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Abstract

Multi-task Imitation Learning (MIL) aims to train
a policy capable of performing a distribution of
tasks based on multi-task expert demonstrations,
which is essential for general-purpose robots. Ex-
isting MIL algorithms suffer from low data effi-
ciency and poor performance on complex long-
horizontal tasks. We develop Multi-task Hierar-
chical Adversarial Inverse Reinforcement Learn-
ing (MH-AIRL) to learn hierarchically-structured
multi-task policies, which is more beneficial for
compositional tasks with long horizons and has
higher expert data efficiency through identifying
and transferring reusable basic skills across tasks.
To realize this, MH-AIRL effectively synthesizes
context-based multi-task learning, AIRL (an IL
approach), and hierarchical policy learning. Fur-
ther, MH-AIRL can be adopted to demonstrations
without the task or skill annotations (i.e., state-
action pairs only) which are more accessible in
practice. Theoretical justifications are provided
for each module of MH-AIRL, and evaluations on
challenging multi-task settings demonstrate supe-
rior performance and transferability of the multi-
task policies learned with MH-AIRL as compared
to SOTA MIL baselines.

1. Introduction
The generalist robot, which can autonomously perform a
wide range of tasks, is one of the essential targets of robotic
learning. As an important approach, Imitation Learning (IL)
enables the agent to learn policies based on expert demon-
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strations and is especially effective for problems where it’s
difficult to discover task solutions autonomously through
Reinforcement Learning (RL). To train a general-purpose
agent, Multi-task/Meta Imitation Learning (MIL) algorithms
(Finn et al., 2017b; Deisenroth et al., 2014; Singh et al.,
2020) have been proposed to learn a parameterized policy
that is a function of both the current observation and the
task and is capable of performing a range of tasks following
a particular distribution. The key insight of these algorithms
is that the successful control for one task can be informative
for other related tasks. However, a critical challenge for
them is to acquire enough data for the agent to generalize
broadly across tasks. Typically, a large number of demon-
strations are required for each task in that distribution, and
the required amount increases with task difficulty. More-
over, the learned multi-task policy cannot be transferred to
tasks out of that distribution (Yu et al., 2019; Ghasemipour
et al., 2019), which limits its general use.

Hierarchical Imitation Learning (HIL) has the potential
to reduce the required demonstrations. In HIL, the agent
learns a two-level policy, which can be modeled with the
option framework (Sutton et al., 1999), from the expert
data. Specifically, the low-level policies (i.e., skills) are
designated to accomplish certain subtasks in a complex
task, while the high-level policy is for scheduling the switch
among the skills to solve the entire task. For multi-task
settings, learning a hierarchical policy enables the agent
to identify basic skills that can be useful in solving a dis-
tribution of tasks and to transfer them across tasks during
training. In this case, each skill can be trained with demon-
strations from different tasks rather than limited to a single
one, and, with the shared skills, an agent mainly needs to
update its high-level policy rather than learning an entire pol-
icy for each task. The expert data efficiency is significantly
improved since demonstrations among different tasks are
reused for learning skills and the burden of multi-task policy
learning becomes lower. Further, in RL and IL, hierarchies
exhibit a number of benefits, including better performance
on long-horizontal complex tasks (Florensa et al., 2017;
Jing et al., 2021) and the possibility of skill transfer between
distinct tasks (Andreas et al., 2017).

In this paper, we propose MH-AIRL to introduce hierarchies
to MIL. As discussed above, such hierarchies can improve
expert data efficiency so that the agent can achieve supe-
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rior performance based on a limited number of demonstra-
tions. Further, basic skills can be extracted from the learned
policies and reused in out-of-distribution tasks for better
transferability (i.e., addressing the core concern of multi-
task learning). For example, it enables locomotion skills
to be reused for multiple goal-achieving tasks of the same
robot agent, yet in distinct scenarios. Different from pre-
vious Multi-task Hierarchical IL (MHIL) algorithms (Fox
et al., 2019; Yu et al., 2018a; Gao et al., 2022; Bian et al.,
2022), MH-AIRL is context-based and thus can be applied
to demonstrations without any (skill or task) annotations,
which are more accessible in practice. To this end, we
extend both the multi-task learning and imitation learning
modules (i.e., the core components of MIL), with the op-
tion framework (i.e., the hierarchical learning module). For
multi-task learning, we condition the learned policy on a
Hierarchical Latent Context Structure, where the task code
and skill segmentation serve as the global and local context
variables respectively. To compel the casual relationship of
learned policy and latent variables, we start from the defi-
nition of mutual information and directed information and
derive an easier-to-handle lower bound for each of them,
serving as the optimization objectives. For imitation learn-
ing, we propose H-AIRL, which redefines a SOTA IL algo-
rithm – AIRL (Fu et al., 2017) in an extended state-action
space to enable our algorithm to recover a hierarchical pol-
icy (rather than a monolithic one) from expert trajectories.
Finally, an actor-critic framework – HPPO is proposed to
synthesize the optimization of the three modules above.

The contributions are as follows: (1) Our work presents the
first MHIL algorithm based on demonstrations without any
(skill or task) annotations, i.e., state-action pairs only. This
greatly generalizes the applicability of our algorithm and
reduces the cost of building expert datasets. (2) The newly-
proposed H-AIRL and HPPO can be independently used for
Hierarchical IL and RL, respectively. They are shown to
achieve improved performance than SOTA HIL and HRL
baselines. (3) We provide theoretical proof and ablation
study for each algorithm module, and show the superiority
of our algorithm through comparisons with SOTA baselines
on a series of challenging multi-task settings from Mujoco
(Todorov et al., 2012) and D4RL (Fu et al., 2020).

2. Related Work
Machine Learning has found successful applications across
a wide array of sectors such as transportation (Al-Abbasi
et al., 2019; Chen et al., 2021; Luo et al., 2022; Ma et al.,
2020), manufacturing (Peddireddy et al., 2021; Fu et al.,
2021), networking (Balachandran et al., 2014; Geng et al.,
2023), robotics (Gao et al., 2022; Gonzalez et al., 2023),
etc. In the field of robotics, one of the key objectives is
developing a ‘generalist’ robot, capable of executing a mul-

titude of tasks with human-like precision. To achieve this,
multi-task robotic learning proves to be a highly effective
methodology. In this section, we succinctly delineate Multi-
task IL and Multi-task HIL, illustrating the contributions
and significance of our research in this evolving field.

Multi-task/Meta IL algorithms have been proposed to learn
a parameterized policy, which is capable of performing a
range of tasks following a particular distribution, from a mix-
ture of expert demonstrations. Based on the meta/multi-task
learning techniques used, current MIL algorithms can be cat-
egorized as gradient-based or context-based. Gradient-based
MIL, such as (Finn et al., 2017b; Yu et al., 2018b), integrates
a gradient-based meta learning algorithm — MAML (Finn
et al., 2017a) with supervised IL to train a policy that can
be fast adapted to a new task with one-step gradient update.
Context-based MIL, such as (Ghasemipour et al., 2019; Yu
et al., 2019), learns a latent variable to represent the task
contexts and trains a policy conditioned on the task context
variable. Thus, with the corresponding task variable, the pol-
icy can be directly adopted to a new task setting. However,
these algorithms do not make use of the option framework
to learn a hierarchical policy like ours. In Section 5.1, we
compare our algorithm with MIL baselines from both cat-
egories and show that it achieves better performance on a
wide range of challenging long-horizon tasks.

Multi-task HIL aims at recovering a multi-task hierarchical
policy based on expert demonstrations from a distribution of
tasks, which synthesizes the advantages of Multi-task IL and
HIL. We present here the previous study in this area. The
algorithms proposed in (Fox et al., 2019) and (Duminy et al.,
2021) are limited to a certain type of robot. They provide
predefined subtask decomposition, like picking and placing
dishes, to simplify hierarchical learning, and have access to
segmented expert demonstrations. However, our algorithm
is proposed to automatically discover a hierarchical policy
from unsegmented demonstrations and the discovered policy
should capture the subtask structure of the demonstrations
without supervision. In (Yu et al., 2018a), they propose to let
the robot learn a series of primitive skills from correspond-
ing demonstrations first, and then learn to compose learned
primitives into multi-stage skills to complete a task. Thus,
they predefine the types of skills and provide demonstrations
corresponding to each skill. Also, in their setting, each new
task has to be a sequence of predefined skills. A very recent
work (Gao et al., 2022) integrates MAML and the option
framework for MHIL. Like (Bian et al., 2022) and (Devin
et al., 2019), this algorithm can be applied to demonstrations
without the skill annotations, but these demonstrations have
to be categorized by the task, in accordance with the require-
ments of MAML. Consequently, our research introduces the
first MHIL algorithm that relies on demonstrations devoid
of task or skill annotations. This makes it significantly more
practical for real-world applications.
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3. Background
In this section, we introduce Adversarial Inverse Rein-
forcement Learning (AIRL), Context-based Meta Learning,
and the One-step Option Framework, corresponding to the
three components of our algorithm: IL, multi-task learn-
ing, and hierarchical policy learning, respectively. They are
based on the Markov Decision Process (MDP), denoted by
M = (S,A,P, µ,R, γ), where S is the state space, A is
the action space, P : S × A × S → [0, 1] is the transition
function (PSt+1

St,At
≜ P(St+1|St, At)), µ : S → [0, 1] is the

distribution of the initial state, R : S×A → R is the reward
function, and γ ∈ (0, 1] is the discount factor.

3.1. Adversarial Inverse Reinforcement Learning

While there are several other ways to perform IL, such as
supervised imitation (e.g., Behavioral Cloning (BC) (Pomer-
leau, 1991)) and occupancy matching (e.g., GAIL (Ho &
Ermon, 2016)), we adopt Inverse Reinforcement Learning
(IRL) because it uses not only the expert data but also self-
exploration of the agent with the recovered reward func-
tion for further improvement (Ng & Russell, 2000; Wang
et al., 2021). Comparisons with BC- and GAIL-based al-
gorithms will be provided in Section 5. IRL aims to infer
an expert’s reward function from demonstrations, based on
which the expert’s policy can be recovered. Maximum En-
tropy IRL (Ziebart et al., 2008) solves IRL as a maximum
likelihood estimation (MLE) problem shown as Equation
1. τE ≜ (S0, A0, · · · , ST ) denotes the expert trajectory.
Zϑ is the partition function which can be calculated with
Zϑ =

∑
τE
P̂ϑ(τE).

max
ϑ

EτE [logPϑ(τE)] = max
ϑ

EτE

[
log

P̂ϑ(τE)

Zϑ

]
,

P̂ϑ(τE) = µ(S0)

T−1∏
t=0

PSt+1

St,At
exp(Rϑ(St, At))

(1)

Since Zϑ is intractable for problems with large state-action
space, the authors of (Fu et al., 2017) propose AIRL to
solve this MLE problem in a sample-based manner, through
alternatively training a discriminator fϑ and policy network
π in an adversarial setting. The discriminator is trained
by minimizing the cross-entropy loss between the expert
demonstrations τE and generated samples τ by π:

min
ϑ

T−1∑
t=0

−EτE
[
logDt

ϑ

]
− Eτ

[
log(1−Dt

ϑ)
]

(2)

Here, Dt
ϑ = Dϑ(St, At) =

exp(fϑ(St,At))
exp(fϑ(St,At))+π(At|St) . Mean-

while, the policy π is trained with RL using the reward
function defined as logDt

ϑ − log(1−Dt
ϑ). It is shown that,

at optimality, fϑ can serve as the recovered reward function
Rϑ and π is the recovered expert policy.

3.2. Context-based Meta Learning

We consider the Meta IRL setting: given a distribution of
tasks P (T ), each task sampled from P (T ) has a correspond-
ing MDP, and all of them share the same S and A but may
differ in µ, P , and R. The goal is to train a flexible policy
π on a set of training tasks sampled from P (T ), which can
be quickly adapted to unseen test tasks sampled from the
same distribution. As a representative, context-based Meta
IRL algorithms (Ghasemipour et al., 2019; Yu et al., 2019)
introduce the latent task variable C, which provides an ab-
straction of the corresponding task T , so each task can be
represented with its distinctive components conditioning on
C, i.e., (µ(S0|C),P(S′|S,A,C),R(S,A|C)). These algo-
rithms learn a context-conditioned policy π(A|S,C) from
the multi-task expert data, through IRL and by maximizing
the mutual information (Cover, 1999) between the task vari-
able C and the trajectories from π(A|S,C). Thus, given C
for a new task, the corresponding π(A|S,C) can be directly
adopted. Context-based methods can adopt off-policy data,
making them more align with the goal of our work – learn-
ing from demonstrations. Thus, we choose context-based
Meta IRL as our base algorithm.

Given expert trajectories sampled from a distribution of
tasks (i.e., C ∼ prior(·)) and assuming that the demon-
strative trajectories of each task are from a corresponding
expert policy πE(τE |C), context-based Meta IRL recovers
both the task-conditioned reward function Rϑ(S,A|C) and
policy π(S,A|C) by solving an MLE problem:

max
ϑ

EC∼prior(·),τE∼πE(·|C) [logPϑ(τE |C)] ,

Pϑ(τE |C) ∝ µ(S0|C)
T−1∏
t=0

PSt+1

St,At,C
eRϑ(St,At|C)

(3)

where PSt+1

St,At,C
≜ P(St+1|St, At, C). Like Equation 1,

this can be efficiently solved through AIRL. We provide the
AIRL framework to solve Equation 3 in Appendix A.1.

3.3. One-step Option Framework

As proposed in (Sutton et al., 1999), an optionZ ∈ Z can be
described with three components: an initiation set IZ ⊆ S,
an intra-option policy πZ(A|S) : S × A → [0, 1], and a
termination function βZ(S) : S → [0, 1]. An option Z is
available in state S if and only if S ∈ IZ . Once the option
is taken, actions are selected according to πZ until it termi-
nates stochastically according to βZ , i.e., the termination
probability at the current state. A new option will be acti-
vated by a high-level policy πZ(Z|S) : S×Z → [0, 1] once
the previous option terminates. In this way, πZ(Z|S) and
πZ(A|S) constitute a hierarchical policy for a certain task.
Hierarchical policies tend to have superior performance on
complex long-horizontal tasks which can be broken down
into a series of subtasks (Chen et al., 2022a;b;c;d).

3



Multi-task Hierarchical Adversarial Inverse Reinforcement Learning

The one-step option framework (Li et al., 2021) is proposed
to learn the hierarchical policy without the extra need to
justify the exact beginning and breaking condition of each
option, i.e., IZ and βZ . First, it assumes that each option
is available at each state, i.e., IZ = S,∀Z ∈ Z . Second, it
drops βZ through redefining the high-level and low-level
(i.e., intra-option) policies as πθ(Z|S,Z ′) (Z ′: the option
in the last timestep) and πϕ(A|S,Z) respectively and im-
plementing them as end-to-end neural networks with the
Multi-Head Attention (MHA) mechanism (Vaswani et al.,
2017), which enables it to temporally extend options in the
absence of the termination function. Intuitively, if Z ′ still
fits S, πθ(Z|S,Z ′) will assign a larger attention weight to
Z ′ and thus has a tendency to continue with it; otherwise, a
new option with better compatibility will be sampled. Then,
the option is sampled at each timestep rather than after the
last one terminates. With this simplified framework, we
only need to train the hierarchical policy, i.e., πθ and πϕ, of
which the structure design with MHA is in Appendix A.2.

4. Proposed Approach
In this section, we propose Multi-task Hierarchical AIRL
(MH-AIRL) to learn a multi-task hierarchical policy from a
mixture of expert demonstrations. First, the learned policy
is multi-task by conditioning on the task context variable C.
Given C ∼ prior(·), the policy can be directly adopted to
complete the corresponding task. In practice, we can usually
model a class of tasks by specifying the key parameters of
the system and their distributions (i.e., prior(C)), including
the property of the agent (e.g., mass and size), circumstance
(e.g., friction and layout), and task setting (e.g., location of
the goals). In this case, directly recovering a policy, which is
applicable to a class of tasks, is quite meaningful. Second,
for complex long-horizontal tasks which usually contain
subtasks, learning a monolithic policy to represent a struc-
tured activity can be challenging and inevitably requires
more demonstrations. In contrast, a hierarchical policy can
make full use of the subtask structure and has the potential
for better performance. Moreover, the learned low-level poli-
cies can be transferred as basic skills to out-of-distribution
tasks for better transferability, while the monolithic policy
learned with previous Meta IL algorithms cannot.

In Section 4.1 and 4.2, we extend context-based Meta Learn-
ing and AIRL with the option framework, respectively. In
Section 4.3, we synthesize the three algorithm modules and
propose an actor-critic framework for optimization.

4.1. Hierarchical Latent Context Structure

As mentioned in Section 3.2, the current task for the agent is
encoded with the task variableC, which serves as the global
context since it is consistent through the episode. As men-
tioned in Section 3.3, at each step, the hierarchical policy

agent will first decide on its option choice Z using πθ and
then select the primitive action based on the low-level pol-
icy πϕ corresponding to Z. In this case, the policy learned
should be additionally conditioned on Z besides the task
code C, and the option choice is specific to each timestep
t ∈ {0, · · · , T}, so we view the option choices Z0:T as the
local latent contexts. C and Z0:T constitute a hierarchical
latent context structure shown as Figure 1. Moreover, real-
world tasks are often compositional, so the agent requires
to reason about the subtask at hand while dealing with the
global task. Z0:T and C provide a hierarchical embedding,
which enhances the expressiveness of the policy trained with
MH-AIRL, compared with context-based Meta IL which
only employs the task context. In this section, we define
the mutual and directed information objectives to enhance
the causal relationship between the hierarchical policy and
the global & local context variables which the policy should
condition on, as an extension of context-based Meta-IL with
the one-step option model.

Context-based Meta IL algorithms establish a connec-
tion between the policy and task variable C, so that
the policy can be adapted among different task modes
according to the task context. This can be realized
through maximizing the mutual information between the
trajectory generated by the policy and the corresponding
C, i.e., I(X0:T ;C), where X0:T = (X0, · · · , XT ) =
((A−1, S0), · · · , (AT−1, ST )) = τ . A−1 is a dummy
variable. On the other hand, the local latent variables
Z0:T have a directed causal relationship with the trajec-
tory X0:T shown as the probabilistic graphical model in
Figure 1. As discussed in (Massey et al., 1990; Sharma
et al., 2019), this kind of connection can be established
by maximizing the directed information (a.k.a., causal in-
formation) flow from the trajectory to the latent factors of
variation, i.e., I(X0:T → Z0:T ). In our multi-task frame-
work, we maximize the conditional directed information
I(X0:T → Z0:T |C), since for each task c, the correspond-
ing I(X0:T → Z0:T |C = c) should be maximized.

Directly optimizing the mutual or directed information ob-
jective is computationally infeasible, so we instead maxi-
mize their variational lower bounds as follows: (Please refer
to Appendix B.1 and B.2 for the definition of mutual and
directed information and derivations of their lower bounds.
For simplicity, we use XT to represent X0:T , and so on.)

LMI ≜ H(C) + E
XT ,ZT ,C

logPψ(C|X0:T )

LDI ≜
T∑
t=1

[ E
Xt,Zt,C

logPω(Zt|X0:t, Z0:t−1, C)

+H(Zt|X0:t−1, Z0:t−1, C)]

(4)

where H(·) denotes the entropy, Pψ and Pω are the
variational estimation of the posteriors P (C|X0:T ) and
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Figure 1. Illustration of the hierarchical latent context structure
and its implementation with the one-step option model.

P (Zt|X0:t, Z0:t−1, C) which cannot be calculated directly.
Pψ and Pω are implemented as neural networks, H(C) is
constant, and H(Zt|X0:t−1, Z0:t−1, C) is the entropy of
the output of the high-level policy network (Appendix B.1),
so LMI and LDI can be computed in real-time. More-
over, the expectation on Xt, Zt, C in LMI and LDI can
be estimated in a Monte-Carlo manner (Sutton & Barto,
2018): C ∼ prior(·), (X0:t, Z0:t) ∼ Pθ,ϕ(·|C), where
Pθ,ϕ(X0:t, Z0:t|C) is calculated by: (See Appendix B.1.)

µ(S0|C)
t∏
i=1

[πθ(Zi|Si−1, Zi−1, C)·

πϕ(Ai−1|Si−1, Zi, C)PSiSi−1,Ai−1,C
]

(5)

Combining Equation 4 and 5, we can get the objectives with
respect to πθ and πϕ, i.e., the hierarchical policy defined in
the one-step option model. By maximizing LMI and LDI ,
the connection between the policy and the hierarchical con-
text structure can be established and enhanced. In LMI and
LDI , we also introduce two variational posteriors Pψ and
Pω and update them together with πθ and πϕ. An analogy
of our learning framework with Variational Autoencoder
(VAE) (Kingma & Welling, 2014) is provided in Appendix
B.3, which provides another perspective to understand the
proposed objectives.

4.2. Hierarchical AIRL

In this section, we consider how to recover the task-
conditioned hierarchical policy from a mixture of expert
demonstrations {(XE

0:T , Z
E
0:T , CE)}. Current algorithms,

like AIRL (Fu et al., 2017) or Meta AIRL (Ghasemipour
et al., 2019; Yu et al., 2019), can not be directly adopted
since they don’t take the local latent codes ZE0:T into con-
sideration. Thus, we propose a novel hierarchical extension
of AIRL, denoted as H-AIRL, as a solution, which is also
part of our contributions. Further, it’s usually difficult to
annotate the local and global latent codes, i.e., ZE0:T and CE ,
of an expert trajectory XE

0:T , so we propose an Expectation-
Maximization (EM) adaption of H-AIRL as well to learn the
multi-task hierarchical policy based on only the unstructured
expert trajectories {XE

0:T }.

First, we define the task-conditioned hierarchical policy.
When observing a state St at timestep t ∈ {0, · · · , T − 1}
during a certain task C, the agent needs first to decide on
its option choice based on St and its previous option choice
Zt using the high-level policy πθ(Zt+1|St, Zt, C), and then
decide on the action with the corresponding low-level policy
πϕ(At|St, Zt+1, C). Thus, the task-conditioned hierarchi-
cal policy can be acquired with the chain rule as:

πθ(Zt+1|St, Zt, C) · πϕ(At|St, Zt+1, C)

= πθ,ϕ(Zt+1, At|St, Zt, C) = πθ,ϕ(Ãt|S̃t, C)
(6)

where the first equality holds because of the one-
step Markov assumption (i.e., πϕ(At|St, Zt, Zt+1, C) =

πϕ(At|St, Zt+1, C)), S̃t ≜ (St, Zt) and Ãt ≜ (Zt+1, At)
denote the extended state and action space respectively.

Next, by substituting (St, At) with (S̃t, Ãt) and τE with
the hierarchical trajectory (X0:T , Z0:T ) in Equation 3, we
can get an MLE problem shown as Equation 7, from which
we can recover the task-conditioned hierarchical reward
function and policy. The derivation is in Appendix C.1.

max
ϑ

EC,(XT ,ZT )∼πE(·|C)

[
logPϑ(X

T , ZT |C)
]
,

Pϑ(X0:T , Z0:T |C) ∝ P̂ϑ(X0:T , Z0:T |C)

= µ(S0|C)
T−1∏
t=0

PSt+1

St,At,C
eRϑ(St,Zt,Zt+1,At|C)

(7)

Equation 7 can be efficiently solved with the adversar-
ial learning framework shown as Equation 8 (C,CE ∼
prior(·), (XE

0:T , Z
E
0:T ) ∼ πE(·|CE), and (X0:T , Z0:T ) ∼

πθ,ϕ(·|C)). At optimality, we can recover the hierarchical
policy of the expert as πθ,ϕ with these objectives, of which
the justification is provided in Appendix C.2.

min
ϑ

−ECE ,(XE0:T ,ZE0:T )
T−1∑
t=0

logDϑ(S̃
E
t , Ã

E
t |CE)

− EC,(X0:T ,Z0:T )

T−1∑
t=0

log(1−Dϑ(S̃t, Ãt|C)),

max
θ,ϕ

LIL = EC,(X0:T ,Z0:T )

T−1∑
t=0

RtIL

(8)

where the reward functionRtIL = logDt
ϑ−log(1−Dt

ϑ) and

Dt
ϑ = Dϑ(S̃t, Ãt|C) = exp(fϑ(S̃t,Ãt|C))

exp(fϑ(S̃t,Ãt|C))+πθ,ϕ(Ãt|S̃t,C)
.

In practice, the unstructured expert data {XE
0:T }, i.e., tra-

jectories only, is more accessible. In this case, we can
view the latent contexts as hidden variables in a hidden
Markov model (HMM) (Eddy, 1996) shown as Figure 1
and adopt an EM-style adaption to our algorithm, where we
use the variational posteriors introduced in Section 4.1 to
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sample the corresponding CE , ZE0:T for each XE
0:T . In the

E step, we sample the global and local latent codes with
CE ∼ Pψ(·|XE

0:T ), Z
E
0:T ∼ Pω(·|XE

0:T , CE). Pψ and Pω
represent the posterior networks forC andZ0:T respectively,
with the parameters ψ and ω, i.e., the old parameters before
being updated in the M step. Then, in the M step, we opti-
mize the hierarchical policy and posteriors with Equation
4 and 8. Note that the expert data used in the first term
of Equation 8 should be replaced with (XE

0:T , Z
E
0:T , CE)

collected in the E step. By this adaption, we can get the
solution of the original MLE problem (Equation 7), i.e., the
recovered expert policy πθ,ϕ, with only unstructured expert
data, which is proved in Appendix C.3.

4.3. Overall Framework

In Section 4.1, we propose LMI(θ, ϕ, ψ) and LDI(θ, ϕ, ω)
to establish the causal connection between the policy and
hierarchical latent contexts. Then, in Section 4.2, we pro-
pose H-AIRL to recover the hierarchical policy from multi-
task expert demonstrations, where the policy is trained with
the objective LIL(θ, ϕ). In this section, we introduce our
method to update the hierarchical policy and posteriors with
these objectives, and describe the overall algorithm frame-
work. Detailed derivations of ∇θ,ϕ,ψL

MI , ∇θ,ϕ,ωL
DI and

∇θ,ϕL
IL are in Appendix D.1, D.2, and D.3, respectively.

First, the variational posteriors Pψ and Pω can be updated
with the gradients shown in Equation 9 through Stochastic
Gradient Descent (SGD) (Bottou, 2010).

∇ψL
MI = E

C,XT ,ZT
∇ψ logPψ(C|X0:T )

∇ωL
DI =

T∑
t=1

E
C,Xt,Zt

∇ω logPω(Zt|Xt, Zt−1, C)
(9)

Next, the gradients with respect to θ and ϕ, i.e., the hierar-
chical policy, are computed based on the overall objective:

L = α1L
MI + α2L

DI + α3L
IL (10)

where α1:3 are the weights (only the ratios α1

α3
, α2

α3
matter)

and fine-tuned as hyperparameters. Based on L, we can get
the unbiased gradient estimators with respect to θ and ϕ:
(Derivations are in Appendix D.4.)

∇θL = E
C,XT ,ZT

[

T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C)·

(Rett − bhigh(St−1, Zt−1|C))]

∇ϕL = E
C,XT ,ZT

[

T∑
t=1

∇ϕ log πϕ(At−1|St−1, Zt, C)·

(Rett − blow(St−1, Zt|C))]
(11)

Rett = α1 logPψ(C|X0:T )

+

T∑
i=t

[α2 log
Pω(Zi|Xi, Zi−1, C)

πθ(Zi|Si−1, Zi−1, C)
+ α3R

i−1
IL ]

(12)

Rett represents the return at timestep t, while bhigh and
blow are the baseline terms for training πθ and πϕ, respec-
tively. Further, we claim that the advantage functions for
training πθ and πϕ are given byRett−bhigh(St−1, Zt−1|C)
and Rett − blow(St−1, Zt|C), respectively, based on which
we can optimize the hierarchical policy via off-the-shelf RL
algorithms. In our implementation, we adopt PPO (Schul-
man et al., 2017) to train πθ and πϕ with their corresponding
advantage functions, respectively. This forms a novel Hi-
erarchical RL (HRL) algorithm – HPPO, which has shown
superiority over RL and HRL baselines in our experiment.

In Appendix D.5, we provide the overall algorithm as Algo-
rithm 1 and illustrate the interactions among the networks
in MH-AIRL in Figure 5.

5. Evaluation and Main Results
MH-AIRL is proposed to learn a multi-task hierarchical pol-
icy from a mixture of (unstructured) expert demonstrations.
The learned policy can be adopted to any task sampled from
a distribution of tasks. In this section: (1) We provide an
ablation study with respect to the three main components
of our algorithm: context-based multi-task/meta learning,
option/hierarchical learning, and imitation learning. (2)
We show that the hierarchical policy learning can signif-
icantly improve the agent’s performance on challenging
long-horizontal tasks. (3) Through qualitative and quanti-
tative results, we show that our algorithm can capture the
subtask structure within the expert demonstrations and that
the learned basic skills for the subtasks (i.e., options) can
be transferred to tasks not within the task distribution to aid
learning, for better transferability.

The evaluation is based on three Mujoco (Todorov et al.,
2012) locomotion tasks and the Kitchen task from the D4RL
benchmark (Fu et al., 2020). All of them are with continuous
state & action spaces, and contain compositional subtask
structures to make them long-horizontal and a lot more chal-
lenging. To be specific: (1) In HalfCheetah-MultiVel, the
goal velocity v is controlled by a 1-dim Gaussian context
variable. The HalfCheetah agent is required to speed up to
v/2 first, then slow down to 0, and finally achieve v. (2)
In Walker-RandParam, the Walker agent must achieve
the goal velocity 4 in three stages, i.e., [2, 0, 4]. Mean-
while, the mass of the agent changes among different tasks,
which is controlled by an 8-dim Gaussian context variable.
(3) In Ant-MultiGoal, a 3D Ant agent needs to reach a
certain goal, which is different in each task and controlled
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(a) Mujoco Env (b) HalfCheetah-MultiVel (c) Walker-RandParam

(d) Kitchen Env (e) Ant-MultiGoal (f) Kitchen-MultiSeq

Figure 2. (a) Multi-stage Mujoco locomotion tasks, where (1)-(3) show Ant, HalfCheetah, and Walker agent, respectively. (d) The Kitchen
task. (b)(c)(e)(f) Comparison results of MH-AIRL with SOTA Meta Imitation Learning baselines on the four challenging tasks.

by a 2-dim Gaussian context variable (polar coordinates).
Moreover, the agent must go through certain subgoals. For
example, if the goal is (x, y) and |x| > |y|, the agent must
go along [(0, 0), (x, 0), (x, y)]. (4) In Kitchen-MultiSeq,
there are seven different subtasks, like manipulating the
microwave, kettle, cabinet, switch, burner, etc. Each task
requires the sequential completion of four specific subtasks.
Twenty-four permutations are chosen and so 24 tasks, each
of which is sampled with the same probability and con-
trolled by a discrete context variable (input as one-hot vec-
tors). Note that the states of the robot agents only contain
their original states (defined by Mujoco or D4RL) and the
task context variable, and do not include the actual task
information, like the goal (velocity) and subgoal list. The
task information is randomly generated by a parametric
model of which the parameter is used as the context variable
(i.e., the Gaussian vectors as mentioned above). The map-
ping between context variables and true task information
is unknown to the learning agent. This makes the learning
problem more challenging and our algorithm more general,
since a vector of standard normal variables can be used to
encode multiple types of task information.

These scenarios are designed to evaluate our algorithm on
a wide range of multi-task setups. First, the agent needs
to adapt across different reward functions in (1) and (3)
since the rewarding state changes, and adjust across differ-
ent transition functions in (2) since the mass change will
influence the robotic dynamics. Next, different from (1)-
(3), discrete context variables are adopted in (4), and (4)
provides more realistic and challenging robotic tasks for
evaluation. The expert data for Mujoco tasks are from
expert agents trained with an HRL algorithm (Zhang &
Whiteson, 2019) and specifically-designed rewards. While

for the Kitchen task, we use the human demonstrations
provided by (Gupta et al., 2019). Note that the demonstra-
tions (state-action pairs only) do not include the rewards,
task or option variables. Codes for reproducing all the
results are on https://github.com/LucasCJYSDL/Multi-task-
Hierarchical-AIRL.

5.1. Effect of Hierarchical Learning

In this part, we evaluate whether the use of options can sig-
nificantly improve the learning for challenging compound
multi-task settings. We compare MH-AIRL with SOTA
Meta Imitation Learning (MIL) baselines which also aim
to train a policy that can be fast adapted to a class of re-
lated tasks but does not adopt options in learning. Context-
based MIL, such as PEMIRL (Yu et al., 2019) and SMILE
(Ghasemipour et al., 2019), learns a context-conditioned pol-
icy that can be adopted to any task from a class by applying
the task variable. While the policy learned with Gradient-
based MIL, such as MAML-IL (Finn et al., 2017b) which
integrates MAML (Finn et al., 2017a) (a commonly-adopted
Meta Learning algorithm) and Behavioral Cloning (BC), has
to be updated with gradients calculated from trajectories of
the new task, before being applied. We select PEMIRL,
SMILE, and MAML-IL from the two major categories of
MIL as our baselines. All the algorithms are trained with the
same expert data, and evaluated on the same set of test tasks
(not contained in the demonstrations). Note that, unlike the
others, MAML-IL requires expert data of each test task be-
sides the task variable when testing and requires the expert
demonstrations to be categorized by the task when training,
which may limit its use in practical scenarios. Our algorithm
is trained based on unstructured demonstrations and is only
provided with the task context variable for testing.
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Table 1. Numeric results of the ablation study
HalfCheetah-MultiVel Walker-RandParam Ant-MultiGoal Kitchen-MultiSeq

Expert 376.55± 11.12 399.95± 1.43 1593.17± 40.91 400.00± 0.00
MH-AIRL (ours) 292.79± 15.99 357.59± 12.10 1530.82± 15.18 352.59± 15.12
MH-GAIL (ours) 211.32± 52.74 268.92± 49.29 1064.78± 180.28 212.13± 25.25
H-AIRL (ours) 126.85± 21.92 225.48± 12.87 533.80± 40.69 83.97± 10.95
Option-GAIL −44.89± 51.95 132.01± 54.75 383.05± 13.52 204.73± 56.41

DI-GAIL 56.77± 49.76 225.22± 14.01 328.06± 19.89 131.79± 53.29

In Figure 2, we record the change of the episodic reward
(i.e., the sum of rewards for each step in an episode) on the
test tasks as the number of training samples increases. The
training is repeated 5 times with different random seeds for
each algorithm, of which the mean and standard deviation
are shown as the solid line and shadow area, respectively.
Our algorithm outperforms the baselines in all tasks, and
the improvement is more significant as the task difficulty
goes up (i.e., in Ant & Kitchen), which shows the effective-
ness of hierarchical policy learning especially in complex
tasks. MAML-IL makes use of more expert information in
both training and testing, but its performance gets worse on
more challenging tasks. This may be because it is based
on BC, which is a supervised learning algorithm prone to
compounding errors (Ross et al., 2011).

5.2. Ablation Study

We proceed to show the effectiveness of the IL and context-
based multi-task learning components through an ablation
study. We propose two ablated versions of our algorithm:
(1) MH-GAIL – a variant by replacing the AIRL compo-
nent of MH-AIRL with GAIL (Ho & Ermon, 2016) (another
commonly-used IL algorithm), of which the details are in
Appendix E.2. (2) H-AIRL – a version that does not con-
sider the task context C, which means Pψ (i.e., the posterior
for C) is not adopted, LMI is eliminated from Equation 10,
and other networks do not use C as input. H-AIRL can be
viewed as a newly-proposed HIL algorithm since it inte-
grates the option framework and IL. To be more convincing,
we also use two SOTA HIL algorithms – Option-GAIL
(Jing et al., 2021) and DI-GAIL (Sharma et al., 2019), as
the baselines. The training with the HIL algorithms is based
on the same multi-task expert data as ours.

In Appendix E.1, we provide the plots of the change of
episodic rewards on the test tasks. The training with each
algorithm is repeated for 5 times with different random
seeds. For each algorithm, we compute the average episodic
reward after the learning converges in each of the 5 runs,
and record the mean and standard deviation in Table 1 as
the convergence performance. First, we can see that our
algorithm performs the best on all tasks over the ablations,
showing the effectiveness of all the main modules of our

algorithm. Second, MH-GAIL performs better than HIL
baselines, showing the necessity of including the context-
based multi-task learning component. Without this compo-
nent, HIL algorithms can only learn an average policy for a
class of tasks from the mixture of multi-task demonstrations.
Last, H-AIRL, the newly-proposed HIL algorithm, performs
better than the SOTA HIL baselines on Mujoco tasks. A
comprehensive empirical study on H-AIRL is provided in
(Chen et al., 2022e).

5.3. Analysis on the Learned Hierarchical Policy

In this section, we do the case study to analyze if the learned
hierarchical policy can capture the sub-task structure in the
demonstrations, and if the learned options can be transferred
to tasks out of the task distribution. Capturing the subtask
structures in real-life tasks can be essential for the (multi-
task) policy learning, because: (1) It is more human-like
to split a complex task into more manageable subtasks to
learn separately and then synthesize these skills to complete
the whole task. (2) In some circumstances, the basic skills
learned from one task setting can be reused in other task set-
tings so the agent only needs to update its high-level policy
over the same skill set, significantly lowering the learning
difficulty. We test our algorithm on Mujoco-MultiGoal (Fig-
ure 3(a)) where the agent is required to achieve a goal corre-
sponding to the task variable (2-dim Gaussian). The expert
demonstrations include 100 goal locations in the Cell and
the expert agent only moves horizontally or vertically. We
test the learned hierarchical policy on 8 sparsely distributed
goal locations, of which the trajectories are shown as Figure
3(d). We can see: (1) Four options (labeled with different
colors) are discovered based on the demonstrations, each of
which corresponds to a particular forward direction (green:
up, yellow: down, etc.). These options are shared among the
tasks. (2) The agent knows how to switch among the options
to complete the tasks in stages (i.e., horizontal and vertical)
with the learned high-level policy. Thus, our algorithm can
effectively capture the compositional structure within the
tasks and leverage it in the multi-task policy learning, which
explains its superior performance. More analysis results
of the learned hierarchical policy on HalfCheetah-MultiVel
and Walker-RandParam are in Appendix E.3.
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(a) PointCell-MultiGoal (b) PointRoom (c) PointMaze

(d) Recovered Hier Policy (e) Transfer Learning on PointRoom (f) Transfer Learning on PointMaze

Figure 3. (a) The environment for multi-task learning with MH-AIRL. (d) Visualization of the learned hierarchical policy in (a). (b)(c)
New task settings for evaluating the learned options in (a). (e)(f) Comparison results on (b)(c) between our proposed HRL algorithm (i.e.,
HPPO) initialized with the transferred options (i.e., HPPO-init) and other SOTA HRL and RL baselines.

Next, previous Meta/Multi-task Learning algorithms can
learn a policy for a class of tasks whose contexts follow a
certain distribution, but the learned policy cannot be trans-
ferred as a whole to tasks out of this class. In contrast,
our algorithm recovers a hierarchical policy, of which the
low-level part can be reused as basic skills for new tasks
not necessarily in the same class, resulting in substantially
improved transferability of the learned policy. To show this,
we reuse the options discovered in PointCell as the initial-
ization of the low-level part of the hierarchical policy for
the goal-achieving tasks in new scenarios – PointRoom and
PointMaze (Figure 3(b) and 3(c)). In each scenario, we se-
lect 4 challenging goals (starting from the center point) for
evaluation, which are labeled as red points in the figure. Un-
like the other evaluation tasks, we provide the agent sparse
reward signals (a positive reward for reaching the goal only)
instead of expert data, so they are RL rather than IL tasks.
We use HPPO proposed in Section 4.3 and initialize it with
the transferred options (i.e., HPPO-init). To be more con-
vincing, we use two other SOTA HRL and RL algorithms
– DAC (Zhang & Whiteson, 2019) and PPO (Schulman
et al., 2017), as baselines. In Figure 3(e) and 3(f), we plot
the episodic reward change in the training process of each
algorithm, where the solid line and shadow represent the
mean and standard deviation of the performance across the
4 different goals in each scenario. We can see that the reuse
of options significantly accelerate the learning process and
the newly proposed HRL algorithm performs much better
than the baselines. Note that the other algorithms are trained
for more episodes since they do not adopt the transferred
options. We show that, in scenarios for which we do not
have expert data or dense rewards, we can make use of the
basic skills learned from expert demonstrations for similar

task scenarios to effectively aid the learning, which provides
a manner to bridge IL and RL.

6. Conclusion and Discussion
In this paper, we propose MH-AIRL to learn a hierarchical
policy that can be adopted to perform a class of tasks, based
on a mixture of multi-task unannotated expert data. We
evaluate our algorithm on a series of challenging robotic
multi-task settings. The results show that the multi-task
hierarchical policies trained with MH-AIRL perform signifi-
cantly better than the monotonic policies learned with SOTA
Multi-task/Meta IL baselines. Further, with MH-AIRL, the
agent can capture the subtask structures in each task and
form a skill for each subtask. The basic skills can be reused
for different tasks in that distribution to improve the expert
data efficiency, and can even be transferred to more dis-
tinct tasks out of the distribution to solve long-timescale
sparse-reward RL problems.

The primary limitation of our study is the inherent complex-
ity of the overall framework, which comprises five networks
as depicted in Figure 5. This complexity arises from our
algorithm’s integration of AIRL, context-based Meta IL,
and the option framework. This amalgamation introduces
certain challenges in the training process, particularly in de-
termining the optimal number of training iterations for each
network within each learning episode. After careful fine-
tuning, we established a training iteration ratio of 1:3:10 for
the discriminator, hierarchical policy, and variational poste-
riors, respectively. Despite this complexity, our evaluations
across a wide variety of tasks utilized a consistent set of
hyperparameters, showing the robustness of our approach.
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A. Appendix on the Background and Related Works
A.1. AIRL Framework to Solve Equation 3

For each task C, we need to recover the task-specific reward function Rϑ(S,A|C) and policy π(A|S,C) based on the
corresponding expert trajectories τE ∼ πE(·|C) which can be solved by AIRL as mentioned in Section 3.1. Thus, we have
the following objective functions for training, which is a simple extension of AIRL (Ghasemipour et al., 2019; Yu et al.,
2019):

min
ϑ

EC

[
−EτE∼πE(·|C)

[
T−1∑
t=0

logDϑ(St, At|C)

]
− Eτ∼π(·|C)

[
T−1∑
t=0

log(1−Dϑ(St, At|C))

]]
(13)

max
π

EC

[
Eτ∼π(·|C)

[
T−1∑
t=0

logDϑ(St, At|C)− log(1−Dϑ(St, At|C))

]]
(14)

where Dϑ(S,A|C) = exp(fϑ(S,A|C))/[exp(fϑ(S,A|C)) + π(A|S,C)].

A.2. Implementation of the Hierarchical Policy in the One-step Option Model

In this section, we give out the detailed structure design of the hierarchical policy introduced in Section 3.3, i.e., πθ(Z|S,Z ′)
and πϕ(A|S,Z), which is proposed in (Li et al., 2021). This part is not our contribution, so we only provide the details for
the purpose of implementation.

As mentioned in Section 3.3, the structure design is based on the Multi-Head Attention (MHA) mechanism (Vaswani
et al., 2017). An attention function can be described as mapping a query, i.e., q ∈ Rdk , and a set of key-value pairs, i.e.,
K = [k1 · · · kn]T ∈ Rn×dk and V = [v1 · · · vn]T ∈ Rn×dv , to an output. The output is computed as a weighted sum of the
values, where the weight assigned to each value is computed by a compatibility function of the query with the corresponding
key. To be specific:

Attention(q,K, V ) =

n∑
i=1

[
exp(q · ki)∑n
j=1 exp(q · kj)

× vi

]
(15)

where q,K, V are learnable parameters, exp(q·ki)∑n
j=1 exp(q·kj) represents the attention weight that the model should pay to item i.

In MHA, the query and key-value pairs are first linearly projected h times to get h different queries, keys and values. Then,
an attention function is performed on each of these projected versions of queries, keys and values in parallel to get h outputs
which are then be concatenated and linearly projected to acquire the final output. The whole process can be represented as
Equation 16, where W q

i ∈ Rdk×dk ,WK
i ∈ Rdk×dk ,WV

i ∈ Rdv×dv ,WO ∈ Rndv×dv are the learnable parameters.

MHA(q,K, V ) = Concat(head1, · · · , headh)WO, headi = Attention(qW q
i ,KW

K
i , V W

V
i ) (16)

In this work, the option is represented as an N -dimensional one-hot vector, where N denotes the total number of options to
learn. The high-level policy πθ(Z|S,Z ′) has the structure shown as:

q = linear(Concat[S,WT
CZ

′]), denseZ =MHA(q,WC ,WC), Z ∼ Categorical(·|denseZ) (17)

WC ∈ RN×E is the option context matrix of which the i-th row represents the context embedding of the option i. WC is
also used as the key and value matrix for the MHA, so dk = dv = E in this case. Note that WC is only updated in the MHA
module. Intuitively, πθ(Z|S,Z ′) attends to all the option context embeddings in WC according to S and Z ′. If Z ′ still fits
S, πθ(Z|S,Z ′) will assign a larger attention weight to Z ′ and thus has a tendency to continue with it; otherwise, a new skill
with better compatibility will be sampled.

As for the low-level policy πϕ(A|S,Z), it has the following structure:

denseA =MLP (S,WT
CZ), A ∼ Categorical/Gaussian(·|denseA) (18)

where MLP represents a multilayer perceptron, A follows a categorical distribution for the discrete case or a gaussian
distribution for the continuous case. The context embedding corresponding to Z, i.e., WT

CZ, instead of Z only, is used as
input of πϕ since it can encode multiple properties of the option Z (Kosiorek et al., 2019).
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B. Appendix on the Hierarchical Latent context Structure
B.1. A Lower Bound of the Directed Information Objective

In this section, we give out the derivation of a lower bound of the directed information from the trajectory sequence X0:T to
the local latent context sequence Z0:T conditioned on the global latent context C, i.e., I(X0:T → Z0:T |C) as follows:

I(X0:T → Z0:T |C) =
T∑
t=1

[I(X0:t;Zt|Z0:t−1, C)]

=

T∑
t=1

[H(Zt|Z0:t−1, C)−H(Zt|X0:t, Z0:t−1, C)]

≥
T∑
t=1

[H(Zt|X0:t−1, Z0:t−1, C)−H(Zt|X0:t, Z0:t−1, C)]

=

T∑
t=1

[H(Zt|X0:t−1, Z0:t−1, C)+∑
X0:t,C,
Z0:t−1

P (X0:t, Z0:t−1, C)
∑
Zt

P (Zt|X0:t, Z0:t−1, C) logP (Zt|X0:t, Z0:t−1, C)]

(19)

In Equation 19, I(V ar1;V ar2|V ar3) denotes the conditional mutual information, H(V ar1|V ar2) denotes the conditional
entropy, and the inequality holds because of the basic property related to conditional entropy: increasing conditioning cannot
increase entropy (Galvin, 2014). H(Zt|X0:t−1, Z0:t−1, C) is the entropy of the high-level policy πθ(Zt|St−1, Zt−1), where
the other variables in X0:t−1, Z0:t−1 are neglected due to the one-step Markov assumption, and more convenient to obtain.
Further, the second term in the last step can be processed as follows:∑

Zt

P (Zt|X0:t, Z0:t−1, C) logP (Zt|X0:t, Z0:t−1, C)

=
∑
Zt

P (Zt|X0:t, Z0:t−1, C)

[
log

P (Zt|X0:t, Z0:t−1, C)

Pω(Zt|X0:t, Z0:t−1, C)
+ logPω(Zt|X0:t, Z0:t−1, C)

]
= DKL(P (·|X0:t, Z0:t−1, C)||Pω(·|X0:t, Z0:t−1, C)) +

∑
Zt

P (Zt|X0:t, Z0:t−1, C) logPω(Zt|X0:t, Z0:t−1, C)

≥
∑
Zt

P (Zt|X0:t, Z0:t−1, C) logPω(Zt|X0:t, Z0:t−1, C)

(20)

where DKL(·) denotes the Kullback-Leibler (KL) Divergence which is non-negative (Cover, 1999), Pω(Zt|X0:t, Z0:t−1, C)
is a variational estimation of the posterior distribution of Zt given X0:t and Z0:t−1, i.e., P (Zt|X0:t, Z0:t−1, C), which is
modeled as a recurrent neural network with the parameter set ω in our work. Based on Equation 19 and 20, we can obtain a
lower bound of I(X0:T → Z0:T |C) denoted as LDI :

LDI =

T∑
t=1

[
∑

X0:t,C,
Z0:t

P (X0:t, Z0:t, C) logPω(Zt|X0:t, Z0:t−1, C) +H(Zt|X0:t−1, Z0:t−1, C)] (21)

Note that the joint distribution P (X0:t, Z0:t, C) has a recursive definition as follows:

P (X0:t, Z0:t, C) = prior(C)P (X0:t, Z0:t|C)
= prior(C)P (Xt|X0:t−1, Z0:t, C)P (Zt|X0:t−1, Z0:t−1, C)P (X0:t−1, Z0:t−1|C)

(22)

P (X0, Z0|C) = P ((S0, A−1), Z0|C) = µ(S0|C) (23)

where µ(S0|C) denotes the distribution of the initial states for task C. Equation 23 holds because A−1 and Z0 are dummy
variables which are only for simplifying notations and never executed and set to be constant across different tasks. Based on
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Equation 22 and 23, we can get:

P (X0:t, Z0:t, C) = prior(C)µ(S0|C)
t∏
i=1

P (Zi|X0:i−1, Z0:i−1, C)P (Xi|X0:i−1, Z0:i, C)

= prior(C)µ(S0|C)
t∏
i=1

P (Zi|X0:i−1, Z0:i−1, C)P ((Si, Ai−1)|X0:i−1, Z0:i, C)

= prior(C)µ(S0|C)
t∏
i=1

P (Zi|X0:i−1, Z0:i−1, C)P (Ai−1|X0:i−1, Z0:i, C)P(Si|Si−1, Ai−1, C)

= prior(C)µ(S0|C)
t∏
i=1

πθ(Zi|Si−1, Zi−1, C)πϕ(Ai−1|Si−1, Zi, C)P(Si|Si−1, Ai−1, C)

(24)

In Equation 24, prior(C) is the known prior distribution of the task context C, P(Si|Si−1, Ai−1, C) is the transition
dynamic of task C, P (Zi|X0:i−1, Z0:i−1, C) and P (Ai−1|X0:i−1, Z0:i, C) can be replaced with πθ and πϕ, respectively,
due to the one-step Markov assumption.

To sum up, we can adopt the high-level policy, low-level policy and variational posterior to get an estimation of the lower
bound of the directed information objective through Monte Carlo sampling (Sutton & Barto, 2018) according to Equation 21
and 24, which can then be used to optimize the three networks.

B.2. A Lower Bound of the Mutual Information Objective

In this section, we give out the derivation of a lower bound of the mutual information between the trajectory sequence X0:T

and its corresponding task context C, i.e., I(X0:T ;C).

I(X0:T ;C) = H(C)−H(C|X0:T )

= H(C) +
∑
X0:T

P (X0:T )
∑
C

P (C|X0:T ) logP (C|X0:T )

= H(C) +
∑
X0:T

P (X0:T )
∑
C

P (C|X0:T ) log
P (C|X0:T )

Pψ(C|X0:T )
+

∑
X0:T ,C

P (X0:T , C) logPψ(C|X0:T )

= H(C) +
∑
X0:T

P (X0:T )DKL(P (·|X0:T ||Pψ(·|X0:T )) +
∑

X0:T ,C

P (X0:T , C) logPψ(C|X0:T )

≥ H(C) +
∑

X0:T ,C

P (X0:T , C) logPψ(C|X0:T )

= H(C) +
∑
C

prior(C)
∑
X0:T

P (X0:T |C) logPψ(C|X0:T )

= H(C) +
∑
C

prior(C)
∑

X0:T ,Z0:T

P (X0:T , Z0:T |C) logPψ(C|X0:T )

(25)

In Equation 25, H(·) denotes the entropy, prior(C) denotes the known prior distribution of the task context C,
P (X0:T , Z0:T |C) can be calculated with Equation 24 by setting t = T , and Pψ(C|X0:T ) is a variational estimation
of the posterior distribution P (C|X0:T ) which is implemented as a recurrent neural network with the parameter set ψ. Note
that the inequality holds because the KL-Divergence, i.e., DKL(·), is non-negative.

B.3. The Analogy with the VAE Framework

Variational Autoencoder (VAE) (Kingma & Welling, 2014) learns a probabilistic encoder Pη(V |U) and decoder Pξ(U |V )
which map between data U and latent variables V by optimizing the evidence lower bound (ELBO) on the marginal
distribution Pξ(U), assuming the prior distributions PU (·) and PV (·) over the data and latent variables respectively. The
authors of (Higgins et al., 2017) extend the VAE approach by including a parameter β to control the capacity of the latent V ,
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Figure 4. The analogy of our learning framework with the VAE structure.

of which the ELBO is:
max
η,ξ

E
U∼PU (·)
V∼Pη(·|U)

[
logPξ(U |V )− βDKL(Pη(V |U)||PV (V ))

]
(26)

The first term can be viewed as the reconstruction accuracy of the data U from V , and the second term works as a regularizer
for the distribution of the latent variables V , where DKL denotes the KL Divergence (Cover, 1999). VAE can efficiently
solve the posterior inference problem for datasets with continuous latent variables where the true posterior is intractable,
through fitting an approximate inference model Pξ (i.e., the variational posterior). The variational lower bound, i.e., ELBO,
can be straightforwardly optimized using standard stochastic gradient methods, e.g., SGD (Bottou, 2010).

As shown in Figure 4, the optimization of LMI (Equation 4) can be viewed as using πθ and πϕ as the encoder and Pψ
as the decoder and then minimizing the reconstruction error of C from X0:T , and the regularizer term in Equation 26 is
neglected (i.e., β = 0). As for the optimization of LDI (Equation 4), at each timestep t, πϕ and Pω form a conditional VAE
between Zt and Xt, which is conditioned on the history information and task code, i.e., (X0:t−1, Z0:t−1, C), with the prior
distribution of Zt provided by πθ. Compared with the VAE objective (i.e., Equation 26), πϕ and Pω in LDI work as the
encoder and decoder respectively; πθ provides the prior, which corresponds to PU (·).

Both Pψ and Pω use sequential data as input and thus are implemented with RNN. The variational posterior for the task
code, i.e., Pψ(C|X0:T ) takes the trajectory X0:T as input and is implemented as a bidirectional GRU (Mangal et al.,
2019) to make sure that both the beginning and end of the trajectory are equally important. On the other hand, the
variational posterior for the local latent code, i.e., Pω(Zt|X0:t, Z0:t−1, C), is modeled as Pω(Zt|Xt, Zt−1, C, ht−1), where
ht−1 is the internal hidden state of an RNN. ht−1 is recursively maintained with the time series using the GRU rule, i.e.,
ht−1 = GRU(Xt−1, Zt−2, ht−2), to embed the history information in the trajectory, i.e., X0:t−1 and Z0:t−2. Note that the
RNN-based posterior has been used and justified in the process for sequential data (Chung et al., 2015).

16



Multi-task Hierarchical Adversarial Inverse Reinforcement Learning

C. Appendix on Hierarchical AIRL
C.1. Derivation of the MLE Objective

In Equation 27, Z0 is a dummy variable which is assigned before the episode begins and never executed. It’s im-
plemented as a constant across different episodes, so we have P (S0, Z0|C) = P (S0|C) = µ(S0|C), where µ(·|C)
denotes the initial state distribution for task C. On the other hand, we have P (St+1, Zt+1|St, Zt, Zt+1, At, C) =
P (Zt+1|St, Zt, Zt+1, At, C)P (St+1|St, Zt, Zt+1, At, C) = P(St+1|St, At, C), since the transition dynamic P is irrele-
vant to the local latent codes Z and only related the task context C.

Pϑ(X0:T , Z0:T |C) ∝ µ(S̃0|C)
T−1∏
t=0

P(S̃t+1|S̃t, Ãt, C) exp(Rϑ(S̃t, Ãt|C))

= P (S0, Z0|C)
T−1∏
t=0

P (St+1, Zt+1|St, Zt, Zt+1, At, C) exp(Rϑ(St, Zt, Zt+1, At|C))

= µ(S0|C)
T−1∏
t=0

P(St+1|St, At, C) exp(Rϑ(St, Zt, Zt+1, At|C))

(27)

C.2. Justification of the Objective Function Design in Equation 8

In this section, we prove that by optimizing the objective functions shown in Equation 8, we can get the solution of the MLE
problem shown as Equation 7, i.e., the task-conditioned hierarchical reward function and policy of the expert.

In Appendix A of (Fu et al., 2017), they show that the discriminator objective (the first equation in 8) is equivalent to
the MLE objective (Equation 7) where fϑ serves as Rϑ, when DKL(π(τ)||πE(τ)) is minimized. The same conclusion
can be acquired by simply replacing {St, At, τ} with {(St, Zt), (Zt+1, At), (X0:T , Z0:T )}, i.e., the extended definition
of the state, action and trajectory, in the original proof, which we don’t repeat here. Then, we only need to prove that
EC [DKL(πθ,ϕ(X0:T , Z0:T |C)||πE(X0:T , Z0:T |C))] can be minimized through the second equation in 8:

max
θ,ϕ

EC∼prior(·),(X0:T ,Z0:T )∼πθ,ϕ(·|C)

T−1∑
t=0

RtIL

= max
θ,ϕ

E
C,X0:T ,Z0:T

[
T−1∑
t=0

logDϑ(St, Zt, Zt+1, At|C)− log(1−Dϑ(St, Zt, Zt+1, At|C))

]

= max
θ,ϕ

E
C,X0:T ,Z0:T

[
T−1∑
t=0

fϑ(St, Zt, Zt+1, At|C)− log πθ,ϕ(Zt+1, At|St, Zt, C)

]

= max
θ,ϕ

E
C,X0:T ,Z0:T

[
T−1∑
t=0

fϑ(St, Zt, Zt+1, At|C)− log(πθ(Zt+1|St, Zt, C)πϕ(At|St, Zt+1, C))

]

= max
θ,ϕ

E
C,X0:T ,Z0:T

[
log

∏T−1
t=0 exp(fϑ(St, Zt, Zt+1, At|C))∏T−1

t=0 πθ(Zt+1|St, Zt, C)πϕ(At|St, Zt+1, C)

]

⇐⇒ max
θ,ϕ

E
C,X0:T ,Z0:T

[
log

∏T−1
t=0 exp(fϑ(St, Zt, Zt+1, At|C))/ZCϑ∏T−1

t=0 πθ(Zt+1|St, Zt, C)πϕ(At|St, Zt+1, C)

]

(28)

Note that ZCϑ =
∑
X0:T ,Z0:T

P̂ϑ(X0:T , Z0:T |C) (defined in Equation 7) is the normalized function parameterized with
ϑ, so the introduction of ZCϑ will not influence the optimization with respect to θ and ϕ and the equivalence at the last
step holds. Also, the second equality shows that the task-conditioned hierarchical policy is recovered by optimizing an
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entropy-regularized policy objective where fϑ serves as Rϑ. Further, we have:

max
θ,ϕ

E
C,X0:T ,Z0:T

[
log

∏T−1
t=0 exp(fϑ(St, Zt, Zt+1, At|C))/ZCϑ∏T−1

t=0 πθ(Zt+1|St, Zt, C)πϕ(At|St, Zt+1, C)

]

= max
θ,ϕ

E
C,X0:T ,Z0:T

[
log

µ(S0|C)
∏T−1
t=0 P(St+1|St, At, C)

∏T−1
t=0 exp(fϑ(St, Zt, Zt+1, At|C))/ZCϑ

µ(S0|C)
∏T−1
t=0 P(St+1|St, At, C)

∏T−1
t=0 πθ(Zt+1|St, Zt, C)πϕ(At|St, Zt+1, C)

]

= max
θ,ϕ

EC∼prior(·),(X0:T ,Z0:T )∼πθ,ϕ(·|C)

[
log

πE(X0:T , Z0:T |C)
πθ,ϕ(X0:T , Z0:T |C)

]
= max

θ,ϕ
EC∼prior(·) [−DKL(πθ,ϕ(X0:T , Z0:T |C)||πE(X0:T , Z0:T |C))]

⇐⇒ min
θ,ϕ

EC∼prior(·) [DKL(πθ,ϕ(X0:T , Z0:T |C)||πE(X0:T , Z0:T |C))]

(29)

where the second equality holds because of the definition of πE (Equation 7 with fϑ serving as Rϑ) and πθ,ϕ (Equation 34).

C.3. Justification of the EM-style Adaption

Given only a dataset of expert trajectories, i.e., DE ≜ {X0:T }, we can still maximize the likelihood estimation
EX0:T∼DE [logPϑ(X0:T )] through an EM-style adaption: (We use X0:T , C, Z0:T instead of XE

0:T , CE , Z
E
0:T for simplicity.)

EX0:T∼DE [logPϑ(X0:T )] = EX0:T∼DE

log
 ∑
C,Z0:T

Pϑ(X0:T , C, Z0:T )


= EX0:T∼DE

log
 ∑
C,Z0:T

Pϑ(X0:T , C, Z0:T )

Pϑ(C,Z0:T |X0:T )
Pϑ(C,Z0:T |X0:T )


= EX0:T∼DE

[
log

[
E(C,Z0:T )∼Pϑ(·|X0:T )

Pϑ(X0:T , C, Z0:T )

Pϑ(C,Z0:T |X0:T )

]]
≥ EX0:T∼DE

[
E(C,Z0:T )∼Pϑ(·|X0:T ) log

Pϑ(X0:T , C, Z0:T )

Pϑ(C,Z0:T |X0:T )

]
= EX0:T∼DE ,C∼Pψ(·|X0:T ),Z0:T∼Pω(·|X0:T ,C)

[
log

Pϑ(X0:T , C, Z0:T )

Pϑ(C,Z0:T |X0:T )

]
= EX0:T ,C,Z0:T

[logPϑ(X0:T , C, Z0:T )]− EX0:T ,C,Z0:T

[
logPϑ(C,Z0:T |X0:T )

]
= EX0:T ,C,Z0:T

[logPϑ(X0:T , Z0:T |C)]− EX0:T ,C,Z0:T

[
− log prior(C) + logPϑ(C,Z0:T |X0:T )

]

(30)

where we adopt the Jensen’s inequality (Jensen, 1906) in the 4-th step. Also, we note that Pψ,ω(C,Z0:T |X0:T ) provides a
posterior distribution of (C,Z0:T ), which corresponds to the generating process led by the hierarchical policy. As justified
in C.2, the hierarchical policy is trained with the reward function parameterized with ϑ. Thus, the hierarchical policy is a
function of ϑ, and the network Pψ,ω corresponding to the hierarchical policy provides a posterior distribution related to the
parameter set ϑ, i.e., (C,Z0:T ) ∼ Pϑ(·|X0:T ) ⇐⇒ C ∼ Pψ(·|X0:T ), Z0:T ∼ Pω(·|X0:T , C), due to which the 5-th step
holds. Note that ϑ, ψ, ω denote the parameters ϑ, ψ, ω before being updated in the M step.

In the second equality of Equation 30, we introduce the sampled global and local latent codes in the E step as discussed
in Section 4.2. Then, in the M step, we optimize the objectives shown in Equation 4 and 8 for iterations, by replacing the
samples in the first term of Equation 8 with (X0:T , C, Z0:T ) collected in the E step. This is equivalent to solve the MLE
problem: maxϑ EX0:T∼DE ,C∼Pψ(·|X0:T ),Z0:T∼Pω(·|X0:T ,C) [logPϑ(X0:T , Z0:T |C)], which is to maximize a lower bound of
the original objective, i.e., EX0:T∼DE [logPϑ(X0:T )], as shown in the last step of Equation 30. Thus, the original objective
can be optimized through this EM procedure. Note that the second term in the last step is a function of the old parameter ϑ
so that it can be overlooked when optimizing with respect to ϑ.
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C.4. State-only Adaption of H-AIRL

In AIRL (Fu et al., 2017), they propose a two-component design for the discriminator as follows:

fϑ,ζ(St, St+1) = gϑ(St) + γhζ(St+1)− hζ(St) (31)

where γ is the discount factor in MDP. Based on fϑ,ζ(St, St+1), they can further get Dϑ,ζ(St, St+1) which is used in
Equation 2 for AIRL training. As proved in (Fu et al., 2017), gϑ, hζ and fϑ,ζ can recover the true reward, value and advantage
function, respectively, under deterministic environments with a state-only ground truth reward. With this state-only design,
the recovered reward function is disentangled from the dynamics of the environment in which it was trained, so that it can
be directly transferred to environments with different transition dynamics, i.e., P , for the policy training. Moreover, the
additional shaping term hζ helps mitigate the effects of unwanted shaping on the reward approximator gϑ (Ng et al., 1999).
This design can also be adopted to H-AIRL (Equation 8) by redefining Equation 31 on the extended state space (first defined
in Section 4.2):

fϑ,ζ(S̃t, S̃t+1|C) = gϑ(S̃t|C) + γhζ(S̃t+1|C)− hζ(S̃t|C)
= gϑ(St, Zt|C) + γhζ(St+1, Zt+1|C)− hζ(St, Zt|C)

(32)

In this way, we can recover a hierarchical reward function conditioned on the task context C, i.e., gϑ(St, Zt|C), which avoids
unwanted shaping and is robust enough to be directly applied in a new task with different dynamic transition distribution
from prior(C). The proof can be done by simply replacing the state S in the original proof (Appendix C of (Fu et al.,
2017)) with its extended definition S̃, so we don’t repeat it here.

D. The Proposed Actor-Critic Algorithm for Training
D.1. Gradients of the Mutual Information Objective Term

The objective function related to the mutual information:

LMI =
∑
C

prior(C)
∑

X0:T ,Z0:T

P (X0:T , Z0:T |C) logPψ(C|X0:T ) (33)

After introducing the one-step Markov assumption to Equation 24, we can calculate P (X0:T , Z0:T |C) as Equation 34,
where πθ and πϕ represent the hierarchical policy in the one-step option framework.

P (X0:T , Z0:T |C) = µ(S0|C)
T∏
t=1

πθ(Zt|St−1, Zt−1, C)πϕ(At−1|St−1, Zt, C)P(St|St−1, At−1, C) (34)

First, the gradient with respect to ψ is straightforward as Equation 35, which can be optimized as a standard likelihood
maximization problem.

∇ψL
MI =

∑
C

prior(C)
∑

X0:T ,Z0:T

P (X0:T , Z0:T |C)∇ψ logPψ(C|X0:T ) (35)

Now we give out the derivation of ∇θL
MI :

∇θL
MI =

∑
C

prior(C)
∑

X0:T ,Z0:T

∇θPθ,ϕ(X0:T , Z0:T |C) logPψ(C|X0:T )

=
∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)∇θ logPθ,ϕ(X0:T , Z0:T |C) logPψ(C|X0:T )

= E
C,X0:T ,
Z0:T

[∇θ logPθ,ϕ(X0:T , Z0:T |C) logPψ(C|X0:T )]

= E
C,X0:T ,
Z0:T

[
T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C) logPψ(C|X0:T )

]
(36)

where the last equality holds because of Equation 34. With similar derivation as above, we have:

∇ϕL
MI = E

C,X0:T ,
Z0:T

[
T∑
t=1

∇ϕ log πϕ(At−1|St−1, Zt, C) logPψ(C|X0:T )

]
(37)
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D.2. Gradients of the Directed Information Objective Term

Next, we give out the derivation of the gradients related to the directed information objective term, i.e., LDI . We denote the
two terms in Equation 21 as LDI1 and LDI2 respectively. Then, we have ∇θ,ϕL

DI = ∇θ,ϕL
DI
1 +∇θ,ϕL

DI
2 . The derivations

are as follows:

∇θL
DI
1 =

T∑
t=1

∑
C

prior(C)
∑

X0:t,Z0:t

∇θPθ,ϕ(X0:t, Z0:t|C) logPω(Zt|X0:t, Z0:t−1, C)

=

T∑
t=1

∑
C

prior(C)
∑

X0:t,Z0:t

Pθ,ϕ(X0:t, Z0:t|C)
t∑
i=1

∇θ log πθ(Zi|Si−1, Zi−1, C) logP
t
ω

=

T∑
t=1

∑
C

prior(C)
∑

X0:t,Z0:t

∑
Xt+1:T ,
Zt+1:T

Pθ,ϕ(X0:T , Z0:T |C)
t∑
i=1

∇θ log πθ(Zi|Si−1, Zi−1, C) logP
t
ω

=

T∑
t=1

∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)
t∑
i=1

∇θ log πθ(Zi|Si−1, Zi−1, C) logP
t
ω

=
∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)
T∑
t=1

logP tω

t∑
i=1

∇θ log πθ(Zi|Si−1, Zi−1, C)

=
∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)
T∑
i=1

∇θ log πθ(Zi|Si−1, Zi−1, C)

T∑
t=i

logP tω

= E
C,X0:T ,
Z0:T

[
T∑
i=1

∇θ log πθ(Zi|Si−1, Zi−1, C)

T∑
t=i

logPω(Zt|X0:t, Z0:t−1, C)

]

= E
C,X0:T ,
Z0:T

[
T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C)

T∑
i=t

logPω(Zi|X0:i, Z0:i−1, C)

]

(38)

where P tω = Pω(Zt|X0:t, Z0:t−1, C) for simplicity. The second equality in Equation 38 holds following the same derivation
in Equation 36. Then, the gradient related to LDI2 is:

∇θL
DI
2 = ∇θ

T∑
t=1

H(Zt|X0:t−1, Z0:t−1, C)

= −∇θ[

T∑
t=1

∑
C

prior(C)
∑

X0:t−1,Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C) logP (Zt|X0:t−1, Z0:t−1, C)]

= −∇θ[

T∑
t=1

∑
C

prior(C)
∑

X0:t−1,Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C) log πθ(Zt|St−1, Zt−1, C)]

= −∇θ[
∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)
T∑
t=1

log πθ(Zt|St−1, Zt−1, C)]

= −[
∑
C

prior(C)
∑

X0:T ,Z0:T

∇θPθ,ϕ(X0:T , Z0:T |C)
T∑
t=1

log πθ(Zt|St−1, Zt−1, C)+

∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)
T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C)]

(39)
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= − E
C,X0:T ,
Z0:T

[
T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C)

[
T∑
i=1

log πθ(Zi|Si−1, Zi−1, C) + 1

]]

= − E
C,X0:T ,
Z0:T

[
T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C)

T∑
i=t

log πθ(Zi|Si−1, Zi−1, C)

] (40)

The third equality holds because we adopt the one-step Markov assumption, i.e., the conditional probability distribution of
a random variable depends only on its parent nodes in the probabilistic graphical model (shown as Figure 1). The fourth
equality holds out of similar derivation as steps 2-4 in Equation 38. The last equality can be obtained with Equation 46 in
the next section, where we prove that any term which is from

∑T
i=1 log πθ(Zi|Si−1, Zi−1, C) + 1 and not a function of Zt

will not influence the gradient calculation in Equation 39 and 40.

With similar derivations, we have:

∇ϕL
DI
1 = E

C,X0:T ,
Z0:T

[
T∑
t=1

∇ϕ log πϕ(At−1|St−1, Zt, C)

T∑
i=t

logPω(Zi|X0:i, Z0:i−1, C)

]
(41)

∇ϕL
DI
2 = − E

C,X0:T ,
Z0:T

[
T∑
t=1

∇ϕ log πϕ(At−1|St−1, Zt, C)

T∑
i=t

log πθ(Zi|Si−1, Zi−1, C)

]
(42)

As for the gradient with respect to ω, it can be computed with:

∇ωL
DI = ∇ωL

DI
1 =

T∑
t=1

∑
C

prior(C)
∑

X0:t,Z0:t

Pθ,ϕ(X0:t, Z0:t|C)∇ω logPω(Zt|X0:t, Z0:t−1, C) (43)

Still, for each timestep t, it’s a standard likelihood maximization problem and can be optimized through SGD.

D.3. Gradients of the Imitation Learning Objective Term

We consider the imitation learning objective term LIL, i.e., the trajectory return shown as:

LIL =
∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)
T−1∑
i=0

RIL(Si, Zi, Zi+1, Ai|C) (44)

Following the similar derivation with Equation 36, we can get:

∇θL
IL = E

C,X0:T ,
Z0:T

[
T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C)

T−1∑
i=0

RIL(Si, Zi, Zi+1, Ai|C)

]
(45)

Further, we note that for each t ∈ {1, · · · , T}, ∀i < t− 1, we have:

E
C,X0:T ,
Z0:T

[∇θ log πθ(Zt|St−1, Zt−1, C)RIL(Si, Zi, Zi+1, Ai|C)]

=
∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)∇θ log πθ(Zt|St−1, Zt−1, C)RIL(Si, Zi, Zi+1, Ai|C)

=
∑
C

prior(C)
∑

X0:t−1,
Z0:t

∑
Xt:T ,
Zt+1:T

Pθ,ϕ(X0:T , Z0:T |C)∇θ log πθ(Zt|St−1, Zt−1, C)R
i
IL

=
∑
C

prior(C)
∑

X0:t−1,
Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C)∇θ log πθ(Zt|St−1, Zt−1, C)R
i
IL

(46)
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=
∑
C

prior(C)
∑

X0:t−1,
Z0:t−1

Pθ,ϕ(X0:t−1, Z0:t−1|C)
∑
Zt

πθ(Zt|St−1, Zt−1, C)∇θ log πθ(Zt|St−1, Zt−1, C)R
i
IL

=
∑
C

prior(C)
∑

X0:t−1,
Z0:t−1

Pθ,ϕ(X0:t−1, Z0:t−1|C)RiIL
∑
Zt

πθ(Zt|St−1, Zt−1, C)∇θ log πθ(Zt|St−1, Zt−1, C)

=
∑
C

prior(C)
∑

X0:t−1,
Z0:t−1

Pθ,ϕ(X0:t−1, Z0:t−1|C)RiIL
∑
Zt

∇θπθ(Zt|St−1, Zt−1, C)

=
∑
C

prior(C)
∑

X0:t−1,
Z0:t−1

Pθ,ϕ(X0:t−1, Z0:t−1|C)RiIL∇θ

∑
Zt

πθ(Zt|St−1, Zt−1, C)

=
∑
C

prior(C)
∑

X0:t−1,
Z0:t−1

Pθ,ϕ(X0:t−1, Z0:t−1|C)RIL(Si, Zi, Zi+1, Ai|C)∇θ1 = 0

(47)

where RiIL = RIL(Si, Zi, Zi+1, Ai|C) for simplicity. We use the law of total probability in the third equality, which we
also use in the later derivations. The fifth equality holds because i < t− 1 and RIL(Si, Zi, Zi+1, Ai|C) is irrelevant to Zt.
Based on Equation 45 and 46, we have:

∇θL
IL = E

C,X0:T ,
Z0:T

[
T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C)

T−1∑
i=t−1

RIL(Si, Zi, Zi+1, Ai|C)

]
(48)

With similar derivations, we can obtain:

∇ϕL
IL = E

C,X0:T ,
Z0:T

[
T∑
t=1

∇ϕ log πϕ(At−1|St−1, Zt, C)

T−1∑
i=t−1

RIL(Si, Zi, Zi+1, Ai|C)

]
(49)

D.4. The Overall Unbiased Gradient Estimator

To sum up, the gradients with respect to θ and ϕ can be computed with ∇θ,ϕL = ∇θ,ϕ(α1L
MI + α2L

DI + α3L
IL), where

α1:3 > 0 are the weights for each objective term and fine-tuned as hyperparameters. Combining Equation (36, 38, 39, 48)
and Equation (37, 41, 42, 49), we have the actor-critic learning framework shown as Equation 11, except for the baseline
terms, bhigh and blow.

Further, we claim that Equation 11 provides unbiased estimation of the gradients with respect to θ and ϕ. We proof this by
showing that E

[∑T
t=1 ∇θ log π

t
θb
high(St−1, Zt−1|C)

]
= E

[∑T
t=1 ∇ϕ log π

t
ϕb
low(St−1, Zt|C)

]
= 0, as follows:

E
C,X0:T ,
Z0:T

[
T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C)b
high(St−1, Zt−1|C)

]

=
∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)
T∑
t=1

∇θ log πθ(Zt|St−1, Zt−1, C)b
high(St−1, Zt−1|C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)∇θ log πθ(Zt|St−1, Zt−1, C)b
high(St−1, Zt−1|C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:t−1,Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C)∇θ log πθ(Zt|St−1, Zt−1, C)b
high(St−1, Zt−1|C)
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X0:t−1,Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C)∇θ log πθ(Zt|St−1, Zt−1, C)b
high(St−1, Zt−1|C)

=
∑

X0:t−1,
Z0:t−1

Pθ,ϕ(X0:t−1, Z0:t−1|C)
∑
Zt

πθ(Zt|St−1, Zt−1, C)∇θ log πθ(Zt|St−1, Zt−1, C)b
high(St−1, Zt−1|C)

=
∑

X0:t−1,Z0:t−1

Pθ,ϕ(X0:t−1, Z0:t−1|C)bhigh(St−1, Zt−1|C)
∑
Zt

∇θπθ(Zt|St−1, Zt−1, C)

=
∑

X0:t−1,Z0:t−1

Pθ,ϕ(X0:t−1, Z0:t−1|C)bhigh(St−1, Zt−1|C)∇θ1 = 0

E
C,X0:T ,
Z0:T

[
T∑
t=1

∇ϕ log πϕ(At−1|St−1, Zt, C)b
low(St−1, Zt|C)

]

=
∑
C

prior(C)
∑

X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)
T∑
t=1

∇ϕ log πϕ(At−1|St−1, Zt, C)b
low(St−1, Zt|C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:T ,Z0:T

Pθ,ϕ(X0:T , Z0:T |C)∇ϕ log πϕ(At−1|St−1, Zt, C)b
low(St−1, Zt|C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:t,Z0:t

Pθ,ϕ(X0:t, Z0:t|C)∇ϕ log πϕ(At−1|St−1, Zt, C)b
low(St−1, Zt|C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:t−1,Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C)
∑
Xt

Pϕ(Xt|X0:t−1, Z0:t, C)·

∇ϕ log πϕ(At−1|St−1, Zt, C)b
low(St−1, Zt|C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:t−1,Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C)
∑
At−1

πϕ(At−1|St−1, Zt, C)·

∇ϕ log πϕ(At−1|St−1, Zt, C)b
low(St−1, Zt|C)

∑
St

P(St|St−1, At−1, C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:t−1,Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C)blow(St−1, Zt|C)
∑
At−1

πϕ(At−1|St−1, Zt, C)·

∇ϕ log πϕ(At−1|St−1, Zt, C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:t−1,Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C)blow(St−1, Zt|C)
∑
At−1

∇ϕπϕ(At−1|St−1, Zt, C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:t−1,Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C)blow(St−1, Zt|C)∇ϕ

∑
At−1

πϕ(At−1|St−1, Zt, C)

=
∑
C

prior(C)

T∑
t=1

∑
X0:t−1,
Z0:t

Pθ,ϕ(X0:t−1, Z0:t|C)blow(St−1, Zt|C)∇ϕ1 = 0
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Algorithm 1 Multi-task Hierarchical Adversarial Inverse Reinforcement Learning (MH-AIRL)
1: Input: Prior distribution of the task variable prior(C), expert demonstrations {XE

0:T } (If the task or option annotations,
i.e., {CE} or {ZE0:T }, are provided, the corresponding estimation in Step 6 is not required.)

2: Initialize the hierarchical policy πθ and πϕ, discriminator fϑ, posteriors for the task context Pψ and option choice Pω
3: for each training episode do
4: Generate M trajectories {(C,X0:T , Z0:T )} by sampling the task C ∼ prior(·) and then exploring it with πθ and πϕ
5: Update Pψ and Pω by minimizing LMI and LDI (Eq. 9) using SGD with {(C,X0:T , Z0:T )}
6: Estimate the expert global and local latent codes with Pψ and Pω , i.e., CE ∼ Pψ(·|XE

0:T ), Z
E
0:T ∼ Pω(·|XE

0:T , CE)
7: Update fϑ by minimizing the cross entropy loss in Eq. 8 based on {(C,X0:T , Z0:T )} and {(CE , XE

0:T , Z
E
0:T )}

8: Train πθ and πϕ by HPPO, i.e., Eq. 11, based on {(C,X0:T , Z0:T )} and fϑ which defines Dϑ and RIL
9: end for

D.5. Illustrations of Interactions among Networks in MH-AIRL

Figure 5. Interactions among the five networks in
our learning system.

There are in total five networks to learn in our system: the high-level
policy πθ, low-level policy πϕ, discriminator fϑ, variational posteriors
for the task context Pψ and option context Pω. Algorithm 1 shows in
details how to coordinate their training process. To be more intuitive,
we provide Figure 5 for illustrating the interactions among them. Pψ
and Pω are trained with the trajectories (i.e., {(C,X0:T , Z0:T )}) gener-
ated by the hierarchical policy πθ,ϕ, and can provide the reward signals
R0:T
MI and R0:T

DI for training πθ,ϕ, which are defined as α1 logPψ(C|X0:T )

and α2 log
Pω(Zi|Xi,Zi−1,C)
πθ(Zi|Si−1,Zi−1,C) (i ∈ {1, · · · , T}) in Equation 11, respec-

tively. On the other hand, the discriminator fϑ is trained to distinguish
the expert demonstrations {(CE , XE

0:T , Z
E
0:T )} and generated samples

{(C,X0:T , Z0:T )}, where CE and {ZE0:T } can be estimated from Pψ and
Pω if not provided. Then, the AIRL reward term R0:T

IL can be obtained
based on the output of fϑ. Last, the hierarchical policy πθ,ϕ can be trained
by maximizing the return defined with R0:T

MI , R0:T
DI , and R0:T

IL (i.e., Eq. 11).
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E. Appendix on Evaluation Results
E.1. Plots of the Ablation Study

(a) HalfCheetah-MultiVel (b) Walker-RandParam

(c) Ant-MultiGoal (d) Kitchen-MultiSeq

Figure 6. Comparison results of MH-AIRL with the ablated versions (MH-GAIL & H-AIRL) and SOTA Hierarchical Imitation Learning
(HIL) baselines (Option-GAIL & DI-GAIL) on the four evaluation tasks. Our algorithm outperforms the baselines in all the tasks,
especially in the more challenging ones (Ant & Kitchen). MH-GAIL performs better than the other baselines which do not contain the
multi-task learning component. H-AIRL, an ablation and HIL algorithm, has better performance than other SOTA HIL baselines on the
Mujoco tasks.

E.2. Implementation Details of MH-GAIL

MH-GAIL is a variant of our algorithm by replacing the AIRL component with GAIL. Similar with Section 4.2, we need
to provide an extension of GAIL with the one-step option model, in order to learn a hierarchical policy. The extension
method follows Option-GAIL (Jing et al., 2021) which is one of our baselines. MH-GAIL also uses an adversarial learning
framework that contains a discriminator Dϑ and a hierarchical policy πθ,ϕ, for which the objectives are as follows:

max
ϑ

EC∼prior(·),(S,A,Z,Z′)∼πE(·|C) [log(1−Dϑ(S,A,Z, Z
′|C))] +

EC∼prior(·),(S,A,Z,Z′)∼πθ,ϕ(·|C) [logDϑ(S,A,Z, Z
′|C)]

max
θ,ϕ

LIL = max
θ,ϕ

EC∼prior(·),(X0:T ,Z0:T )∼πθ,ϕ(·|C)

T−1∑
t=0

RtIL, R
t
IL = − logDϑ(St, At, Zt+1, Zt|C)

(50)

where (S,A,Z, Z ′) denotes (St, At, Zt+1, Zt), t = {0, · · · , T − 1}. It can be observed that the definition of RtIL
have changed. Moreover, the discriminator Dϑ in MH-GAIL is trained as a binary classifier to distinguish the expert
demonstrations (labeled as 0) and generated samples (labeled as 1), and does not have a specially-designed structure like the
discriminator Dϑ in MH-AIRL, which is defined with fϑ and πθ,ϕ, so that it cannot recover the expert reward function.

E.3. Analysis of the Learned Hierarchical Policy on HalfCheetah-MultiVel and Walker-RandParam

First, we randomly select 6 task contexts for HalfCheetah-MultiVel and visualize the recovered hierarchical policy as the
velocity change of each episode in Figure 7(a). It can be observed that the agent automatically discovers two options
(Option 1: blue, Option 2: orange) and adopts Option 1 for the acceleration phase (0 → v/2 or 0 → v) and Option 2 for the
deceleration phase (v/2 → 0). This shows that MH-AIRL can capture the compositional structure within the tasks very well
and transfer the learned basic skills to boost multi-task policy learning.
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(a) Results on HalfCheetah-MultiVel (b) Results on Walker-RandParam

Figure 7. (a) Velocity change of the HalfCheetah agent in the test tasks with different goal velocities, where the agent adopts Option 1
(blue) and 2 (orange) when increasing and decreasing the speed, respectively. (b) For Walker-RandParam, the basic skills must adapt to
the task setting, so the learning performance would drop without conditioning the low-level policy (i.e., option) on the task context.

Second, we note that, for some circumstances, the basic skills need to be conditioned on the task context. For the Mujoco-
MultiGoal/MultiVel tasks, the basic skills (e.g., Option 2: decreasing the velocity) can be directly transferred among the
tasks in the class and the agent only needs to adjust its high-level policy according to the task variable (e.g., adopting Option
2 when achieving v/2). However, for tasks like Walker-RandParam, the skills need to adapt to the tasks, since the mass of
the agent changes and so do the control dynamics. As shown in Figure 7(b), the learning performance would drop without
conditioning the low-level policy (i.e., option) on the task context, i.e., MH-AIRL-no-cnt.
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