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Abstract
Contextual bandit algorithms appear in several ap-
plications, such as online advertisement and rec-
ommendation systems like personalized education
or personalized medicine. Individually-tailored
recommendations boost the performance of the
underlying application; nevertheless, providing
individual suggestions becomes costly and even
implausible as the number of users grows. As
such, to efficiently serve the demands of several
users in modern applications, it is imperative to
identify the underlying users’ clusters, i.e., the
groups of users for which a single recommenda-
tion might be (near-)optimal. We propose CLUB-
HG, a novel algorithm that integrates a game-
theoretic approach into clustering inference. Our
algorithm achieves Nash equilibrium at each in-
ference step and discovers the underlying clusters.
We also provide regret analysis within a standard
linear stochastic noise setting. Finally, experi-
ments on synthetic and real-world datasets show
the superior performance of our proposed algo-
rithm compared to the state-of-the-art algorithms.

1. Introduction
Multi-armed bandit (MAB) problems, which formalize the
exploration-exploitation trade-off (Slivkins et al., 2019),
have been under intensive investigations in the past decade
(Li et al., 2019). In its seminal setting, an agent acts at
each round and receives an instantaneous reward. The agent
aims to develop an action selection policy to maximize its
cumulative rewards over all rounds. The MAB framework
finds application in facing decision-making problems in
various areas such as clinical trials, dynamic pricing, com-
putational advertising, web-page content optimization, and
recommendation systems (Gentile et al., 2017; Bouneffouf
et al., 2020).
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To develop decision-making strategies for large-scale ap-
plications, it is conventional to assume a linear structure
between actions and rewards thanks to their simplicity and
effectiveness (Li et al., 2019; Liu et al., 2022). In the stochas-
tic linear bandit (Auer, 2002; Dani et al., 2008; Abbasi-
Yadkori et al., 2011), each arm (action) has a feature vector
known as “context”. The expected payoff associated with
each arm is an unknown linear function of the feature vector.
The agent must infer the unknown linear function based on
the context and payoff information and select accordingly.
The contextual linear bandit is a reference model for adap-
tive recommendation systems (Li et al., 2010; Caron et al.,
2012).

Standard contextual bandit algorithms usually focus on a
single user and make recommendations only based on the
individual’s historical data (Li et al., 2010; Abbasi-Yadkori
et al., 2011). However, such an approach suffers from sev-
eral shortcomings in serving many users with multiple rec-
ommendable items in modern applications (Mahadik et al.,
2020). On the one hand, the large number of users and items
increases the computational burden significantly. On the
other hand, the sparse and insufficient observations concern-
ing the single agent yield a weak estimation of its character-
istics and degrade the decision-making performance (Yang
et al., 2020). To address such shortcomings, it is imperative
to identify a few subgroups/communities within which the
users share similar characteristics and utilize their collective
effect for high-quality, speedy, and dynamic recommenda-
tions. In other words, discovering the clustering structure of
users can reduce the computational burden and improve the
quality of recommendations.

References (Gentile et al., 2014; Li et al., 2016) initially
investigated the clustering of bandits, where the algorithms
adaptively learn the clustering structure over users based
on the estimated user similarities. The proposed algorithms
use graph vertices to represent users and consider the users
connected by edges to belong to the same cluster; Nev-
ertheless, these algorithms have several limitations. First,
since they use connected components to represent clusters,
two clusters can become completely disjoint if all edges
between them are removed. Besides, splitting clusters is
irreversible, i.e., once users are (erroneously) separated into
different clusters, they cannot be aggregated again (Gen-
tile et al., 2017). Furthermore, most of the bandit-based
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recommendation algorithms sequentially perform decision-
making for a dynamically selected user, which is neither
parallel nor distributed (Gentile et al., 2014; 2017; Li et al.,
2016; McInerney et al., 2018; Li et al., 2019). That leads
to high synchronization costs for users in the same cluster
(Mahadik et al., 2020) and long delays in services.

To tackle the challenges above, we propose an algorithm for
parallel online clustering of bandits, which formulates the
clustering problem as a hedonic game. Game-theoretic con-
cepts have been widely used in network clustering recently
(Papadimitriou, 2001; Bu et al., 2017), and the hedonic game
has emerged as a qualified model for clustering (Aziz et al.,
2015; Feldman et al., 2015; Bilò et al., 2018; Aziz et al.,
2019). Thus, we adopt a hedonic game-theoretic approach
for clustering tasks and regard each user as an independent
player. A self-organized clustering is obtained by following
the decisions of each independent player (user). Our main
contributions are as follows.

• We propose a parallel online clustering of bandits via
a hedonic game (CLUB-HG) formulation, which com-
bines a multi-agent contextual bandit algorithm with a
novel hedonic game-theoretic clustering approach. To
our best knowledge, this paper is the first attempt to
adopt a game-theoretic approach to bandit clustering.

• We analyze the Nash equilibrium of the formulated
clustering game at each inference step and provide rig-
orous proofs about achieving the Nash equilibrium. Be-
sides, we prove that, under standard assumptions, for
a sufficiently long horizon T , the clustering algorithm
converges to the true underlying clustering structure,
and the regret bound of the CLUB-HG algorithm is
sublinear with T .

• We perform intensive experiments on both synthetic
and real-world datasets and demonstrate the superior
performance of our algorithm compared with state-of-
the-art methods.

1.1. Related Work

A large body of literature investigates the clustering of ban-
dits. Nguyen & Lauw (2014) propose a clustering-based
contextual bandit algorithm based on the K-Means cluster-
ing technique. In Gentile et al. (2014), the authors develop
the CLUB algorithm and demonstrate the effectiveness of
using graph structures to represent the clustering structures
of users. Li et al. (2016) and Gentile et al. (2017) extend this
work. In Li et al. (2016), the collaborative effects on users
and items are taken into account. Besides user clustering,
the proposed algorithm also considers the clustering of items
to address the case with many items. Gentile et al. (2017)
study the clustering of the bandit problem in a context-aware
manner. The proposed algorithm, CAB, adaptively matches
user preferences in the face of a constantly evolving item

universe, which differs from other literature by inducing
different clusters according to item vectors. In addition,
Li et al. (2019) generalize the setting in previous work by
considering the non-uniform frequency distribution of user
selections. Two operations for clustering, split, and merge,
are designed to identify the underlying clusters.

In real-world applications, many users await recommen-
dations simultaneously, which yields high synchronization
costs and excessive latency. Therefore, it becomes crucial
to develop clustering of bandit algorithms with efficient
computational ability in a parallel or distributed manner.
Korda et al. (2016) use a gossip-based protocol to create a
distributed variant of the CLUB algorithm of Gentile et al.
(2014) in peer-to-peer networks. DistUCB, a novel dis-
tributed algorithm proposed in Mahadik et al. (2020), elimi-
nates the need for large buffer transfers in Korda et al. (2016)
and produces better performance in identifying the cluster
structure. Moreover, Liu et al. (2022) study the online clus-
tering of bandits in a federated setting and proposes a bandit
learning algorithm FCLUB that protects the privacy and is
aware of communication requirements.

Most of the previous studies on the clustering of bandits
compare the difference between feature vectors with a pre-
defined threshold and performing split or merge functions.
Thus, the clustering performance highly relies on thresh-
old settings. To address this limitation, we adopt a game-
theoretic approach for clustering tasks. The hedonic game
is one of the most popular concepts in clustering, which is
introduced in the field of economics as a model of coalition
formation (Feldman et al., 2015). The clustering problem
can be a “clustering game” (Bulò & Pelillo, 2009; Feldman
et al., 2015), where the players correspond to the elements
to be clustered, and the notion of clustering is equivalent
to a classical game-theoretic equilibrium/stability concept
(Bulò & Pelillo, 2009; Aziz et al., 2015; Feldman et al.,
2015; Balliu et al., 2017). The players have preferences
over coalitions that might merge them, and the outcome
is the disjoint partitions of the agent set, referred to as a
clustering or coalition structure (Feldman et al., 2015; Bal-
liu et al., 2017). The clustering problem has been studied
by a series of works considering the problem setting on
fractional hedonic game (Aziz et al., 2015; 2019), the fixed
and correlation clustering (Feldman et al., 2015), the social
distance game variation (Balliu et al., 2017). Those works
study the existence of the Nash equilibrium, the upper and
lower bounds on the price of anarchy, and dynamics leading
to the Nash equilibrium. The closest work to the clustering
method in our framework is the correlation clustering game
in Feldman et al. (2015). There, a player’s utility depends
on its similarity to other players in its cluster and its dissim-
ilarity to players in other clusters, where the similarity is
captured by the distance metric. The authors prove that a
Nash equilibrium always exists as the convergence point of
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the best response dynamics (Feldman et al., 2015).

2. Notation and Preliminaries
We use boldface lowercase letters and boldface uppercase
letters to represent vectors and matrices respectively. For
example, ∥x∥p denotes the p−norm of a vector x. For
a symmetric positive semi-definite matrix A ∈ Rd×d,
the weighted 2−norm of vector x ∈ Rd is defined by
∥x∥A =

√
xTAx. The inner product is denoted by ⟨·, ·⟩

and the weighted inner-product ⟨x,y⟩A = xTAy. Table 1
in Appendix A summarizes the definitions and notations.

From the global perspective, there are n users (agents), de-
noted by the set V = {1, 2, . . . , n}. Each user i ∈ V has an
unknown feature vector θi ∈ Rd. For simplicity, we assume
∥θi∥ ≤ 1, ∀i ∈ V . Besides, the similarity of user charac-
teristics can be encoded as the closeness (distance) of θi,
and the set of users can be partitioned into a small number
of clusters V1, . . . , Vm with m ≪ n. Users belonging to
the same cluster behave similarly and therefore share the
same feature vector. The structure of the m clusters and the
common user characteristics in each cluster are unknown.

At each time step t = 1, . . . , T , each user learns and makes
the decision independently, in other words, agents act in
parallel. A set containing L actions Di,t (contexts / items)
arrives for each user i ∈ V to select, Di,t ⊂ D ⊂ Rd. Each
agent i selects an action xi,t and receives a payoff ai,t. We
define the payoff of action x for user i to be

ai,t(x) = θT
i x+ ϵi,t, (1)

where θi is a fixed but unknown feature vector of agent i
and ϵi,t is a conditionally zero-mean, sub-Gaussian noise
with variance parameter.1 σ2(x) ≤ σ2,∀x. Therefore, con-
ditioned on the past, the quantity θT

i x is indeed the expected
payoff observed by user i for context vector x. V (i) is the
cluster to which user i belongs. We have V (i) = V (j) if
and only if θi = θj . Below, we present two assumptions
(Gentile et al., 2014; Li et al., 2019).

Assumption 1 (Well-separatedness). For any two different
feature vectors θj ̸= θj′ , there is a gap γ between them
∥θj − θj′∥ ≥ γ > 0.

Assumption 2 (Action regularity). For each time step t,
context vectors (action set) Di,t = {x1

i,t, . . . ,x
L
i,t} are gen-

erated i.i.d. from a random vector X , ∥X∥ ≤ 1, such that
E[XXT ] is full rank with minimal eigenvalue λmin > 0.
We assume that the lower bound of λmin is known.

1A zero-mean random variable X is sub-Gaussian with vari-
ance parameter σ2 if E[exp(sX)] ≤ exp

(
s2σ2

2

)
for all s ∈ R.

Any variable X with E(X) = 0 and |X| ≤ b is sub-Gaussian with
variance parameter upper bounded by b.

The instantaneous regret of each user i is given by

Ri,t = θT
i x

∗
i,t − E(ai,t) = θT

i x
∗
i,t − θT

i xi,t, (2)

where x∗
i,t = argmaxx∈Di,t

θT
i x is the optimal action for

user i at t. The cumulative regret of the entire system is

R(T ) =

T∑
t=1

n∑
i=1

Ri,t. (3)

The goal is to minimize the total cumulative regret of the
whole system with high probability.

3. Online Clustering of Bandits via Hedonic
Game

In this section, we introduce our algorithm, Online Clus-
tering of Bandits via Hedonic Game (CLUB-HG) for the
online clustering of bandits. In contrast to the previous
works, we model the clustering problem as a hedonic game
in which each user is a player, and a clustering form is one
coalitional structure. Each player decides whether to leave
its current coalition and join a new one. This approach
results in self-organized clustering as the outcome of the
decisions of independent players. Algorithm 1 presents the
pseudocode.

CLUB-HG maintains a profile (M i,t, bi,t) for each user i,
where M i,t is the Gramian matrix and bi,t is the moment
vector of regressand by regressors (Li et al., 2019). ωi,t

denotes the estimation of θi at time step t. The user pro-
files are initialized at the beginning of the algorithm and
the clustering is initialized to be one single cluster contain-
ing all users (line 2), m1 = 1 and V̂1,1 = V . We denote
by V̂1,t, . . . , V̂mt,t the clusters obtained from the hedonic
clustering game (Algorithm 2) at time step t. The clusters
V̂1,t, . . . , V̂mt,t (current clusters) are indeed meant to esti-
mate the underlying true partition V1, . . . , Vm (underlying
true clusters). For each current cluster j, the algorithm main-
tains a profile (M j,t, b̄j,t, V̂j,t) as well, where V̂j,t contains
all user indexes of current cluster j and

M j,t−1 = I +
∑
i∈V̂j,t

(M i,t−1 − I)

b̄j,t−1 =
∑
i∈V̂j,t

bi,t−1,

contain the aggregate information of cluster j.

We assume that all users in a same cluster select the action
based on their shared knowledge on their current common
cluster. In this case, all users in the same current cluster
make the same decision, which is selected by one-time cal-
culation. Hence, the computational cost can be reduced
(compared to the case that each user makes a different deci-
sion based on their own calculations). More specifically, at
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Algorithm 1 CLUB-HG

1: Input: Exploration parameter: αj(t), hedonic cluster-
ing accuracy parameter βt.

2: Initialization
bi,0 = 0 ∈ Rd and M i,0 = I ∈ Rd×d, ∀i ∈ V ;
Clusters V̂1,1 = V , number of clusters m1 = 1;

3: for t = 1, 2, · · · , T do
4: for j = 1, 2, · · · ,mt do
5: Set

M j,t−1 = I +
∑
i∈V̂j,t

(M i,t−1 − I)

b̄j,t−1 =
∑
i∈V̂j,t

bi,t−1

ω̄j,t−1 = M−1
j,t−1b̄j,t−1

6: Select action x̄j,t = argmaxx∈Dj,t
(ω̄T

j,t−1x +
αj(t)∥x∥M−1

j,t−1

)

7: for i ∈ V̂j,t do
8: Take action xi,t = x̄j,t

9: Receive the payoff ai,t
10: Update weights:

M i,t = M i,t−1 + xi,tx
T
i,t,

bi,t = bi,t−1 + ai,txi,t,

ωi,t = M−1
i,t bi,t

11: end for
12: end for
13: Run Hedonic Clustering Game in Algorithm 2,

obtain the updated clustering V̂1,t, . . . , V̂mt,t

14: end for

each iteration, each user obtains its current cluster informa-
tion and selects an action accordingly. This only needs one
calculation per cluster. In the algorithm, it shows that each
current cluster V̂j,t, j = 1, . . . ,mt aggregates the users’ in-
formation, obtains the estimated feature vector ω̄j,t−1 (Line
5), and selects an action for all users in cluster j accordingly
from the action set Dj,t (Line 6). After receiving the pay-
off ai,t, each user updates its profile from (M i,t−1, bi,t−1)
to (M i,t, bi,t) and obtains the new estimation of feature
vector ωi,t. Subsequently, the clustering structure will be
also updated according to users’ new estimation. Here we
formulate a hedonic clustering game model to update the
clustering structure. Alternatively, a fully distributed version
of Algorithm 1 is presented in Appendix B.

3.1. Hedonic Clustering Game

Hedonic game provides a natural framework to study clus-
tering (Feldman et al., 2015). In the hedonic game, a set of
players express their preference over coalitions they want to
join and the outcome of the hedonic game is disjoint coali-
tions of the players. Considering the players and coalitions
as users and clusters, respectively, we formulate the cluster-
ing problem as a hedonic game. The formal presentation of
such a game is a tuple H =≺ V, {V̂ (i)}i∈V , {Ci}i∈V ≻,
where V = {1, . . . , n} denotes the set of players, V̂ (i) is
the player i’s coalition, i.e., it is the set of players that user
i is estimated to be in the same current cluster with, and
Ci ∈ R is the expected cost of player i. Typically, when
forming coalitions, the objective of each player i is to min-
imize its cost Ci. Here we use a similar cost function as
(Feldman et al., 2015),

Ci =
∑

k∈V̂ (i)

βtd(k, i) +
∑

k ̸∈V̂ (i)

(Ω− d(i, k)), (4)

where d(i, k) = ∥ωi − ωk∥ ∈ [0,Ω] measures the differ-
ence of estimated feature vectors ωi and ωk, and βt is a
parameter that controls the inter-cluster distance of clus-
tering structure. It is worth mentioning that different from
the setting in (Feldman et al., 2015), the exact distance be-
tween users is unknown in the formulated game H. Hence
we calculate d(i, k) based on the estimated feature vectors
obtained from the bandit learning process. Specifically,
d(i, k) ≈ 0 means that i and k are very similar, and vice
versa. Besides, we introduce the parameter βt to control the
precision of clustering. In general, users with similar esti-
mated feature vectors will probably join the same coalitions
(clusters). Algorithm 2 shows the pseudocode for hedonic
clustering game.

Algorithm 2 Hedonic Clustering Game

1: Input: Estimated feature vectors ωi,t, i ∈ V
2: repeat
3: Select a proposer i uniformly at random
4: Take the best response strategy

V̂ (i)=argminV̂ (i)[
∑

k∈V̂ (i) βtd(k,i)+
∑

k ̸∈V̂ (i)(Ω−d(i,k))],

where d(i, k) = ∥ωi,t − ωk,t∥.
5: until Nash equilibrium
6: return The converged clusters V̂1,t, . . . , V̂mt,t

4. Performance Guarantees
In this section, we theoretically analyze our proposed
CLUB-HG framework and provide performance guarantees.
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4.1. Hedonic Clustering Game

First, we analyze the performance guarantees in the for-
mulated hedonic clustering game, based on the results in
(Feldman et al., 2015). Detailed proofs are available in
Appendix C.
Theorem 1. There always exists a Nash equilibrium for
the formulated hedonic clustering game H. Moreover, the
best-response dynamics of this game always converge to a
Nash equilibrium.

Proof sketch. The hedonic clustering game is a fi-
nite potential game with potential function Φ(C) =∑

i∈V (
∑

j∈V̂ (i) βtd(j, i) +
∑

j ̸∈V̂ (i)(Ω − d(i, j))) given
a clustering configuration C. Consequently, best-response
dynamics converge to a Nash equilibrium.

Theorem 2. The problem of computing a Nash equilib-
rium of the formulated hedonic clustering game H is PLS-
Complete.

Proof sketch. The proof follows by a reduction from
the problem called POS-NAE-3SAT (Not-All-Equal 3-
Satisfiability). An instance of NAE-3SAT consists of clauses
with at most three literals NAE(w1, w2, w3), where each wi

is a literal or a constant (0 or 1). And in POS-NAE-3SAT,
the literals are not negative. Each clause is assigned with
a positive weight. Such a clause is satisfied if it does not
assign the same value to all the literals. The objective of
such problem is to find an assignment that is a local max-
imum, i.e., its weight cannot be increased by flipping the
value of a single literal. POS-NAE-3SAT is proved to be
a PLS-complete problem (Schäffer, 1991). For a detailed
proof please see Theorem 5.4 of Feldman et al. (2015).

Lemma 1 (Property of Nash equilibrium). Any two nodes
i and k share the same cluster at Nash equilibrium if and
only if

d(i, k) ≤ Ω

1 + βt
(5)

4.2. Regret Analysis

Our analysis relies on the high probability analysis in
(Abbasi-Yadkori et al., 2011).
Theorem 3. Let the CLUB-HG algorithm described in Al-
gorithm 1 runs with a set of agents V = {1, 2, . . . , n},
which can be partitioned into m clusters V1, . . . , Vm, where
∀j ∈ {1, . . . ,m}, users within cluster Vj host the same vec-
tor θj with ∥θj∥ ≤ 1. The parameter θi, ∀i ∈ V and the
underlying clustering information are unknown and need to
be inferred. Let Assumption 1 and 2 hold. Let αj(t) =

σ

√√√√√2 log

det

(
M j,t−1

)1/2

δ

 + 1 and βt =
√

t
log(t+1) .

Then with probability at least 1− δ, the cumulative regret
satisfies

R(T ) ≤ Õ(
n

λminγ2
+

√
dmnT (σ

√
d+ 1)), (6)

as T grows large (more precisely, for T >

max{ 128
3δλmin

log
(

128
3δλmin

)
+ 3, 512

γ2λmin

(
dλminγ

2

512 + 1 +

2 log
(
2
δ

)
+ σ2d log

(
512σ2

λminγ2

))
, 4Ω2 log(T+1)

γ2 }). Because of

Õ notation, the factors log(1/δ), log(d), and log(T ) do
not appear.

Proof sketch. We sketch below the proof of Theorem 3.
Complete proofs of Theorem 3 and associated Lemmas
are available in Appendix D.

Define modified confidence ellipsoids: First we need a
version of the confidence ellipsoid theorem given in (Abbasi-
Yadkori et al., 2011).

Lemma 2. Fix user i, it holds with probability 1− δ that

∥ωi,t−1 − θi∥Mi,t−1
≤ σ

√√√√2 log

(
det(M i,t−1)

1/2

δ

)
+ 1.

(7)

In the rest of the proof, we assume (7) holds.

Calculate the closeness of the estimated cluster and the
underlying cluster:
According to Lemma 1, if user i and k share the same esti-
mated cluster at time step t, then it holds ∥ωi,t − ωk,t∥ ≤

Ω
1+βt

. To guarantee that for any user i and k which share
the same underlying cluster can be classified into the same
current cluster under hedonic game, the following condition
must be satisfied

∥θi − θk∥ ≤ ∥θi − ωi,t∥+ ∥ωi,t − ωk,t∥+ ∥θk − ωk,t∥
≤ γ. (8)

The guarantee for the correctness of the estimated clustering
structure is formulated in following lemma.

Lemma 3. Fix any user i, when t >

max{ 128
3δλmin

log
(

128
3δλmin

)
+ 3, 512

γ2λmin

(
dλminγ

2

512 + 1 +

2 log
(
2
δ

)
+ σ2d log

(
512σ2

λminγ2

))
, 4Ω2 log(T+1)

γ2 }, it holds with
probability at least 1 − δ that the algorithm infers the
underlying clusters correctly.

Decompose the instantaneous regret:

Ri,t = θT
i x

∗
i,t − θT

i xi,t,

= θT
i x

∗
i,t − ω̄T

V̂t(i),t−1
x∗
i,t + ω̄T

V̂t(i),t−1
x∗
i,t

− ω̄T
V̂t(i),t−1

xi,t + ω̄T
V̂t(i),t−1

xi,t − θT
i xi,t. (9)
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Because xi,t = argmaxx∈Xt
(ω̄T

V̂t(i),t−1
x +

αV̂t(i)
∥x∥

M−1

V̂t(i),t−1

),

ω̄T
V̂t(i),t−1

xi,t+α∥xi,t∥M−1

V̂t(i),t−1

≥

ω̄T
V̂t(i),t−1

x∗
i,t + α

∥∥x∗
i,t

∥∥
M−1

V̂t(i),t−1

.

Therefore, the instantaneous regret satisfies

Ri,t ≤ αV̂t(i)
(t)
∥∥x∗

i,t

∥∥
M−1

V̂t(i),t−1

+ 2αV̂t(i)
(t)∥xi,t∥M−1

V̂t(i),t−1

.

Regret analysis after discovering true un-
derlying clusters: Based on Lemma 3, when
t > max{ 128

3δλmin
log
(

128
3δλmin

)
+ 3, 512

γ2λmin

(
dλminγ

2

512 +

1 + 2 log
(
2
δ

)
+ σ2d log

(
512σ2

λminγ2

))
, 4Ω2 log(T+1)

γ2 }, the
good event that all the users are partitioned into the
true underlying clusters is guaranteed. Therefore, select
τ = max{ 128

3δλmin
log
(

128
3δλmin

)
+ 3, 512

γ2λmin

(
dλminγ

2

512 +

1 + 2 log
(
2
δ

)
+ σ2d log

(
512σ2

λminγ2

))
, 4Ω2 log(T+1)

γ2 }, we can
calculate the regret per cluster since each user follows its
cluster decision

R(T ) = Anτ +

T∑
t=τ+1

m∑
j=1

|Vj |∑
i=1

Ri,t, (10)

where A is the bound of the instantaneous reward ai,t, i ∈
V . The cumulative regret consists of two parts: The first
part considers the worst case when the estimated clusters
are not consistent with the true underlying clusters while
the second part calculates the accumulated regret after the
true underlying clusters are discovered. Using Cauchy-
Schwarz inequality and Lemma 2, we can conclude that the
cumulative regret satisfies

R(T ) = Anτ +

T∑
t=τ+1

m∑
j=1

|Vj |∑
i=1

Ri,t

≤ Anτ + 3

T∑
t=τ+1

m∑
j=1

|Vj |∑
i=1

αV (i)(t)∥x∥M−1

V (i),t−1

≤ Anτ + 3
√
mnT

√
2d log

(
1 +

nT

d

)
×(

σ

√
d log

(
1 +

nT

d

)
+ 2 log

(
1

δ

)
+ 1

)
. (11)

4.3. Discussion

Analysis in Theorem 3 is carried out in the case when the
number of rounds T is large enough. However, if the number
of rounds is limited, then we show that the upper bound
of regret is still sublinear with respect to T in following
theorem.

Theorem 4. Let the CLUB-HG algorithm described in
Algorithm 1 run with a set of agents V = {1, 2, . . . , n},
which can be partitioned into m clusters V1, . . . , Vm,
where ∀j ∈ {1, . . . ,m}, users within cluster Vj

host the same vector θj with ∥θj∥ ≤ 1. As-
sume that Assumption 1 and 2 hold. Let αj(t) =

σ

√√√√√2 log

det

(
M j,t−1

)1/2

δ

 + 1 and βt =
√

t
log(t+1) .

When the sampling steps is not large enough such that
T ≤ max{ 128

3δλmin
log
(

128
3δλmin

)
+ 3, 512

γ2λmin

(
dλminγ

2

512 + 1+

2 log
(
2
δ

)
+ σ2d log

(
512σ2

λminγ2

))
, 4Ω2 log(T+1)

γ2 }, with proba-
bility at least 1− δ the cumulative regret satisfies

R(T ) ≤ Õ(n
√
dT (σ

√
d+ 1)). (12)

Remark 1. The cumulative regret bound in Theorem 3 re-
veals that the regret bound has two main terms: The first
depends on n and is inversely proportional to λminγ

2. It
accounts for the hardness of inferring the true underlying
clusters through hedonic game. The second term corre-
sponds to the regret bound obtained after discovering the
true clustering structure. Besides, it shows that the regret
is sublinear in T . Moreover, the second term evaluates
the theoretical regret bound of the LinUCB algorithm that
has the underlying clustering information as a priori. Thus,
Theorem 3 shows the performance difference between the
CLUB-HG and the LinUCB algorithms given the clustering
information.

Remark 2. Theorem 4 shows the regret bound when the
number of learning/decision steps is limited for the users
and the convergence to the true underlying clusters may
not be reached. In this scenario, n is the dominating factor
in the regret bound. The regret bound in Theorem 4 has
an extra

√
n/m factor compared to the regret bound in

Theorem 3 which highlights the advantage of finding the
true underlying clustering structure for m ≪ n.

5. Experiments
We evaluate the performance of our algorithm using syn-
thetic and real-world datasets. Besides, we compare the
results to some state-of-the-art bandit and clustering of ban-
dits algorithms.
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5.1. Datasets

Synthetic Dataset. We evaluate the performance of our
algorithm using synthetic and real-world datasets. Besides,
we compare the results to some state-of-the-art bandit and
clustering of bandits algorithms. Our produced synthetic
dataset has n = 20 users that belong to four latent clusters,
m = 4. The clusters contain an equal number of users.
Besides, we set L = 10, d = 5 and T = 1000. The
generation of user feature vectors θ and the context vectors
x follows the same procedure as the synthetic experiments
in (Li et al., 2019): We generate the values of first d −
1 dimensions using a standard Gaussian distribution, and
we use the value of the last dimension for normalization.
We generate the values of payoff (reward) by perturbing
the innerproduct θTx using an additive white noise term
ϵ, which follows a uniform distribution over the interval
[−σ, σ] and here we set σ = 0.1.

Netflix Dataset. Netflix Dataset 2 (Bennett et al., 2007)
contains more than 16 million ratings for 1350 movies by
143458 users. We extract 103 movies with the most ratings
and n = 200 users that give a rating most frequently from
the dataset. We compute feature vectors (dimension d =
10) for all users based on the obtained rating matrix using
singular-value decomposition (SVD), which is similar to
the method in (Li et al., 2019). Subsequently, we apply the
K-Means algorithm to divide n = 200 users into m = 10
clusters. At each time step, we sample L = 10 items from
the extracted 103 movies as the action (context) set. The
payoff setting is the same as in the synthetic dataset.

MovieLens Dataset. MovieLens dataset (Harper & Kon-
stan, 2015) describes 5-star rating and free-text tagging ac-
tivity from MovieLens, a movie recommendation service.3 It
contains 25 million ratings and 1093360 tag applications
across 62423 movies. There are 20 genres, and each movie
can have at most six genre tags. We use the information of
movie genres to generate action (context) sets. The dimen-
sion of the context vector is d = 20, each representing a
genre. If a movie is associated with a particular genre, the
respective dimensional feature is set as x(l) = 1√

S
, with S

as the total number of genres of the movie (Bilaj et al., 2023).
Similarly, we extract 103 movies with the most ratings and
n = 200 users who rate most times from the dataset. The
feature vector of each user is the normalized summation of
context vectors from his/her five “favorite” (with the highest
ranking) movies. Then we use K-Means to divide n = 200

2Netflix Movie Rating Dataset from Netflix’s ’Netflix Prize”
competition on https://www.kaggle.com/datasets/
rishitjavia/netflix-movie-rating-dataset?
resource=download

3MovieLens 25M Movie Ratings Dataset on https://
grouplens.org/datasets/movielens/

users into m = 10 clusters. We set L = 10, and we sample
the action set of each agent from the extracted 103 movies.
The payoff setting remains unchanged.

5.2. Algorithms

We compare our proposed CLUB-HG algorithm to a number
of state-of-the-art algorithms for linear bandit and clustering
of bandits. All regret plots are based on the average results
of 20 independent runs.

• CLUB (Gentile et al., 2014): The algorithm starts with
a complete graph and progressively erases edges based
on the evolution of estimated feature vectors.

• SCLUB (Li et al., 2019): The algorithm uses sets to
represent clusters and allows both split and merge op-
erations on sets during the learning process.

• LinUCB-IND (Abbasi-Yadkori et al., 2011): The algo-
rithm performs n LinUCB policies for each user i ∈ V
independently.

• GOB (Cesa-Bianchi et al., 2013): The algorithm re-
ceives a Laplacian matrix that encodes the true under-
lying graph G (clustering information).

• LinUCB-CLU (Abbasi-Yadkori et al., 2011): The al-
gorithm receives the true clustering structure a priori
as input and performs LinUCB for the clusters.

For consistency, we implement each algorithm in the
same distributed manner as our proposed algorithm
(The algorithm selects one same action for all users
in the same current cluster). Furthermore, the upper
confidence bound of linear bandit is set as αj(t) =

(σ

√
2 log

(
det(Mj,t−1)

1/2

δ

)
+ 1) for all algorithms. We

implement the GOB algorithm only in the experiment of the
synthetic dataset due to its high computational complexity.

5.3. Results

Figure 1 - 3 summarize the results. For all datasets and
algorithms, we illustrate the cumulative regret of the system
and the number of inferred clusters for performance evalua-
tion. In the plot of cumulative regret, error bars indicate the
standard deviations divided by

√
20.

Based on the experimental results, our analysis and conclu-
sions are as follows.

• Unsurprisingly, as the true underlying clustering struc-
ture is known for LinUCB-CLU a priori, LinUCB-CLU
outperforms all the other algorithms on all datasets
(synthetic dataset, Netflix dataset, and MovieLens
dataset).

• On all datasets, our proposed CLUB-HG algorithm
outperforms other algorithms for clustering of bandits
(CLUB, SCLUB): CLUB-HG has the lowest cumu-
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Figure 1. Results on synthetic dataset.
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Figure 2. Results on Netflix dataset.
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Figure 3. Results on MovieLens dataset.

lative regret and can identify the true clusters within
the minimum time steps. That demonstrates the ad-
vancement of the CLUB-HG algorithm in clustering
identification and action selection.

• In Figure 1, CLUB-HG algorithm has better perfor-
mance than GOB. However, GOB knows the clustering
structure apriori, which is unknown for our algorithm.
The assumption in GOB that the system is a connected
graph cannot be satisfied in the experiment since only
users in the same cluster are connected. Therefore
the whole system cannot be encoded as a connected
graph. That leads to the degeneration of GOB’s per-
formance and explains the reason that GOB has higher
regret. Moreover, our algorithm achieves the same or
even better performance without the prior clustering
information in this comparison.

• On all datasets, the number of clusters inferred by

CLUB-HG and SCLUB converges to the correct num-
ber m of the underlying clusters, whereas it is not the
case for the CLUB. In both Li et al. (2019) and our
work, the convergence to the true underlying cluster
is proved theoretically, whereas the CLUB algorithm
does not necessarily converge. Since the cutting opera-
tions in the CLUB algorithm are irreversible, users that
split out incorrectly in the early stages cannot join the
correct cluster again in subsequent steps. This draw-
back explains why the number of clusters inferred by
the CLUB algorithm is always more than others. Fur-
thermore, it enlarges the regret and computational cost
of the CLUB algorithm. In experiments on all real-
world datasets, the CLUB algorithm has the highest
regret among all algorithms for clustering of bandits.

• Different from the result in Figure 1, the regret of
LinUCB-IND is higher than all the algorithms in online
clustering of bandits (CLUB-HG, CLUB, and SCLUB)
in Figure 2 and Figure 3. The reason is that the algo-
rithms in clustering of bandits can utilize the shared
information from all users in the same cluster to en-
hance decision-making performance. However, if the
number of users, n, and the dimension of the feature
vector, d, are relatively low (similar to the experiment
on the synthetic dataset in Figure 1), that advantage re-
mains negligible. However, in Netflix and MovieLens
dataset, the feature vector dimension and the number of
users are relatively high and large. This increases the
difficulty in estimating user feature vectors in single-
agent linear bandit algorithms (LinUCB-IND). Online
clustering of bandits can compensate for this weakness
by identifying clusters of users and sharing information.
Therefore, they have lower computational costs and a
better estimation of user features, thus lower regrets.

• In Figure 3, our proposed algorithm can even obtain
comparable performance as LinUCB-CLU (the clus-
tering information is known). As mentioned before,
the advantage of sharing information and making a
decision based on the cluster feature vector is not re-
markable when n and d are relatively small, whereas,
in the MovieLens dataset, the feature vector is sparse
and has a much higher dimension. Due to the excellent
underlying clustering identification in our proposed
algorithm, CLUB-HG performs better even at the ex-
pense of some accuracy of user feature estimation and
thus has comparable regret as the LinUCB-CLU.

6. Conclusion and Future Work
In this work, we propose the CLUB-HG algorithm for the
online clustering of bandits using a game-theoretic approach.
The proposed CLUB-HG algorithm effectively incorporates
the hedonic game into the online clustering of bandits. We
prove the convergence to the Nash equilibrium at each clus-
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tering operation. Besides, we guarantee to achieve the
true clustering structure after a certain number of iterations.
Based on the superior performance of the game-theoretic
clustering approach, similar users can share information to
enhance the decision-making performance. Furthermore,
we establish the theoretical regret bound of our proposed
algorithm. The experiments on synthetic and real-world
datasets demonstrate that our CLUB-HG algorithm outper-
forms existing approaches. Future work may include con-
sidering a more realistic scenario where the feature vectors
of users are not the same but quite similar. Besides, one
can investigate the mutual influence among users instead of
assuming that similar users have the same preference.
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A. Table of Notations

Table 1. Notation
Problem-specific notations

n Number of users
m Number of underlying clusters
V User set
d Dimension of feature vectors
T Total number of rounds
θi Feature vector of user i
Di,t Set of context vectors of user i at time t
L Number of context vectors in set Di,t

xi,t The action of user i at time t
ai,t Payoff of user i at time t
ϵi,t Zero-mean sub-Gaussian noise
σ2 Variance proxy of noise ϵi,t
V (i) The underlying cluster that user i belongs to
Ri,t Instantaneous regret of user i
R(T ) Cumulative regret of the system
mt The number of current clusters at time t
M i,t The Gramian matrix of user i at time t
bi,t The moment vector of regressand by regressors of user i at time t
ωi,t The estimation of θi at time t

V̂j,t The j-th current cluster at time t
M j,t The Gramian matrix of current cluster j at time t
b̄j,t The moment vector of regressand by regressors of current cluster j at time t
Ci The cost function of user i in Hedonic clustering game

d(i, k) The difference of estimated feature vectors ωi and ωj , d(i, k) = ∥ωi − ωj∥

B. Distributed Online Clustering of Bandits via Hedonic Game
In this section, the distributed version of Algorithm 1 is presented in Algorithm 3. Particularly, the regret bound of
Algorithm 3 is the same as the parallel algorithm Algorithm 1 stated in Theorem 3 and Theorem 4.

C. Proof of Theorem 1 and Lemma 1
C.1. Proof of Theorem 1

Proof. For a clustering configuration C, consider the potential function Φ(C) with value

Φ(C) =
∑
i∈V

(
∑

j∈V̂ (i)

βtd(j, i) +
∑

j ̸∈V̂ (i)

(Ω− d(i, j))). (13)

A best-response move performed by element i changes the value of Φ only through edges adjacent to i. The overall
contribution of such edge is

2(
∑

j∈V̂ (i)

βtd(j, i) +
∑

j ̸∈V̂ (i)

(Ω− d(i, j))), (14)

which is two times the cost of i, hence it strictly decreases if agent i makes a best-response move. Hence, Φ decreases with
every move performed by a player decreasing its cost. Since the hedonic clustering game is a finite game, best-response
dynamics are guaranteed to converge to a Nash equilibrium.
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Algorithm 3 Distributed CLUB-HG

1: Input: Exploration parameter: αV̂t(i)
(t), ∀i ∈ V , hedonic clustering accuracy parameter βt.

2: Initialization
bi,0 = 0 ∈ Rd and M i,0 = I ∈ Rd×d, ∀i ∈ V ;
Clusters V̂1,1 = V , number of clusters m1 = 1, b̄1,0 = 0 ∈ Rd, M1,0 = I ∈ Rd×d, ω̄1,0 = M−1

1,0b̄1,0;
3: for t = 1, 2, · · · , T do
4: for i ∈ V do
5: Take action xi,t = argmaxx∈Di,t

(ω̄T
V̂t−1(i),t−1

x+ αV̂t−1(i)
(t)∥x∥

M−1

V̂t−1(i),t−1

)

6: Receive the payoff ai,t
7: Update weights:

M i,t = M i,t−1 + xi,tx
T
i,t,

bi,t = bi,t−1 + ai,txi,t,

ωi,t = M−1
i,t bi,t

8: end for
9: Run Hedonic Clustering Game in Algorithm 2, obtain the updated clustering V̂1,t, . . . , V̂mt,t

10: for j = 1, . . . ,mt do
11: Set

M j,t = I +
∑
i∈V̂j,t

(M i,t − I)

b̄j,t =
∑
i∈V̂j,t

bi,t

ω̄j,t = M−1
j,t b̄j,t

12: end for
13: end for

C.2. Proof of Lemma 1

Proof. At the Nash equilibrium, if user i and k share the same cluster, user k has no incentive to exclude user i from their
cluster, thus,∑
z∈V̂ (k),z ̸=i

βtd(z, k) + βtd(i, k) +
∑

z ̸∈V̂ (k)

(Ω− d(z, k)) ≤
∑

z∈V̂ (k),z ̸=i

βtd(z, k) + (Ω− d(i, k)) +
∑

z ̸∈V̂ (k)

(Ω− d(z, k)),

(15)

which is equivalent to d(i, k) ≤ Ω
1+βt

.

Similarly, if i and k share different clusters, then at Nash equilibrium, user k has no incentive to include user i into its cluster,
therefore we have,∑
z∈V̂ (k),z ̸=i

βtd(z, k) + (Ω− d(i, k)) +
∑

z ̸∈V̂ (k)

(Ω− d(z, k)) <
∑

z∈V̂ (k),z ̸=i

βtd(z, k) + βtd(i, k) +
∑

z ̸∈V̂ (k)

(Ω− d(z, k)),

(16)

thus, d(i, k) > Ω
1+βt

. The same conclusion can be obtained by assuming that if i and k share different clusters at Nash
equilibrium, then user k has no incentive to include the coalition containing i into its cluster. That completes the proof.

D. Proof of Theorem 3
First, we introduce some lemmas and theorems (Abbasi-Yadkori et al., 2011) that we require for the proof of Theorem 3.
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Theorem 5 (Self-Normalized Bound for Vector-Valued Martingales (Abbasi-Yadkori et al., 2011)). Let {Ft}∞t=0 be a
filtration. Let {ϵt}∞t=1 be a real-valued stochastic process such that ϵt is Ft-measurable and ϵt is conditionally σ-sub-
Gaussian for some σ > 0, i.e.

∀λ ∈ R E[eλϵt |Ft−1] ≤ exp

(
λ2σ2

2

)
. (17)

Let {xt}∞t=1 be an Rd-valued stochastic process such that xt is Ft−1-measurable. Assume that M0 is a d × d positive
definite matrix. For any t ≥ 0, define

M t = M0 +

t∑
s=1

xsx
T
s St =

t∑
s=1

ϵsxs. (18)

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

∥St∥2M−1
t

≤ 2σ2 log

(
det(M t)

1/2
det(M0))

−1/2

δ

)
. (19)

Lemma 4. (Abbasi-Yadkori et al., 2011) Let {xt}∞t=1 be a sequence in Rd, M0 a d× d positive definite matrix and define
M t = M0 +

∑t
s=1 xsx

T
s . Then, we have that

log

(
det(Mn)

det(M0)

)
≤

n∑
t=1

∥xt∥2M−1
t−1

. (20)

Further, if ∥x∥2 ≤ 1 for all t then

n∑
t=1

min{1, ∥xt∥2M−1
t−1

} ≤ 2(log det(Mn)− log det(M0)) ≤ 2(d log((Tr(M0) + n)/d)− log det(M0)), (21)

and finally, if λmin(M0) ≥ 1 then,

n∑
t=1

∥xt∥2M−1
t−1

≤ 2 log

(
det(Mn)

det(M0)

)
(22)

Lemma 5 (Determinant-Trace Inequality (Abbasi-Yadkori et al., 2011)). Suppose x1,x2, . . . ,xt ∈ Rd and for any
1 ≤ s ≤ t, ∥xs∥2 ≤ 1. Let M t = I +

∑t
s=1 xsx

T
s . Then,

det(M t) ≤ (1 + t/d)d (23)

D.1. Proof of Lemma 2

Proof. Let Xi = xi,1:t contain the action of agent i’s from the beginning to time step t and similarly ϵi =
(ϵi,1, ϵi,2, . . . , ϵi,t)

T , therefore Xi ∈ Rt×d and ϵi ∈ Rt. Using

ωi,t−1 = M−1
i,t−1bi,t−1

= (XT
i Xi + I)−1XT

i (Xiθi + ϵi)

= (XT
i Xi + I)−1XT

i ϵi + (XT
i Xi + I)−1(XT

i Xi + I)θi − (XT
i Xi + I)−1θi

= (XT
i Xi + I)−1XT

i ϵi + θi − (XT
i Xi + I)−1θi,

we get

|θT
i xi,t − ωT

i,t−1xi,t| = ⟨θi,xi,t⟩M−1
i,t−1

− ⟨XT
i ϵi,xi,t⟩M−1

i,t−1
.

13
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Using Cauthy-Schwarz inequality, we have

|θT
i xi,t − ωT

i,t−1xi,t| ≤ ∥xi,t∥M−1
i,t−1

(
∥∥∥XT

i ϵi

∥∥∥
M−1

i,t−1

+ ∥θi∥M−1
i,t−1

)

≤ ∥xi,t∥M−1
i,t−1

(
∥∥∥XT

i ϵi

∥∥∥
M−1

i,t−1

+ ∥θi∥2).

The second inequality is from ∥θi∥2M−1
i,t−1

≤ 1
λmin(Mi,t−1)

∥θi∥22 ≤ ∥θi∥22. According to Theorem 5 for any δ > 0, with
probability at least 1− δ,

∀t ≥ 0,
∥∥∥XT

i ϵi

∥∥∥
M−1

i,t−1

≤ σ

√
2 log

(
det(M i,t−1)1/2

δ

)
.

Therefore, for any δ > 0, with probability at least 1− δ,

∀t ≥ 0, ∀x ∈ Rd |θT
i x− ωT

i,t−1x| ≤ ∥x∥M−1
i,t−1

(σ

√
2 log

(
det(M i,t−1)1/2

δ

)
+ ∥θi∥2). (24)

Plugging in x = M i,t−1(ωi,t−1 − θi), and ∥θi∥ ≤ 1, we have (Abbasi-Yadkori et al., 2011)

∥ωi,t−1 − θi∥2Mi,t−1
≤ ∥M i,t−1(ωi,t−1 − θi)∥M−1

i,t−1
(σ

√
2 log

(
det(M i,t−1)1/2

δ

)
+ 1), (25)

using ∥M i,t−1(ωi,t−1 − θi)∥M−1
i,t−1

= ∥ωi,t−1 − θi∥Mi,t−1
, we have

∥ωi,t−1 − θi∥Mi,t−1
≤ σ

√
2 log

(
det(M i,t−1)1/2

δ

)
+ 1 (26)

D.2. Proof of Lemma 3

Before going to the details to prove Lemma 3, we first present one necessary Lemma as follows.

Lemma 6. Fix any user i, let A(δ) = 128
3δλmin

log
(

128
3δλmin

)
+ 3. It holds with probability at least 1− δ that

∥ωi,t − θi,t∥ ≤
σ
√
d log(1 + t/d) + 2 log

(
2
δ

)
+ 1√

tλmin/8
≤ γ

4
, (27)

when t ≥ max{A(δ), B(δ)}, where B(δ) = 512
γ2λmin

(
dλminγ

2

512 + 1 + 2 log
(
2
δ

)
+ σ2d log

(
512σ2

λminγ2

))
.

Proof. By (Gentile et al., 2014; Li et al., 2019; Korda et al., 2016), with probability at least 1− δ,

λmin(Si,t) ≥ λmint− 8 log

(
t+ 3

δ

)
− 2

√
t log

(
t+ 3

δ

)
, (28)

where Si,t =
∑

s≤t xi,sx
T
i,s. Using log(x) = log

(
x
M

)
+ log(M) and log(x) ≤ x − 1 when x > 0, by mathematical

calculation, we can obtain that when t ≥ 128
3δλmin

log
(

128
3δλmin

)
+ 3 = A(δ), it satisfies λmin(Si,t) ≥ tλmin

8 . Besides,
according to (Abbasi-Yadkori et al., 2011), we have

∥ωi,t − θi∥Mi,t−1
≤ σ

√
d log(1 + t/d) + 2 log

(
2

δ

)
+ 1. (29)

Similarly, with mathematical calculation, we can obtain when t ≥ 512
γ2λmin

(
dλminγ

2

512 + 1+ 2 log
(
2
δ

)
+ σ2d log

(
512σ2

λminγ2

))
=

B(δ). That completes the proof.

14
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Now we are ready to prove Lemma 3.

Proof. According to lemma 1, if user i and k belong to the same cluster, then we have ∥ωi,t − ωk,t∥ ≤ Ω
1+βt

. Based on
Lemma 6, when t > max{A(δ), B(δ)}, the following is satisfied

∥θi − ωi,t∥ ≤ γ

4
.

Therefore, we have

∥θi − θk∥ ≤ ∥θi − ωi,t∥+ ∥ωi,t − ωk,t∥+ ∥θk − ωk,t∥ ≤ γ

2
+

Ω

1 + βt
.

When t > max{A(δ), B(δ), 4Ω2 log(T+1)
γ2 },

Ω

1 + βt
=

Ω

1 +
√

t
log(t+1)

≤ Ω√
t

log(t+1)

≤ Ω√
4Ω2 log(T+1)
γ2 log(t+1)

≤
γ
√
log(t+ 1)

2
√

log(T + 1)
.

Because t ≤ T , Ω
1+βt

≤ γ
2 and ∥θi − θk∥ ≤ γ, which implies that if user i and k are estimated to belong to the same cluster

by CLUB-HG, they belongs to the same cluster in the true clustering structure.

Then, we need to prove that if i and k belong to the same true underlying cluster, then the hedonic game will cluster them

into the same current estimated cluster. Select suitable δ such that
2σ

√
d log(1+t/d)+2 log( 2

δ )+2√
tλmin/8

≤ Ω
βt+1 , then it is guaranteed

that for any two user i and k who belong to the same underlying cluster, their estimation satisfies

∥ωi − ωk∥ ≤ ∥θi − θk∥+ ∥θi − ωi∥+ ∥θk − ωk∥ ≤ Ω

βt + 1
, (30)

which implies that they will be clustered to the same current cluster at the Nash equilibrium under hedonic game
setting. Therefore, for any user i, it is guaranteed to be clustered into the correct underlying cluster when t >

max{ 128
3δλmin

log
(

128
3δλmin

)
+ 3, 512

γ2λmin

(
dλminγ

2

512 + 1 + 2 log
(
2
δ

)
+ σ2d log

(
512σ2

λminγ2

))
, 4Ω2 log(T+1)

γ2 }. That completes the
proof.

D.3. Proof of Theorem 3

For the instantaneous regret, we have

Ri,t = θT
i x

∗
i,t − θT

i xi,t,

= θT
i x

∗
i,t − ω̄T

V̂t(i),t−1
x∗
i,t + ω̄T

V̂t(i),t−1
x∗
i,t − ω̄T

V̂t(i),t−1
xi,t + ω̄T

V̂t(i),t−1
xi,t − θT

i xi,t. (31)

Because xi,t = argmaxx∈Xt
(ω̄T

V̂t(i),t−1
x+ αV̂t(i)

(t)∥x∥
M−1

V̂t(i),t−1

),

ω̄T
V̂t(i),t−1

xi,t + αV̂t(i)
(t)∥xi,t∥M−1

V̂t(i),t−1

≥ ω̄T
V̂t(i),t−1

x∗
i,t + αV̂t(i)

(t)
∥∥x∗

i,t

∥∥
M−1

V̂t(i),t−1

.

The instantaneous regret satisfies

Ri,t ≤ θT
i x

∗
i,t − ω̄T

V̂t(i),t−1
x∗
i,t + αV̂t(i)

(t)∥xi,t∥M−1

V̂t(i),t−1

+ ω̄T
V̂t(i),t−1

xi,t − θT
i xi,t

≤ αV̂t(i)
(t)
∥∥x∗

i,t

∥∥
M−1

V̂t(i),t−1

+ 2αV̂t(i)
(t)∥xi,t∥M−1

V̂t(i),t−1

. (32)

The second inequality is satisfied when the estimated clustering structure converge to the true underlying cluster-
ing structure. According to Lemma 3, after T > max{ 128

3δλmin
log
(

128
3δλmin

)
+ 3, 512

γ2λmin

(
dλminγ

2

512 + 1 + 2 log
(
2
δ

)
+

15
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σ2d log
(

512σ2

λminγ2

))
, 4Ω2 log(T+1)

γ2 } time steps, the estimated cluster converge to the true underlying cluster. And according
to Lemma 2, 4, we have

T∑
t=τ+1

m∑
j=1

|Vj |∑
i=1

αV (i)(t)∥x∥M−1

V (i),t−1

≤

√√√√mT

T∑
t=1

m∑
j=1

|Vj |∑
i=1

|Vj |αV (i)(t)∥x∥
2

M−1

V (i),t−1

≤

√√√√√mT

m∑
j=1

T∑
t=τ+1

|Vj |∑
i=1

|Vj |∥x∥2M−1

Vt(i),t−1

(
σ

√√√√2 log

(
det
(
MV (i),t−1

)1/2
δ

)
+ 1

)2

,

with τ = max{ 128
3δλmin

log
(

128
3δλmin

)
+3, 512

γ2λmin

(
dλminγ

2

512 +1+2 log
(
2
δ

)
+σ2d log

(
512σ2

λminγ2

))
, 4Ω2 log(T+1)

γ2 }. On the other

hand, because MV (i),t−1 contains the aggregated information of all the users in the cluster, which means it adds |Vj |,
∀i ∈ Vj samples at each time step. Therefore,

T∑
t=τ+1

m∑
j=1

|Vj |∑
i=1

αV (i)(t)∥x∥M−1

V (i),t−1

≤

√√√√√mT

m∑
j=1

T∑
t=τ+1

|Vj |∑
i=1

|Vj |∥x∥2M−1

Vt(i),t−1

(
σ

√√√√2 log

(
det
(
MV (i),t−1

)1/2
δ

)
+ 1

)2

=

√√√√√mT

m∑
j=1

|Vj |T∑
t=τ+1

|Vj |∑
i=1

∥x∥2
M−1

Vt(i),t−1

(
σ

√√√√2 log

(
det
(
MV (i),t−1

)1/2
δ

)
+ 1

)2

=

√√√√√mT

|V (i)|T∑
t=τ+1

n∑
i=1

∥x∥2
M−1

Vt(i),t−1

(
σ

√√√√2 log

(
det
(
MV (i),t−1

)1/2
δ

)
+ 1

)2

≤

√√√√√mT

|V (i)|T∑
t=1

n∑
i=1

∥x∥2
M−1

Vt(i),t−1

(
σ

√√√√2 log

(
det
(
MV (i),t−1

)1/2
δ

)
+ 1

)2

≤
√
mnT

√
2d log

(
1 +

nT

d

)(
σ

√
d log

(
1 +

nT

d

)
+ 2 log

(
1

δ

)
+ 1

)
.

The cumulative regret satisfies

R(T ) = Anτ +

T∑
t=τ+1

m∑
j=1

|Vj |∑
i=1

Ri,t

≤ Anτ + 3

T∑
t=τ+1

m∑
j=1

|Vj |∑
i=1

αV (i)(t)∥x∥M−1

V (i),t−1

≤ Anτ + 3
√
mnT

√
2d log

(
1 +

nT

d

)(
σ

√
d log

(
1 +

nT

d

)
+ 2 log

(
1

δ

)
+ 1

)
, (33)

where τ = max{ 128
3δλmin

log
(

128
3δλmin

)
+ 3, 512

γ2λmin

(
dλminγ

2

512 + 1 + 2 log
(
2
δ

)
+ σ2d log

(
512σ2

λminγ2

))
, 4Ω2 log(T+1)

γ2 } and A is
the bound of the instantaneous payoff ai,t.

E. Proof of Theorem 4
Proof. Before we demonstrate detailed proofs, we need to clarify that V (i) refers to the actual cluster that user i belongs
to based on its feature θi, while V̂ (i) refers to the current estimated cluster that user i belongs to based on its current
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estimated feature ωi,t. ω̄V (i),t =
1

|V (i)|
∑

k∈V (i) ωk,t refers to the average estimated feature vector for cluster V (i). For
the instantaneous regret, we have

Ri,t = θT
i x

∗
i,t − θT

i xi,t,

= θT
i x

∗
i,t − ω̄T

V (i),t−1x
∗
i,t + ω̄T

V (i),t−1x
∗
i,t − ω̄T

V̂t(i),t−1
x∗
i,t

+ ω̄T
V̂t(i),t−1

x∗
i,t − ω̄T

V (i),t−1xi,t + ω̄T
V (i),t−1xi,t − θT

i xi,t.

Because xi,t = argmaxx∈Xt
(ω̄T

V̂t(i),t−1
x+ αV̂t(i)

(t)∥x∥
M−1

V̂t(i),t−1

),

ω̄T
V̂t(i),t−1

xi,t + αV̂t(i)
(t)∥xi,t∥M−1

V̂t(i),t−1

≥ ω̄T
V̂t(i),t−1

x∗
i,t + αV̂t(i)

(t)
∥∥x∗

i,t

∥∥
M−1

V̂t(i),t−1

.

Let Ci,t(x) = |θT
i x − ωT

i,t−1x|, so we have Ci,t(x) ≤ ∥x∥M−1
i,t−1

(σ

√
2 log

(
det(Mi,t−1)

1/2

δ

)
+ 1) according to (24).

Similarly, let CV (i),t(x) = |θT
i x− ω̄T

V (i),t−1x|, we have

CV (i),t(x) = |θT
i x− ω̄T

V (i),t−1x|

= |θ̄T
V (i)x− 1

|V (i)|
∑

k∈V (i)

ωk,tx|

=
1

|V (i)|
∑

k∈V (i)

|θT
k x− ωk,tx|

=
1

|V (i)|
∑

k∈V (i)

Ck,t(x),

where θ̄V (i) =
1

|V (i)|
∑

k∈V (i) θk is the average of the feature vectors of users in the real cluster V (i) (users in V (i) share
the same feature vector according to the problem formulation), which can be regarded as the “feature vector” of cluster V (i).
The instantaneous regret satisfies

Ri,t ≤ θT
i x

∗
i,t − ω̄V (i),t−1x

∗
i,t + αV̂t(i)

(t)∥xi,t∥M−1

V̂t(i),t−1

− αV̂t(i)
(t)
∥∥x∗

i,t

∥∥
M−1

V̂t(i),t−1

+ ω̄V (i),t−1xi,t − θT
i xi,t + (ω̄V (i),t−1 − ω̄V̂t(i),t−1)

T (x∗
i,t − xi,t)

≤ CV (i),t(x
∗
i,t) + CV (i),t(xi,t) + αV̂t(i)

(t)∥xi,t∥M−1

V̂t(i),t−1

+ (ω̄V (i),t−1 − ω̄V̂t(i),t−1)
T (x∗

i,t − xi,t). (34)

According to Lemma 1, for agents i, j in the same cluster d(i, j) = ∥ωi,t−1 − ωj,t−1∥ ≤ Ω
1+βt

. Based on this lemma we
can also easily get ∥∥∥ωi,t−1 − ω̄V̂t(i),t−1

∥∥∥ ≤ Ω

1 + βt
. (35)

Thus, we have

(ω̄V (i),t−1 − ω̄V̂t(i),t−1)
T (x∗

i,t − xi,t) ≤(ω̄V (i),t−1 − θi,t−1)
T (x∗

i,t − xi,t) + (θi,t−1 − ω̄V̂t(i),t−1)
T (x∗

i,t − xi,t)

≤(ω̄V (i),t−1 − θi,t−1)
T (x∗

i,t − xi,t) + (θi,t−1 − ωi,t−1)
T (x∗

i,t − xi,t)

+ (ωi,t−1 − ω̄V̂t(i),t−1)
T (x∗

i,t − xi,t)

≤CV (i),t(x
∗) + CV (i),t(xi,t) + Ci,t(x

∗) + Ci,t(xi,t) +
2Ω

1 + βt
.

Lemma 7. For any i ∈ V and x ∈ Rd, Ci,t(x) satisfies

T∑
t=1

Ci,t(x) ≤

√√√√T

T∑
t=1

C2
i,t(x)

≤
√
T

(
σ

√
d log

(
1 +

T

d

)
+ 2 log

(
1

δ

)
+ 1

)
×

√
d log

(
1 +

T

d

)
, (36)
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Proof. For any i ∈ V and x ∈ Rd, Ci,t(x) satisfies

T∑
t=1

Ci,t(x) ≤

√√√√T

T∑
t=1

C2
i,t(x)

≤

√√√√√T

T∑
t=1

∥x∥2M−1
i,t−1

(
σ

√√√√2 log

(
det(M i,t−1)

1/2

δ

)
+ 1

)2

≤

(
σ

√√√√2 log

(
det(M i,T )

1/2

δ

)
+ 1

)√√√√T

T∑
t=1

∥x∥2M−1
i,t−1

≤

(
σ

√√√√2 log

(
det(M i,T )

1/2

δ

)
+ 1

)√
T log

(
det(M i,T )

det(M i,0)

)

≤
√
T

√
d log

(
1 +

T

d

)(
σ

√
d log

(
1 +

T

d

)
+ 2 log

(
1

δ

)
+ 1

)
,

where the first inequality holds by Cauthy-Schwarz and the last step is based on Lemma 4 and Lemma 5.

According to Lemma 7, Ci,t satisfies

T∑
t=1

Ci,t(x) ≤
√
T

√
d log

(
1 +

T

d

)(
σ

√
d log

(
1 +

T

d

)
+ 2 log

(
1

δ

)
+ 1

)
.

Following the same process as Lemma 7, we have

T∑
t=1

CV (i),t(x) ≤
√
T

√
d log

(
1 +

T

d

)(
σ

√
d log

(
1 +

T

d

)
+ 2 log

(
1

δ

)
+ 1

)
,

And

T∑
t=1

αV̂t(i)
(t)∥x∥

M−1

V̂t(i),t−1

≤

√√√√T

T∑
t=1

α2
V̂t(i)

(t)∥x∥2
M−1

V̂t(i),t−1

≤

√√√√√√√T

T∑
t=1

∥x∥2
M−1

V̂t(i),t−1

(
σ

√√√√√√2 log

det
(
M V̂t(i),t−1

)1/2
δ

+ 1

)2

≤
√
T

√
d log

(
1 +

nT

d

)(
σ

√
d log

(
1 +

nT

d

)
+ 2 log

(
1

δ

)
+ 1

)
,

Putting all together, we have

Ri(T ) =

T∑
t=1

(2CV (i),t(x
∗
i,t) + 2CV (i),t(xi,t) + Ci,t(x

∗) + Ci,t(xi,t) +
4

1 + βt
+ αV̂t(i)

(t)∥xi,t∥M̄−1

V̂t(i),t−1

)

≤ 6
√
T

√
d log

(
1 +

T

d

)(
σ

√
d log

(
1 +

T

d

)
+ 2 log

(
1

δ

)
+ 1

)
+

T∑
t=1

2Ω

1 + βt

+
√
T

√
d log

(
1 +

nT

d

)(
σ

√
d log

(
1 +

nT

d

)
+ 2 log

(
1

δ

)
+ 1

)
, (37)
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select βt =
√

t
log(t+1) , and because

∑T
t=s

1
tκ ≤ T 1−κ

1−κ , ∀κ ∈ [0, 1) (Yi et al., 2020), then

T∑
t=1

2Ω

1 + βt
≤

T∑
t=1

2Ω√
t

log(t+1)

≤ 2Ω
√

log(T + 1)

T∑
t=1

1√
t
≤ 4Ω

√
T log(T + 1).

The cumulative regret satisfies

R(T ) ≤ 6n
√
T

√
d log
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That completes the proof.

F. Discussion
We propose a simple tweak on CLUB-HG (Algorithm 1) to speed up the clustering operation using hedonic game. According
to Theorem 2, the Nash equilibrium can be computed in polynomial time. To empirically reduce the computational cost, we
can perform the hedonic game not at every time step, but only every ∆t time steps (i.e. t ∈ {..., t′, t′ +∆T, t′ + 2∆T, ...}).
We test this “lazy” version of CLUB-HG algorithm under different ∆t on synthetic dataset and the result is shown in
Figure 4.
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Figure 4. Results of changing ∆t (synthetic dataset).

In Figure 4, the regret increases with the growth of ∆t. However, even the regret of the CLUB-HG algorithm with ∆t = 20
is much lower than the regret of CLUB and SCLUB algorithm as shown in Figure 1. In general, this “lazy” version of
CLUB-HG does not produce much additional regret, as it still outperforms most of the state-of-the-art algorithms, but
significantly reduces the computation time. Furthermore, according to Figure 4a, if ∆t is large enough, the algorithm can
converge to the true clustering structure within one inference step. Therefore, choosing proper and small values, such as
∆t = 10, 20, can speed up CLUB-HG and keep its superiority in performance at the same time.
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