
PLay: Parametrically Conditioned Layout Generation using Latent Diffusion

Chin-Yi Cheng 1 Forrest Huang 1 Gang Li 1 Yang Li 1

Abstract
Layout design is an important task in various de-
sign fields, including user interface, document,
and graphic design. As this task requires tedious
manual effort by designers, prior works have at-
tempted to automate this process using generative
models, but commonly fell short of providing intu-
itive user controls and achieving design objectives.
In this paper, we build a conditional latent diffu-
sion model, PLay, that generates parametrically
conditioned layouts in vector graphic space from
user-specified guidelines, which are commonly
used by designers for representing their design
intents in current practices. Our method outper-
forms prior works across three datasets on met-
rics including FID and FD-VG, and in user study.
Moreover, it brings a novel and interactive experi-
ence to professional layout design processes.

1. Introduction
Layouts are important artifacts that represent the design and
arrangements of their encapsulated elements. They are used
extensively in creative fields ranging from design to engi-
neering, supporting the authoring processes of numerous
downstream products, such as user interfaces (UIs), docu-
ments, posters, architectural floorplans, and even printed
circuit boards (PCBs). Designing a good layout requires
thorough consideration of different aspects, such as the func-
tion, aesthetics, and domain-specific conditions and rules.
Moreover, many of these aspects and objectives cannot be
easily and explicitly evaluated and computed. Therefore,
layout design has been a time-consuming, iterative, and
manual process.

Several recent works have tried to improve the layout design
process by automating it using generative models. However,
these models are typically unconditional, making them dif-

1Google Research, Mountain View, United States. Corre-
spondence to: Chin-Yi Cheng <cchinyi@google.com>, Yang
Li <liyang@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. Sample results. The red lines on the left of each example
represent the guideline conditions, and the generated layout is
on the right. The generated layouts are also placed under the
guidelines to visualize their alignments to the guidelines.

ficult for users to adopt in realistic applications. A large
number of unconditionally, randomly generated layouts are
not useful in practice since it requires users to manually
check each of them on whether the original objectives and
constraints have been met. More importantly, for users to
enjoy co-designing with generative models and trust the gen-
erated layouts, they need to be able to express their design
ideas and drive the generation process (Louie et al., 2020).
Therefore, a model conditioned on user inputs would help
their adoption in users’ workflows, and the type of supported
inputs should represent design intention and constraints.

The key towards achieving our goal of conditional genera-
tion that can be widely adopted is to choose an adequate type
of condition for generating design layouts. Different types
of conditions have been explored in image-based generative
models, such as text (Saharia et al., 2022b; Rombach et al.,
2022; Ramesh et al., 2022) and semantic segments (Park
et al., 2019), but these might not be ideal choices for layout
generation. Text conditions have shown to be powerful for
artistic purposes, but they cannot provide exact and detailed
control critical for design. On the other hand, conditioning
on semantic segments allows for precise control, but is te-
dious and time-consuming for users to manually author all
segments in the scene, which is equivalent to hand-drawing
the entire layout in our case of layout design.

In this work, we investigate layout design workflows in

1

PLay: Parametrically Conditioned Layout Generation

Figure 2. Layout and guidelines. A layout (b) of a UI design
(a) consists of vector graphic elements with types and geometric
properties. Guidelines (c) can represent the ideas and constraints.

several domains, including UI, document, and architectural
design, and identify a widely used representation: guide-
lines (e.g., the red lines in Figure 2c), as conditions. Guide-
lines, also referred to as guides, grids, or partitions, are
a set of lines that serves multiple purposes, for instance:
partitioning the design space for preferred proportions and
alignments; expressing design ideas such as the two-column
style (top-left example, Figure 1); and showing rules such as
paddings, margins, and gaps between elements. However, a
common pain point for designers is that changing guidelines
(which express design thoughts) would require manually
redrawing and adjusting the associated design to conform
to the new guidelines. Therefore, designers currently use
guidelines only as visual references or a way to document
their thoughts and yet cannot benefit from the rich design
information encapsulated by them.

Hence, using guidelines as the input conditions to our model
can not only provide a high-level yet precise control to users,
but can also overcome a practical challenge in layout design
workflows across different domains. We consider the guide-
line condition as a type of parametric conditions, borrowing
the definition from parametric design in the fields of com-
putational design and computer-aided design (Monedero,
2000). In parametric design, the design artifacts are defined
using algorithms or procedures with parameters as inputs,
and therefore users can easily make design changes by ma-
nipulating the parameters. Our work enables an intuitive
way to instantiate parametric models for layouts by drawing
guidelines, as opposed to manually setting the relationships
and heuristics in traditional parametric design tools.

We introduce PLay, Parametrically Conditioned Layout
Generation using Guidelines, a two-stage model follow-
ing the idea of latent diffusion models (LDMs) proposed
by (Rombach et al., 2022). Compared to (Rombach et al.,
2022), the main purpose of our first-stage model is to con-
vert the layout from the discrete vector graphic space to
the continuous latent space instead of compressing informa-
tion in original data samples. With this continuous latent
representation, the second-stage diffusion model can iter-

atively refine the results similar to image-based diffusion
models. PLay can generate layout designs conditioned on
guidelines across three different datasets with significantly
improved quality. We measure the quality by computing the
Fréchet distances using layouts rendered in both image and
vector graphic domains. We further evaluate the results by
conducting user study with professional designers.

Using guidelines as a way to express both high-level and
low-level ideas, PLay also enables several interactive and
controllable ways for users to create desired layouts: 1)
generating and editing layouts by dragging, adding, and
removing guidelines, similar to drawing a sketch, 2) gen-
erating variations from an existing layout with different
levels of similarity controlled by guidelines, and 3) layout
inpainting. Benefiting from our guideline sampling schema
during training, we further reduce the effort for users to
draw guidelines, as PLay only requires users to specify the
guidelines they think are important. Moreover, in practice,
guideline templates are often reused across projects and can
be extracted from existing designs, providing a wide range
of low-effort use cases for design generation and editing
using PLay. We envision PLay to improve layout design
workflows in various domains, enable different types of con-
ditions and interactions, and potentially solve more general
vector graphic problems.

In summary, the main contributions of this paper are:

• We develop a latent diffusion model in the vector
graphic domain for layout generation, achieving a bet-
ter performance than prior work in multiple metrics
with large margins.

• We introduce guidelines as input conditions for the
latent diffusion model, making the generation process
parametrically controllable and interactive.

• We provide a variety of new ways to generate and edit
layouts, including guideline editing, layout inpainting,
and generating variations from existing layouts.

• We propose FID and FD-VG as metrics and conduct
user study to evaluate the quality of generated layouts.

2. Related Work
2.1. Layout Generation

Several prior works have studied generative models for lay-
outs in the vector graphic domain. LayoutGAN (Li et al.,
2019) is among the earliest ones—it uses self-attention lay-
ers as the generator and argues that the discriminator in the
image domain can better evaluate the spatial quality, such as
alignments of the elements. LayoutVAE (Jyothi et al., 2019),
on the other hand, works purely in the vector graphic domain.
It aggregates the information across the elements using Long

2

PLay: Parametrically Conditioned Layout Generation

Short-Term Memory (LSTM) (Hochreiter & Schmidhuber,
1997) and trains variational autoencoders (VAEs) (Kingma
& Welling, 2013) for generation. LayoutMCL (Nguyen
et al., 2021) and LayoutTransformer (Gupta et al., 2021)
generate layout boxes auto-regressively. LayoutMCL uses
a CNN+RNN structure with multi-choice prediction and
winner-takes-all loss, whereas LayoutTransformer employs
a Transformer decoder to output each box attribute as an
individual token. A recent work, VTN (Arroyo et al., 2021),
maintains the VAE architecture in LayoutVAE but replaces
the encoder and decoder by Transformers (Vaswani et al.,
2017). The results from VTN shows that with Transformers,
the model can learn the proper layout arrangements without
mapping results to the image domain. Our latent diffusion
model in PLay can also be seen as a way to learn a better
latent prior than VTN.

Various types of conditions for conditional layout generation
have also been studied. For example, (Li et al., 2020) adds
element attributes such as area and aspect ratio as conditions,
and (Lee et al., 2020) uses graph neural networks to con-
strain inter-element relationships. BLT (Kong et al., 2022)
is a conditional model that allows users to control the prop-
erties of each element using a BERT-based approach with a
customized masking schema. However, it cannot be directly
applied to our scenario as the guidelines are not part of the
box attributes. In the image domain, House-GAN (Nauata
et al., 2020) and House-GAN++ (Nauata et al., 2021) also
explore graph conditions for layout generation. However,
the shared issues of these approaches are 1) users have to te-
diously assign the properties of relationships between each
of the elements, and 2) the allowed number of elements
and relationships for conditions are often too small for a
complex layout with more than 20 objects. As discussed
in 1, the guideline conditions in PLay can overcome these
issues, since one guideline can align multiple elements, and
multiple guidelines can define complex rules.

Guidelines can also be seen as space partitioning in 3D. For
example, (Xu et al., 2021) partitions the 3D space to search
for potential CAD modeling sequences, and (Chang et al.,
2021) uses the partitioned space as one of the input condi-
tions for 3D volume generation. Both works use partitions
directly as the design or search space, meaning that if the
given partitions are not good enough, the quality of the re-
sults will be affected. In contrast, PLay can flexibly attend
to various guidelines through cross-attention and generate
elements that do not follow some guidelines if needed.

In addition, some recent works incorporate other modalities
such as images into layout generation: CanvasVAE (Yam-
aguchi, 2021) uses the image information for the elements
in the layout generation process, CGL-GAN (Zhou et al.,
2022) and ICVT (Cao et al., 2022) generates layouts that fit
the given images, and LayoutDETR (Yu et al., 2022) lever-

ages DETR to encode both background and element images.
(Jiang et al., 2022) recently introduced hierarchical decoding
to VTN, where the first-stage decoder generates the regions
and the second-stage decoder generates the elements in a
region. The limitation of this two-stage decoder is that it
cannot generate layouts with structure depths larger than
two, which are common in realistic UI layouts. For example,
in CLAY, the max depth of a layout hierarchy is 10. Canvas-
VAE has a two-stage encoder-decoder architecture inspired
by DeepSVG (Carlier et al., 2020), with the first-stage for
the individual elements and the second-stage for the layout.
In PLay, the element stage is not needed since each element
in our datasets has a fixed-length representation composed
of its class and bounding box coordinates only. However,
it is worth experimenting with the element-level encoding
stage for PLay in the future to solve more complex tasks,
such as CAD layout generation, where each element can be
any shapes or curves.

2.2. Diffusion Models

Recent advances in Diffusion Models (DMs) (Sohl-
Dickstein et al., 2015) have shown promising results in
image generation (Song et al., 2020; Ho et al., 2020; Dhari-
wal & Nichol, 2021), where classifier guidance (Dhariwal
& Nichol, 2021) and classifier-free guidance (CFG) (Ho
& Salimans, 2022) methods not only improve the genera-
tion quality but also enable the possibility of developing
conditional diffusion models. Most recent works for text-
to-image generation use CFG, including GLIDE (Nichol
et al., 2021), DALL·E2 (Ramesh et al., 2022), Imagen (Sa-
haria et al., 2022b), and LDMs (Rombach et al., 2022). In
addition to text, LDMs explore other conditions such as
bounding boxes and semantic maps. We also adopt CFG for
the guideline conditions in PLay, as it does not require an
extra classifier and leads to the generation of better results.

Applying diffusion models outside of the image domain has
also drawn attention from researchers, such as 3D-model
(Lin et al., 2022), video (Ho et al., 2022), and music (Mit-
tal et al., 2021) generation. (Mittal et al., 2021) converts
discrete melody tokens into a continuous latent space, and
trains the diffusion model in the latent space. This work
inspires us to convert the discrete layout elements, com-
posed by concatenating different types of tokens including
their class and coordinates, to a continuous domain for the
diffusion process. A concurrent work, (Strudel et al., 2022),
applies the same idea for language generation. We also
follow LDMs (Rombach et al., 2022) to add a small KL-
penalty to ensure high layout reconstruction quality and
avoid arbitrarily large variance in the latent space.

Several recent works explore methods to further control the
diffusion process. For instance, Prompt-to-Prompt (Hertz
et al., 2022) fixes the cross-attention maps to preserve scene

3

PLay: Parametrically Conditioned Layout Generation

compositions for a new text prompt; SDEdit (Meng et al.,
2021) injects the stroke-based conditions by adding noise
to them and denoising them back to a real image. The level
of added noise becomes a parameter to control the balance
between image realism and faithfulness to the input drawing.
Compared to these works, PLay can provide more explicit
control to generate variations of previously generated layout,
by extracting and editing the guidelines (5.4.1).

3. Layout Design
3.1. Datasets

We experiment PLay with three publicly available datasets
for two different domains: UI and document layouts.

• CLAY (Li et al., 2022) contains about 50K UI layouts
with 24 classes.

• RICO-Semantic (Liu et al., 2018) contains about 43K
UI layouts with 13 classes previously used in VTN.

• PublayNet (Zhong et al., 2019) contains about 330K
document layouts with 5 classes.

The layouts in CLAY are more complex and representative
of real UI designs compared to RICO-Semantic. Although
both of them are extracted and processed from RICO (Deka
et al., 2017), CLAY tries to fix some annotation errors and
mismatches between the screenshots and view hierarchies
and introduces new label systems, whereas RICO-Semantic
adds semantic annotations for RICO. We suspect that ei-
ther RICO-Semantics filtered some complex patterns during
post-processing, or the chosen 13 classes from the 25 origi-
nal classes largely reduced the complexity.

To verify that PLay can be applied to other layout domains,
we also train it on PublayNet to generate document layouts.
Compared to CLAY, both RICO-Semantic and PublayNet
have fewer design variations, and their layouts are overall
simpler and have more repetitive patterns. For example,
the complexity of each dataset is reflected by its average
number of elements in each layout: RICO-Semantic=8.79;
PublayNet=7.90; CLAY=19.62. Therefore, while we evalu-
ate PLay over all the three datasets, we particularly conduct
in-depth evaluation and analysis of our model on CLAY
with qualitative and quantitative results. See the appendix
for more statistics and examples of the datasets.

3.2. Layout and Guidelines

The shared data format across the three datasets for a layout
is a sequence of elements: E = {e1, e2, ..., eN}, where
en = {cn, xnmin, ynmin, xnmax, ynmax} and 1 ≤ n ≤ N . The
class of an element, cn, is represented as a one-hot vector.
Following the prior works (Xu et al., 2022; Gupta et al.,

2021; Jayaraman et al., 2022), we also found that discrete
coordinate values work better empirically and set the di-
mension of each layout with width = 36 and height = 64.
The class and coordinates are then concatenated as a single
vector, and therefore E ∈ {0, 1}N×D. We fix the maximum
number of elements per layout: N = 128, and the layout
with fewer elements are padded to the same size, which
result in fixed N and D for all layouts. This format can
potentially be extended to represent general vector graphic
elements by allowing more shape parameters, instead of 4
coordinates, and additional properties such as fill and stroke
colors.

The guidelines of a layout is represented as: G =
{g1, g2, ..., gM}, where gm = {am, pm} and 1 ≤ m ≤M .
Each guideline is composed by its axis am, i.e., horizontal
versus vertical, and the coordinate position pm. We fix the
maximum number of guidelines for each layout: M = 128,
and thus the maximum number of guidelines in each axis is
M/2. The representation of layouts involving fewer guide-
lines is padded. To create the layout-guidelines pairs for
training, for each layout E in the datasets, we can intuitively
obtain the full guidelines Gfull by extending all the bound-
ing box edges of each element and removing the duplicated
values. For the model to learn how to synthesize valid details
beyond given all guidelines, we also have three different
sampling methods to create random subsets of Gfull during
training. More details will be discussed in 5.2.

3.3. Metrics

There are no universally established metrics to evaluate lay-
out generation. Prior works such as (Arroyo et al., 2021; Li
et al., 2019) compute several features in both real and gen-
erated layouts such as IoU, overlap, and alignment (Li et al.,
2020); (Patil et al., 2020) proposes DocSim, measuring the
feature-wise layout similarity; and (Yamaguchi, 2021) com-
putes the feature-wise distribution differences. Instead of
using feature-based methods, we follow the common prac-
tice of evaluating Generative Adversarial Networks (GANs),
including several prior layout generation works (Nauata
et al., 2020; 2021; Lee et al., 2020), to measure the Fréchet
Distance (FD) between two distributions from latent space.
To capture various aspects of layout generation, we compute
FD in two ways with sample size s = 1024:

• FID (Heusel et al., 2017): we render the layouts into
images with the same aspect ratio and add paddings
if the elements are not fully using the screen space.
We then feed the images into the pre-trained Incep-
tion (Szegedy et al., 2017) model to get the activation
vectors, and compute the FD between the real and gen-
erated groups of layouts

• FD-VG: we train a Transformer-based auto-encoder

4

PLay: Parametrically Conditioned Layout Generation

in the vector graphic domain, use its encoder to en-
code generated and real layouts, and compute the FD
between them.

G-Usage: We also evaluate if the generated results satisfy
the guideline conditions by computing the G (guideline)-
Usage. We first extract the guidelines G∗ from a generated
layout, then we calculate the intersection, Ginter, for G∗

and the given guidelines, G. Finally, we obtain the G-Usage
as |Ginter|/|G| and take the average across the generated
samples. Note that G-Usage does not equal to IoU, since it
is acceptable to have guidelines in G∗ that are not part of G.

User Study: We also conduct user study (5.3) with profes-
sional designers and the results are aligned with the FID and
FD-VG metrics.

4. Architecture
Following the image-based latent diffusion model (Rom-
bach et al., 2022), We formulate PLay as a two-stage model,
where the first-stage model learns to map layouts from a
vector graphic space to a latent space, and then the condi-
tional latent diffusion model learns to generate layouts in
latent space conditioned on guidelines given by the users.
Figure 3 illustrates the overview of our model.

4.1. First-Stage Model

To map the layout E ∈ RN×D to the latent representation
z ∈ RN×d, we use a Transformer similar to DETR (Carion
et al., 2020), with an encoder E(E) and a non-autoregressive
decoderD(z) modified from DeepSVG (Carlier et al., 2020).
We also added a small KL-penalty to regularize the latent
space while keeping the high reconstruction accuracy, which
is especially critical in the vector graphic space. The reason
is that unlike pixels, where some artifacts and noises are not
noticeable, we only have at most 128 elements in a layout,
so it will be obvious if any of them is decoded incorrectly,
such as having a misaligned box or an unreasonable class.
Following VTN, no positional embeddings are added to the
encoder and decoder, as the coordinates already explicitly
indicate the positions spatially.

In image-based latent diffusion models (LDMs), the goal of
the first-stage model is to map the input image to a lower
dimension while keeping the same perceptual details. How-
ever, the first-stage model in PLay serves a different purpose:
to learn a meaningful and continuous latent representation
of the discrete vector graphic space. We will see in 5.1, that
the LDM cannot converge with naive mapping using MLP
layers. In addition, we experiment with encoding the entire
layout as a single vector using a transformer, but it also fails
to achieve high reconstruction accuracy.

4.2. Latent Diffusion Model

When training the latent diffusion model, the encoded layout
z is first divided by the standard deviation std of the first
batch, as suggested by (Rombach et al., 2022), and then the
scaled z is used as z0 for the forward diffusion process to
get zt; t = 1...T . For the denoise network εθ(zt, τψ(G), t),
we use a Transformer encoder to replace the U-Net struc-
ture used in image-based DMs and predict the noise ε. The
discrete time step t is encoded using Feature-wise Linear
Modulation (Perez et al., 2018) and injected into the Trans-
former encoder with a feature-wise affine layer. We encode
the guidelinesG using another Transformer encoder τψ , and
the encoded guidelines, τψ(G) ∈ RM×d, are then fed to εθ
through cross-attention. The loss function can be formulated
similar to general LDMs:

L := EE(x),G,t,ε∼N (0,1)

[
‖ ε− εθ(zt, τψ(G), t) ‖2

]
(1)

We train the LDM as a standard DDPM (Ho et al., 2020)
with classifier-free guidance, where we randomly drop the
guideline conditions with the probability pdrop = 0.1.

4.3. Sampling

In sampling, we first either sample the number of elements
N from p(N), which is the element count distribution of the
dataset, or use n assigned by the user. Then we initialize zT
and denoise it to get z0 with the given guideline conditions
using DDPM and CFG, with w = 1.5:

ε̂θ(zt, τψ(G), t) = (1 + w)εθ(zt, τψ(G), t)

− wεθ(zt, τψ(φ), t)
(2)

We then rescale z0 with the std used in training, and decode
it back to the vector graphic domain using the first-stage
decoder: E = D(z).

5. Experiments
5.1. Baseline Comparison and Ablation Study

In this section, we show how PLay performs compared to
the baseline and study the effects of different first-stage
model choices and classifier-free guidance weights. We
choose VTN (Arroyo et al., 2021) as the baseline model for
comparison because it is the most common framework of
SoTA models for UI layout generation in the vector graphic
space and is easily reproducible. It shares the same architec-
ture with our first-stage model—a variational authoencoder
(VAE). We also modify VTN to condition on guidelines,
called C-VTN to ensure a fair comparison against PLay.
In Table 1, we first try to train a diffusion model without
the first-stage model. With simple MLP layers to encode

5

PLay: Parametrically Conditioned Layout Generation

Figure 3. Model architecture. After training the first-stage model, we can use it to encode layouts to the latent space for training the latent
diffusion model. During sampling, it can decode the generated latent representations back to layouts.

Figure 4. Qualitative results. We can observe that PLay generates reasonable results on complex examples with many elements, whereas
VTN often struggles in such cases.

Table 1. Quantitative Results and ablation studies.

Model F.S. CFG-W FID FD-VG G-Usage

VTN × × 19.10 0.352 n/a
C-VTN × × 16.22 0.361 0.819

PLay VAE 1.25 12.63 0.286 0.970
VAE 1.50 10.59 0.245 0.964
VAE 1.75 11.21 0.269 0.968

× 1.5 166.7 4.577 0.992∗

VAE × 14.80 0.375 n/a
VTN 1.50 14.35 0.311 0.835

VQVAE 1.50 11.49 0.254 0.937

∗PLay without the first-stage model generates mostly random,
unaligned boxes and therefore, has a high guideline usage.

the class and coordinates, the model fails to converge. We
then add VAE as the first-stage model, and discover the
results of latent diffusion training outperform the results
of the baseline. Adding the classifier-free guidance further
improves the results, with the optimal weight w = 1.5 and
latent dimension d = 8 for our experiments.

We also try to use VQVAE as the first-stage model, but it
falls short on G-Usage while having comparable numbers

Table 2. Comparisons across datasets.

Dataset Model FID FD-VG G-Usage

CLAY VTN 19.10 0.352 n/a
PLay 10.59 0.245 0.964

RICO- VTN 18.80 0.415 n/a
Semantic PLay 13.00 0.320 0.944

PublayNet VTN 19.80 0.787 n/a
PLay 13.71 0.408 0.971

in FID and FD-VG. The potential reason can be that the
learned, frozen codebook is less flexible to exactly match the
guideline conditions since guidelines are not involved in the
first-stage training. Additionally, we try to use the trained
VTN as the first-stage model, as it is also a VAE with KL
loss weight β = 1.0. We achieve worse but still reasonable
results, which can be explained by the low reconstruction
accuracy using high β values. The reconstruction accuracy
plays a crucial role for PLay, and it is not required to use
a very small β value, e.g., 1e−6 in (Rombach et al., 2022),
as long as the reconstruction accuracy is high enough. See
the appendix E for the complete table of first-stage model
choices.

6

PLay: Parametrically Conditioned Layout Generation

Table 3. FID scores in groups of number of elements.

Model All 1-6 7-11 12-18 19-29 30+

VTN 19.10 11.83 16.12 19.89 25.76 30.15
PLay 10.59 9.28 11.72 13.23 13.60 14.01

Table 4. Guideline sampling methods.

Method FID FD-VG G-Usage

All 12.11 0.206 0.917
Uniform 11.89 0.312 0.944
Weight-tiers 11.70 0.297 0.957
Weighted 10.59 0.245 0.964

PLay also outperforms prior work in all metrics across three
datasets: CLAY, RICO-Semantic, and PublayNet (Table 2).
Moreover, for this experiment, we use the same model ar-
chitecture and hyper-parameters for all datasets. The only
required change is the input dimension, which demonstrates
PLay’s ability to generalize to different layout domains.

We further divide the generated layouts into groups by the
number of elements in each layout. We discover that PLay
achieves much better FID scores (Table 3) and is qualita-
tively better (Figure 4) than VTN in groups with a large
number of elements. This shows that the advantage of PLay
over the baseline is more significant when a layout is com-
plex and involves a large number of elements.

5.2. Guideline Sampling Methods

Users usually prefer to specify only the guidelines that can
represent the main ideas instead of drawing guidelines for
every element, because at this stage they have not come up
with all the details for the design yet and want to see the
potential options. Therefore, we randomly sample a subset
of guidelines for every example during training. In this way,
the model can learn to follow the given guidelines as the
main guidance and create extra details that are not covered
by the given guidelines. For example, a UI designer might
start with a simple idea, such as creating a two-column
layout. In this case, only five guidelines, similar to the
top-left example in Figure 1, would need to be drawn. In
addition, we can easily extend our approach to enable local
or hierarchical guidelines, which gives designers more fine-
grained control of guidelines in some situations.

We investigate three guideline sampling methods during
training: uniform, weighted, and weight-tiers. Uniform
means we uniformly sample a subset of the guidelines. For
weighted sampling, we compute the weight for each guide-
line by summing the length of element edges that overlap
with it. A guideline is deemed more important thus has

Figure 5. User study results. The score between each combination
of the sample pools (GT-PLay, GT-VTN, and PLay-VTN) is cal-
culated by subtracting the number of times that a pool is ranked
worse than the other pool from the number of times that a pool is
ranked better than the other one, normalized by the total number
of comparisons between two pools. For example, if pool A was
ranked better than pool B 50 times and worse than pool B 30 times,
then the score for A would be 20/100 = 0.2.

a higher weight if total length of the overlapped edges is
longer. For weight-tiers, we further bin the guidelines with
different ranges of weight into groups and sample the groups
as a whole. We find that weighted sampling achieves the
best FID and G-Usage (Table 4). Including all guidelines
has the best FD-VG score while the G-Usage suffers since
it becomes a more difficult task to fit all guidelines. Im-
portantly, the model that is trained with all guidelines can
only strictly follow the given guidelines and is incapable
of creating elements beyond the guidelines when detailed
guidelines are not given by the user, which is often the case
in layout design.

5.3. User Study

We conduct a user study (Figure 5) to further evaluate the
quality of generated layouts and whether the FID and FD-
VG metrics align with human evaluation conducted by pro-
fessional designers. We follow the method used in (Nauata
et al., 2020) and (Chang et al., 2021) and invite 28 designers
with user interface design expertise. The range of the scores
is [−1, 1], where 1 means a model winning all comparisons,
−1 means losing all, and 0 means drawing all. Our result
shows that although designers still prefer the ground truth
samples over both VTN and PLay, the margin between the
ground truth and PLay is small, and PLay wins over VTN
by a large margin. In other words, professional designers
consider PLay generating more realistic layouts than prior
work and often favor PLay over the ground truth samples.

5.4. Conditional Generation and Guideline Editing

Designers commonly modify existing layouts and build
upon their earlier designs. Therefore, we develop four ways
for users to interact with the model using guidelines as input
conditions. The goal is to create a fast and controllable
workflow for users to iterate and refine generated layouts.

7

PLay: Parametrically Conditioned Layout Generation

5.4.1. GENERATING VARIATIONS FROM GIVEN DESIGN

As discussed in Section 1, guidelines can represent design
intentions, rules and element arrangement patterns. There-
fore, they can be seen as a high-level abstraction or skeleton
of an existing design, similar to sketches. Based on this ob-
servation, we develop a method for PLay to create variations
from an existing layout, by first extracting the guidelines
from the given layout and then using the extracted guide-
lines as conditions to generate more layouts. In Figure 6, all
the generated results share the same high-level idea with the
original one. By using different numbers of guidelines, we
can control the levels of similarity to the given design. This
variation to similarity trade-off is close to SDEdit (Meng
et al., 2021), but our method can give the user explicit and vi-
sual control over the level of similarity and where it needs to
be similar in the layouts. Note that the number of elements
is fixed in this experiment.

Figure 6. Generating variations from a given design using extracted
guidelines. The results in the top row use all the extracted guide-
lines and therefore are similar to the original one in detail. The
results in the bottom row have richer variety but are less similar
with the original since they are less constrained.

5.4.2. MOVING GUIDELINES

Besides generating variations, users also need to further edit
the generated results. One of the intuitive ways to edit the
design is to allow the user to adjust a guideline by dragging
it to a new position, expecting the elements around this
guideline to be adjusted automatically while holding the rest
parts of the layout intact. We achieve this by recording the
noise values in diffusion steps, and reuse them to generate a
new layout with the edited guidelines and the same number
of elements. In Figure 7a and 7b, we show the results of
changing guideline positions along the X and Y axes.

5.4.3. ADDING AND REMOVING GUIDELINES

Similar to moving guidelines, by fixing the number of el-
ements and reusing the noise values, we can enable users
keep adding or removing guidelines and inspect how they af-
fect the layout arrangements. This feature introduces a new
experience for layout design similar to (Zhu et al., 2016)

Figure 7. Layout editing. Row (a) and (b): drag guidelines along
the x and y axes. Row (c): change the number of elements while
keeping the same guidelines. Row (d): gradually draw new guide-
lines.

and (Park et al., 2019), where layouts are being generated
simultaneously after each of the guidelines is drawn (Fig-
ure 7d).

5.4.4. CHANGING THE NUMBER OF ELEMENTS

During sampling, the number of elements to have in a layout
can be either sampled from the distribution learned from the
dataset or assigned by the user, which becomes another way
to generate variations. Users can specify a different number
of elements to examine how the generated elements fit into
the given conditions (Figure 7c).

5.5. Layout Inpainting

We report preliminary results for layout inpainting. In Fig-
ure 8, PLay generates new elements in the cropped area, and
with the edited guidelines, the results have better element
alignments in the cropped area compared to the original de-
sign. We adopt the inpainting method used in image-based
diffusion models (Saharia et al., 2022a). In this experiment,
we simply match the number and sequence indices of the
newly painted elements with the masked elements, which
imposes a strong constraint and leads to results that are sim-
ilar to the original design. Further study is needed to create
a more flexible way to inpaint new elements, such as using
an auto-regressive decoder to decide where to insert them.

8

PLay: Parametrically Conditioned Layout Generation

Figure 8. Layout inpainting. In this example, the inpainting results
have better element alignments in the cropped area compared to
the original design because of the guideline conditions.

5.6. Failure Cases

We observe three common failure modes in samples gen-
erated by PLay. The first one is unused guidelines, and it
can often be found when the number of elements is much
lower than the number of guidelines, such as Figure 9a.
The second type is invalid functions. For example, at the
green dot in Figure 9b, it is unreasonable to have such a thin
button for users to tap on. The last mode is invalid arrange-
ments, which can be found when the number of elements
are too large to be reasonably fit in a layout. Several future
directions to improve these failure cases are: 1) training a
generator to sample the number of elements based on guide-
lines instead of naively sampling from the data distribution,
and 2) mitigating the imbalance of the number of elements
distribution in the datasets.

Figure 9. Failure cases. We can automatically compute if case
(a) happens in a generated layout, but case (b) and (c) are more
subjective and require designer’s evaluation.

6. Conclusion
We present PLay, a novel parametrically conditioned la-
tent diffusion model for layout generation, and introduce
guidelines, a widely used representation by designers, as
our conditions. We achieve state-of-the-art results across
three datasets on both qualitative and quantitative metrics,
including FID, FD-VG, G-Usage, and via user study with
designers. We also demonstrate different ways for users
to control and interact with the generation process using
guidelines, including guideline editing, inpainting, and gen-
erating variations from a given layout with user-controllable
similarities.

Acknowledgements
We thank the reviewers and area chair for providing con-
structive feedback. We also thank Ruiqi Gao for discussions
and reviewing drafts of the paper.

References
Arroyo, D. M., Postels, J., and Tombari, F. Variational trans-

former networks for layout generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 13642–13652, 2021.

Cao, Y., Ma, Y., Zhou, M., Liu, C., Xie, H., Ge, T., and
Jiang, Y. Geometry aligned variational transformer for
image-conditioned layout generation. In Proceedings of
the 30th ACM International Conference on Multimedia,
pp. 1561–1571, 2022.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In European conference on computer vision,
pp. 213–229. Springer, 2020.

Carlier, A., Danelljan, M., Alahi, A., and Timofte, R.
Deepsvg: A hierarchical generative network for vector
graphics animation. Advances in Neural Information
Processing Systems, 33:16351–16361, 2020.

Chang, K.-H., Cheng, C.-Y., Luo, J., Murata, S., Nour-
bakhsh, M., and Tsuji, Y. Building-gan: Graph-
conditioned architectural volumetric design generation.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 11956–11965, 2021.

Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan,
D., Li, Y., Nichols, J., and Kumar, R. Rico: A mobile
app dataset for building data-driven design applications.
In Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology, pp. 845–854,
2017.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in Neural Information
Processing Systems, 34:8780–8794, 2021.

Gupta, K., Lazarow, J., Achille, A., Davis, L. S., Mahade-
van, V., and Shrivastava, A. Layouttransformer: Layout
generation and completion with self-attention. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1004–1014, 2021.

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K.,
Pritch, Y., and Cohen-Or, D. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022.

9

PLay: Parametrically Conditioned Layout Generation

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J.,
et al. Imagen video: High definition video generation
with diffusion models. arXiv preprint arXiv:2210.02303,
2022.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Jayaraman, P. K., Lambourne, J. G., Desai, N., Willis, K. D.,
Sanghi, A., and Morris, N. J. Solidgen: An autoregres-
sive model for direct b-rep synthesis. arXiv preprint
arXiv:2203.13944, 2022.

Jiang, Z., Sun, S., Zhu, J., Lou, J.-G., and Zhang, D. Coarse-
to-fine generative modeling for graphic layouts. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 1096–1103, 2022.

Jyothi, A. A., Durand, T., He, J., Sigal, L., and Mori, G.
Layoutvae: Stochastic scene layout generation from a
label set. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9895–9904, 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kong, X., Jiang, L., Chang, H., Zhang, H., Hao, Y., Gong,
H., and Essa, I. Blt: bidirectional layout transformer
for controllable layout generation. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XVII, pp. 474–
490. Springer, 2022.

Lee, H.-Y., Jiang, L., Essa, I., Le, P. B., Gong, H., Yang, M.-
H., and Yang, W. Neural design network: Graphic layout
generation with constraints. In European Conference on
Computer Vision, pp. 491–506. Springer, 2020.

Li, G., Baechler, G., Tragut, M., and Li, Y. Learning to
denoise raw mobile ui layouts for improving datasets at
scale. In CHI Conference on Human Factors in Comput-
ing Systems, pp. 1–13, 2022.

Li, J., Yang, J., Hertzmann, A., Zhang, J., and Xu, T. Lay-
outgan: Generating graphic layouts with wireframe dis-
criminators. arXiv preprint arXiv:1901.06767, 2019.

Li, J., Yang, J., Zhang, J., Liu, C., Wang, C., and Xu, T.
Attribute-conditioned layout gan for automatic graphic
design. IEEE Transactions on Visualization and Com-
puter Graphics, 27(10):4039–4048, 2020.

Lin, C.-H., Gao, J., Tang, L., Takikawa, T., Zeng, X.,
Huang, X., Kreis, K., Fidler, S., Liu, M.-Y., and Lin,
T.-Y. Magic3d: High-resolution text-to-3d content cre-
ation. arXiv preprint arXiv:2211.10440, 2022.

Liu, T. F., Craft, M., Situ, J., Yumer, E., Mech, R., and
Kumar, R. Learning design semantics for mobile apps. In
Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology, pp. 569–579, 2018.

Louie, R., Coenen, A., Huang, C. Z., Terry, M., and Cai,
C. J. Novice-ai music co-creation via ai-steering tools for
deep generative models. In Proceedings of the 2020 CHI
conference on human factors in computing systems, pp.
1–13, 2020.

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y., and
Ermon, S. Sdedit: Guided image synthesis and editing
with stochastic differential equations. In International
Conference on Learning Representations, 2021.

Mittal, G., Engel, J., Hawthorne, C., and Simon, I. Symbolic
music generation with diffusion models. arXiv preprint
arXiv:2103.16091, 2021.

Monedero, J. Parametric design: a review and some ex-
periences. Automation in construction, 9(4):369–377,
2000.

Nauata, N., Chang, K.-H., Cheng, C.-Y., Mori, G., and Fu-
rukawa, Y. House-gan: Relational generative adversarial
networks for graph-constrained house layout generation.
In European Conference on Computer Vision, pp. 162–
177. Springer, 2020.

Nauata, N., Hosseini, S., Chang, K.-H., Chu, H., Cheng,
C.-Y., and Furukawa, Y. House-gan++: Generative ad-
versarial layout refinement network towards intelligent
computational agent for professional architects. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 13632–13641, 2021.

Nguyen, D. D., Nepal, S., and Kanhere, S. S. Diverse
multimedia layout generation with multi choice learning.
In Proceedings of the 29th ACM International Conference
on Multimedia, pp. 218–226, 2021.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide:
Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021.

10

PLay: Parametrically Conditioned Layout Generation

Park, T., Liu, M.-Y., Wang, T.-C., and Zhu, J.-Y. Gaugan:
semantic image synthesis with spatially adaptive normal-
ization. In ACM SIGGRAPH 2019 Real-Time Live!, pp.
1–1. 2019.

Patil, A. G., Ben-Eliezer, O., Perel, O., and Averbuch-Elor,
H. Read: Recursive autoencoders for document layout
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops,
pp. 544–545, 2020.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general con-
ditioning layer. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans,
T., Fleet, D., and Norouzi, M. Palette: Image-to-image
diffusion models. In ACM SIGGRAPH 2022 Conference
Proceedings, pp. 1–10, 2022a.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi, S. S.,
Lopes, R. G., et al. Photorealistic text-to-image diffusion
models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022b.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Strudel, R., Tallec, C., Altché, F., Du, Y., Ganin, Y., Men-
sch, A., Grathwohl, W., Savinov, N., Dieleman, S., Sifre,
L., et al. Self-conditioned embedding diffusion for text
generation. arXiv preprint arXiv:2211.04236, 2022.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In Thirty-first AAAI conference
on artificial intelligence, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Xu, X., Peng, W., Cheng, C.-Y., Willis, K. D., and Ritchie,
D. Inferring cad modeling sequences using zone graphs.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6062–6070, 2021.

Xu, X., Willis, K. D., Lambourne, J. G., Cheng, C.-Y., Ja-
yaraman, P. K., and Furukawa, Y. Skexgen: Autoregres-
sive generation of cad construction sequences with dis-
entangled codebooks. arXiv preprint arXiv:2207.04632,
2022.

Yamaguchi, K. Canvasvae: Learning to generate vector
graphic documents. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5481–
5489, 2021.

Yu, N., Chen, C.-C., Chen, Z., Meng, R., Wu, G., Josel, P.,
Niebles, J. C., Xiong, C., and Xu, R. Layoutdetr: De-
tection transformer is a good multimodal layout designer.
arXiv preprint arXiv:2212.09877, 2022.

Zhong, X., Tang, J., and Yepes, A. J. Publaynet: largest
dataset ever for document layout analysis. In 2019 Inter-
national Conference on Document Analysis and Recogni-
tion (ICDAR), pp. 1015–1022. IEEE, 2019.

Zhou, M., Xu, C., Ma, Y., Ge, T., Jiang, Y., and Xu, W.
Composition-aware graphic layout gan for visual-textual
presentation designs. arXiv preprint arXiv:2205.00303,
2022.

Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. A.
Generative visual manipulation on the natural image man-
ifold. In European conference on computer vision, pp.
597–613. Springer, 2016.

11

PLay: Parametrically Conditioned Layout Generation

Table 5. Comparing PLay, VTN, and the ground truth layouts on IoU, Overlap, Alignment, and DocSim. The models are trained on the
CLAY dataset.

Model IoU Overlap Alignment DocSim

G.T. 0.224 0.764 0.348 n/a
VTN 0.233 0.784 0.377 0.427
PLay 0.235 0.754 0.302 0.513

A. Datasets
We can observe the difference in complexity of the three datasets from the number of elements distributions (Figure 10) and
the visualization of examples (Figure 11, 12, and 13).

Figure 10. Number of elements distributions in CLAY, RICO-Semantic, and PublayNet.

Figure 11. Examples from CLAY. Note that black is empty in all examples.

B. Other Metrics
In Table 5, We also computed the metrics used in VTN, including IoU, Overlap, and Alignment. PLay performs better than
VTN on Overlap and Alignment, and its IoU is on par with VTN. However, compared to FID and FD-VG, these metrics do
not align with the significant difference in our user study results. Moreover, PLay even outperforms the ground truth on
Overlap and Alignment, which is not reflecting the fact that users still think the ground truth layouts are better than PLay.
These metrics are also not commonly used for evaluating other design and creativity related generative models. Therefore,
we choose not to use them as the main metrics.

12

PLay: Parametrically Conditioned Layout Generation

Figure 12. Examples from RICO-Semantic. Comparing the RICO-Semantic examples to the CLAY examples in Figure 11, the number of
elements in each layout is less; the average size of each element is larger; and the design patterns look simpler.

Figure 13. Examples from PublayNet.

C. Implementation Details
The detail of each component in Figure 3 can be found in Figure 14.

We implemented the proposed architecture in JAX and Flax. We use ADAM optimizer (b1 = 0.9, b2 = 0.98) with 500k
steps and a batch size of 128. The learning rate is 0.001 with linear warming up to 8k steps. The model is trained using 8
Google Cloud TPU v4 cores for 47 hours.

D. User Study Details
We recruit 28 user interface (UI) and user experience (UX) designers with experience in layout design for the user study
sessions. Each participant is presented with 48 randomly generated questions. In each question, there will be a pair of
layouts, and the user needs to pick the better one (Figure 15. Each layout pair is selected from two of these three groups:
ground truth, VTN, and PLay. We also ensure the 48 questions equally cover all possible combinations of these groups.

When answering a question, the group gets +1 score if the user pick the layout that belongs to this group, and gets -1 vice
versa. Both groups get 0 if the user thinks their layouts are equally good or bad. The final scores are normalized by the
number of questions.

13

PLay: Parametrically Conditioned Layout Generation

Table 6. List of first-stage models. β is the weight of KL loss, d is the dimension of the latent space for each element, and c is the
codebook size of VQVAE. In each row, FID-Recon and FD-VG-Recon are computed using the reconstruction samples generated by the
first-stage model. FID, FD-VG, and G-Usage are computed using PLay trained on this first-stage model.

First-stage β d c FID-Recon FD-VG-Recon FID FD-VG G-Usage

None n/a 8 n/a n/a n/a 167.9 4.683 0.991*

VAE 1.0 8 n/a 19.75 2.04e−1 14.35 0.311 0.835
1e−1 8 n/a 4.010 1.94e−2 11.73 0.279 0.955
1e−2 8 n/a 0.612 3.99e−3 11.63 0.262 0.968
1e−3 8 n/a 0.215 1.75e−3 10.59 0.245 0.964
1e−4 8 n/a 0.142 1.35e−3 11.49 0.252 0.964
5e−4 8 n/a 0.138 1.49e−3 11.57 0.236 0.965
1e−5 4 n/a 3.805 2.02e−2 12.76 0.281 0.946
1e−5 8 n/a 0.115 1.46e−3 11.05 0.253 0.965
1e−5 16 n/a 0.053 1.30e−3 11.58 0.257 0.953

VQVAE n/a 8 1024 10.70 6.52e−2 11.34 0.247 0.909
n/a 8 4096 8.68 5.22e−2 11.45 0.244 0.924
n/a 8 16384 6.68 3.70e−2 11.49 0.254 0.937

∗PLay without the first-stage model generates mostly random, unaligned boxes and therefore, has a high guideline usage.

We also give the following criteria and information to the participants:

• Please evaluate for both aesthetics and functionalities of the layouts. For example, the alignments, proportions, how
reasonable for the buttons to be put here, etc.

• Some of the layouts are intentionally not valid nor optimal (many of them are synthesized). Therefore, please do not try
too hard to justify every layout. Use your intuition and experience as a designer to pick the better one from each pair.

• Some of the examples that do not look like a full mobile UI screen might still be valid designs. They can represent UI
cases such as popped windows, opened drawers, or simply without background image.

• Note that the text elements are often not aligned due to their various lengths.

E. First-stage Models
In Table 6, we can see that β values do not have significant effect on the metrics as long as they are small enough (<= 0.1).
Latent dimension d = 8 seems to be the optimal choice in our experiments. VQVAEs achieve comparable numbers in FID
and FD-VG but fall short on G-Usage. Although increasing the codebook size improves G-Usage, it is less computationally
efficient to use c > 16384 compared to a simple VAE.

F. Layout Inpainting Details
We generate layout inpainting results following the steps below:

1. Given a layout with k elements, mask out n elements within an area with indices idxmask = [m1,m2, ...,mn].

2. Encode the layout in Step 1.

3. Apply forward diffusion process for the encoding from Step 2 to get its latent embeddings at each time step t.

4. Start the diffusion sampling process with k elements. At time step T , use the corresponding embedding generated in
Step 3, and swap the embeddings at idxmask with noise z. Then compute the embeddings at T − 1 using the backward
diffusion process.

5. At each time step t < T , swap the generated embeddings from time step t+ 1 with the corresponding embeddings
from Step 3 at all indices except from idxmask. Then compute the embeddings at t− 1 and repeat this step until t = 0.

14

PLay: Parametrically Conditioned Layout Generation

Table 7. Color legend for rendering the CLAY dataset and the generated results.

Class Index Color

IMAGE 0 #a6e3e9
PICTOGRAM 1 #bad7df
BUTTON 2 #71c9ce
TEXT 3 #cbf1f5
LABEL 4 #dbe2ef
TEXT INPUT 5 #f6f6f6
MAP 6 #e3fdfd
CHECK BOX 7 #ffe2e2
SWITCH 8 #ffd3b6
PAGER INDICATOR 9 #b4846c
SLIDER 10 #8785a3
RADIO BUTTON 11 #c06c84
SPINNER 12 #f38181
PROGRESS BAR 13 #dcd6f7
ADVERTISEMENT 14 #364f6b
DRAWER 15 #d3e0dc
NAVIGATIONBAR 16 #3f72af
TOOLBAR 17 #a6b1e1
LIST ITEM 18 #bbded6
CARD VIEW 19 #ffb6b9
CONTAINER 20 #fae3d9
DATE PICKER 21 #99ddcc
NUMBER STEPPER 22 #7d5a50

6. Decode the final embeddings back to a layout, extract its elements at idxmask, and swap the corresponding elements in
the original layout with the extracted ones.

G. Color Legend
The color legend for CLAY can be found in Table 7, and the color legend for RICO-Semantic and PublayNet can be found
in Tabel 8. The border (stroke) color is #393e46 with stroke width 1 for all boxes across the datasets and generated results.

H. More Results
In Figure 16, we decode the output from each denoising step in the sampling process and visualize the rendered results from
them. We also visualize the generated samples from PLay (Figure 17, 18, and 19) and from VTN (Figure 20).

15

PLay: Parametrically Conditioned Layout Generation

Table 8. Color legend for rendering the RICO-Semantic dataset, PublayNet dataset, and the generated results.

RICO-Semantic PublayNet

Class Index Class Index Color

TEXT 0 TEXT 0 #cbf1f5
LIST ITEM 1 TITLE 1 #bbded6
IMAGE 2 LIST 2 #a6e3e9
TEXT BUTTON 3 TABLE 3 #71c9ce
ICON 4 FIGURE 4 #fae3d9
TOOLBAR 5 #a6b1e1
TEXT INPUT 6 #f6f6f6
ADVERTISEMENT 7 #364f6b
CARD VIEW 8 #ffb6b9
WEB VIEW 9 #f38181
DRAWER 10 #d3e0dc
BACKGROUND IMAGE 11 #e3fdfd
RADIO BUTTON 12 #c06c84
MODAL 13 #dcd6f7
MULTI TAB 14 #ea5455
PAGER INDICATOR 15 #dbe2ef
SLIDER 16 #3f72af
SWITCH 17 #bad7df
MAP 18 #ffd3b6
BOTTO NAVIGATION 19 #b4846c
VIDEO 20 #8785a3
CHECK BOX 21 #99ddcc
BUTTON BAR 22 #7d5a50
NUMBER STEPPER 23 #ffd460
DATE PICKER 24 #f07b3f

16

PLay: Parametrically Conditioned Layout Generation

Figure 14. Model Components. We use the same Transformer Encoder (a) as the building block for all the components in PLay. The
decoder (c) is similar to (Carlier et al., 2020), using learned embeddings and adding z in each layer. Note that positional embedding is
needed in (e), since the encoded elements z does not have explicit positional information (e.g., coordinates). The Feature-wise Linear
Module is composed by MLP layers to map t to scale and shift for the Feature-wise Affine layer.

17

PLay: Parametrically Conditioned Layout Generation

Figure 15. An example question in the user study.

18

PLay: Parametrically Conditioned Layout Generation

Figure 16. Decoding the latent diffusion steps back to layouts. Interestingly, although the first 150 steps look noisy and random, the last
50 steps still demonstrate the nature of the denoising process, forming from low frequency features to high frequency features. This
coarse-to-fine generation process can be commonly found in imaged-based diffusion models, but it is the first time we observe the same
process in latent diffusion models for vector graphics.

19

PLay: Parametrically Conditioned Layout Generation

Figure 17. Samples generated by PLay trained on CLAY. In each cell, left: input guidelines (blue lines) on top of the generated layout.
Right: generated layout.

20

PLay: Parametrically Conditioned Layout Generation

Figure 18. (continued) Samples generated by PLay trained on CLAY.

21

PLay: Parametrically Conditioned Layout Generation

Figure 19. (continued) Samples generated by PLay trained on CLAY.

22

PLay: Parametrically Conditioned Layout Generation

Figure 20. Samples generated by VTN trained on CLAY.

23

