
down as processing. Specifically, we define two asymptotic
functions for ηt:

ηt = 0.5 ∗
(
1 +

1

0.01
√
t+ 1

)
, (17)

ηt = 0.8 ∗
(
1 +

1

0.1
√
t+ 3.8

)
, (18)

thus we call this as dynamic asymptotic lookahead. The
two functions are designed to turn ηt from 1 to 0.5 and 0.8
respectively. Notably, these asymptotic functions may not
be the best. We just find that it works well and maybe future
work can be done to investigate a more suitable one. For the
sake of clarity, we will use the latter one in the rest of the
paper and the results of experiments trained from scratch
are based on this function unless specified.

To illustrate the advantages of our dynamic lookahead strat-
egy over no lookahead and the original constant lookahead,
we give an optimization example in Figure 1. In region 1 ,
which is around the early stage, the direction of the update
is relatively stable and a large stepsizes is needed. θ1 → θ4
denotes the update of fast weights. A constant lookahead
method will slow the update process in each synchroniza-
tion period, as can be seen in θ1 → θ2. In our method,
fast weights share more proportion in each synchronization
period in early stage, thus updating faster, as can be seen in
θ1 → θ3.

In region 2 , which is around the final stage, the direction of
the update is relatively oscillated, and a small stepsizes is
needed. Fast weights tend to overshoot the optimum, as can
be seen in θ5 → θ8 . Lookahead optimizer can achieve bet-
ter convergence result than general algorithm as it averages
the weights to make them more close to the optimum point,
as can be seen in θ5 → θ6. In our method, the proportion
of fast weights has already been reduced asymptotically to
a set value, thus can achieve similar efficacy as Lookahead
optimizer as can be seen in θ5 → θ7.

From these analyses, we demonstrate that our dynamic
lookahead strategy method improves the robustness of train-
ing.

4

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

①

②

θ1

x

f(x)

θ2θ3θ4

θ5

θ6
θ7 θ*

θ8

SGD
SGD with Lookahead
SGD with dynamic Lookahead (Ours)

| θ1 - θ*| is large, a large η scan
maintain the convergence speed

| θ5 - θ*| is small, a relative
small η can achieve better
convergence

Figure 1. Comparison between no lookahead, constant lookahead
and dynamic lookahead.

2.4. Implementations of AdmetaR and AdmetaS

Since optimizers of the Adam family and SGD family have
their own advantages and disadvantages, and the bidirec-
tional looking optimizer framework and improvement we
propose do not have too many restrictions on the basic opti-
mizer, we have implemented improved versions ADMETAR
and ADMETAS based on RAdam and SGDM optimizer. The
final algorithm forms are shown in Algorithm 1 and 2. De-
tailed proof of convergence and convergence rate for our
ADMETAR and ADMETAS is put in Appendix C and D.

Notations:

• αt: learning rate at step t

• λ, β, β1, β2: the momentum coefficients

• ϵ: a small value used to avoid a zero denominator

• k: synchronization period

•
∏

F,M (y) = argminx∈F ||M1/2(x− y)||

• µ = 25− 10
(
λ+ 1

λ

)
, κ = 10

λ − 9

3. Experiments
In this section, we demonstrate the effectiveness of our
optimizer by turning to an empirical exploration of different
datasets and different models to compare some popular
optimizers. Specifically, we conduct experiments on typical
CV, NLP, and audio processing tasks. Influenced by the
Transformer structure, models are becoming deeper and

Algorithm 1 ADMETAR Optimizer. All operations are
element-wise.
Initialize θ1 ∈ F , ϕ0 ← 0, m0 ← 0 , v0 ← 0, I0 ← 0,
t← 0
for t = 1, 2, ... do

t← t+ 1
gt ← ∇tft(θt)
It ← λIt−1 + gt
ht ← κgt + µIt
mt ← β1mt−1 + (1− β1)ht

ρt ← ρ∞ − 2t
βt
2

1−βt
2

if the variance is tractable, i.e.,
ρt > 4, then

vt ← β2vt−1 + (1− β2)h
2
t

rt ←
√

(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt

m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2

θt+1 ← ΠF,
√
v̂t
(θt − αt

rtm̂t√
v̂t+ϵ

)

else
θt+1 ← ΠF,

√
v̂t
(θt − αtm̂t)

if t+ 1%k == 0:
ϕt ← ηtθt + (1− ηt)ϕt−k

θt ← ϕt

end for
return x

larger, and therefore training is becoming more difficult.
The current paradigm of pre-training-fine-tuning is mainly
used for large models. Therefore, we compare optimizers
not only in the training-from-scratch setup, but also in the
fine-tuning setup.

In this section, we compare our proposed optimizer with
several typical optimizers, including classic SGD (Robbins
& Monro, 1951) and Adam (Kingma & Ba, 2014), our
base, SGDM (Sutskever et al., 2013)1 and RAdam (Liu
et al., 2019), the current state-of-the-art AdaBelief (Zhuang
et al., 2020), and the optimizer combined of many modules,
Ranger (Wright, 2019). Since we should compare these
optimizers under the same condition, the model used may
be different from the original paper of them, which may
lead to different convergence results compared to the results
reported in the original paper. Please refer to Appendix E
for more experimental details.

3.1. Image Classification

Consistent with general optimizer researches (Zhuang et al.,
2020), we conduct experiments on two image classification
tasks, CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009)
in CV field, and the results are presented in Table 1. For

1Notably, we employed nesternov momentum (Nesterov, 1983)
in the SGDM for a stronger comparison baseline.

5

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

0 50 100 150
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

CIFAR-10

SGD
SGDM
Adam
RAdam
Ranger
AdaBelief
AdmetaR
AdmetaS

0 50 100 150
Epoch

0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95

Te
st

 A
cc

CIFAR-10

SGD
SGDM
Adam
RAdam
Ranger
AdaBelief
AdmetaR
AdmetaS

0 50 100 150
Epoch

1

3

5

7

9

11

Tr
ai

ni
ng

 L
os

s

CIFAR-100

SGD
SGDM
Adam
RAdam
Ranger
AdaBelief
AdmetaR
AdmetaS

0 50 100 150
Epoch

0.49
0.51
0.53
0.55
0.57
0.59
0.61
0.63
0.65
0.67
0.69
0.71
0.73
0.75

Te
st

 A
cc

CIFAR-100

SGD
SGDM
Adam
RAdam
Ranger
AdaBelief
AdmetaR
AdmetaS

Figure 2. Training loss and test accuracy comparison on CIFAR-10 and CIFAR-100 datasets.

Algorithm 2 ADMETAS Optimizer. All operations are
element-wise.
Initialize θ1 ∈ F , ϕ0 ← 0, m0 ← 0 , I0 ← 0, t← 0
for t = 1, 2, ... do

t← t+ 1
gt ← ∇ft(θt)
It ← λIt−1 + gt
ht ← κgt + µIt
mt ← βmt−1 + (1− β)ht

θt+1 ← θt − αtmt

if t+ 1%k == 0:
ϕt ← ηtθt + (1− ηt)ϕt−k

θt ← ϕt

end for
return x

Model CIFAR-10 CIFAR-100

ResNet-110 PyramidNet ResNet-110 PyramidNet

Adam 91.89±0.23 94.55±0.24 68.45±0.43 76.72±0.32
RAdam 93.09±0.05 94.58±0.14 70.39±0.08 76.02±0.53
Ranger 92.85±0.34 94.76±0.03 68.96±0.68 76.35±0.08
AdaBelief 92.81±0.26 94.70±0.03 70.88±0.07 76.57±0.04
ADMETAR 93.63±0.22 94.81±0.19 71.00±0.05 76.82±0.07

SGD 90.27±0.15 91.52±0.03 65.70±0.25 76.51±0.06
SGDM 93.68±0.20 95.08±0.13 72.07±0.28 79.49±0.11
ADMETAS 94.12±0.17 95.30±0.08 73.74±0.26 79.61±0.34

Table 1. Results on CIFAR-10 and CIFAR-100 test sets.

model baselines, we choose the popular and leading perfor-
mance ResNet-110 (He et al., 2016) and PyramidNet (Han
et al., 2017), respectively. From the experimental results,
whether in CIFAR-10 or CIFAR-100 dataset, and based
on the ResNet-110 or PyramidNet model, SGDM achieves
better results than SGD, indicating that backward-looking
improves the optimization effect. EMA with rectified item
in RAdam performs better than EMA in Adam, suggesting
that a better backward-looking process can lead to perfor-
mance gains. Comparing SGDM and RAdam, we find that
SGDM has a performance advantage, showing that though

Adam uses an adaptive learning rate to improve the speed
of convergence, it is lossy for performance.

Among optimizers with adaptive learning rate, AdaBelief
achieves better results than Adam and RAdam in CIFAR-
10 with PyramidNet and CIFAR-100 with ResNet-110
and PyramidNet. Ranger, which combines forward and
backward looking, achieves better performance than the
backward-looking-only RAdam in CIFAR-10 and CIFAR-
100 with PyramidNet. Our ADMETAR achieves consistent
improvement over the optimizer baseline RAdam, which
also confirms the gain of bidirectional looking for optimiza-
tion. And ADMETAR has better results than Ranger, indi-
cating that our bidirectional looking is better than Ranger’s
simple combination of multiple optimization features. Our
ADMETAS also performs better than SGDM, further demon-
strating the adaptability of our approach, which not only
performs well in Adam family, but also works in SGD fam-
ily.

Following the previous practice (Liu et al., 2019), we visual-
ize the optimization process of the ResNet-110 model with
Adam, RAdam, SGDM, and our ADMETAS, ADMETAR
optimizers on the CIFAR-10 and CIFAR-100 datasets in
Figure 2. As can be seen from the training loss figure, the
above optimizers can successfully train the model to con-
verge to a stable state, but ADMETAS obtains the lowest
training loss on CIFAR-10, while AdaBelief obtains the
training loss on CIFAR-100. In terms of performance on
the test set, ADMETAS has obtained the best convergence
result, which shows that the lower the loss of the training
set may not necessarily lead to the better performance on
the model. In addition, from the accuracy of the test set,
the convergence speed of the SGD family including SGDM
and ADMETAS is generally slower than that of the Adam
family (Adam, RAdam, Ranger, AdaBelief and ADMETAR),
but the final convergence result of the SGD family is better
than the Adam family. However, our ADMETAR achieves
more comparable performance to the SGD family, while
maintaining the advantage of the fast convergence of the

6

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Model Optim MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Averagem/mm (Acc) (F1) (Acc) (Acc) (MCC) (SCC) (F1) (Acc)

BERTbase

AdamW 83.85/84.08 87.72 90.74 93.23 60.32 89.11 90.85 67.51 82.92
Ranger 83.80/84.24 87.83 90.76 92.32 58.87 89.19 90.05 68.59 82.68
AdaBelief 83.91/84.42 86.76 90.92 92.55 58.05 88.94 90.38 67.87 82.42
RAdam 83.91/84.24 87.66 90.88 92.20 59.31 89.07 90.91 70.04 83.00
ADMETAR 83.90/84.53 87.91 91.14 93.35 62.07 89.62 91.47 71.48 83.87

BERTlarge

AdamW 86.05/86.55 88.58 92.40 93.00 59.58 89.21 91.67 71.12 83.95
Ranger 86.53/86.58 88.58 92.39 93.46 63.81 89.73 92.04 72.56 84.89
AdaBelief 85.59/86.25 86.99 92.42 93.00 61.11 90.17 91.28 72.92 84.19
RAdam 86.40/86.72 88.36 92.35 93.69 62.61 89.64 91.29 71.48 84.48
ADMETAR 86.21/86.54 88.54 92.63 93.69 64.12 89.92 92.10 73.65 85.11

Table 2. Development results on GLUE benchmark.

Optim SQuAD v1.1 SQuAD v2.0 NER-CoNLL03

EM F1 EM F1 P R F1

BERTbase:
AdamW 80.87 88.39 72.63 75.99 94.65 95.24 94.94
Ranger 81.30 88.58 73.32 76.73 94.47 95.17 94.82
AdaBelief 80.63 88.10 72.97 76.25 93.79 94.60 94.19
RAdam 80.68 88.19 73.21 76.49 94.61 95.42 95.01
ADMETAR 81.55 88.69 73.81 77.19 94.96 95.41 95.13

BERTlarge:
AdamW 83.31 90.39 76.67 80.02 94.77 95.73 95.24
Ranger 84.21 90.97 77.22 80.35 95.24 95.89 95.56
AdaBelief 83.53 90.42 77.48 80.57 94.28 95.17 94.72
RAdam 84.17 90.90 77.39 80.72 94.80 95.64 95.22
ADMETAR 84.25 90.92 77.08 80.36 95.38 95.93 95.65

Table 3. Results on SQuAD v1.1 and v2.0 development sets and
NER-CoNLL03 test sets.

Adam family. ADMETAR has the highest results on the test
set in the early stage of optimization (< 80 epoch), which
demonstrates that bidirectional looking improves both accu-
racy and speed, making ADMETAR an efficient and effective
optimizer implementation.

Compared to ResNet-110, PyramidNet has a more compli-
cated structure and can achieve better results in these tasks.
In cases where the model is strong enough, the selection
of optimizer will not be the main factor for the final perfor-
mance. As shown in Table 1, compared to Adam, RAdam
and AdaBelief achieve just a bit of improvement on CIFAR-
10 task and even achieve worse results on CIFAR-100 task,
which also verifies our above claims. It also shows that
some recently proposed methods are not always suitable
when the structure is complex enough.

3.2. Natural Language Understanding

As a general AI component, the general capability for var-
ious tasks and various models is a basic requirement for
optimizers. We evaluate the adaptability of our ADMETA
optimizer on the finetune training scenario with current
popular pre-trained language models. Specifically, we con-

Optim SUPERB Common Language

Acc Training Acc Training

AdamW 98.26 10m44s 79.45 8h27m33s
AdaBelief 98.41 11m20s 80.29 8h28m25s
Ranger 98.35 11m50s 81.18 8h29m55s
RAdam 98.37 11m30s 80.35 8h28m38s
ADMETAR 98.50 11m54s 81.57 8h30m15s

Table 4. Results on speech keyword spotting and language identifi-
cation tasks.

duct experiments based on the pre-trained language model
BERT (Devlin et al., 2018) on three natural language un-
derstanding tasks, GLUE benchmark (Wang et al., 2018),
machine reading comprehension (SQuAD v1.1 and v2.0 (Ra-
jpurkar et al., 2016)) and named entity recognition (NER-
CoNLL03 (Sang & De Meulder, 2003)). We report results
for two model sizes, BERTbase and BERTlarge to explore
whether model size has an effect on the optimizer.

In Table 2, we report the results on the development set
of 8 datasets of the GLUE benchmark, where Acc, MCC,
SCC are abbreviations of accuracy, Matthews Correlation
and Spearman Correlation Coefficient, respectively. First,
under the BERT-base model, compared with the basic opti-
mizer RAdam, ADMETAR achieves consistent improvement.
The most significant improvement is obtained on RTE and
CoLA, which indicates that our ADMETAR optimizer ex-
hibits greater stability for low-resource optimization. On the
other seven datasets, some of them are slightly improved.
This is because most of the parameters of the model in the
pre-training-fine-tuning paradigm have converged to a cer-
tain extent in the pre-training stage, so the further advantage
of the optimizer in finetune is not apparent. And when the
model is switched to a larger BERT-large, most tasks re-
ceive performance gains, except for CoLA and RTE using
AdamW optimizer. Due to the further increase in model pa-
rameters, the low-resource dataset is not enough to fine-tune
the large model, it will even reduce the model performance.

7

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Optim CIFAR-10 ∆ Optim CIFAR-10 ∆

Adam 91.89 \ SGD 90.22 \
RAdam 93.09 \ SGDM 93.68 \
ADMETAR 93.63 ADMETAS 94.12

-DEMA 93.24 -0.39 -DEMA 89.13 -4.99
-LB 92.29 -0.95 -LB 89.88 -4.24
-LF 93.14 -0.10 -LF 93.51 -0.61
-LB-LF 92.36 -0.88 -LB-LF 89.80 -4.32

ADMETAR w/ constant LF 93.03 -0.60 ADMETAS w/ constant LF 93.75 -0.37

Table 5. Ablation study on ADMETA optimizer.

But RAdam with rectified item, Ranger with bidirectional
looking, and our ADMETAR handle the low-resource chal-
lenge well, continue to improve performance, and take ad-
vantage of large models. Our ADMETAR achieves the best
results on these two low-resource datasets, demonstrating
the effectiveness of our bidirectional looking approach.

In Table 3, we further report the results of machine reading
comprehension and named entity recognition. ADMETAR
achieved improvements at both model sizes in SQuAD
v1.1 dataset, while similar improvements were achieved
in SQuAD v2.0 with more complex models, illustrating that
our optimizer is model-independent. Named entity recog-
nition has reached a very accurate level with the help of
pre-trained language models, and our ADMETAR optimizer
also brings performance improvements over such a strong
baseline, showing that optimization is also a bottleneck that
restricts further performance improvement in addition to
model structure and data.

3.3. Audio Classification

Like images and natural language, speech is one of the
mainstream fields of deep learning research. In speech pro-
cessing, there are also a large number of pre-trained large
models, such as Wav2vec (Schneider et al., 2019). To high-
light the input-independent nature of the optimizer, we also
conduct experiments on two typical tasks of audio classi-
fication, keyword spotting (SUPERB) (Yang et al., 2021)
and language identification (Common Language) (Sinisetty
et al., 2021). We employ Wav2vec 2.0base as the baseline
model and report the results of each optimizer in Table 4. In
addition, we also list the training time of each optimizer to
evaluate the impact of the bidirectional looking mechanism
on the optimizer time overhead2.

ADMETAR shows better classification accuracy than
AdamW, RAdam, Ranger and AdaBelief, which is con-
sistent with the experimental conclusions in the image and
natural language tasks. Consistent results across image,

2Notably, the reported training time is only for rough compari-
son due to the influence of environments.

natural language, and speech modalities verify the task-
independence of our optimizer. Comparing the training
time of ADMETAR with AdamW, RAdam, Ranger, and Ad-
aBelief, our ADMETAR has different degrees of increase
due to the additional computation and storage in the opti-
mization process. Ranger and our ADMETAR increased the
time most, but it can still be regarded as slight compared to
the overall training time. Therefore, it can be concluded that
the bidirectional looking mechanism adopted by ADMETA
optimizer will bring additional computational overhead and
increase the training time, but compared with the overall
training cost, it is very small. ADMETA achieves better per-
formance without increasing model parameters and training
data, and does not have any impact on the inference time of
the model, which achieves a better tradeoff.

4. Ablation Study
We perform an ablation study on various designs of AD-
META in bidirectional looking in this section. -DEMA
means removing the DEMA mechanism in backward-
looking and using the original EMA. -LB means complete
removal of backward-looking, -LF means complete removal
of forward-looking. -LB-LF means to remove bidirectional
looking at the same time. w/ constant LF means use the
original Lookahead mechanism in the forward-looking. The
results are evaluated using the ResNet-110 model on the test
set of CIFAR-10. According to the results shown in Table
5, it can be found that the improvement of SGDM com-
pared with SGD initially shows the advantage of backward-
looking. And compared with Adam, RAdam reveals that
the EMA with the rectified item in backward-looking is
more suitable for the training of the model than the original
EMA. Our ADMETA (including ADMETAR and ADMETAS)
achieved the best results. After removing DEMA and re-
placing dynamic lookahead with constant lookahead, respec-
tively, the performance drops, indicating that both DEMA
and dynamic asymptotic lookahead play an important role
in stable optimization. After further removing the backward-
looking, the forward-looking, and the bidirectional looking,
the results drop further, validating our argument that bidi-

8

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

rectional looking is beneficial for optimization. Another
observation is that backward-looking and DEMA make a
more significant contribution to the performance of SGDM
compared to RAdam. This may show that our methods have
a better complementarity for SGD-family optimizers.

5. Conclusion
In this paper, we introduce a bidirectional looking opti-
mizer framework, exploring the use of historical and future
information for optimization. For backward-looking, we
introduce a DEMA scheme to replace the traditional EMA
strategy, while for forward-looking, we propose a dynamic
asymptotic lookahead strategy to replace the constant looka-
head scheme. In this way, we propose the ADMETA opti-
mizer, and provide two implement versions, ADMETAR and
ADMETAS, which are based on adaptive and non-adaptive
momentum optimizers, RAdam and SGDM respectively.
We verify the benefits of ADMETA with intuitive examina-
tions and various experiments, showing the effectiveness
of our proposed optimizer. Please refer to Appendix F for
future work discussion.

6. Limitation
Although improving the performance on different tasks,
our method introduces additional computational complexity
and requires more hyperparameters than some existing ap-
proaches. However, the selection range of hyperparameters
can be preliminarily determined through the visual tool we
proposed (Figure 3), which can slightly reduce the workload
of tuning parameters.

References
Alacaoglu, A., Malitsky, Y., Mertikopoulos, P., and Cevher,

V. A new regret analysis for adam-type algorithms. In
International conference on machine learning, pp. 202–
210. PMLR, 2020.

An, W., Wang, H., Sun, Q., Xu, J., Dai, Q., and Zhang, L.
A pid controller approach for stochastic optimization of
deep networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 8522–
8531, 2018.

Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y.
Scalable second order optimization for deep learning.
arXiv preprint arXiv:2002.09018, 2020.

Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. wav2vec
2.0: A framework for self-supervised learning of speech
representations. Advances in Neural Information Process-
ing Systems, 33:12449–12460, 2020.

Beckenbach, E. F. and Bellman, R. Inequalities, volume 30.
Springer Science & Business Media, 2012.

Chen, X., Liu, S., Sun, R., and Hong, M. On the conver-
gence of a class of adam-type algorithms for non-convex
optimization. arXiv preprint arXiv:1808.02941, 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Fassold, H. Adafamily: A family of adam-like adaptive gra-
dient methods. arXiv preprint arXiv:2203.01603, 2022.

Goh, G. Why momentum really works. Distill, 2017.
doi: 10.23915/distill.00006. URL http://distill.
pub/2017/momentum.

Han, D., Kim, J., and Kim, J. Deep pyramidal residual
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5927–5935,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and
Weinberger, K. Q. Snapshot ensembles: Train 1, get m
for free. arXiv preprint arXiv:1704.00109, 2017.

Im, D. J., Tao, M., and Branson, K. An empirical analysis
of the optimization of deep network loss surfaces. arXiv
preprint arXiv:1612.04010, 2016.

Keskar, N. S. and Socher, R. Improving generalization per-
formance by switching from adam to sgd. arXiv preprint
arXiv:1712.07628, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Li, W., Zhang, Z., Wang, X., and Luo, P. Adax: Adap-
tive gradient descent with exponential long term memory.
arXiv preprint arXiv:2004.09740, 2020a.

Li, Z., Wang, R., Chen, K., Utiyama, M., Sumita, E., Zhang,
Z., and Zhao, H. Data-dependent gaussian prior objective
for language generation. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis

9

http://distill.pub/2017/momentum
http://distill.pub/2017/momentum

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020b. URL https://openreview.net/forum?
id=S1efxTVYDr.

Li, Z., Zhang, Z., Zhao, H., Wang, R., Chen, K.,
Utiyama, M., and Sumita, E. Text compression-
aided transformer encoding. IEEE Trans. Pattern Anal.
Mach. Intell., 44(7):3840–3857, 2022. doi: 10.1109/
TPAMI.2021.3058341. URL https://doi.org/10.
1109/TPAMI.2021.3058341.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the variance of the adaptive learning rate and
beyond. arXiv preprint arXiv:1908.03265, 2019.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Lucas, J., Sun, S., Zemel, R., and Grosse, R. Aggregated
momentum: Stability through passive damping. arXiv
preprint arXiv:1804.00325, 2018.

Luo, L., Xiong, Y., Liu, Y., and Sun, X. Adaptive gradient
methods with dynamic bound of learning rate. arXiv
preprint arXiv:1902.09843, 2019.

Ma, X. Apollo: An adaptive parameter-wise diagonal quasi-
newton method for nonconvex stochastic optimization.
arXiv preprint arXiv:2009.13586, 2020.

McMahan, H. B. and Streeter, M. Adaptive bound opti-
mization for online convex optimization. arXiv preprint
arXiv:1002.4908, 2010.

Mulloy, P. G. Smoothing data with faster moving averages.
Stocks & Commodities, 12(1):11–19, 1994.

Nesterov, Y. E. A method for solving the convex program-
ming problem with convergence rate o (1/kˆ 2). In Dokl.
akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Pascanu, R. and Bengio, Y. Revisiting natural gradient for
deep networks. arXiv preprint arXiv:1301.3584, 2013.

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. Ussr computational mathematics
and mathematical physics, 4(5):1–17, 1964.

Popel, M. and Bojar, O. Training tips for the transformer
model. arXiv preprint arXiv:1804.00247, 2018.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. arXiv preprint arXiv:1904.09237,
2019.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Sang, E. F. and De Meulder, F. Introduction to the conll-
2003 shared task: Language-independent named entity
recognition. arXiv preprint cs/0306050, 2003.

Schneider, S., Baevski, A., Collobert, R., and Auli, M.
wav2vec: Unsupervised pre-training for speech recog-
nition. arXiv preprint arXiv:1904.05862, 2019.

Sinisetty, G., Ruban, P., Dymov, O., and Ravanelli, M. Com-
monlanguage, June 2021. URL https://doi.org/
10.5281/zenodo.5036977.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop, coursera:
Neural networks for machine learning. University of
Toronto, Technical Report, 6, 2012.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, J., Tantia, V., Ballas, N., and Rabbat, M. Looka-
head converges to stationary points of smooth non-convex
functions. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8604–8608. IEEE, 2020.

Wang, Y., Kang, Y., Qin, C., Wang, H., Xu, Y., Zhang, Y.,
and Fu, Y. Adapting stepsizes by momentumized gra-
dients improves optimization and generalization. arXiv
preprint arXiv:2106.11514, 2021.

Weng, B., Sun, J., Sadeghi, A., and Wang, G. Adapid: An
adaptive pid optimizer for training deep neural networks.
In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
3943–3947. IEEE, 2022.

Wright, L. Ranger - a synergistic optimizer.
https://github.com/lessw2020/
Ranger-Deep-Learning-Optimizer, 2019.

10

https://openreview.net/forum?id=S1efxTVYDr
https://openreview.net/forum?id=S1efxTVYDr
https://doi.org/10.1109/TPAMI.2021.3058341
https://doi.org/10.1109/TPAMI.2021.3058341
https://doi.org/10.5281/zenodo.5036977
https://doi.org/10.5281/zenodo.5036977
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Yang, S.-w., Chi, P.-H., Chuang, Y.-S., Lai, C.-I. J., Lakho-
tia, K., Lin, Y. Y., Liu, A. T., Shi, J., Chang, X., Lin, G.-T.,
et al. Superb: Speech processing universal performance
benchmark. arXiv preprint arXiv:2105.01051, 2021.

Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K.,
and Mahoney, M. Adahessian: An adaptive second order
optimizer for machine learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 10665–10673, 2021.

Zeiler, M. D. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

Zhang, M., Lucas, J., Ba, J., and Hinton, G. E. Lookahead
optimizer: k steps forward, 1 step back. Advances in
neural information processing systems, 32, 2019.

Zhang, Z., Wu, Y., Zhao, H., Li, Z., Zhang, S., Zhou, X.,
and Zhou, X. Semantics-aware BERT for language un-
derstanding. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 9628–9635.
AAAI Press, 2020. URL https://ojs.aaai.org/
index.php/AAAI/article/view/6510.

Zhou, B., Liu, J., Sun, W., Chen, R., Tomlin, C. J., and Yuan,
Y. pbsgd: Powered stochastic gradient descent methods
for accelerated non-convex optimization. In IJCAI, pp.
3258–3266, 2020a.

Zhou, J., Li, Z., and Zhao, H. Parsing all: Syntax and
semantics, dependencies and spans. In Cohn, T., He,
Y., and Liu, Y. (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Find-
ings of ACL, pp. 4438–4449. Association for Compu-
tational Linguistics, 2020b. doi: 10.18653/v1/2020.
findings-emnlp.398. URL https://doi.org/10.
18653/v1/2020.findings-emnlp.398.

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C., Dvornek, N.,
Papademetris, X., and Duncan, J. Adabelief optimizer:
Adapting stepsizes by the belief in observed gradients.
Advances in neural information processing systems, 33:
18795–18806, 2020.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
international conference on machine learning (icml-03),
pp. 928–936, 2003.

11

https://ojs.aaai.org/index.php/AAAI/article/view/6510
https://ojs.aaai.org/index.php/AAAI/article/view/6510
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://doi.org/10.18653/v1/2020.findings-emnlp.398

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Appendix

A. Related Work
As an important part of machine learning and deep learning, optimizers have received much attention in recent years. The
optimizer plays a prominent role in the convergence speed and the convergence effect of the model. To seek good properties
like fast convergence, good generalization and robustness, many algorithms have been put forward recently, and they can be
divided into four families according to their characteristics and motivation.

SGD Family In this family, the optimizers adopt the method of update like

θt = θt−1 − αtmt,

where θt denotes the parameter to be optimized at iteration step t and mt refers to some combination of past gradients
(such as EMA), which can be represented as f1(g1, g2, ..., gt). Original SGD (Robbins & Monro, 1951) directly minus
the product of global learning rate and the gradient at each step. Despite of its simplicity, it is still widely used in many
datasets. However, SGD is blamed for its low convergence rate and high fluctuation, thus many methods have been proposed
to accelerate the speed and smooth the update process. One efficient optimizer to tackle this issue is SGDM (Sutskever
et al., 2013), which uses a exponential moving average (EMA, also known as momentum) to replace the gradient with an
exponential weight decay of past gradients. SGDM-Nesterov (Nesterov, 1983) is a variant of SGDM which modifies the
momentum by computing gradient based on the approximation of the next position and thus changing the descent direction.
Experiments have shown that Nesterov momentum tends to achieve a higher speed and performance.

Adam Family The Adam family optimizers usually update parameters by

θt = θt−1 − αtmt/
√
vt,

where vt is the adaptive item and can be represented as f2(g21 , g
2
2 , ..., g

2
t). Compared to SGD family, instead of using a

uniform learning rate, this kind of optimizer computes an individual learning rate for each parameter due to the effect of
the denominator

√
vt in the equation. vt is usually a dimension-reduction approximation to the matrix which contains the

information of second order curvature, such as Fisher matrix (Pascanu & Bengio, 2013).

Adadelta (Zeiler, 2012), Adagrad (Duchi et al., 2011) and RMSprop (Tieleman & Hinton, 2012) are early optimizers in this
family. A stand out generation is Adam (Kingma & Ba, 2014) which combines the RMSprop with Adagrad. It has been
widely used in a wide range of datasets and works well even with sparse gradients. However, there are problems with Adam
with respect to convergence and generalization, thus many methods have been proposed to make improvements

Based on the large variance in the early stage that may lead to a bad optimum, heuristic warmup (Vaswani et al., 2017;
Popel & Bojar, 2018) and RAdam (Liu et al., 2019) are proposed, of which the former starts with a small initial learning
rate and the latter introduces a rectified item. To fix the convergence error, (Reddi et al., 2019) proposed AMSGrad
which requires the non-decreasing property of the second momentum. In fact, this method can be interpolated into other
Adam family algorithms to guarantee the convergence in convex situations. Considering the curvature of the loss function,
AdaBelief (Zhuang et al., 2020) and AdaMomentum (Wang et al., 2021) are proposed. More recently, there are still
numerous studies devoted to improving Adam, such as AdaX (Li et al., 2020a) and AdaFamily (Fassold, 2022). However,
we notice that most researchers put a solid emphasis on modifying the second momentum term, i.e., the adaptive item and
ignore the possibility to make a relative overall change to the algorithms.

Stochastic Second-Order Family In the stochastic second-order optimizers, parameters are updated using second-order
information related to Hessian matrix. The update process is typically written as

θt = θt−1 − αtH
−1mt,

where H is the Hessian matrix or approximation matrix to it. Ideally, they can achieve better results than the first order
optimizers (like Adam family and SGD family), but their practicality is limited due to the large computational cost of the
second order information, like the Fisher / Hessian matrix. Some methods have been proposed using low-rank decomposition
and approximating to hessian diagonal to reduce the cost, like Apollo (Ma, 2020), AdHessian (Yao et al., 2021) and
Shampoo (Anil et al., 2020).

12

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Starting Point

Optimum

Solution

SGD with EMA (SGDM:vanilla momentum)
Momentum β = 0.90

SGD with DEMA (Ours)
Momentum λ = 0.90
Momentum β = 0.60 Learning rate α = 0.0015

Figure 3. EMA vs. DEMA in SGD optimizer. Please refer to our online demo https://sites.google.com/view/
optimizer-admeta for more comparison.

Other Optimizers There are some algorithms that are not convenient to be categorized into the above families and we list
some examples here. Motivated by PID controller, SGD-PID (An et al., 2018) takes an analogy between the gradient and
the input error in an automatic control system. Analysis shows that it can reduce the overshoot problem in SGD and SGD
variants. Furthermore, (Weng et al., 2022) applied PID to Adam and proposed the AdaPID optimizer.

Lookahead (Zhang et al., 2019) optimizer updates two sets of weight wherein ”fast weights” function as a guide to search for
the direction and ”slow weights” follow the guide to achieve better optimization. Ranger (Wright, 2019) optimizer further
combines RAdam and Lookahead to get a compound algorithm and shows a better convergence performance.

Discussion To show the advantage of bidirectional looking, we propose ADMETA optimizer. Specifically, it is based on
the idea of considering backward-looking and forward-looking, wherein DEMA plays a important role in the former aspect
and dynamic asymptotic forward-looking strategy serves for the latter aspect.

In practical use, we provide two versions, ADMETAS and ADMETAR, using the framework of ADMETA and based on
SGDM and RAdam respectively. Specifically, ADMETAS replaces the traditionally used EMA in backward-looking part of
SGDM with DEMA and adds the forward-looking part which is derived from Lookahead optimizer. ADMETAR is based on
RAdam in the same way. The second order family is also introduced above because the framework of ADMETA can also be
applied in this family, and it is remained as the future work.

B. EMA vs. DEMA
To corroborate our analysis of EMA and DEMA, we compared the optimization process of EMA and DEMA on the SGD
optimizer according to the practice of (Goh, 2017). Using the same learning rate α and starting from the same starting point,
the convergence process is shown in Figure 3. The decent surface in the figure is the convex quadratic, which is a useful
model despite its simplicity, for it comprises an important structure, the “valleys”, which is often studied as an example in
momentum-based optimizers. As demonstrated in Figure 3, on the one hand, DEMA achieves faster speed than EMA, which
can be easily seen by comparing the distance to the optimal point at the same time; on the other hand, DEMA achieves
better convergence results than EMA as can be seen in the distance between the point of convergence and optimum.

C. Proof of Convergence
In this section, following (Chen et al., 2018), (Alacaoglu et al., 2020) and (Reddi et al., 2019), we provide detailed proofs of
convergence for ADMETAR and ADMETAS optimizers in convex and non-convex situations.

13

https://sites.google.com/view/optimizer-admeta
https://sites.google.com/view/optimizer-admeta

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

C.1. Convergence Analysis in Convex and Non-convex Optimization

Optimization problem For deterministic problems, the problem to be optimized is minθ∈Ff(θ), where f denotes the loss
function. For online optimization, the problem is minθ∈F

∑T
t=1 ft(θ), where ft is the loss function of the model with the

given parameters at the t-th step.

The criteria for judging convergence in convex and non-convex cases are different. For convex optimization, following
(Reddi et al., 2019), the goal is to ensure R(T) = o(T), i.e., limT→∞ R(T)/T = 0. For non-convex optimization, following

(Chen et al., 2018), the goal is to ensure mint∈[T] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 = o(T).

Theorem C.1. (Convergence of ADMETAR for convex optimization)
Let {θt} be the sequence obtained from ADMETAR, 0 ≤ λ, β1, β2 < 1, γ =

β2
1

β2
< 1, αt =

α√
t

and vt ≤ vt+1,∀t ∈ [T].

Suppose x ∈ F , where F ⊂ Rd and has bounded diameter D∞, i.e. ||θt − θ||∞ ≤ D∞,∀t ∈ [T]. Assume f(θ) is a
convex function and ||gt||∞ is bounded. Denote the optimal point as θ. For θt generated, ADMETAR achieves the regret:

R(T) =

T∑
t=1

[ft(θt)− ft(θ)] = O(
√
T)

Theorem C.2. (Convergence of ADMETAR for non-convex optimization)
Under the assumptions:

• ∇f exits and is Lipschitz-continuous,i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower bounded.

• At step t, the algorithm can access a bounded noisy gradient gt, and the true gradient∇f is also bounded.

• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt) + δt,E[δt] = 0 and δi⊥δj ,∀i ̸= j.

Assume minj∈[d](v1)j ≥ c > 0 and αt = α/
√
t, then for any T we have:

mint∈[T] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ 1√

T
(Q1 +Q2 log T)

where Q1 and Q2 are constants independent of T.

Theorem C.3. (Convergence of ADMETAS for convex optimization)
Let {θt} be the sequence obtained by ADMETAS, 0 ≤ λ, β < 1, αt = α√

t
, ∀t ∈ [T]. Suppose x ∈ F , where

F ⊂ Rd and has bounded diameter D∞, i.e. ||θt − θ||∞ ≤ D∞,∀t ∈ [T]. Assume f(θ) is a convex func-
tion and ||gt||∞ is bounded. Denote the optimal point as θ. For θt generated, ADMETAS achieves the regret:

R(T) =

T∑
t=1

[ft(θt)− ft(θ)] = O(
√
T)

Theorem C.4. (Convergence of ADMETAS for non-convex optimization)
Under the assumptions:

• ∇f exits and is Lipschitz-continuous,i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower bounded.

• At step t, the algorithm can access a bounded noisy gradient gt, and the true gradient∇f is also bounded.

• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt) + δt,E[δt] = 0 and δi⊥δj ,∀i ̸= j.

Assume αt = α/
√
t, then for any T we have:

mint∈[T] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ 1√

T
(Q

′

1 +Q
′

2 log T)

where Q
′

1 and Q
′

2 are constants independent of T.

14

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Before formally proving the theorems, here list some remarks and preparations.
Remark 1. For brevity, we omit the rectified item of ADMETAR in the proof. However, it does not influence the proof since
it can be integrated into the learning rate.

Remark 2. Following (Luo et al., 2019), the bias correction 1/(1 − βt
1) of the first momentum mt is omitted in the

convergence of ADMETAR. Since 1/(1− βt
1) is bounded above 1 and below 10, the order of the terms used is not affected,

thus hardly affecting the proof.

Remark 3. The forward-looking part is not considered in the proof. On the one hand, explanations and proofs of constant
Lookahead have been given in (Zhang et al., 2019) and (Wang et al., 2020), which can be imitated by our dynamic method.
On the other hand, forward-looking part is exactly the interpolation of fast weights and slow weights at each synchronization
period, and the fast weights are updated by the given optimizer. Therefore, the convergence proof is equivalent to only
proving the convergence of fast weights.

Remark 4. The condition in the theorem that vt ≤ vt+1,∀t ∈ [T] does not necessarily hold in the practice of our method.
Dropping this condition may lead to a non-convergence result, which can be seen in (Reddi et al., 2019). However, the
counterexample given by this article is a very artificial design, which may not represent the case in practice. Many optimizers
that do not meet this condition can eventually converge in the training process and further exploration may show that this
condition is not necessary.

Remark 5. If we fix the number of steps, the training is a finite process over finite data, thus the iteration is bounded.

Lemma C.5. if ∥gt∥∞ is bounded,i.e. ∥gt∥∞ ≤ G∞, ∀t ∈ [T], where G∞ is a constant independent of T, then It, ht and
mt are also bounded.

Proof. First of all, we prove ∥It∥∞ ≤ (1 + λ)G∞ by induction:
when t = 1

∥I1∥∞ = ∥g1∥∞ ≤ G∞

Suppose t = k satisfies, then for t = k + 1

∥Ik+1∥∞ = ∥λIk + gk+1∥∞ ≤ λ∥Ik∥∞ + ∥gk+1∥∞
≤ (λ+ 1)max{∥Ik∥∞, ∥gk+1∥∞} ≤ (1 + λ)G∞

Next, for ∥hk∥∞

∥ht∥∞ = ∥κgt + µIt∥∞ ≤ κ∥gt∥∞ + µ∥It∥∞ ≤ [κ+ (1− λ)µ)]G∞

Since mt is the moving average of hi where i=1,...,t, we can get that it is also bounded following the proof of It.

In this way, we can redefine G∞ by enlarging it and the bounded stochastic gradient assumption in the theorem is equivalent
to assuming ∥gt∥∞, ∥It∥∞, ∥ht∥∞, ∥mt∥∞ ≤ G∞.

Remark 6. As for non-convex optimization, in the same way, the bounded noisy gradient assumption is equivalent to
∥gt∥, ∥It∥, ∥ht∥, ∥mt∥ ≤ H where H is a constant independent of T . This remark will be used in several places in the
following proof.

Lemma C.6 (Generalized Hölder inequality, (Beckenbach & Bellman, 2012)). For x, y, z ∈ Rn
+ and positive p, q, r such

that 1
p + 1

q + 1
r = 1, we have

n∑
j=1

θjyjzj ≤ ∥x∥p∥y∥q∥z∥r.

This is a common mathematical inequality, so the proof is omitted here.

Lemma C.7 (nonexpansiveness property of argmin
x∈F

∥.∥, (McMahan & Streeter, 2010)). For any Q ∈ Sd+,i.e. Q is a Positive

definite matrice and convex feasible set F ⊂ Rd, suppose u1 = argmin
x∈F

∥Q1/2(x−z1)∥ and u2 = argmin
x∈F

∥Q1/2(x−z2)∥

then we have ∥Q1/2(u1 − u2)∥ ≤ ∥Q1/2(z1 − z2)∥.

15

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Proof. First, we claim that ⟨u1 − z1, Q(u2 − u1)⟩ ≥ 0 and ⟨u2 − z2, Q(u1 − u2)⟩ ≥ 0 (We only prove the former as the
proofs are exactly the same). Otherwise, consider a small δ, we have u1 + δ(u2 − u1) ∈ F

1

2
⟨u1 + δ(u2 − u1)− z1, Q(u1 + δ(u2 − u1)− z1)⟩

=
1

2
⟨u1 − z1, Q(u1 − z1)⟩+

1

2
δ2⟨u2 − u1, Q(u2 − u1)⟩+ δ⟨u1 − z1, Q(u2 − u1)⟩

If there exists ⟨u1 − z1, Q(u2 − u1)⟩ < 0, δ can be chosen so small that it satisfies 1
2δ

2⟨u2 − u1, Q(u2 − u1)⟩+ δ⟨u1 −
z1, Q(u2 − u1)⟩ < 0, which contradicts the definition of u1.

Using the above claim, we further have

⟨u1 − z1, Q(u2 − u1)⟩ − ⟨u2 − z2, Q(u2 − u1)⟩ ≥ 0

⇒⟨z2 − z1, Q(u2 − u1)⟩ ≥ ⟨u2 − u1, Q(u2 − u1)⟩ (19)

Also, observing the following

⟨(u2 − u1)− (z2 − z1), Q((u2 − u1)− (z2 − z1))⟩ ≥ 0

⇒⟨u2 − u1, Q(z2 − z1)⟩ ≤
1

2
[⟨u2 − u1, Q(u2 − u1)⟩+ ⟨z2 − z1, Q(z2 − z1)⟩] (20)

Combining (19) and (20), we have the required result.

C.2. Convergence Analysis of AdmetaR for Convex Optimization

Lemma C.8. Consider

mt = β1mt−1 + (1− β1)ht, ∀t ≥ 1.

it follows that

⟨ht, θt − θ⟩ =⟨mt−1, θt−1 − θ⟩

− β1

1− β1
⟨mt−1, θt − θt−1⟩

+
1

1− β1
(⟨mt, θt − θ⟩ − ⟨mt−1, θt−1 − θ⟩) .

Proof. By definition of mt, ht =
1

1−β1
mt − β1

1−β1
mt−1. Thus, we have

⟨ht, θt − θ⟩ = 1

1− β1
⟨mt, θt − θ⟩ − β1

1− β1
⟨mt−1, θt − θ⟩

=
1

1− β1
⟨mt, θt − θ⟩ − β1

1− β1
⟨mt−1, θt−1 − θ⟩ − β1

1− β1
⟨mt−1, θt − θt−1⟩

=
1

1− β1

(
⟨mt, θt − θ⟩ − ⟨mt−1, θt−1 − θ⟩

)
+ ⟨mt−1, θt−1 − θ⟩

− β1

1− β1
⟨mt−1, θt − θt−1⟩.

Lemma C.9 (Bound for
∑T

t=1 αt∥v̂−1/4
t mt∥2). Under Assumption in Theorem 1, we have

T∑
t=1

αt∥v̂−1/4
t mt∥2 ≤

(1− β1)α
√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

∥h1:T,i∥2

16

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Proof. First, we bound ∥v̂−1/4
t mt∥2. From the definition of mt and vt, it follows that

mt = (1− β1)

t∑
j=1

βt−j
1 hj , vt = (1− β2)

t∑
j=1

βt−j
2 h2

j

Then we have

∥v̂−1/4
t mt∥2 ≤ ∥v−1/4

t mt∥2 =

d∑
i=1

m2
t,i

v
1/2
t,i

=

d∑
i=1

(∑t
j=1(1− β1)β

t−j

1 hj,i

)2
√∑t

j=1(1− β2)β
t−j
2 h2

j,i

=
(1− β1)

2

√
1− β2

d∑
i=1

(∑t
j=1 β

t−j
1 hj,i

)2
√∑t

j=1 β
t−j
2 h2

j,i

≤ (1− β1)
2

√
1− β2

(

d∑
i=1

[(∑t
j=1(β

t−j
4

2 |hj,i|
1
2)4
) 1

4
(∑t

j=1(β
1/2
1 β

−1/4
2)4(t−j)

) 1
4
(∑t

j=1(β
t−j
1 |hj,i|)

1
2 ·2
) 1

2

]2
√∑t

j=1 β
t−j
2 h2

j,i

)

=
(1− β1)

2

√
1− β2

d∑
i=1

 t∑
j=1

γt−j

 1
2 t∑

j=1

βt−j
1 |hj,i|

≤ (1− β1)
2√

(1− β2)(1− γ)

d∑
i=1

t∑
j=1

βt−j
1 |hj,i|, (21)

where the first inequality follows from the fact that v̂1/2t,i ≥ v
1/2
t,i , the second one follows from the generalized Hölder

inequality for

θj = β
t−j
4

2 |hj,i|
1
2 , yj = (β1β

−1/2
2)

t−j
2 , zj = (βt−j

1 |hj,i|)
1
2 and p = q = 4, r = 2,

and the third one follows from the sum of geometric series and the assumption γ =
β2
1

β2
< 1. In this way, we can bound∑T

t=1 αt∥v̂−1/4
t mt∥2.

T∑
t=1

αt∥v̂−1/4
t mt∥2 ≤

(1− β1)
2√

(1− β2)(1− γ)

d∑
i=1

T∑
t=1

αt

t∑
j=1

βt−j
1 |hj,i|

=
(1− β1)

2√
(1− β2)(1− γ)

d∑
i=1

T∑
j=1

T∑
t=j

αtβ
t−j
1 |hj,i|

≤ (1− β1)√
(1− β2)(1− γ)

d∑
i=1

T∑
j=1

αj |hj,i|

≤ 1− β1√
(1− β2)(1− γ)

d∑
i=1

√√√√ T∑
j=1

α2
j

√√√√ T∑
j=1

h2
j,i

≤ (1− β1)α
√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

√√√√ T∑
t=1

h2
t,i

=
(1− β1)α

√
1 + log T√

(1− β2)(1− γ)

d∑
i=1

∥h1:T,i∥

17

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

where the first inequality follows from (21).The first equality is by changing order of summation. The second inequality
follows from the fact that

∑T
t=j αtβ

t−j
1 ≤ αj

1−β1
. The third inequality is by Cauthy-Schwartz. The last inequality is by

using
∑T

j=1
1
j ≤ 1 + log T

Theorem C.10. (Convergence of ADMETAR for convex optimization) Let {θt} be the sequence obtained from
ADMETAR, 0 ≤ λ, β1, β2 < 1, γ =

β2
1

β2
< 1, αt = α√

t
and vt ≤ vt+1,∀t ∈ [T]. Suppose x ∈ F , where

F ⊂ Rd and has bounded diameter D∞, i.e. ||θt − θ||∞ ≤ D∞,∀t ∈ [T]. Assume f(θ) is a convex func-
tion and ||gt||∞ is bounded. Denote the optimal point as θ. For θt generated, ADMETAR achieves the regret:

R(T) =

T∑
t=1

[ft(θt)− ft(θ)] = O(
√
T)

Proof. • Bound for
∑T

t=1⟨mt, θt − θ⟩.
As x ∈ F , we get

θt+1 = ΠF,
√
v̂t
(θt − αtv̂

−1/2
t mt) = min

x∈F
∥v̂1/4t (x− (θt − αtv̂

−1/2
t mt))∥.

Furthermore, ΠF,
√
v̂t
(x) = x for all x ∈ F . Using Lemma C.7 with u1 = θt+1 and u2 = θ, we have the following:

∥v̂1/4t (θt+1 − θ)∥2 ≤ ∥v̂1/4t (θt − αtv̂
−1/2
t mt − θ)∥2

= ∥v̂1/4t (θt − θ)∥2 + α2
t ∥v̂

−1/4
t mt∥2 − 2αt⟨mt, θt − θ⟩ (22)

we rearrange and divide both sides of (22) by 2αt to get

⟨mt, θt − θ⟩ ≤ 1

2αt
∥v̂1/4t (θt − θ)∥2 − 1

2αt
∥v̂1/4t (θt+1 − θ)∥2 + αt

2
∥v̂−1/4

t mt∥2

=
1

2αt−1
∥v̂1/4t−1(θt − θ)∥2 − 1

2αt
∥v̂1/4t (θt+1 − θ)∥2

+
1

2

d∑
i=1

(
v̂
1/2
t,i

αt
−

v̂
1/2
t−1,i

αt−1

)
(θt,i − θi)

2 +
αt

2
∥v̂−1/4

t mt∥2

≤ 1

2αt−1
∥v̂1/4t−1(θt − θ)∥2 − 1

2αt
∥v̂1/4t (θt+1 − θ)∥2

+
D2

∞
2

d∑
i=1

(
v̂
1/2
t,i

αt
−

v̂
1/2
t−1,i

αt−1

)
+

αt

2
∥v̂−1/4

t mt∥2 (23)

where the last inequality is due to the fact that v̂t,i ≥ v̂t−1,i, 1
αt
≥ 1

αt−1
, and the definition of D∞.

Summing (23) over t = 1, . . . T and using that v̂0 = 0 yields

T∑
t=1

⟨mt, θt − θ⟩ ≤ D2
∞

2αT

d∑
i=1

v̂
1/2
T,i +

1

2

T∑
t=1

αt∥v̂−1/4
t mt∥2.

18

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

• Bound for
∑T

t=1⟨mt−1, θt−1 − θt⟩.

T∑
t=1

⟨mt−1, θt−1 − θt⟩ =
T∑

t=2

⟨mt−1, θt−1 − θt⟩ =
T−1∑
t=1

⟨mt, θt − θt+1⟩

≤
T−1∑
t=1

∥v̂−1/4
t mt∥∥v̂1/4t (θt+1 − θ)∥

=

T−1∑
t=1

∥v̂−1/4
t mt∥

∥∥∥v̂1/4t [ΠF,v̂
1/2
t

(
θt − αtv̂

−1/2
t mt

)
−ΠF,v̂

1/2
t

(θt)]
∥∥∥

≤
T−1∑
t=1

αt∥v̂−1/4
t mt∥∥v̂−1/4

t mt∥

=

T−1∑
t=1

αt∥v̂−1/4
t mt∥2

where the first inequality follows from Hölder inequality and the second inequality is due to lemma C.7

• Bound for ⟨mT , θT − θ⟩.

⟨mT , θT − θ⟩ ≤ ∥v̂−1/4
t mT ∥∥v̂1/4t (θT − θ)∥

≤ αT ∥v̂−1/4
t mT ∥2 +

1

4αT
∥v̂1/4t (θT − θ)∥2

≤ αT ∥v̂−1/4
t mT ∥2 +

D2
∞

4αT

d∑
i=1

v̂
1/2
T,i

where the first inequality follows from Hölder inequality and the second inequality follows from Young’s inequality. The
last inequality is due to the definition of D∞.

After all these preparations, we obtain:

T∑
t=1

⟨ht, θt − θ⟩ = β1

1− β1

(
⟨mT , θT − θ⟩+

T∑
t=1

⟨mt−1, θt−1 − θt⟩

)
+

T∑
t=1

⟨mt, θt − θ⟩

≤ β1

1− β1

(
D2

∞
4αT

d∑
i=1

v̂
1/2
T,i +

T∑
t=1

αt∥v̂−1/4
t mt∥2

)
+

D2
∞

2αT

d∑
i=1

v̂
1/2
T,i

+
1

2

T∑
t=1

αt∥v̂−1/4
t mt∥2

=
(2− β1)D

2
∞

4αT (1− β1)

d∑
i=1

v̂
1/2
T,i +

2 + β1

2(1− β1)

T∑
t=1

αt∥v̂−1/4
t mt∥2

≤ (2− β1)D
2
∞
√
T

4α(1− β1)

d∑
i=1

v̂
1/2
T,i +

(2 + β1)α
√
1 + log T

2
√

(1− β2)(1− γ)

d∑
i=1

∥h1:T,i∥2

This proves that
∑T

t=1⟨ht, θt− θ⟩ = O(
√
T). Suppose the optimizer runs for a long time, the bias of EMA is small (Zhuang

et al., 2020), thus E(It) approaches E(gt) as step increases. Since ht = κgt + µIt, ht is the same order as gt when the time
is long enough, thus we have

T∑
t=1

⟨gt, θt − θ⟩ = O(
√
T) (24)

19

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

In addition, due to the convexity of f(.), we have

R(T) =

T∑
t=1

(ft(θt)− ft(x)) ≤
T∑

t=1

⟨gt, θt − θ⟩

Combined with (24), we complete the proof.

C.3. Convergence Analysis of AdmetaR for Non-convex Optimization

Lemma C.11. Set θ0 ≜ x1 in Algorithm (1), and define zt as

zt = θt +
β1

1− β1
(θt − θt−1), ∀t ≥ 1. (25)

Then the following holds true

zt+1 − zt = −
β1

1− β1

(
αt√
v̂t
− αt−1√

v̂t−1

)
mt−1 − αtht/

√
v̂t

Proof. By the update of ADMETAR, we have

θt+1 − θt = −αtmt/
√
v̂t = −αt(β1mt−1 + (1− β1)ht)/

√
v̂t

= β1
αt

αt−1

√
v̂t−1√
v̂t

(θt − θt−1)− αt(1− β1)ht/
√
v̂t

= β1(θt − θt−1) + β1

(
αt

αt−1

√
v̂t−1√
v̂t
− 1

)
(θt − θt−1)− αt(1− β1)ht/

√
v̂t

= β1(θt − θt−1)− β1

(
αt√
v̂t
− αt−1√

v̂t−1

)
mt−1 − αt(1− β1)ht/

√
v̂t (26)

Since we also have

θt+1 − θt = (1− β1)θt+1 + β1(θt+1 − θt)− (1− β1)θt

Combined with (26), we have

(1− β1)θt+1 + β1(θt+1 − θt)

=(1− β1)θt + β1(θt − θt−1)− β1

(
αt√
v̂t
− αt−1√

v̂t−1

)
mt−1 − αt(1− β1)ht/

√
v̂t.

Divide both sides by 1− β1, we have

θt+1 +
β1

1− β1
(θt+1 − θt)

=θt +
β1

1− β1
(θt − θt−1)−

β1

1− β1

(
αt√
v̂t
− αt−1√

v̂t−1

)
mt−1 − αtht/

√
v̂t.

Lemma C.12. Suppose that the conditions in Theorem C.2 hold, then

E [f(zt+1)− f(z1)] ≤
4∑

i=1

Ti, (27)

20

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

where

T1 = −E

[
t∑

i=1

⟨∇f(zi),
β1

1− β1

(
αi√
v̂i
− αi−1√

v̂i−1

)
mi−1⟩

]

T2 = −E

[
t∑

i=1

αi⟨∇f(zi), hi/
√
v̂i⟩

]

T3 = E

 t∑
i=1

L

∥∥∥∥∥ β1

1− β1

(
αt√
v̂i
− αi−1√

v̂i−1

)
mi−1

∥∥∥∥∥
2

T4 = E

[
t∑

i=1

L
∥∥∥αihi/

√
v̂i

∥∥∥2]

Proof. By the Lipschitz smoothness of∇f ,

f(zt+1) ≤ f(zt) + ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2 ,

Based on (C.18),we have

E[f(zt+1)− f(z1)] =E

[
t∑

i=1

f(zi+1)− f(zi)

]

≤E

[
t∑

i=1

⟨∇f(zi), zi+1 − zi⟩+
L

2
∥zi+1 − zi∥2

]

=− E

[
t∑

i=1

⟨∇f(zi),
β1

1− β1

(
αi√
v̂i
− αi−1√

v̂i−1

)
mi−1⟩

]

− E

[
t∑

i=1

αi⟨∇f(zi), hi/
√

v̂i⟩

]

+ E

[t∑
i=1

L

2
∥zi+1 − zi∥2

]
= T1 + T2 + E

[t∑
i=1

L

2
∥zi+1 − zi∥2

]
,

Then, using inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 and combined with lemma C.11,

E

[
t∑

i=1

L

2
∥zi+1 − zi∥2

]
≤ T3 + T4

Lemma C.13. In this part, we bound T1, T2, T3

Proof. • Bound for T1

T1 =− E

[
t∑

i=2

⟨∇f(zi),
β1

1− β1

(
αi√
v̂i
− αi−1√

v̂i−1

)
mi−1⟩

]

≤E

 t∑
i=1

∥∇f(zi)∥ ∥mi−1∥
(

1

1− β1
− 1

) d∑
j=1

∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣

≤H2 β1

1− β1
E

 t∑
i=1

d∑
j=1

∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣

21

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

• Bound for T3

T3 ≤LE

 t∑
i=2

(
β1

1− β1

)2 d∑
j=1

(αt√
v̂i
− αi−1√

v̂i−1

)2

j

(mi−1)
2
j

≤
(

β1

1− β1

)2

LH2E

 t∑
i=2

d∑
j=1

(
αt√
v̂i
− αi−1√

v̂i−1

)2

j

• Bound for T2

T2 =− E

[
t∑

i=1

αi⟨∇f(zi), hi/
√

v̂i⟩

]

=− E

[
t∑

i=1

αi⟨∇f(θi), hi/
√

v̂i⟩

]
− E

[
t∑

i=1

αi⟨∇f(zi)−∇f(θi), hi/
√
v̂i⟩

]
. (28)

The second term of (28) can be bounded as

− E

[
t∑

i=1

αi⟨∇f(zi)−∇f(θi), hi/
√

v̂i⟩

]

≤E

[
t∑

i=2

1

2
∥∇f(zi)−∇f(θi)∥2 +

1

2
∥αihi/

√
v̂i∥2

]

≤L2

2
E

[
t∑

i=2

∥∥∥∥ β1

1− β1
αi−1mi−1/

√
v̂i−1

∥∥∥∥2
]
+

1

2
E

[
t∑

i=2

∥αihi/
√

v̂i∥2
]

=
L2

2

(
β1

1− β1

)2

E

[
t∑

i=2

∥∥∥αi−1mi−1/
√
v̂i−1

∥∥∥2]+ 1

2
E

[
t∑

i=2

∥αihi/
√
v̂i∥2

]

where the second inequality is due to ∥∇f(zi)−∇f(θi)∥ ≤ L∥zi − θi∥.
Then consider the first term of (28)

E

[
t∑

i=1

αi⟨∇f(θi), hi/
√
v̂i⟩

]

=κE

[
t∑

i=1

αi⟨∇f(θi), gi/
√
v̂i⟩

]
+ µE

[
t∑

i=1

αi⟨∇f(θi), Ii/
√

v̂i⟩

]

Consider the term with κ

E

[
t∑

i=1

αi⟨∇f(θi), gi/
√

v̂i⟩

]

=E

[
t∑

i=1

αi⟨∇f(θi), (∇f(θi) + δi)/
√

v̂i⟩

]

=E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√

v̂i⟩

]
+ E

[
t∑

i=1

αi⟨∇f(θi), δi/
√

v̂i⟩

]
. (29)

22

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

For the second term in RHS of (29), we have

E

[
t∑

i=1

αi⟨∇f(θi), δi/
√
v̂i⟩

]

=E

[
t∑

i=2

⟨∇f(θi), δi(αi/
√
v̂i − αi−1/

√
v̂i−1)⟩

]
+ E

[
t∑

i=2

αi−1⟨∇f(θi), δi(1/
√

v̂i−1)⟩

]
+ E

[
α1⟨∇f(x1), δ1/

√
v̂1⟩
]

≥E

[
t∑

i=2

⟨∇f(θi), δi(αi/
√
v̂i − αi−1/

√
v̂i−1)⟩

]
− 2H2E

 d∑
j=1

(α1/
√

v̂1)j

 (30)

where the last equation is because given θi, v̂i−1, E
[
δi(1/

√
v̂i−1)|θi, v̂i−1

]
= 0 and ∥δi∥ ≤ 2H . Further, we have

E

[
t∑

i=2

⟨∇f(θi), δt(αi/
√
v̂i − αi−1/

√
v̂i−1)⟩

]

=E

 t∑
i=2

d∑
j=1

(∇f(θi))j(δt)j(αi/(
√

v̂i)j − αi−1/(
√

v̂i−1)j)

≥− E

 t∑
i=2

d∑
j=1

|(∇f(θi))j | |(δt)j |
∣∣∣(αi/(

√
v̂i)j − αi−1/(

√
v̂i−1)j)

∣∣∣

≥− 2H2E

 t∑
i=2

d∑
j=1

∣∣∣(αi/(
√

v̂i)j − αi−1/(
√

v̂i−1)j)
∣∣∣
 (31)

Substitute (30) and (31) into (29), we then get

− E

[
t∑

i=1

αi⟨∇f(θi), gi/
√

v̂i⟩

]

≤2H2E

 t∑
i=2

d∑
j=1

∣∣∣(αi/(
√
v̂i)j − αi−1/(

√
v̂i−1)j)

∣∣∣
+ 2H2E

 d∑
j=1

(α1/
√
v̂1)j

− E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√

v̂i⟩

]
(32)

Then, consider the term with µ. Suppose the optimizer runs for a long time, the bias of EMA is small (Zhuang et al., 2020),
thus E(It) approaches E(gt) as step increases. In other words, we can bound it the same way as the term with κ.
After all these bounds, we finally get

T2 ≤
L2

2
E

[
t∑

i=2

∥∥∥∥ β1

1− β1
αi−1mi−1/

√
v̂i−1

∥∥∥∥2
]
+

1

2
E

[
t∑

i=2

∥αihi/
√
v̂i∥2

]

+ 2(κ+ µ)H2E

 t∑
i=2

d∑
j=1

∣∣∣(αi/(
√
v̂i)j − αi−1/(

√
v̂i−1)j)

∣∣∣

+ 2(κ+ µ)H2E

 d∑
j=1

(α1/
√
v̂1)j

− (κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√
v̂i⟩

]

23

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Lemma C.14. Suppose the conditions in theorem C.2 hold. Then we have

E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√

v̂i⟩

]

≤E

[
C1

t∑
i=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2 + C2

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

+ C3

t∑
i=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

+ C4

t−1∑
i=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2]

+ C5

where C1, C2, C3, C4 and C5 are independent of the step.

Proof. Combining lemma C.12 and lemma C.13, we get

E [f(zt+1)− f(z1)]

≤H2 β1

1− β1
E

 t∑
i=1

d∑
j=1

∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣

+

(
β1

1− β1

)2

LH2E

 t∑
i=2

d∑
j=1

(
αt√
v̂i
− αi−1√

v̂i−1

)2

j

+ E

[
t∑

i=1

L
∥∥∥αihi/

√
v̂i

∥∥∥2]

+
L2

2
E

[
t∑

i=2

∥∥∥∥ β1

1− β1
αi−1mi−1/

√
v̂i−1

∥∥∥∥2
]
+

1

2
E

[
t∑

i=2

∥αihi/
√

v̂i∥2
]

+ 2(κ+ µ)H2E

 t∑
i=2

d∑
j=1

∣∣∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣∣∣

+ 2(κ+ µ)H2E

 d∑
j=1

(α1/
√
v̂1)j

− (κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√

v̂i⟩

]

24

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

By merging similar terms in above inequality and noticing that κ+ µ > 0, we get

E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)/
√

v̂i⟩

]

≤
(
2H2 +

β1H
2

(1− β1)(κ+ µ)

)
E

 t∑
i=1

d∑
j=1

∣∣∣∣
(

αi√
v̂i
− αi−1√

v̂i−1

)
j

∣∣∣∣

+

(
β1

1− β1

)2
LH2

κ+ µ
E

 t∑
i=2

d∑
j=1

(
αt√
v̂i
− αi−1√

v̂i−1

)2

j

+

(
2L+ 1

2(κ+ µ)

)
E

[
t∑

i=2

∥αihi√
v̂i
∥2
]
+

L2

2(κ+ µ)

(
β1

1− β1

)2

E

 t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

+ 2H2E

 d∑
j=1

(α1/
√
v̂1)j

+
1

κ+ µ
E [f(z1)− f(zt+1)]

=E

[
C1

t∑
i=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2 + C2

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

+ C3

t∑
i=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

+ C4

t−1∑
i=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2]

+ C5 (33)

Theorem C.15. (Convergence of ADMETAR for non-convex optimization)
Under the assumptions:

• ∇f exits and is Lipschitz-continuous,i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower bounded.

• At step t, the algorithm can access a bounded noisy gradient gt, and the true gradient∇f is also bounded.

• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt) + δt,E[δt] = 0 and δi⊥δj ,∀i ̸= j.

Assume minj∈[d](v1)j ≥ c > 0 and αt = α/
√
t, then for any T we have:

mint∈[T] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ 1√

T
(Q1 +Q2 log T)

where Q1 and Q2 are constants independent of T.

Proof. We bound non-constant terms in RHS of (33), which is given by

E

[
C1

T∑
t=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2 + C2

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

+ C3

T∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

+C4

T−1∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2]

+ C5

• Bound the term with C1.

25

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Note that minj∈[d] (
√
v̂1)j ≥ minj∈[d]|(h1)j | ≥ c > 0, thus we have

E

[
T∑

t=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2
]

≤E

[
T∑

t=1

∥∥∥∥αtht

c

∥∥∥∥2
]
= E

[
T∑

t=1

∥∥∥∥αht

c
√
t

∥∥∥∥2
]
= E

[
T∑

t=1

(
α

c
√
t

)2

∥ht∥2
]

≤H2α2

c2

T∑
t=1

1

t
≤ H2α2

c2
(1 + log T)

where the first inequality is due to (v̂t)j ≥ (v̂t−1)j , and the last inequality is due to
∑T

t=1
1
t ≤ 1 + log T .

• Bound the term with C2.
Apply the same proof as above, we get

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

≤ H2α2

c2
(1 + log T)

• Bound the term with C3.

E

[
T∑

t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

]
= E

 d∑
j=1

T∑
t=2

(
αt−1

(
√

v̂t−1)j
− αt

(
√
v̂t)j

)
=E

 d∑
j=1

(
α1

(
√
v̂1)j

− αT

(
√
v̂T)j

) ≤ E

 d∑
j=1

α1

(
√
v̂1)j

 ≤ dα

c
(34)

where the first equality is due to(v̂t)j ≥ (v̂t−1)j and αt ≤ αt−1, and the second equality is due to telescope sum.

• Bound the term with C4.

E

T−1∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2

=E

T−1∑
t=2

d∑
j=1

(
αt√
v̂t
− αt−1√

v̂t−1

)2

i

≤E

T−1∑
t=2

d∑
j=1

α

c

∣∣∣∣∣ αt√
v̂t
− αt−1√

v̂t−1

∣∣∣∣∣
i

≤dα2

c2

where the first inequality is due to |(αt/
√
v̂t − αt−1/

√
v̂t−1)j | ≤ 1/c.

Then we have for ADMETAR,

E

[
C1

T∑
t=1

∥∥∥∥αtht√
v̂t

∥∥∥∥2 + C2

t∑
i=2

∥∥∥∥∥αi−1mi−1√
v̂i−1

∥∥∥∥∥
2

+ C3

T∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
1

(35)

+C4

T−1∑
t=2

∥∥∥∥∥ αt√
v̂t
− αt−1√

v̂t−1

∥∥∥∥∥
2]

+ C5 (36)

≤C1
H2α2

c2
(1 + log T) + C2

H2α2

c2
(1 + log T) + C3

dα

c
+ C4

dα2

c2
+ C5 (37)

26

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Furthermore, due to ∥gt∥ ≤ H , we have (v̂t)j ≤ H2, then we get

α/(
√
v̂t)j ≥

1

H
√
t

Thus we have

E

[
T∑

t=1

αi⟨∇f(θt),∇f(θt)/
√
v̂t⟩

]
≥ E

[
T∑

t=1

1

H
√
t
∥∇f(θt)∥2

]
≥
√
T

H
min
t∈[T]

E
[
∥∇f(θt)∥2

]
(38)

Combining (37) and (38), we have

min
t∈[T]

E
[
∥∇f(θt)∥2

]
≤ H√

T

(
(C1 + C2)

H2α2

c2
(1 + log T) + C3

dα

c
+ C4

dα2

c2
+ C5

)
=

1√
T

(Q1 +Q2 log T)

This completes the proof.

C.4. Convergence Analysis of AdmetaS for Convex Optimization

Lemma C.16 (Bound for
∑T

t=1 αt∥mt∥2). Under Assumption in Theorem 3, we have

T∑
t=1

αt∥mt∥2 ≤ 2αdG2
∞
√
T

Proof. First, we bound ∥mt∥.

∥mt∥2 ≤ d∥mt∥2∞ ≤ dG2
∞ (39)

Now we can bound
∑T

t=1 αt∥mt∥2

T∑
t=1

αt∥mt∥2 ≤ dG2
∞

T∑
t=1

αt = αdG2
∞

T∑
t=1

1√
t
≤ 2αdG2

∞
√
T

Theorem C.17. (Convergence of ADMETAS for convex optimization)
Let {θt} be the sequence obtained by ADMETAS, 0 ≤ λ, β < 1, αt = α√

t
, ∀t ∈ [T]. Suppose x ∈ F , where

F ⊂ Rd and has bounded diameter D∞, i.e. ||θt − θ||∞ ≤ D∞,∀t ∈ [T].. Assume f(θ) is a convex func-
tion and ||gt||∞ is bounded. Denote the optimal point as θ. For θt generated, ADMETAS achieves the regret:

R(T) =
T∑

t=1

[ft(θt)− ft(θ)] = O(
√
T)

Proof. • Bound for
∑T

t=1⟨mt, θt − θ⟩.
From the update process, we get

∥θt+1 − θ∥2 = ∥θt − θ − αtmt∥2 = ∥θt − θ∥2 − 2αt⟨mt, θt − θ⟩+ α2
t ∥mt∥2

27

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

thus we have
T∑

t=1

⟨mt, θt − θ⟩ =
T∑

t=1

1

2αt

(
∥θt − θ∥2 − ∥θt+1 − θ∥2

)
+

T∑
i=1

αt

2
∥mt∥2

Consider the left-hand side
T∑

t=1

1

2αt

(
∥θt − θ∥2 − ∥θt+1 − θ∥2

)
=

1

2α1
∥θ1 − θ∥2 +

T∑
t=2

(
1

2αt
− 1

2αt−1

)
∥θt − θ∥2 − 1

2αT
∥θT+1 − θ∥2

≤dD2
∞

2α1
+ dD2

∞

T∑
t=2

(
1

2αt
− 1

2αt−1

)
+ 0 =

dD2
∞

2αT

Finally,we get
T∑

t=1

⟨mt, θt − θ⟩ ≤ dD2
∞

2αT
+

T∑
i=1

αt

2
∥mt∥2

• Bound for
∑T

t=1⟨mt−1, θt−1 − θt⟩.
T∑

t=1

⟨mt−1, θt−1 − θt⟩ =
T−1∑
t=1

⟨mt, θt − θt+1⟩

=

T−1∑
t=1

⟨mt, αtmt⟩

=

T−1∑
t=1

αt∥mt∥2

• Bound for ⟨mT , θT − θ⟩.

⟨mT , θT − θ⟩ ≤ αT ∥mT ∥2 +
1

4αT
∥θT − θ∥2

≤ αT ∥mT ∥2 +
dD2

∞
4αT

where the first inequality follows from Young’s inequality.

Combining all these preparations, we obtain
T∑

t=1

⟨ht, θt − θ⟩ = 1

1− β

(
⟨mT , θT − θ⟩ − ⟨m0, θ0 − θ⟩

)
+ ⟨m0, θ0 − θ⟩

+

T−1∑
t=1

⟨mt, θt − θ⟩+ β

1− β

T∑
t=1

⟨mt−1, θt−1 − θt⟩

=
β

1− β
⟨mT , θT − θ⟩+ β

1− β

T∑
t=1

⟨mt−1, θt−1 − θt⟩+
T∑

t=1

⟨mt, θt − θ⟩

≤ β

1− β

(
dD∞

4αT
+

T∑
t=1

αt∥mt∥2
)

+
dD2

∞
2αT

+

T∑
i=1

αt

2
∥mt∥2

≤
(

β

1− β
+ 2

)
dD∞

4αT
+

(
2αβ

1− β
+ α

)
dG2

∞
√
T

28

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

This proves that
∑T

t=1⟨ht, θt− θ⟩ = O(
√
T). Suppose the optimizer runs for a long time, the bias of EMA is small (Zhuang

et al., 2020), thus E(It) approaches E(gt) as step increases. Since ht = κgt + µIt, ht is the same order as gt when the time
is long enough, thus we have

T∑
t=1

⟨gt, θt − θ⟩ = O(
√
T) (40)

In addition, due to the convexity of f(.), we have

R(T) =

T∑
t=1

(ft(θt)− ft(x)) ≤
T∑

t=1

⟨gt, θt − θ⟩

Combined with (40), we complete the proof.

C.5. Convergence Analysis of AdmetaS for Non-convex Optimization

Lemma C.18. Set θ0 ≜ θ1 in Algorithm (2), and define zt as

zt = θt +
β

1− β
(θt − θt−1), ∀t ≥ 1. (41)

Then the following holds

zt+1 − zt =−
β

1− β
(αt − αt−1)mt−1 − αtht

Proof. By the update rule of ADMETAS, we have

θt+1 − θt = −αtmt = −αt[βmt−1 + (1− β)ht]

= β
αt

αt−1
(θt − θt−1)− αt(1− β)ht

= β(θt − θt−1) + β

(
αt

αt−1
− 1

)
(θt − θt−1)− αt(1− β)ht

= β(θt − θt−1)− β(αt − αt−1)mt−1 − αt(1− β)ht (42)

Since we also have

θt+1 − θt = (1− β)θt+1 + β(θt+1 − θt)− (1− β)θt

Combined with (42), we have

(1− β)θt+1 + β(θt+1 − θt) =(1− β)θt + β(θt − θt−1)

− β(αt − αt−1)mt−1 − αt(1− β)ht

Divide both sides by 1− β

θt+1 +
β

1− β
(θt+1 − θt) =θt +

β

1− β
(θt − θt−1)

− β

1− β
(αt − αt−1)mt−1 − αtht

Lemma C.19. Suppose that the conditions in Theorem C.4 hold, then

E [f(zt+1)− f(z1)] ≤
4∑

i=1

Ti,

29

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

where

T1 = −E

[
t∑

i=1

⟨∇f(zi),
β1

1− β1
(αi − αi−1)mi−1⟩

]

T2 = −E

[
t∑

i=1

αi⟨∇f(zi), hi⟩

]

T3 = E

[
t∑

i=1

L

∥∥∥∥ β

1− β
(αi − αi−1)mi−1

∥∥∥∥2
]

T4 = E

[
t∑

i=1

L ∥αihi∥2
]

Proof. By the Lipschitz smoothness of∇f ,

f(zt+1) ≤ f(zt) + ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2 ,

Based on (C.18),we have

E[f(zt+1)− f(z1)] =E

[
t∑

i=1

f(zi+1)− f(zi)

]

≤E

[
t∑

i=1

⟨∇f(zi), zi+1 − zi⟩+
L

2
∥zi+1 − zi∥2

]

=− E

[
t∑

i=1

⟨∇f(zi),
β

1− β
(αi − αi−1)mi−1⟩

]

− E

[
t∑

i=1

αi⟨∇f(zi), hi⟩

]
+ E

[
t∑

i=1

L

2
∥zi+1 − zi∥2

]

Then, using inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 and combined with lemma C.18,

E

[
t∑

i=1

L

2
∥zi+1 − zi∥2

]
≤ T3 + T4

Lemma C.20. In this part, we bound T1, T2, T3, T4. We claim that the order of them is O(log T).

Proof. •Bound for T1

T1 ≤ E

[
t∑

i=1

∥∇f(zi)∥∥mi−1∥
β

1− β
|αi − αi−1|

]

≤ H2 β

1− β
E

[
t∑

i=1

|αi − αi−1|

]

≤ H2 β

1− β
α

30

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

where the second and last inequality is due to the monotone decreasing property of αi

•Bound for T3

T3 ≤
(

β

1− β

)2

LH2E

[
t∑

i=1

(αi − αi−1)
2

]

≤ 2α

(
β

1− β

)2

LH2E

[
t∑

i=1

|αi − αi−1|

]

≤ 2α2

(
β

1− β

)2

LH2

where the monotone decreasing property of αi is also used
•Bound for T4

T4 ≤ H2Lα2E

[
t∑

i=1

1

t

]
≤ H2Lα2(1 + log T)

where the second inequality is due to
∑t

i=1
1
t ≤ 1 + log T

•Bound for T2

T2 =− E

[
t∑

i=1

αi⟨∇f(θi), hi⟩

]

− E

[
t∑

i=1

⟨∇f(zi)−∇f(θi), hi⟩

]
(43)

The second term of (43) can be bounded as

− E

[
t∑

i=1

⟨∇f(zi)−∇f(θi), hi⟩

]

≤E

[
t∑

i=1

1

2
∥∇f(zi)−∇f(θi)∥2 +

1

2
∥αihi∥2

]

≤L2

2
E

[
t∑

i=1

∥ β

1− β
αi−1mi−1∥2

]
+

1

2
E

[
t∑

i=1

∥αihi∥2
]

≤α2H2L2

2

(
β

1− β

)2 t∑
i=1

1

t
+

α2H2

2

t∑
i=1

1

t

≤α2H2

2

[
L2

(
β

1− β

)2

+ 1

]
(1 + log T)

where the second inequality is due to ∥∇f(zi)−∇f(θi)∥ ≤ L∥zi − θi∥.

31

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Then, consider the first term of (43)

E

[
t∑

i=1

αi⟨∇f(θi), hi⟩

]

=E

[
t∑

i=1

αi⟨∇f(θi), κgi + µIi⟩

]

≈κE

[
t∑

i=1

αi⟨∇f(θi),∇f(θi) + δi⟩

]
+ µE

[
t∑

i=1

αi⟨∇f(θi),∇f(θi) + δi⟩

]

=(κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)⟩

]

The second and third equality holds for the follow reasons: on the one hand, gt = ∇f(θt) + δt in which E[δt] = 0, so
according to (Chen et al., 2018), given θi, E[δi|θi] = 0; On the other hand, suppose the optimizer runs for a long time, the
bias of EMA is small (Zhuang et al., 2020), thus E(It) approaches E(gt) as step increases. Finally, we can finally bound T2

T2 ≤
α2H2

2

[
L2

(
β

1− β

)2

+ 1

]
(1 + log T) + (κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)⟩

]

Theorem C.21. (Convergence of ADMETAS in non-convex stochastic optimization)
Under the assumptions:

• ∇f exits and is Lipschitz-continuous,i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y; f is also lower bounded.

• At step t, the algorithm can access a bounded noisy gradient gt, and the true gradient∇f is also bounded.

• The noisy gradient is unbiased, and has independent noise, i.e. gt = ∇f(θt) + δt,E[δt] = 0 and δi⊥δj ,∀i ̸= j.

And αt = α/
√
t, then for any T we have:

mint∈[T] E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ 1√

T
(Q

′

1 +Q
′

2 log T)

where Q
′

1 and Q
′

2 are constants independent of T.

Proof. We combine lemma C.18, lemma C.19 and lemma C.20 to bound the overall expected descent of the objective. First,
we have

E [f(zt+1)− f(z1)] ≤T1 + T2 + T3 + T4 (44)

≤H2 β

1− β
α+

α2H2

2

[
L2

(
β

1− β

)2

+ 1

]
(1 + log T) (45)

− (κ+ µ)E

[
t∑

i=1

αi⟨∇f(θi),∇f(θi)⟩

]
(46)

+ 2α2

(
β

1− β

)2

LH2 +H2Lα2(1 + log T) (47)

Notice that

E

[
T∑

t=1

αi⟨∇f(θt),∇f(θt)⟩

]
≥ E

[
T∑

t=1

1√
t
∥∇f(θt)∥2

]
≥
√
T min

t∈[T]
E
[
∥∇f(θt)∥2

]
(48)

32

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Rearrange (44), combined with (48) and notice that κ+ µ > 0, we have

min
t∈[T]

E
[
∥∇f(θt)∥2

]
≤ 1√

T
E

[
T∑

t=1

αi⟨∇f(θt),∇f(θt)⟩

]

≤ 1√
T

[
1

κ+ µ

(
α2H2L2

2

(
β

1− β

)2

+
α2H2

2
+H2Lα2

)
(1 + log T)

+
1

κ+ µ

(
H2 β

1− β
α+ 2α2

(
β

1− β

)2

LH2 + E[f(z1)− f(z∗)]

)]

=
1√
T
(Q

′

1 +Q
′

2 log T)

where z∗ is the optimal of f , i.e. z∗ = argmin
z

f(z)

This completes the proof.

C.6. Convergence Analysis of Forward-looking

In this section, based on (Wang et al., 2020), we further analysis forward-looking part to complete the convergence proof of
ADMETA optimizer.

According to (Zhang et al., 2019), Lookahead is an algorithm that can be combined with any standard optimization method.
The same is true for dynamic lookahead method in forward-looking part. What’s more, optimizers with forward-looking is
essentially processing with two loops as discussed in the main text. The fast weight is updated by optimizers, while the slow
weight is updated by interpolating with fast weight every given period. In other words, the slow weight is updated passively.
Therefore, though the slow weight is relevant to optimizers, it is almost irrelevant to the selection of optimizers. For this
reason, we only prove the convergence of forward-looking of ADMETAS, which can be easily extended to the ADMETAR.

Remarks:(some preliminaries)
Based on the design of the asymptotic dynamic weight ηt of the forward-looking part, it can be concluded that when it runs
for a long time, ηt is highly close to the set point, at which we can safely assume that ηt is a constant and thus we denote it
as η. In this way, the analysis of a dynamic lookahead is the same as the case of static lookahead.

According to algorithm of ADMETA, the slow weight ϕt updates every k steps. We can assume that the slow weight is
trained in sync with fast weight. For this purpose, all we should do is to stipulate ϕτk+l = ϕτk, where k denotes the
synchronization period, τ ∈ N∗ and 0 ≤ l < k.

Define yt = ηθt + (1− η)θt, then according to the update of θt and ϕt, we have

yt+1 = yt − ηαtmt

and on each period of synchronization, we have

yτk − θτk = (1− η)(ϕτk − θτk) = 0

yτk − ϕτk = η(θτk − ϕτk) = 0

Theorem C.22. (convergence of forward-looking part)
Suppose f(.) is L-smooth, i.e, ||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y. The bias of noisy gradient is bounded, i.e., |δt| ≤ σ,
where δt = ∇f(θt)− gt. Then we have that:

1

T

T∑
t=0

E
∣∣∣∣∣∣∇f(θt)∣∣∣∣∣∣2 ≤ O(1√

T
)

Proof. Following the L-smooth property, we have

f(yt+1)− f(yt) ≤ −ηαt⟨∇f(yt),mt⟩+
η2α2

tL

2
∥mt∥2 (49)

33

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Taking the expectation of both sides,

E[⟨∇f(yt),mt⟩] = E[⟨∇f(yt), κgt + µIt⟩] = κE[⟨∇f(yt), gt⟩] + µE[⟨∇f(yt), It⟩] (50)

Consider the term with κ,

E[⟨∇f(yt), gt⟩] = ⟨∇f(yt),∇f(θt)⟩

=
1

2
[∥∇f(yt)∥2 + ∥∇f(θt)∥2 − ∥∇f(yt)−∇f(θt)∥2]

≥1

2
[∥∇f(yt)∥2 + ∥∇f(θt)∥2 − L2∥yt − θt∥2]

=
1

2
[∥∇f(yt)∥2 + ∥∇f(θt)∥2 − (1− η)2L2∥ϕt − θt∥2] (51)

Suppose the optimizer runs for a long time, the bias of EMA is small enough, thus E(It) approaches E(gt). For this reason,
we can estimate the term with µ in (50) the same way as (51).

Based on the bounded bias gradient assumption and inequality that (a+ b)2 ≤ 2a2 + 2b2, we have:

E[∥mt∥2] ≤ 2µ2E[∥It∥2]∥+ 2κ2E[∥gt∥2]∥ ≤ 4(µ2 + κ2)E∥∇f(θt)∥2 + 4(µ2 + κ2)σ2 (52)

Combined with (49), (50), (51) and (52), rearrange the inequality and take the expectation

E[f(yt+1)] ≤E[f(yt)]−
ηαt(µ+ κ)

2
E[∥∇f(yt)∥2]−

ηαt(µ+ κ)

2
E[∥∇f(θt)∥2]

+
ηαt(1− η)2L2(µ+ κ)

2
E[∥ϕt − θt∥2] + 2(µ2 + κ2)η2α2

tLE[∥∇f(θt)∥2]

+ 2(µ2 + κ2)η2α2
tLσ

2

Since the learning rate is decreasing to zero, we can safely assume that after several iterations, 1 − ηαtL > 0. Then,
summing over one outer loop

E[f(y(τ+1)k)]− E[f(yτk)]

≤−
ηα(τ+1)k(µ+ κ)

2

k−1∑
l=0

E[∥∇f(yτk+l)∥2] + 2(µ2 + κ2)kη2α2
τkLσ

2

−
ηα(τ+1)k(µ+ κ− 4(µ2 + κ2)ηα(τ+1)kL)

2

k−1∑
l=0

E[∥∇f(θτk+l)∥2]

+
ηατk(1− η)2L2(µ+ κ)

2

k−1∑
l=0

E[∥ϕτk+l − θτk+l∥2] (53)

34

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Consider the last term of (53), we have

E[∥ϕτk+l − θτk+l∥2] = E[∥θτk − θτk+l∥2] ≤ α2
τkE

∥ l−1∑
j=0

mτk+j∥2

=2κ2α2
τkE

∥ l−1∑
j=0

gτk+j∥2
+ 2µ2α2

τkE

∥ l−1∑
j=0

Iτk+j∥2

≤4κ2α2
τkE

∥∥∥∥∥∥
l−1∑
j=0

(gτk+j −∇f(θτk+j))

∥∥∥∥∥∥
2
+ 4κ2α2

τkE

∥∥∥∥∥∥
l−1∑
j=0

∇f(θτk+j)

∥∥∥∥∥∥
2

+ 4µ2α2
τkE

∥∥∥∥∥∥
l−1∑
j=0

(Iτk+j −∇f(θτk+j))

∥∥∥∥∥∥
2
+ 4µ2α2

τkE

∥∥∥∥∥∥
l−1∑
j=0

∇f(θτk+j)

∥∥∥∥∥∥
2

≤4(κ2 + µ2)σ2lα2
τk + 4(µ2 + κ2)α2

τkE

∥∥∥∥∥∥
l−1∑
j=0

∇f(θτk+j)

∥∥∥∥∥∥
2

≤4(κ2 + µ2)σ2lα2
τk + 4(µ2 + κ2)lα2

τk

l−1∑
j=0

E[∥∇f(θτk+j)∥2]

where the first equality using the property that θτk = ϕτk = ϕτk+l.

Summing from l = 0 to l = k − 1, we get,

k−1∑
l=0

E[∥ϕτk+l − θτk+l∥2]

≤2(κ2 + µ2)σ2α2
τkk(k − 1) + 4(µ2 + κ2)α2

τk

k−1∑
l=0

l

l−1∑
j=0

E[∥∇f(θτk+j)∥2]

=2(κ2 + µ2)σ2α2
τkk(k − 1) + 4(µ2 + κ2)α2

τk

k−2∑
j=0

E[∥∇f(θτk+j)∥2]
k−1∑

l=j+1

l

=2(κ2 + µ2)σ2α2
τkk(k − 1) + 2(µ2 + κ2)α2

τk

k−2∑
j=0

E[∥∇f(θτk+j)∥2](j + k)(k − j − 1)

(j + k)(k − j − 1) achieves its maximal value when j = 0. Therefore, we have

k−1∑
l=0

E[∥ϕτk+l − θτk+l∥2]

≤2(κ2 + µ2)σ2α2
τkk(k − 1) + 2(µ2 + κ2)α2

τkk(k − 1)

k−2∑
j=0

E[∥∇f(θτk+j)∥2]

Here, we can finally bound the the last term of (53)

E[f(y(τ+1)k)]− E[f(yτk)]

≤−
ηα(τ+1)k(µ+ κ)

2

k−1∑
l=0

E[∥∇f(yτk+l)∥2] +G+M

k−1∑
l=0

E[∥∇f(θτk+l)∥2]

≤−
ηα(τ+1)k(µ+ κ)

2

k−1∑
l=0

E[∥∇f(yτk+l)∥2] +G (54)

35

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

where

G = 2(µ2 + κ2)kη2α2
τkLσ

2 + (κ2 + µ2)(κ+ µ)η(1− η)2L2σ2k(k − 1)α3
τk

and

M =−
ηα(τ+1)k(µ+ κ− 4(µ2 + κ2)ηα(τ+1)kL)

2

+ (κ2 + µ2)(κ+ µ)η(1− η)2L2σ2k(k − 1)α3
τk

When α is small enough, M is below zero, for which the second inequality of (54) holds.

Summing from τ = 0 to τ = Υ− 1, we get

E[f(yΥk)]− E[f(y0)]

≤− η(µ+ κ)

2

Υ−1∑
τ=0

α(τ+1)k

k−1∑
l=0

E[∥∇f(yτk+l)∥2] + 2(µ2 + κ2)kη2Lσ2
Υ−1∑
τ=0

α2
τk

+ (κ2 + µ2)(κ+ µ)η(1− η)2L2σ2k(k − 1)

Υ−1∑
τ=0

α3
τk

Following (Wang et al., 2020), we first assume the learning rate α as a fixed constant, then rearrange the inequality above,
we get

1

Υk

Υ−1∑
τ=0

k−1∑
l=0

E[∥∇f(yτk+l)∥2] ≤
2[f(y0)− finf]

ηαΥk(µ+ κ)
+

4(µ2 + κ2)ηαLσ2

µ+ κ

+ 2(κ2 + µ2)(1− η)2α2L2σ2(k − 1)

Define T as Υk and set the learning rate α to 1/
√
T

1

T

T−1∑
t=0

E[∥∇f(yt)∥2] ≤
2[f(y0)− finf]

η
√
T (µ+ κ)

+
4(µ2 + κ2)ηLσ2

(µ+ κ)
√
T

+
2(κ2 + µ2)(1− η)2L2σ2(k − 1)

T

=O(1√
T
)

D. Analysis of Convergence Rate
For convex situation, we adopt the regret function to estimate the convergence rate. And for non-convex situation, we adopt
the minimum of the expectation of the squared gradient to estimate the convergence, which are corresponding to the proof
of convergence since the process of the convergence proof is actually the process of finding the convergence rate.

From Table 6, we notice that the convergence rates for all optimizers for convex case are of magnitude of O(1/
√
T) and

for non-convex are of O(logT/
√
T) , which means in essence, algorithms based on gradient decent follow a similar rate

constraint. However, the convergence speed of different optimizers may attribute to many other factors, such as on the
implementation. Therefore additional statistical experiments are needed for analysis, as we did in Table 4.

E. Experimental Details
E.1. Hyperparameter Tuning

For ADMETA optimizer, we first determined a rough value range for learning rate and lambda with the toy model according
to the visualization as in Figure B. While for other baseline optimizers, we refer to the recommended/default hyperparameter
settings in the original paper. In this way, we get the rouge range of the hyperparameter in optimizers. Then, we search the
hyperparameters in the adjacent interval, which is listed in the following three subsections.

36

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Case Optim Source Convergence rate (a rough estimation)

Convex

SGD (Zinkevich, 2003) D2
∞

2αT
+

G2
∞
2

∑T
t=1 αt

AMSGrad (Reddi et al., 2019)
D2

∞
√
T

α(1−β1)

∑d
i=1 v̂

1
T,i/2 +

D∞
2(1−β1)

∑T
t=1

∑d
i=1

βv̂1
t,i/2

αt

+ α
√
1+log T

(1−β1)2(1−γ)
√
1−β2

∑d
i=1 ∥g1:T,i∥

ADMETAS -
(

β
1−β

+ 2
)

dD∞
4αT

+
(

2αβ
1−β

+ α
)
dG2

∞
√
T

ADMETAR - (2−β1)D
2
∞

√
T

4α(1−β1)

∑d
i=1 v̂

1/2
T,i + (2+β1)α

√
1+log T

2
√

(1−β2)(1−γ)

∑d
i=1 ∥h1:T,i∥2

Non-convex

SGD - -
AMSGrad (Chen et al., 2018) H√

T

(
C1

H2

c2
(1 + log T) + C2

d
c
+ C3

d
c2

+ C4

)
ADMETAS -

1√
T

[
1

κ+µ

(
α2H2L2

2

(
β

1−β

)2

+ α2H2

2
+H2Lα2

)
(1 + log T)

+ 1
κ+µ

(
H2 β

1−β
α+ 2α2

(
β

1−β

)2

LH2 + E[f(z1)− f(z∗)]

)]
ADMETAR - H√

T

(
(K1 +K2)

H2α2

c2
(1 + log T) +K3

dα
c

+K4
dα2

c2
+K5

)
Table 6. The comparison of convergence rate of several optimizers.

Model task SGD SGDM Adam RAdam Ranger AdaBelief ADMETAR ADMETAS
LR LR LR LR LR LR LR λ LR β

ResNet-110 CIFAR-10 0.1 0.1 0.001 0.01 0.01 0.001 0.05 0.1 0.05 0.2
CIFAR-100 0.1 0.1 0.001 0.01 0.01 0.01 0.05 0.05 0.05 0.1

PyramidNet CIFAR-10 0.1 0.1 0.001 0.01 0.01 0.001 0.01 0.1 0.05 0.4
CIFAR-100 0.5 0.5 0.001 0.01 0.01 0.001 0.01 0.1 0.05 0.1

Table 7. Optimizer hyperparameter settings on the CIFAR task.

E.2. Image Classification

We conduct image classification experiments on CIFAR-10 and CIFAR-100 datasets, which are trained on a single NVIDIA
RTX-3090 GPU. Typical architectures like ResNet-110 and PyramidNet are employed as the baseline models. In the
ResNet-110 architecture, there are 54 stacked identical 3× 3 convolutional layers with 54 two-layer Residual Units (He
et al., 2016).

While in the PyramidNet architecture, there are 110 layers with a widening factor of 48 (Han et al., 2017). We set the
training batch size to 128 and the validation batch size to 256. Both models are trained with 160 epochs. Milestone schedule
is adopted as the learning rate decay strategy, with learning rate decaying at the end of 80-th and 120-th epochs by 0.1.

We report the hyperparameters tuning for our proposed ADMETA and other optimizers for reproduction of our experiments.
For all optimizers, the weight decay is fixed as 1e− 4. The searching scheme of hyperparameter settings for each optimizer
is concluded as follows:

• For SGD and SGDM, the momentum is fixed as 0.9, and the best-performing learning rate is searched from
{0.01, 0.05, 0.1} and recommended values in original paper. For our ADMETAS, the λ is set to fixed 0.9 and we search
the best-performing β from {0.1, 0.2, 0.3, 0.4} and learning rate from {0.01, 0.05, 0.1}.

• For all adaptive learning rate optimizers, hyperparameters β1, β2 and ϵ are set to β1 = 0.9, β2 = 0.999 and ϵ = 1e-9
respectively. For Adam, RAdam and AdaBelief optimizer, the learning rate is searched from {0.1, 0.01, 0.001}.
For Ranger, η and k are set to η = 0.5 and k = 6 according to (Wright, 2019). The learning rate is searched
from {0.1, 0.01, 0.001}. And for our ADMETAR, the setting of k is the same as Ranger, and we search λ from
{0.05, 0.1, 0.2, 0.3, 0.4} and learning rate from {0.1, 0.05, 0.01}.

The resulting hyperparameters reported in the paper are shown in Table 7, where LR is the abbreviation of learning rate.

37

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Model Optim MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

LR λ LR λ LR λ LR λ LR λ LR λ LR λ LR λ

BERTbase

AdamW 2e-5 − 3e-5 − 3e-5 − 2e-5 − 5e-5 − 5e-5 − 4e-5 − 6e-5 −
RAdam 2e-5 − 2e-5 − 6e-5 − 4e-5 − 1e-4 − 4e-4 − 1.5e-4 − 5e-4 −
Ranger 5e-5 − 5e-5 − 1e-4 − 8e-5 − 2e-4 − 5e-4 − 4e-4 − 1e-3 −
AdaBelief 5e-4 − 5e-4 − 5e-4 − 8e-4 − 4e-4 − 6e-4 − 5e-4 − 6e-4 −
ADMETAR 1.5e-4 0.08 1e-4 0.36 2e-4 0.03 1e-4 0.03 7e-4 0.02 1e-3 0.08 1.2e-3 0.3 1.8e-3 0.36

BERTlarge

AdamW 2e-5 − 2e-5 − 2e-5 − 2e-5 − 6e-5 − 5e-5 − 4e-5 − 2e-5 −
RAdam 2e-5 − 2e-5 − 5e-5 − 4e-5 − 1e-4 − 2e-4 − 8e-5 − 5e-4 −
Ranger 5e-5 − 5e-5 − 5e-5 − 6e-5 − 6e-5 − 5e-4 − 5e-4 − 5e-4 −
AdaBelief 2e-4 − 4e-4 − 5e-4 − 2e-4 − 6e-4 − 2e-4 − 4e-4 − 8e-4 −
ADMETAR 1.5e-4 0.08 8e-5 0.2 8e-5 0.03 9e-5 0.3 7e-4 0.02 1e-3 0.03 6e-4 0.08 8e-4 0.1

Table 8. Optimizer hyperparameter settings on the GLUE benchmark.

Model Optim SQuAD v1.1 SQuAD v2.0 NER-CoNLL03

LR λ LR λ LR λ

BERTbase

AdamW 5e-5 − 5e-5 − 6e-5 −
RAdam 1e-4 − 5e-5 − 5e-5 −
Ranger 1e-4 − 8e-5 − 1e-4 −
AdaBelief 1e-3 − 8e-4 − 5e-4 −
ADMETAR 4e-4 0.05 3e-4 0.2 2e-4 0.3

BERTlarge

AdamW 2e-5 − 5e-5 − 2e-5 −
RAdam 6e-5 − 5e-5 − 3e-5 −
Ranger 1e-4 − 8e-5 − 5e-5 −
AdaBelief 8e-4 − 8e-4 − 4e-4 −
ADMETAR 4e-4 0.05 3e-4 0.2 1.5e-4 0.2

Table 9. Hyperparameter settings of SQuAD v1.1 and v2.0 development sets.

E.3. Natural Language Understanding

In the NLU experiments, we employ a pre-trained language model BERT (Devlin et al., 2018; Zhang et al., 2020) as our
backbone. There are two model sizes for BERT: BERTbase and BERTlarge, where the base model size has 12 Transformer
layers with 768 hidden size, 12 self-attention heads and 110M model parameters and the large model size has 24 Transformer
layers with 1024 hidden size, 16 self-attention heads and 340M parameters (Li et al., 2022).

In natural language understanding, we perform experiments on three modeling types of tasks: text classification, machine
reading comprehension and token classification. The text classification uses the GLUE benchmark as the evaluation data
set, the machine reading comprehension uses SQuAD v1.1 and v2.0, and the token classification uses the NER-CoNLL03
named entity recognition data set (Zhou et al., 2020b).

We train the eight tasks in GLUE benchmark for 3 epochs on a single NVIDIA RTX-3090 GPU, except for MRPC, which is
trained for 5 epochs due to its relatively small data size (Li et al., 2020b). The maximum sequence length is set to 128 and
the training batch size is set to 32. SQuAD v1.1 and SQuAD v2.0 are trained for 2 epochs with two GPUs. The maximum
sequence length is set to 384 and the training batch size per device is set to 12. And NER-CoNLL03 is trained for 3 epochs
on a single GPU. The training batch size per device is set to 8.

Because of the pre-training-fine-tuning paradigm, we only employ the adaptive learning rate optimizer. We set β1, β2, ϵ
and weight decay of these optimizers to 0.9, 0.999, 1e-8 and 0.0 respectively. η and k are set to 0.5 and 6 in the Ranger
optimizer and ADMETA uses the same value of k as Ranger. We perform hyperparameter tuning on the learning rate and λ,
and the resulting hyperparameters reported in the paper are shown in Table 8 and 9.

E.4. Audio Classification

Based on Wav2vec (Schneider et al., 2019), the Wav2vec 2.0 (Baevski et al., 2020) is a framework for self-supervised
learning of speech representations which is composed of 3 modules: feature encoder, contextualized representations and
quantization module. In the feature encoder, there are 7 blocks with temporal convolutions that have 512 channels for each
block and the relative positional embeddings of the convolutional layer modeling has kernel size of 128 and 16 groups.

38

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Optim SUPERB Common Language

LR λ LR λ

AdamW 3e-5 − 3e-4 −
AdaBelief 8e-4 − 2e-3 −
Ranger 3e-4 − 5e-4 −
RAdam 8e-5 − 5e-4 −
ADMETAR 5e-4 0.05 2e-3 0.2

Table 10. Hyperparameter settings of SUPERB and Common Language.

Among the configurations of Wav2vec 2.0, we choose Wav2vec 2.0base model, which has 12 Transformer blocks, 95M
parameters and 8 attention heads, with model dimension of 768 and inner dimension (FFN) of 3072. We finetune
Wav2vec 2.0base for keyword spotting and language identification on SUPERB dataset (Yang et al., 2021) and Common
Language (Sinisetty et al., 2021) dataset respectively. The dataset size of keyword spotting is smaller than that of language
identification, so we use a single NVIDIA RTX-3090 GPU for training on the SUPERB dataset, and use four GPUs for
parallel training on the Common Language dataset. The keyword spotting model is trained for 5 epochs with training batch
size 32 and language identification model for 10 epochs with training batch size 8 per device.

Due to the same reason as in NLU experiments, i.e. the pre-training-fine-tuning paradigm, we only employ adaptive learning
rate optimizers here. For all optimizers chosen, we fix β1 = 0.9, β2 = 0.999, ϵ = 1e− 8 and set weight decay to 0.0. The
learning rate is searched from {5e-5, 8e-5, 1e-4, 3e-4, 5e-4, 8e-4}, and for ADMETAR, λ is searched from {0.05, 0.1 0.2}.
The resulting hyperparameters reported in the paper are shown in Table 10.

F. Future Work
In the future work, for backward-looking part, though DEMA provides a more flexible way to deal with past gradients, it is
still unable to intelligently judge the value of certain historical gradient information, such as discarding some obviously
unreasonable gradients caused by noise. A better optimizer may have the ability to forget these wrong information and
take advantage of what works, just working like human brains. For forward-looking part, our method takes the constant
coefficient into a dynamic one. It is kind of like milestone scheme of learning rate decay strategies to some extent. However,
several experiments (Huang et al., 2017; Ma, 2020) have shown that cosine strategy (Loshchilov & Hutter, 2016) works
better. Therefore, we will follow the cosine scheme and propose a new forward-looking strategy that may work even better.

G. Performance of SGDM and AdmetaS on Finetune Setting
In this section, we test the performance of SGDM and ADMETAS on fintune setting and the results are shown in Table 11.
For keyword spotting (SUPERB) (Yang et al., 2021) task, we train the models for 5 epochs and use Wav2vecbase (Schneider
et al., 2019) as the baseline model. And for CIFAR-10 (Krizhevsky et al., 2009) task, we train the model for 40 epochs from
the checkpoint already trained with Adam using learning rate of 0.001 for 160 epochs. The baseline model of CIFAR-10 is
ResNet-110 (He et al., 2016) with deep CNN architecture. We report the results of best hyperparameter settings for SGD
and ADMETAS via grid searching.

From Table 11, we notice that in SUPERB task, compared to adaptive learning rate methods, SGDM achieves worse results
in SUPERB task, but not by much, which shows that SGDM can also be used in finetune setting. While ADMETAS can
achieve better result than any other learning rate methods used in our experiment, demonstrating the advantage of our
approach. This phenomenon contradicts the mainstream view that SGD family is not suitable for finetune task. While for
CIFAR-10 task, SGDM and ADMETAS both improve the performance compared to the start point. However, they are both
obviously worse than the performance of training the task from scratch using SGDM and ADMETAS respectively, which
shows that pre-training is a very strong approach that makes the model achieve a good state.

The reason why ADMETAS performs better than SGDM in finetune setting may lie in two aspects. On the one hand, DEMA
scheme in the backward-looking part reduces the overshoot problem that may do harm especially near convergence. On the
other hand, the forward-looking part improves the stability of the training process.

39

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers

Optimizer SUPERB CIFAR-10

SGDM 98.25 91.71
ADMETAS 98.54 91.87

Table 11. Performance of SGDM and ADMETAS on finetune setting.

Optim CIFAR-10 CIFAR-100

ADMETAS 94.12 73.74

SGDM 93.68 72.07
SGDM (lr=0.5) 93.65 73.48

Table 12. Performance of SGD family optimizers in CIFAR task.

H. Influence of Different Learning Rates in SGD Family Optimizers
Since the learning rate of 0.5 for SGDM is a recommended value in (Han et al., 2017) but not in (He et al., 2016), to alleviate
the influence of different learning rates, we also try the performance of SGDM with a learning rate of 0.5 in the ResNet-110
network and the results are listed in Table 12.

The results show that choosing a large learning rate for SGDM may increase the performance, as shown that when setting
the learning rate to 0.5 instead of 0.1, the recommended value in ResNet-110. However, this is not always true since the
performance on CIFAR-10 when using the learning rate of 0.5 does not get prompted.

40

