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Abstract

Graph neural networks (GNNs) are one of the
most popular research topics for deep learning.
GNN methods typically have been designed on
top of the graph signal processing theory. In par-
ticular, diffusion equations have been widely used
for designing the core processing layer of GNNs,
and therefore they are inevitably vulnerable to the
notorious oversmoothing problem. Recently, a
couple of papers paid attention to reaction equa-
tions in conjunctions with diffusion equations.
However, they all consider limited forms of reac-
tion equations. To this end, we present a reaction-
diffusion equation-based GNN method that con-
siders all popular types of reaction equations in
addition to one special reaction equation designed
by us. To our knowledge, our paper is one of the
most comprehensive studies on reaction-diffusion
equation-based GNNs. In our experiments with
9 datasets and 28 baselines, our method, called
GREAD, outperforms them in a majority of cases.
Further synthetic data experiments show that it
mitigates the oversmoothing problem and works
well for various homophily rates.

1. Introduction
Graphs are a useful data format that occurs frequently
in real-world applications, e.g., computer vision and
graphics (Monti et al., 2017), molecular chemistry infer-
ence (Gilmer et al., 2017), recommender systems (Ying
et al., 2018; Choi et al., 2023b), drug discovery (Gaudelet
et al., 2021), traffic forecasting (Choi et al., 2022), and
so forth. With the rise of graph-based data, graph neu-
ral networks (GNNs) are attracting much attention these
days. However, there have been fierce debates on the neu-
ral network architecture of GNNs (Kipf & Welling, 2017;
Veličković et al., 2018; Defferrard et al., 2016; Wu et al.,
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Table 1. A comparison table of existing methods. ‘△’ means that
it corresponds to a specific type of reaction only.

Model Diffusion Reaction Continuous-time

FA-GCN O △ X
GPR-GNN O △ X
ACM-GCN O △ X

CGNN O X O
GRAND O X O
BLEND O X O

GREAD O O O

(a) t = 0 (b) t = 5 (c) t = 25 (d) t = 50

(e) t = 0 (f) t = 5 (g) t = 25 (h) t = 50

Figure 1. An illustrative comparison between the diffusion equa-
tion in Eq. (11) (bottom) and our proposed blurring-sharpening
(reaction-diffusion) equation in Eq. (14) (top) on a grid graph with
one-dimensional node features. The diffusion equation causes the
problem of oversmoothing while the reaction-diffusion seeks a
balance between smoothing and sharpening.

2019; Chen et al., 2020; Chien et al., 2021; Zhu et al., 2020;
Yan et al., 2022; Lim et al., 2021; Li et al., 2022; Luan
et al., 2022; Rusch et al., 2022; Chamberlain et al., 2021b;a;
Bodnar et al., 2022).

For the past couple of years, many proposed methods have
been designed based on the diffusion concept. Many recent
GNN methods that rely on low-pass filters fall into this
category. Although they have shown non-trivial successes
in many tasks, it is still unclear whether it is an optimal
direction of designing GNNs.

In Table 1, we compare recent methods. Most of them
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Table 2. The average ranking/accuracy and the Olympic ranking
of some selected high-performing models on 9 real-world datasets.
‘∗’ (resp. ‘†’) indicates that an improvement over GloGNN (resp.
ACM-GCN) is statistically significant (p < 0.05) under the
Wilcoxon signed-rank test.

Method Average Olympic Ranking

Ranking Accuracy Gold Silver Bronze

GREAD-BS 1.56 76.64∗† 5 4 0
GREAD-FB* 6.72 74.51† 0 0 3

GREAD-F 7.50 74.13 1 1 1
GloGNN 8.17 74.99 0 0 1

GREAD-AC 8.50 73.71 1 0 0
ACM-GCN 8.67 74.92 0 1 0

GGCN 9.50 75.05 0 1 0
Sheaf 10.33 75.06 1 1 0

rely on diffusion processes, while some of them (i.e., FA-
GCN (Bo et al., 2021), GPR-GNN (Chien et al., 2021), and
ACM-GCN (Luan et al., 2022)) partially utilize reaction
processes. Those three methods, however, utilize limited
forms of the reaction processes. In this regard, there do
not exist any methods that fully consider diverse forms of
reaction processes — we consider 7 reaction processes.

To this end, we propose the concept of graph neural reaction-
diffusion network (GREAD), which is one of the most gen-
eralized architectures since we consider both the diffusion
and the reaction processes. Reaction-diffusion equations
are physical models that can be used when i) substances are
diffused over space and time, and ii) they can sometimes
react to each other. Whereas diffusion processes smooth
node features on a graph out, reaction-diffusion processes
lead to many local clusters that are also known as Turing
patterns (Turing, 1952) (see Fig. 1). Since it is natural that
nodes on a graph also constitute local clusters (in terms of
class labels), we conjecture that reaction-diffusion equations
are suitable for GNNs.

Our proposed model, GREAD, consists of three parts: an
encoder, a reaction-diffusion layer, and an output layer (cf.
Eqs. (6) to (8)). The reaction-diffusion layer has seven
different types in its core part as shown in Eq. (10): i) Fisher
(F), ii) Allen-Cahn (AC), iii) Zeldovich (Z), iv) Blurring-
sharpening (BS), v) Source (S), vi) Filter Bank (FB), and
vii) Filter Bank* (FB*). The first three reaction-diffusion
equations are widely used in many natural science domains,
e.g., biology, combustion, and so on, and the last three are
used by some recent GNN methods (Xhonneux et al., 2020;
Thorpe et al., 2022; Luan et al., 2022). In particular, the
blurring-sharpening (BS) equation is designed by us and
marks the best accuracy in many cases (cf. Table 2).

For our experiments, we consider 6 heterophilic and 3 ho-
mophilic datasets — heterophilic (resp. homophilic) means
that neighboring nodes tend to have different (resp. similar)

classes. We also compare our method with a comprehensive
set of 28 baselines, which covers early to recent GNNs. Our
contributions can be summarized as follows:

1. We design a reaction-diffusion layer that incorporates
seven types of reaction equations, including one type,
called BS, proposed by us.

2. We carefully integrate the seven reaction equation types
into our GNN method and customize its overall archi-
tecture for better accuracy. For instance, we use a soft
adjacency matrix generating method, which shows a
synergistic effect with the reaction-diffusion layer.

3. We consider a comprehensive set of 9 datasets and
28 baselines. Our method marks the best accuracy in
many cases. The ranking and accuracy averaged over
all the datasets are summarized in Table 2.

2. Preliminaries & Related Work
We first describe the meaning of the reaction-diffusion equa-
tion and various important GNN designs, followed by neural
ordinary differential equations.

2.1. Reaction-Diffusion Equations

Reaction–diffusion equations are typically used to model the
spatial and temporal change of the concentration of one or
more chemical substances, i.e., substances are transformed
into each other via local chemical reactions and spread out
over a surface in space via diffusion. They are also fre-
quently observed in other fields, such as biology, geology,
physics (neutron diffusion theory), and ecology. In the field
of graph machine learning, diffusion (resp. reaction) pro-
cesses are typically carried out by applying low-pass (resp.
high-pass) filters to graphs, which also corresponds to image
blurring (resp. sharpening).

2.2. Graph Neural Networks

Notation Let G = {V, E} be a graph with node set V and
edge set E . The nodes are associated with a feature matrix
X ∈ R|V|×F , where |V| denotes the number of nodes and F
denotes the number of input features. Araw ∈ {0, 1}|V|×|V|

is the adjacency matrix, where Araw
[i,j] means the (i, j)-th

element. The nodes are labelled by the index i ∈ V , and
one-hop neighborhood of each node is denoted as Ni. The
symmetric normalized Laplacian matrix, a commonly used
feature aggregation matrix in GNNs, is defined as L :=
I−D−1/2ArawD−1/2 = I−A, where the diagonal degree
matrix of Araw is D, and A := D−1/2ArawD−1/2 is
the symmetric normalized adjacency matrix — note that
A ∈ [0, 1]|V|×|V|.

Graph Representation Learning GNNs (Kipf &
Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017;
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Wu et al., 2019; Zhu & Koniusz, 2020) have many variants
and applications. We focus on a brief introduction to the
representation learning for nodes in supervised or semi-
supervised classification tasks. Most existing approaches
follow the message-passing framework constructed by stack-
ing layers that propagate and aggregate node features.

The neighbor aggregation used in many existing GNNs im-
plicitly exploits homogeneity and often fails to generalize
to non-homogeneous graphs. Many existing GNNs operate
as low-pass graph filters (Balcilar et al., 2021) that smooth
features over the graph topology, which produces similar
representations and as a result, similar predictions for neigh-
boring nodes (Tiezzi et al., 2021; Oono & Suzuki, 2020;
Li et al., 2018). Various GNNs were proposed to improve
performance in low-homophily settings (Pei et al., 2020;
Abu-El-Haija et al., 2019; Zhu et al., 2020; Chien et al.,
2021; He et al., 2021; Lim et al., 2021; Luan et al., 2022;
Bodnar et al., 2022; Di Giovanni et al., 2022; Li et al., 2022)
and alleviate the oversmoothing problem. (Xu et al., 2018;
Chen et al., 2020; Zhao & Akoglu, 2020; Rusch et al., 2022).

Diffusion on Graphs and Continuous GNNs The diffu-
sion on graphs has recently been actively used in various
applications (Freidlin & Wentzell, 1993; Freidlin & Sheu,
2000), including data clustering (Belkin & Niyogi, 2003;
Coifman et al., 2005), image processing (Desquesnes et al.,
2013; Elmoataz et al., 2008; Gilboa & Osher, 2009), and
so on. It is to apply the following diffusion process to the
feature matrix X of a graph:

dX(t)

dt
:= div(A(X(t)))∇X(t)) = −LX(t), (1)

where div and ∇ are the divergence and the gradient oper-
ators, respectively. The initial features are evolved under
the diffusion process to have the final representation. The
diffusion equation and its unit-step Euler discretization can
be defined as follows:

X(t+ 1) = X(t)− LX(t) = (I− L)X(t). (2)

This is similar to GCN (Kipf & Welling, 2017) where the
following augmented diffusion process with a weight matrix
W and a nonlinear activation σ is used:

σ((I− L)X(t)W). (3)

From this perspective, several papers have proposed
continuous-depth GNNs (Wang et al., 2021; Choi et al.,
2021; Hwang et al., 2021; Thorpe et al., 2022; Choi et al.,
2023a) inspired by the graph diffusion equation. One re-
cent work is GRAND (Chamberlain et al., 2021b), which
parameterizes the diffusion equation on graphs with a neu-
ral network. BLEND (Chamberlain et al., 2021a) used a

non-euclidean diffusion equation (known as Beltrami flow)
to solve a joint positional feature space problem. These
approaches contribute to non-trivial improvements in graph
machine learning. We extend the diffusion to the reaction-
diffusion equation in this work.

2.3. Neural Ordinary Differential Equations (NODEs)

Neural ordinary differential equations (NODEs) (Chen et al.,
2018c) solve the initial value problem (IVP), which in-
volves a Riemann integral problem, to calculate h(ti+1)
from h(ti):

h(ti+1) = h(ti) +

∫ ti+1

ti

f(h(ti), t; θf )dt, (4)

where the neural network parameterized by θf approximates

the time-derivative of h, i.e., ḣ def
= dh(t)

dt . We rely on various
ODE solvers to solve the integral problem, from the explicit
Euler method to the 4th order Runge–Kutta (RK4) method
and the Dormand–Prince (DOPRI) method (Dormand &
Prince, 1980). For instance, the Euler method is as follows:

h(t+ h) = h(t) + τ · f(h(t)), (5)

where τ , which is usually smaller than 1, is a pre-configured
step size. Eq. (5) is identical to a residual connection when
h = 1 and therefore, NODEs are a continuous generaliza-
tion of residual networks.

3. Proposed Method
After describing an overview of our method, we describe
its detailed designs, followed by its training algorithm. The
theoretical and empirical complexity analyses are in Ap-
pendix D and F.3, respectively.

3.1. Overview of GREAD

Given a graph G with its node feature matrix X, its sym-
metric normalized Laplacian matrix L, and its symmetric
normalized adjacency A, the overall architecture of GREAD
can be written as follows — instead of A, we can also use a
generated soft adjacency matrix Ã, which will be described
in the next subsection:

H(0) = e(X) (Encoding layer), (6)

H(T ) = H(0) +

∫ T

0

f(H(t))dt (Reac.-diff. layer), (7)

ŷ = o(H(T )) (Output layer), (8)

where f(H(t)) := dH(t)
dt = −αLH(t) + βr(H(t)) is in

the reaction-diffusion form. r(H) is a reaction term, and α
and β are trainable parameters to (de-)emphasize each term.
e is an encoder embeds the node feature matrix X into an
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initial hidden state H(0). We then evolve the initial hidden
state to H(T ) via the reaction-diffusion equation of f . The
function o is an output layer for a downstream task, e.g.,
node classification. In particular, β can be either a scalar
or a vector parameter, where the scalar setting means that
we apply the same reaction process to all nodes and in the
vector setting, we apply different reaction processes with
different coefficients to nodes.

The encoder e has a couple of fully-connected layers with
rectified linear unit (ReLU) activations. The output layer o
is typically a fully-connected layer, followed by a softmax
activation for classification in our experiments.

In particular, we consider almost all existing reaction terms
for r, which is different from existing works that do not
consider them in a thorough manner. In this perspective, our
work is the most comprehensive study on reaction-diffusion
GNNs to our knowledge. In the following subsection, we
also show that some choices of the reaction term correspond
to other famous models — in other words, some other fa-
mous models are special cases of GREAD.

3.2. Soft Adjacency Matrix Generation

Given a graph G, one can use its original symmetric nor-
malized adjacency matrix A ∈ [0, 1]|V|×|V| for f(H(t)).
However, we also provide the method to generate a soft
adjacency matrix, denoted Ã ∈ [0, 1]|V|×|V| — we use L̃
to denote the Laplacian counterpart of Ã. Our soft adja-
cency matrix plays a crucial role in learning diffusivity. Our
reaction-diffusion layer uses the soft adjacency matrix to
learn the diffusivity.

In order to generate such soft adjacency matrices, we use
the scaled dot product method (Vaswani et al., 2017):

Ã[i,j] := softmax
( (WKHi)

TWQHj

dK

)
, (9)

where Ã[i,j] means the (i, j)-th element of Ã, WK and
WQ are trainable parameters, and dK is the scale factor.
Hi,Hj are trainable embedding vectors of nodes i, j.

3.3. Reaction-diffusion Layer

Eq. (7) is our method’s main processing layer, called the
reaction-diffusion layer. Given the definition of f , ‘−LH(t)’
is a diffusion term that corresponds to the heat equation
describing the spread of heat over G and has been used
widely by various GNNs (Wang et al., 2021; Choi et al.,
2021; Chamberlain et al., 2021b). It is known that the
diffusion term causes the problem of oversmoothing, which
means that the last hidden states of nodes become too similar
when applying only the diffusion processing too much. To
this end, many models prefer shallow architectures that
do not cause the oversmoothing problem (Wu et al., 2019;

Kipf & Welling, 2017) or use heuristic methods to prevent
it (Zhao & Akoglu, 2020; Chen et al., 2018a; 2020; Li
et al., 2019; Liu et al., 2020; Huang et al., 2018; Chen et al.,
2018b).

In our case, we prevent the oversmoothing problem by
adding the reaction term r and solving Eq. (7) with ODE
solvers (Dormand & Prince, 1980). In other words, our
reaction-diffusion layer is continuous, which is yet another
distinguishing point of our method since many other models
are based on discrete layers (Kipf & Welling, 2017; Bo et al.,
2021; Chien et al., 2021; Zhu et al., 2020; Hamilton et al.,
2017). We consider the following options for r:

r(H(t)) :=



H(t)⊙ (1−H(t)), if Fisher (F)

H(t)⊙ (1−H(t)◦2), if Allen-Cahn (AC)

H(t)⊙ (H(t)−H(t)◦2), if Zeldovich (Z)

(Ã− Ã2)H(t), if Blurring-Sharpening (BS)

H(0), if Source Term (ST)

LH(t), if Filter Bank (FB)

LH(t) +H(t), if Filter Bank* (FB*)

(10)

where ‘⊙’ means the Hadamard product, and ‘◦2’ means
the Hadamard power.

The first three reaction terms, i.e., F, AC, and Z, are widely
used in various domains. For instance, F is used to de-
scribe the spreading of biological populations (Fisher, 1937),
and AC is used for describing the phase separation process
in multi-component alloy systems, which includes order-
disorder transitions (Allen & Cahn, 1979). Z is a generalized
equation that describes the phenomena that occur in com-
bustion theory (Gilding & Kersner, 2004). The last BS is
specially designed by us for GNNs, which we will describe
shortly. ST is a case where the initial hidden state is added
as a reaction term (Xhonneux et al., 2020). ST is not the-
oretically a reaction process, but we consider it as part of
our model since their goals are the same, i.e., alleviating
the notorious oversmoothing problem. FB means high-pass
filters that correspond to reaction processes. By adding a
high-pass filter, our reaction-diffusion layer acts like a filter
bank holding the low and high-pass filters. FB* is a reaction
term that also considers the identity channel H(t).

Blurring-Sharpening (BS) Given the reaction-diffusion
layer in Eq. (7), the proposed blurring-sharpening (BS)
process, whose time-derivative of H(t) will be defined in
Eq. (14), is to perform the blurring (diffusion) and the sharp-
ening (reaction) operations alternately in the layer. We show
that our proposed blurring-sharpening process reduces to a
certain form of the reaction-diffusion process. Many GNNs
can be generalized to the following blurring (or diffusion)
process, i.e., the low-pass graph convolutional filtering for
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Algorithm 1 How to train our proposed GREAD
Input: Training data Dtrain, Validating data Dval, Maximum

iteration number max iter
Initialize model parameters θ;
k ← 0;
while k < max iter do

Construct a mini-batch B from Dtrain

Train θ with Eq. (15) and B;
Validate and update the best parameters θ∗ with Dval

k ← k + 1;
end
return θ∗;

blurring. We also use the same blurring operation at first:

B(t+ h) = H(t)− L̃H(t),

⇒ H(t) + (Ã− I)H(t),

⇒ ÃH(t).

(11)

We then propose to apply the following high-pass graph
convolutional filtering or sharpening process to B(t + h).
In other words, there is a sharpening process following the
above blurring process in a layer as follows — the full
derivation is in Appendix C:

H(t+ h) = B(t+ h) + L̃(B(t+ h)),

⇒ H(t)− L̃H(t) + (Ã− Ã2)H(t).
(12)

Therefore, we can derive the following difference equation:

H(t+ h)−H(t) = −L̃H(t) + (Ã− Ã2)H(t). (13)

After taking the limit of h → 0 and adding the coefficients
α, β,

f(H(t)) :=
dH(t)

dt
= −αL̃H(t) + β(Ã− Ã2)H(t),

(14)

which is a reaction-diffusion equation where r(H(t)) :=
(Ã− Ã2)H(t). Therefore, our proposed method, BS, uses
the reaction-diffusion layer in Eq. (7) with the specific time-
derivative definition of Eq. (14).

3.4. Training Algorithm

We use Alg. (1) to train our proposed model. The full
training process minimizes the cross-entropy loss:

L :=

n∑
i

yT
i log ŷi, (15)

where yi is the one-hot ground truth vector of i-th training
sample, and ŷi is its inference outcome by our model.

3.5. Comparison with GNNs

When ST is used, GREAD is analogous to GCNII in the
perspective that both methods inject the initial hidden state.
GREAD, FA-GCN, and GPR-GNN differ in how to utilize
low and high-pass filters. FA-GCN learns edge-level ag-
gregation weights as in GAT but allows negative weights.
GPR-GNN uses learnable weights that can be both posi-
tive and negative for feature propagation. Those enable
FA-GCN and GPR-GNN to adapt to heterophilic graphs
and to handle both high and low-frequency parts of graph
signals. However, GREAD-BS sharpens low-pass filtered
signals following our developed reaction-diffusion system.
GREAD-BS also adaptively adjusts each term.

We also compare with some continuous-time GNN models.
CGNN can be derived from the reaction-diffusion layer in
Eq. (7) with L by setting f with r(H(t)) := H(0) and using
a weight parameter W:

f(H(t))CGNN := −LH(t) +H(t)W +H(0). (16)

The linear GRAND model corresponds to using only our
diffusion process:

f(H(t))GRAND := −L̃H(t) = −(I− Ã)H(t). (17)

We note that two continuous models can not capture high
frequency parts. In particular, GRAND does not use any
reaction term.

4. Experiments
We first compare our method with other baselines for node
classification tasks. We then discuss the ability of miti-
gating oversmoothing on a synthetic graph and show the
experiment with different heterophily levels on other syn-
thetic graphs. Our code is available at https://github.
com/jeongwhanchoi/GREAD.

4.1. Node Classification on Real-world Datasets

Real-world Datasets We now evaluate the performance
of GREAD and existing GNNs on a variety of real-world
datasets. We consider 6 heterophilic datasets with low ho-
mophily ratios used in (Pei et al., 2020): i,ii) Chameleon,
Squirrel (Rozemberczki et al., 2021), iii) Film (Tang et al.,
2009), iv, v, vi) Texas, Wisconsin and Cornell from WebKB.
We also test on 3 homophilic graphs with high homophily
ratios: i) Cora (McCallum et al., 2000), ii) CiteSeer (Sen
et al., 2008), iii) PubMed (Yang et al., 2016). Table 3 sum-
marizes the number/size of nodes, edges, classes, features,
and the homophily ratio. We use the dataset splits taken
from (Pei et al., 2020). We report the mean and standard
deviation accuracy after running each experiment with 10
fixed train/val/test splits.
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Table 3. Benchmark dataset properties and statistics
Dataset Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

Classes 5 5 5 5 5 5 6 7 3
Features 1,703 1,703 1,703 932 2,089 235 1,433 3,703 500
Nodes 183 251 183 7,600 5,201 2,277 2,708 3,327 19,717
Edges 279 466 277 26,752 198,353 31,371 5,278 4,552 44,324

Hom. ratio 0.11 0.21 0.30 0.22 0.22 0.23 0.81 0.74 0.80

Table 4. Results on real-world datasets: mean ± std. dev. accuracy for 10 different data splits. We show the best three methods in red
(first), blue (second), and purple (third). Other missing 16 baselines are in Appendix B.

Dataset Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed Avg.

Geom-GCN 66.76±2.72 64.51±3.66 60.54±3.67 31.59±1.15 38.15±0.92 60.00±2.81 85.35±1.57 78.02±1.15 89.95±0.47 63.87
H2GCN 84.86±7.23 87.65±4.98 82.70±5.28 35.70±1.00 36.48±1.86 60.11±2.15 87.87±1.20 77.11±1.57 89.49±0.38 71.33
GGCN 84.86±4.55 86.86±3.29 85.68±6.63 37.54±1.56 55.17±1.58 71.14±1.84 87.95±1.05 77.14±1.45 89.15±0.37 75.05
LINKX 74.60±8.37 75.49±5.72 77.84±5.81 36.10±1.55 61.81±1.80 68.42±1.38 84.64±1.13 73.19±0.99 87.86±0.77 71.11

GloGNN 84.32±4.15 87.06±3.53 83.51±4.26 37.35±1.30 57.54±1.39 69.78±2.42 88.31±1.13 77.41±1.65 89.62±0.35 74.99
ACM-GCN 87.84±4.40 88.43±3.22 85.14±6.07 36.28±1.09 54.40±1.88 66.93±1.85 87.91±0.95 77.32±1.70 90.00±0.52 74.92

GCNII 77.57±3.83 80.39±3.40 77.86±3.79 37.44±1.30 38.47±1.58 63.86±3.04 88.37±1.25 77.33±1.48 90.15±0.43 70.16

CGNN 71.35±4.05 74.31±7.26 66.22±7.69 35.95±0.86 29.24±1.09 46.89±1.66 87.10±1.35 76.91±1.81 87.70±0.49 63.96
GRAND 75.68±7.25 79.41±3.64 82.16±7.09 35.62±1.01 40.05±1.50 54.67±2.54 87.36±0.96 76.46±1.77 89.02±0.51 68.94
BLEND 83.24±4.65 84.12±3.56 85.95±6.82 35.63±1.01 43.06±1.39 60.11±2.09 88.09±1.22 76.63±1.60 89.24±0.42 71.79

Sheaf 85.05±5.51 89.41±4.74 84.86±4.71 37.81±1.15 56.34±1.32 68.04±1.58 86.90±1.13 76.70±1.57 89.49±0.40 75.06
GRAFF 88.38±4.53 87.45±2.94 83.24±6.49 36.09±0.81 54.52±1.37 71.08±1.75 87.61±0.97 76.92±1.70 88.95±0.52 74.92

GREAD-BS 88.92±3.72 89.41±3.30 86.49±7.15 37.90±1.17 59.22±1.44 71.38±1.31 88.57±0.66 77.60±1.81 90.23±0.55 76.64
GREAD-F 89.73±4.49 86.47±4.84 86.49±5.13 36.72±0.66 46.16±1.44 65.20±1.40 88.39±0.91 77.40±1.54 90.09±0.31 74.13

GREAD-AC 85.95±2.65 86.08±3.56 87.03±4.95 37.21±1.10 45.10±2.11 65.09±1.08 88.29±0.67 77.38±1.53 90.10±0.36 73.71
GREAD-Z 87.30±5.68 86.29±4.32 85.68±5.41 37.01±1.11 46.25±1.72 62.70±2.30 88.31±1.10 77.39±1.90 90.11±0.27 73.45

GREAD-ST 81.08±5.67 86.67±3.01 86.22±5.98 37.66±0.90 45.83±1.40 63.03±1.32 88.47±1.19 77.25±1.47 90.13±0.36 72.93
GREAD-FB 86.76±5.05 87.65±3.17 86.22±5.85 37.40±0.55 50.83±2.27 66.05±1.21 88.03±0.78 77.28±1.73 90.07±0.45 74.48
GREAD-FB* 87.03±3.97 88.04±1.63 85.95±5.64 37.70±0.51 50.57±1.52 65.83±1.10 88.01±0.80 77.42±1.93 90.08±0.46 74.51

(a) t = 0 (b) t = 1 (c) t = 3.5

Figure 2. The snapshots of the evolution process of the node fea-
ture at various ODE time points in GREAD for Cora. Different
colors correspond to different ground truth classes. More visual-
izations in other datasets are in Appendix F.4.

Baselines We use a comprehensive set of baselines classi-
fied into the following four groups:

1. In the first group of baselines, we consider classical
GNN methods: ChebNet (Defferrard et al., 2016),
GCN (Kipf & Welling, 2017), GAT (Veličković et al.,
2018), GraphSAGE (Hamilton et al., 2017), and
SGC (Wu et al., 2019).

2. The next group includes the GNN methods designed
for heterophilic settings: MixHop (Abu-El-Haija et al.,
2019), Geom-GCN (Pei et al., 2020), H2GCN (Zhu

et al., 2020), FA-GCN (Bo et al., 2021), GPR-
GNN (Chien et al., 2021), WRGAT (Suresh et al.,
2021), GGCN (Yan et al., 2022), LINKX (Lim et al.,
2021), GloGNN (Li et al., 2022) and ACM-GCN (Luan
et al., 2022).

3. The third group has GNN methods tackling the over-
smoothing problem: PairNorm (Zhao & Akoglu, 2020),
JKNet (Xu et al., 2018), GCNII (Chen et al., 2020),
and GCON (Rusch et al., 2022).

4. The last group contains continuous-time GNN meth-
ods: GDE (Poli et al., 2019), CGNN (Xhonneux
et al., 2020), GRAND (Chamberlain et al., 2021b),
BLEND (Chamberlain et al., 2021a), ACMP (Wang
et al., 2023), Sheaf (Bodnar et al., 2022), and
GRAFF (Di Giovanni et al., 2022).

Hyperparameters For our method, we test with the fol-
lowing hyperparameter configurations: we train for 200
epochs using the Adam optimizer. The detailed search space
and other hyperparameters are in Appendix E.2. We also
list the best hyperparameter configuration for each data in
Appendix E.2. If a baseline’s accuracy is known and its
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Table 5. Ablation study on soft adjacency matrix. More results in
other datasets are in Appendix F.1.

Dataset A BS F AC Z ST FB FB*

Cornell OA 85.14 85.41 83.51 83.78 85.41 85.19 83.90
SA 86.49 86.49 87.03 85.68 86.22 86.22 85.95

Film OA 37.24 36.68 35.93 36.04 37.43 37.18 37.13
SA 37.90 37.20 37.21 37.01 37.66 37.40 37.70

Table 6. Ablation study on β. More results in other datasets are in
Appendix F.1.

Dataset A BS F AC Z ST FB FB*

Texas SC 81.35 84.05 85.41 87.30 79.73 76.95 77.08
VC 88.92 89.73 85.95 86.49 81.08 86.76 87.03

Wisconsin SC 84.71 85.69 86.08 84.51 83.52 84.24 86.21
VC 89.41 86.47 85.69 86.29 86.67 87.65 88.04

experimental environments are the same as ours, we use the
officially announced accuracy. If not, we execute a base-
line using its official codes and the hyperparameter search
procedures based on their suggested hyperparameter ranges.

Experimental Results Table 2 shows the average rank-
ing and accuracy in all the real-world datasets. GREAD-
BS is ranked at the top with the average ranking of 1.56.
GREAD-BS shows a clearly higher ranking in comparison
with GloGNN and others. In Fig. 2, we visualize the hid-
den node features at each ODE time step of Eq. (7), and
the reaction-diffusion processes of GREAD lead to local
clusters after several steps.

Table 4 presents the detailed classification performance. As
reported, our method marks the best accuracy in all cases
except for Squirrel and Citeseer. GloGNN and Sheaf show
comparable accuracy values from time to time. However,
there are no existing methods that are as stable as GREAD-
BS. For example, GCNII shows reasonably high accuracy in
homophilic datasets, but not heterophilic ones. Sheaf shows
the best or the second-best place in merely two cases. While
GREAD-BS is the best method overall, GREAD-F is the
best method for Texas and is the second-best for Cornell.
GREAD-AC marks the best accuracy on Cornell.

Ablation Studies We conduct ablation studies about the
soft adjacency matrix generation. GREAD can use both the
original symmetric normalized adjacency matrix, denoted
as OA, and the soft adjacency matrix denoted as SA. We
compare both options. As reported in Table 5, SA increases
the model accuracy in Cornell and Film.

Next, we also perform the ablation study on β. β can be
either a scalar parameter (denoted as SC) or a learnable
vector parameter (denoted as VC). We compare them in
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Figure 3. Sensitivity to T . More results in other datasets are in
Appendix F.2.
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Figure 4. Sensitivity to the ODE step size τ . More results in other
datasets are in Appendix F.2.

Table 6. VC shows effectiveness for most cases. The VC
setting creates a reaction-diffusion process rich enough to
classify nodes, as shown in Fig. 2.

Sensitivity w.r.t. the Terminal Integration Time T By
varying T in Eq. (7), we investigate how the model accuracy
changes. The detailed results are in Fig. 3. In Chameleon,
GREAD-BS achieves the highest mean test accuracy at
T = 1.9.

Sensitivity w.r.t. the ODE Step Size τ Fig. 4 shows the
mean test accuracy by varying the step size τ of RK4. In
Chameleon, GREAD-BS shows stable test accuracy at all
the step sizes, whereas in Cora, GREAD-BS tends to show
higher accuracy with larger step sizes.

4.2. Oversmoothing and Dirichlet Energy

The Dirichlet Energy We can analyze the degree of over-
smoothing (Nt & Maehara, 2019; Oono & Suzuki, 2020)
from the perspective of the Dirichlet energy (Rusch et al.,
2022; 2023). The Dirichlet energy E(H,Araw) on the
node hidden feature H of an undirected graph G is defined
as follows:

E(H,Araw) =
1

N

∑
i∈V

∑
j∈Ni

Araw
[i,j] ||Hi −Hj ||2, (18)
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Figure 5. Evolution of the Dirichlet energy on the synthetic random
graph. The Y-axis is the logarithmic Dirichlet energy in each
layer’s output given a GNN of 40 layers.

where Hi,Hj mean i-th and j-th rows, respectively.

The oversmoothing phenomenon means that as the depth
increases, all node features converge to constants. Thus,
E(H,A) decays to zero asymptotically in time. We will
show, via the evolution of the Dirichlet energy, that our
proposed method mitigates the oversmoothing problem.

Experimental Environments We use the synthetic
dataset, called cSBMs (Deshpande et al., 2018), to demon-
strate the mitigation of oversmoothing. This synthetic data
is an undirected graph representing 100 nodes in a two-
dimensional space with two classes randomly connected
with a probability of p = 0.9. We report the layer-wise
Dirichlet energy given a GNN of 40 layers.

Experimental Results Fig. 5 demonstrates traditional
GNNs, such as GCN, and GAT, suffer from oversmoothing
because the Dirichlet energy decays exponentially to zero
in the first five layers. Converging to zero indicates that the
node features become constant, while GREAD has no such
behaviors. The Dirichlet energy of GREAD can be bounded
in time thanks to the reaction term. GRAND only has a
diffusion term with learned diffusivity, so that it can delay
the oversmoothing. In the case of H2GCN, it is impossible
to report on deeper layers due to memory limitations.

4.3. Different Homophily Levels

Experimental Environments In order to test the clas-
sification capability of GNNs, we use the synthetic Cora
generator (Zhu et al., 2020; Li et al., 2021). We generate
synthetic graphs with various homophily ratios and report
the test accuracy.

Experimental Results Fig. 6 shows the mean test accu-
racy on all random splits of the synthetic Cora datasets.
MLP, which does not consider the connectivity of nodes,
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(b) GREAD

Figure 6. Experiments on the synthetic Cora with controlled ho-
mophily rates.

maintains its test accuracy for all homophily rates, which is
obvious. GCN, GAT, and GRAND, which consider only dif-
fusion, perform poorly at low homophily settings. H2GCN
shows reasonable performance on low homophily rates, but
its accuracy suddenly decreases at some homophily settings.
All GREAD models have the best trend overall without sud-
den drops. The reaction terms of GREAD contribute to their
stable accuracy for both homophily and heterophily settings
compared with other models that rely on only diffusion
processes, such as GCN and GRAND.

5. Conclusions
We presented the concept of graph neural reaction-diffusion
equation, called GREAD. Our proposed GREAD is one
of the most generalized architectures considering both the
diffusion and reaction processes. We design a reaction-
diffusion layer that has three types of reaction equations
widely used in natural sciences. We also add four reaction
terms, including one special reaction term called Blurring-
sharpening (BS) designed by us for GNNs. Therefore, our
reaction-diffusion layer has seven types. We consider a
comprehensive set of 9 real-world datasets with various
homophily difficulties and 28 baselines. GREAD marks the
best accuracy in almost all cases. In our experiments with
the two kinds of synthetic datasets, GREAD shows that it
alleviates the oversmoothing problem and performs well
on various homophily rates. This shows that our proposed
model is a novel framework for constructing GNNs using
the concept of the reaction-diffusion equation.
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A. Full Ranking of Table 2
We show the average ranking/accuracy and the Olympic ranking of all methods in Table 7. Our methods occupy all the
top-4 positions.

Table 7. The average ranking/accuracy and the Olympic ranking in the 9 real-world datasets. Methods are sorted by Avg. Ranking.

Method Average Olympic Ranking

Ranking Accuracy Gold Silver Bronze

GREAD-BS 1.56 76.64 5 4 0
GREAD-FB* 6.72 74.51 0 0 3

GREAD-F 7.50 74.13 1 1 1
GREAD-FB 7.89 74.48 0 0 1

GloGNN 8.17 74.99 0 0 1
GREAD-AC 8.50 73.71 1 0 0
ACM-GCN 8.67 74.92 0 1 0

GGCN 9.50 75.05 0 1 0
GREAD-Z 9.56 73.45 0 0 0

GREAD-ST 9.83 72.93 0 1 2
Sheaf 10.33 75.06 1 1 0

GRAFF 11.28 74.92 0 0 2
WRGAT 13.61 73.02 0 0 0
GCNII 14.56 70.16 0 0 0

H2GCN 16.00 71.33 0 0 0
BLEND 16.11 71.79 0 0 0
ACMP 19.44 71.98 0 0 0

GCON-GCN 20.17 69.46 0 0 1
LINKX 21.44 71.11 1 0 0

FA-GCN 21.89 69.86 0 0 0
GRAND 22.28 68.94 0 0 0

GCON-GAT 22.89 68.96 0 0 0
GPR-GNN 23.17 67.45 0 0 0

GraphSAGE 23.56 69.50 0 0 0
Geom-GCN 23.83 63.87 0 0 0

Mixhop 24.50 68.10 0 0 0
GCN 24.61 62.77 0 0 0
GDE 24.67 67.40 0 0 0
MLP 25.61 66.26 0 0 0

CGNN 26.11 63.96 0 0 0
ChebNet 26.56 67.98 0 0 0

GAT 28.22 60.23 0 0 0
PairNorm 28.56 61.68 0 0 0

JKNet 30.06 60.77 0 0 0
SGC 32.56 58.34 0 0 0
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B. Full Result of Table 4
We reported only the selected highly-performing 12 baselines in Table 4. We now report all the detailed results of the tested
28 baselines in Table 8.

Table 8. Results on real-world datasets: mean ± std. dev. accuracy for 10 different data splits. We show the best three methods in red
(first), blue (second), and purple (third).

Dataset Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

MLP 80.81±4.75 85.29±3.31 81.89±6.40 36.53±0.70 28.77±1.56 46.21±2.99 87.16±0.37 74.02±1.90 75.69±2.00

GCN 55.14±5.16 51.76±3.06 60.54±5.30 27.32±1.10 53.43±2.01 64.82±2.24 86.98±1.27 76.50±1.36 88.42±0.50
ChebNet 78.37±6.04 79.02±3.18 75.68±6.94 34.13±1.09 36.43±1.17 58.64±1.64 85.45±1.58 75.07±1.25 89.00±0.46

GAT 52.16±6.63 49.41±4.09 61.89±5.05 27.44±0.89 40.72±1.55 60.26±2.50 86.33±0.48 76.55±1.23 87.30±1.10
GraphSAGE 82.43±6.14 81.18±5.56 75.95±5.01 34.23±0.99 41.61±0.74 58.73±1.68 86.90±1.04 76.04±1.30 88.45±0.50

SGC 58.10±4.20 55.29±4.28 60.00±3.59 27.20±1.52 33.00±1.97 42.45±3.82 86.12±1.44 76.01±1.31 86.90±1.32

MixHop 77.84±7.73 75.88±4.90 73.51±6.34 32.22±2.34 43.80±1.48 60.50±2.53 87.61±0.85 76.26±1.33 85.31±0.61
Geom-GCN 66.76±2.72 64.51±3.66 60.54±3.67 31.59±1.15 38.15±0.92 60.00±2.81 85.35±1.57 78.02±1.15 89.95±0.47

FA-GCN 82.43±6.89 82.94±7.95 79.19±9.79 34.87±1.25 42.59±0.79 55.22±3.19 87.21±1.43 76.87±1.56 87.45±0.61
GPR-GNN 78.38±4.36 82.94±4.21 80.27±8.11 34.63±1.22 31.61±1.24 46.58±1.84 87.95±1.18 77.13±1.67 87.54±0.38

H2GCN 84.86±7.23 87.65±4.98 82.70±5.28 35.70±1.00 36.48±1.86 60.11±2.15 87.87±1.20 77.11±1.57 89.49±0.38
WRGAT 83.62±5.50 86.98±3.78 81.62±3.90 36.53±0.77 48.85±0.78 65.24±0.87 88.20±2.26 76.81±1.89 89.29±0.38
GGCN 84.86±4.55 86.86±3.29 85.68±6.63 37.54±1.56 55.17±1.58 71.14±1.84 87.95±1.05 77.14±1.45 89.15±0.37
LINKX 74.60±8.37 75.49±5.72 77.84±5.81 36.10±1.55 61.81±1.80 68.42±1.38 84.64±1.13 73.19±0.99 87.86±0.77

GloGNN 84.32±4.15 87.06±3.53 83.51±4.26 37.35±1.30 57.54±1.39 69.78±2.42 88.31±1.13 77.41±1.65 89.62±0.35
ACM-GCN 87.84±4.40 88.43±3.22 85.14±6.07 36.28±1.09 54.40±1.88 66.93±1.85 87.91±0.95 77.32±1.70 90.00±0.52

PairNorm 60.27±4.34 48.43±6.14 58.92±3.15 27.40±1.24 50.44±2.04 62.74±2.82 85.79±1.01 73.59±1.47 87.53±0.44
JKNet 62.70±8.34 53.14±5.22 59.72±4.60 29.25±1.37 39.78±1.72 52.63±3.90 86.48±1.04 75.99±1.28 87.23±0.55
GCNII 77.57±3.83 80.39±3.40 77.86±3.79 37.44±1.30 38.47±1.58 63.86±3.04 88.37±1.25 77.33±1.48 90.15±0.43

GCON-GCN 85.40±4.20 87.80±3.30 84.30±4.80 34.65±0.61 33.30±1.57 48.08±2.16 87.40±1.82 76.46±1.70 87.71±0.35
GCON-GAT 82.20±4.70 85.70±3.60 83.20±7.00 35.85±0.84 34.45±1.08 48.31±1.53 86.96±1.73 76.20±2.12 87.73±0.41

CGNN 71.35±4.05 74.31±7.26 66.22±7.69 35.95±0.86 29.24±1.09 46.89±1.66 87.10±1.35 76.91±1.81 87.70±0.49
GDE 74.05±6.96 79.80±5.62 82.43±7.07 35.36±1.31 35.94±1.91 47.76±2.08 87.22±1.41 76.21±2.11 87.80±0.38

GRAND 75.68±7.25 79.41±3.64 82.16±7.09 35.62±1.01 40.05±1.50 54.67±2.54 87.36±0.96 76.46±1.77 89.02±0.51
BLEND 83.24±4.65 84.12±3.56 85.95±6.82 35.63±1.01 43.06±1.39 60.11±2.09 88.09±1.22 76.63±1.60 89.24±0.42
ACMP 86.20±0.30 86.10±0.40 85.40±0.70 34.44±4.44 52.65±2.23 52.63±2.28 86.38±3.79 76.52±1.84 87.54±0.57
Sheaf 85.05±5.51 89.41±4.74 84.86±4.71 37.81±1.15 56.34±1.32 68.04±1.58 86.90±1.13 76.70±1.57 89.49±0.40

GRAFF 88.38±4.53 87.45±2.94 83.24±6.49 36.09±0.81 54.52±1.37 71.08±1.75 87.61±0.97 76.92±1.70 88.95±0.52

GREAD-BS 88.92±3.72 89.41±3.30 86.49±7.15 37.90±1.17 59.22±1.44 71.38±1.53 88.57±0.66 77.60±1.81 90.23±0.55
GREAD-F 89.73±4.49 86.47±4.84 86.49±5.13 36.72±0.66 46.16±1.44 65.20±1.40 88.39±0.91 77.40±1.54 90.09±0.31

GREAD-AC 85.95±2.65 86.08±3.56 87.03±4.95 37.21±1.10 45.10±2.11 65.09±1.08 88.29±0.67 77.38±1.53 90.10±0.36
GREAD-Z 87.30±5.68 86.29±4.32 85.68±5.41 37.01±1.11 46.25±1.72 62.70±2.30 88.31±1.10 77.39±1.90 90.11±0.27

GREAD-ST 81.08±5.67 86.67±3.01 86.22±5.98 37.66±0.90 45.83±1.40 63.03±1.32 88.47±1.19 77.25±1.47 90.13±0.36
GREAD-FB 86.76±5.05 87.65±3.17 86.22±5.85 37.40±0.55 50.83±2.27 66.05±1.21 88.01±1.34 77.28±1.73 90.07±0.45
GREAD-FB* 87.03±3.97 88.04±1.63 85.95±5.64 37.70±0.51 50.57±1.52 65.83±1.10 88.01±0.80 77.42±1.93 90.08±0.46
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C. Full Derivation of Eq. (12)

We show the omitted intermediate derivation steps of Eq. (12).

H(t+ h) = B(t+ h) + L̃(B(t+ h)),

⇒ ÃH(t) + L̃(ÃH(t)),

⇒ ÃH(t) + (I− Ã)ÃH(t),

⇒ 2ÃH(t)− Ã2H(t),

⇒ (2I− Ã)ÃH(t),

⇒ (I+ L̃)(I− L̃)H(t),

⇒ H(t)− L̃2H(t),

⇒ H(t)− (I− Ã)2H(t),

⇒ H(t)− (I− Ã)H(t) + (Ã− Ã2)H(t),

⇒ H(t)− L̃H(t) + (Ã− Ã2)H(t).

D. Computational Complexity
The space complexity of GREAD is dominated by evaluating the soft adjacency matrix in Eq. (9), which is O(|E|dim(H)),
where |E| is the number of edges and dim(H) is the size of hidden dimension.

We also analyze the time complexity of the reaction-diffusion layer in Eq. (7). Our proposed model has different complexity
depending on the reaction term r in Eq. (10).

If we set the adjacency matrix and β to OA and SC respectively, the time complexity of the one-step GREAD-BS computation
becomes O(nτ (|E| + |E2|)dim(H) + |E|dmax), where nτ , |V|, and dmax are the number of steps in [0, T ], the number of
nodes, and the maximum degree of all nodes, respectively. Given that A is sparse, we can calculate A2 in O(|E|dmax)
because dmax is equal to the maximum number of non-zeroes in any row of A. The sparse matrix multiplication of
A2H(t) takes O(|E2|dmax), where |E2| = 1

2

∑
v∈V |N2|(v). The computational complexity of the one-step GREAD-F

computation is O(nτ (|E|+ dim(H)k))dim(H)), where k = 1. In the case of GREAD-AC and GREAD-Z, their k values
are 2 and 3, respectively. The computational complexities of the one-step GREAD-ST, GREAD-FB, and GREAD-FB* are
O(nτ |E|dim(H) + |E|dmax).

E. Additional Details for Experiments
E.1. Details of Datasets

Real-world Datasets For the experiment with real-world datasets in Table 4, we consider both the heterophilic and
homophilic datasets. They can be distinguished based on the homophily level. We employ the homophily ratio, defined
by (Pei et al., 2020), to distinguish high or low homophily/heterophily graphs:

Homophily ratio =
1

|V|
∑
v∈V

∑
u∈Nv

(yu = yv)

|Nv|
. (19)

A high homophily ratio means that neighbors tend to be in an identical class. Some dataset statistics are given in Table 3.
The 9 real-world datasets we consider are as follows:

• Chameleon and Squirrel are subgraphs of web pages in Wikipedia (Rozemberczki et al., 2021). The node in Wikipedia
graphs represent web pages, the edge mean mutual links between pages, and the node feature corresponds to several
informative nouns in the Wikipedia page. All nodes are classified into 5 categories based on the average monthly traffic.

• Film is a subgraph of the film-director-actor-writer network (Tang et al., 2009). Each node corresponds to an actor, an
edge between two nodes denotes the co-occurrence relationship in a Wikipedia page, and the node feature corresponds
to some keywords in the Wikipedia page. All nodes are classified into 5 categories according to the type of actors.
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• Cornell, Texas, and Wisconsin are three subsets of the WebKB dataset collected by CMU, having many links between
web pages of the universities. In these networks, nodes represent web pages, edges are hyperlinks between them, and
node features are the bag-of-words representation of web pages. All nodes are classified into 5 categories: student,
project, course, staff, and faculty.

• Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008), and Pubmed (Yang et al., 2016) are among the most widely
used benchmark datasets for the semi-supervised node classification. These are citation networks, where nodes, edges,
features, and labels respectively correspond to papers, undirected paper citations, the bag-of-words representations of
papers, and the academic topics of papers.

The Synthetic Cora Network The synthetic Cora dataset is provided by (Zhu et al., 2020). They generate graphs for
a target homophily level using a modified preferential attachment process. Nodes, edges, and features are sampled from
Cora to create a synthetic graph with a desired homogeneity and feature/label distribution. In Table 9, we summarize the
properties of the synthetic Cora networks we used.

Table 9. The detailed information of the synthetic Cora. All levels of homophily have the same number of features (1,433), nodes (1,480),
edges (5,936), and classes (5).

Homophily Avg. Degree Max. Degree Min. Degree

0.0 3.98 84.33 1.67
0.1 3.98 71.33 2.00
0.2 3.98 73.33 1.67
0.3 3.98 70.00 2.00
0.4 3.98 77.67 2.00
0.5 3.98 76.33 2.00
0.6 3.98 76.00 1.67
0.7 3.98 67.67 2.00
0.8 3.98 58.00 1.67
0.9 3.98 58.00 1.67
1.0 3.98 51.00 2.00

The cSBM Synthetic Network For Fig. 5, we use cSBM (Deshpande et al., 2018) to generate synthetic networks. cSBM
generates Gaussian random vectors as node features on top of the classical SBM. The synthetic graph has 100 nodes with 2
classes and two-dimensional features sampled from a normal distribution with σ = 2, µ1 = −0.5, and µ2 = 0.5. The nodes
are randomly connected with a probability of p = 0.9 if they are in the same class and p = 0.1 otherwise.

E.2. Details of Experimental Settings

Evolution of the Dirichlet Energy We use the random graphs generated by cSBM to show the capability of GREAD to
alleviate oversmoothing. In the case of GREAD, we run without any hyperparamerter search but list the full hyperparameter
list we used in Table 10.

Comparison with Various Homophily Rate To compare the performance in various homophily rates, we use the synthetic
Cora network. We run the experiment with 3 fixed train/valid/test splits and report the mean and the standard deviation of
accuracy accordingly. In Table 11, we list the hyperparameter range we consider.

Node Classification on Real-world Datasets The following software and hardware environments were used for all
experiments: UBUNTU 18.04 LTS, PYTHON 3.9.12, PYTORCH 1.11.0, PYTORCH GEOMETRIC 2.0.4, TORCHDIFFEQ 0.2.3,
NUMPY 1.22.4, SCIPY 1.8.1, MATPLOTLIB 2.2.3, CUDA 11.3, and NVIDIA Driver 465.19, and i9 CPU, and NVIDIA
RTX 3090. We performed 10 repetitions on the train/valid/test splits taken from (Pei et al., 2020) and strictly followed their
evaluation protocol. For all data sets, we used the largest connectivity component (LCC) except for Citeseer. We use the
dropout only in the encoder network and the output layer. We refer to the dropout in the encoder as ‘input dropout’ and the
dropout in the output layer as ‘dropout’.
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We fine-tune our model within the hyperparameter search space in Table 12. Our hyperparameter search used the method
of W&B Sweeps (Biewald, 2020) with a standard random search with 500 counts. We introduce the best hyperparameter
configuration in Tables 13 to 16.

Table 10. Hyperparameter for the cSBM synthetic network

Hyperparameters Value

epochs 100
adjacency matrix OA

α SC
β VC

learning rate 0.001
weight decay 5× 10−4

dropout 0.0
input dropout 0.5

dim(H) 2
step size τ 1.0

time T 40
ODE solver Euler

Table 11. Hyperparameter search space for the synthetic Cora network

Hyperparameters Search Space

epochs 100
adjacency matrix {OA, SA}

α {SC, VC}
β {SC, VC}

learning rate {0.001, 0.002, 0.0025, 0.005, 0.01}
weight decay {0.01, 0.001, 0.0005, 0.0001}

dropout 0.35
input dropout 0.5

dim(H) 64
step size τ {0.1, 0.5, 1.0}

time T {1, 2, 3, 4}
ODE solver Euler

Table 12. Hyperparameter search space for real-world datasets

Hyperparameters Search Space

epochs 200
adjacency matrix {OA, SA}

α {SC, VC}
β {SC, VC}

learning rate [1× 10−3, 6× 10−2]
weight decay [0, 3× 10−2]

dropout [0, 0.6]
input dropout [0, 0.6]

dim(H) {32, 64, 128, 256}
step size τ [0.1, 1.5]

time T [0.1, 6.0]
ODE solver {Euler, RK4, DOPRI5}
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Table 13. Best hyperparameters of GREAD-BS
Hyperparameters Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

adjacency matrix OA SA SA SA OA SA SA SA SA
α SC SC VC SC VC VC VC SC VC
β VC VC VC VC VC VC SC SC SC

learning rate 0.0100 0.0154 0.0082 0.0079 0.0171 0.0068 0.0105 0.0024 0.0108
weight decay 0.0247 0.0090 0.0280 0.0014 0.0000 0.0000 0.0060 0.0146 0.0005
input dropout 0.47 0.54 0.49 0.42 0.52 0.68 0.53 0.50 0.36

dropout 0.48 0.48 0.32 0.65 0.09 0.05 0.45 0.47 0.26
dim(H) 128 256 128 64 256 256 64 128 64

step size τ 1.0 0.25 0.2 0.1 0.75 1.5 0.25 0.5 0.8
time T 1.46 0.75 0.12 0.31 5.70 1.71 3.49 2.35 1.74

ODE solver Euler RK4 RK4 RK4 Euler Euler RK4 RK4 RK4

Table 14. Best hyperparameters of GREAD-F
Hyperparameters Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

adjacency matrix SA SA SA SA SA SA SA SA SA
α VC SC VC SC VC SC SC SC VC
β VC VC VC VC VC VC SC VC VC

learning rate 0.0113 0.0094 0.0092 0.0068 0.0054 0.0101 0.0048 0.0013 0.0120
weight decay 0.0079 0.0057 0.0263 0.0006 0.0011 0.0015 0.0370 0.0041 0.0003
input dropout 0.46 0.41 0.46 0.48 0.48 0.50 0.50 0.50 0.36

dropout 0.38 0.05 0.31 0.48 0.36 0.24 0.35 0.51 0.25
dim(H) 256 64 256 128 128 256 32 256 128

step size τ 1.0 0.1 1.0 0.75 1.0 1.0 0.2 0.9 1
time T 1.26 0.12 1.0 1.14 2.23 1.0 2.27 1.86 1.44

ODE solver Euler RK4 Euler RK4 Euler RK4 Euler RK4 RK4

Table 15. Best hyperparameters of GREAD-AC
Hyperparameters Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

adjacency matrix SA SA SA SA SA SA SA SA SA
α VC VC SC SC SC SC SC SC VC
β VC VC VC SC VC VC VC VC VC

learning rate 0.0070 0.0083 0.0084 0.0027 0.0025 0.0038 0.0039 0.0029 0.0124
weight decay 0.0136 0.0081 0.0311 0.0001 0.0020 0.0007 0.0469 0.0140 0.0006
input dropout 0.40 0.45 0.49 0.46 0.52 0.52 0.40 0.47 0.30

dropout 0.30 0.20 0.29 0.48 0.28 0.35 0.40 0.49 0.26
dim(H) 256 128 128 128 128 256 128 64 128

step size τ 1.0 0.5 0.75 1.0 1.0 1.0 0.1 0.9 1.0
time T 1.36 0.20 0.18 1.06 1.98 2.0 3.52 2.78 1.65

ODE solver Euler RK4 RK4 Euler Euler RK4 Euler RK4 RK4

Table 16. Best hyperparameters of GREAD-Z
Hyperparameters Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

adjacency matrix OA SA SA SA SA SA SA SA SA
α VC SC SC SC VC VC VC VC VC
β SC VC SC VC VC VC SC VC VC

learning rate 0.0088 0.0046 0.0048 0.0023 0.0099 0.0111 0.0045 0.0027 0.0091
weight decay 0.0462 0.0086 0.0435 0.0011 0.0007 0.0012 0.0050 0.0145 0.0004
input dropout 0.48 0.45 0.4272 0.48 0.53 0.45 0.4 0.50 0.37

dropout 0.46 0.18 0.29 0.48 0.44 0.31 0.2 0.49 0.22
dim(H) 256 128 256 64 128 256 64 64 64

step size τ 1.2 0.4 0.2 0.2 1.0 1.0 0.1 0.8 0.8
time T 1.2 0.11 0.13 0.75 2.71 1.0 3.55 2.01 1.12

ODE solver RK4 RK4 RK4 RK4 RK4 RK4 RK4 RK4 RK4
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Table 17. Best hyperparameters of GREAD-ST
Hyperparameters Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

adjacency matrix OA SA SA SA SA SA SA SA SA
α SC SC SC SC VC VC SC SC SC
β SC VC VC SC VC VC VC SC SC

learning rate 0.0200 0.0180 0.0050 0.0081 0.0538 0.0077 0.0074 0.0038 0.0108
weight decay 0.0295 0.0082 0.0275 0.0013 0.0000 0.0000 0.0086 0.0042 0.0004
input dropout 0.46 0.54 0.47 0.42 0.61 0.65 0.37 0.49 0.36

dropout 0.50 0.50 0.25 0.56 0.95 0.09 0.41 0.54 0.22
dim(H) 126 256 256 64 256 256 128 64 64

step size τ 0.5 0.5 0.25 0.7 1.0 1.0 0.1 0.6 0.9
time T 1.02 0.1 0.20 0.15 3.54 1.0 3.04 2.37 1.28

ODE solver Euler RK4 RK4 RK4 Euler Euler RK4 RK4 RK4

Table 18. Best hyperparameters of GREAD-FB
Hyperparameters Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

adjacency matrix OA SA SA SA SA SA SA OA SA
α VC SC SC SC VC VC SC VC VC
β SC VC VC VC VC VC VC SC VC

learning rate 0.0016 0.0185 0.0050 0.0133 0.0090 0.0010 0.0064 0.0012 0.0102
weight decay 0.0055 0.0113 0.0283 0.0014 0.0000 0.0000 0.0091 0.0042 0.0004
input dropout 0.52 0.50 0.36 0.51 0.62 0.64 0.47 0.45 0.35

dropout 0.48 0.53 0.23 0.60 0.06 0.05 0.50 0.54 0.21
dim(H) 64 64 256 64 128 128 256 128 64

step size τ 1.5 0.7 1.0 0.6 0.25 0.25 0.5 0.6 0.2
time T 1.4 1.0 0.1 1.3 2.4 1.8 3.1 1.5 1.0

ODE solver Euler RK4 RK4 RK4 Euler Euler RK4 RK4 Euler

Table 19. Best hyperparameters of GREAD-FB*
Hyperparameters Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer PubMed

adjacency matrix OA SA SA SA SA SA SA SA SA
α SC SC SC SC VC VC VC VC SC
β VC VC SC VC VC VC VC SC VC

learning rate 0.0194 0.0195 0.0072 0.0144 0.0055 0.0095 0.0097 0.0020 0.0166
weight decay 0.0113 0.0142 0.0169 0.0010 0.0000 0.0000 0.0090 0.0048 0.0005
input dropout 0.45 0.51 0.36 0.52 0.63 0.65 0.50 0.57 0.35

dropout 0.52 0.48 0.19 0.59 0.05 0.14 0.39 0.39 0.22
dim(H) 64 64 128 64 128 128 64 64 128

step size τ 1.5 1.0 0.1 0.8 0.1 0.2 0.1 0.9 1.0
time T 1.4 1.0 0.2 1.9 2.0 1.5 3.3 1.7 1.4

ODE solver Euler Euler Euler RK4 Euler Euler Euler RK4 RK4

18



GREAD: Graph Neural Reaction-Diffusion Networks

F. Additional Experimental Results on Real-world Datasets
F.1. Ablation Studies

Tables 20 to 21 show the results of our additional ablation studies in the remaining datasets that are not reported in our
main paper. In Table 20, SA outperforms OA in all the datasets except for Texas and Wisconsin. In the case of Texas and
Wisconsin, SA performs worse than OA from time to time. In Table 21, we compare two types of β. β can be either a scalar
parameter (SC) or a learnable vector parameter (VC). In almost cases, it shows better performance when the type of β is VC.

Table 20. Ablation study on soft adjacency matrix
Dataset A GREAD-BS GREAD-F GREAD-AC GREAD-Z GREAD-ST GREAD-FB GREAD-FB*

Texas OA 88.92±3.72 86.49±4.69 85.41±5.16 87.30±5.68 81.08±5.67 86.76±5.05 87.03±3.97
SA 85.41±2.76 89.73±4.49 85.95±2.65 86.49±3.20 80.00±6.23 84.41±4.22 85.14±5.57

Wisconsin OA 87.45±3.53 86.47±4.16 87.26±3.87 86.28±3.62 85.88±3.26 85.13±4.13 85.42±4.51
SA 89.41±3.30 86.47±4.84 85.69±5.04 86.29±4.32 86.67±3.01 87.65±3.17 88.04±1.63

Squirrel OA 47.03±1.31 37.85±1.11 38.07±1.71 38.43±1.37 41.56±1.74 49.88±1.44 49.21±1.95
SA 59.22±1.44 46.16±1.44 45.10±2.11 46.25±1.72 45.83±1.40 50.83±2.27 50.57±1.52

Chameleon OA 67.79±1.91 59.80±1.54 58.93±1.92 54.45±2.29 56.05±1.28 62.41±1.99 62.63±1.64
SA 71.38±1.31 65.20±1.65 65.09±1.08 62.70±2.30 62.30±1.99 66.05±1.21 65.83±1.10

Cora OA 87.34±1.34 86.72±1.17 86.88±1.09 86.90±1.02 87.77±1.35 88.01±1.34 87.67±1.14
SA 88.57±0.66 88.39±0.91 88.29±0.67 88.31±1.10 88.47±1.19 88.03±0.78 88.01±0.80

Citeseer OA 77.33±1.74 76.29±1.74 76.73±1.52 76.69±1.97 76.57±1.29 77.28±1.73 77.38±1.79
SA 77.60±1.81 77.40±1.54 77.38±1.53 77.39±1.73 77.25±1.47 77.09±1.73 77.42±1.93

Pubmed OA 89.98±0.38 87.99±0.41 88.31±0.44 88.83±0.37 87.87±0.33 89.96±0.33 89.58±0.39
SA 90.23±0.55 90.09±0.31 90.10±0.36 90.11±0.27 90.13±0.36 90.07±0.45 90.08±0.46

Table 21. Ablation study on β

Dataset β GREAD-BS GREAD-F GREAD-AC GREAD-Z GREAD-ST GREAD-FB GREAD-FB*

Cornell SC 85.14±5.57 85.41±6.75 85.41±6.96 84.60±6.17 85.95±6.60 85.65±6.21 84.16±6.02
VC 86.49±7.15 86.49±5.13 87.03±4.95 85.68±5.41 86.22±5.98 86.22±5.85 85.95±5.64

Film SC 37.09±1.15 36.53±1.04 37.21±1.10 37.01±1.11 37.66±0.90 35.07±0.92 34.24±1.21
VC 37.90±1.17 37.20±1.26 36.76±0.99 36.70±0.69 37.33±1.35 37.40±0.55 37.70±0.51

Squirrel SC 42.74±1.34 44.88±1.62 39.61±1.69 40.33±2.06 43.41±1.61 40.59±1.14 40.15±1.66
VC 59.22±1.44 46.16±1.44 45.10±2.11 46.25±1.72 45.83±1.40 50.83±2.27 50.57±1.52

Chameleon SC 62.02±1.86 61.80±1.80 56.56±2.28 59.17±1.26 60.70±1.40 57.57±1.83 57.70±2.11
VC 71.38±1.31 65.20±1.65 65.09±1.08 62.70±2.30 62.30±1.99 66.05±1.21 65.83±1.10

Cora SC 87.45±1.08 88.07±0.96 88.01±0.85 88.13±0.40 88.35±1.32 87.75±1.24 86.68±0.88
VC 88.57±0.66 88.39±0.91 88.29±0.67 88.31±1.10 88.47±1.19 88.03±0.78 88.01±0.80

Citeseer SC 76.73±1.73 76.70±1.75 75.83±1.36 76.83±1.16 77.25±1.47 77.28±1.73 77.42±1.93
VC 77.60±1.81 77.40±1.54 77.38±1.53 77.39±1.73 77.13±2.20 77.22±2.13 77.23±1.89

Pubmed SC 89.96±0.42 87.51±0.44 88.76±0.45 90.04±0.26 90.13±0.36 89.90±0.47 89.99±0.24
VC 90.23±0.55 90.09±0.31 90.10±0.36 90.11±0.27 90.10±0.41 90.07±0.45 90.08±0.46
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F.2. Sensitivity Analyses

In Figs. 7 and 8, we show the findings of our sensitivity studies in the remaining datasets that are not disclosed in our main
manuscript. GREAD-BS maintains performance even when T is increased, but GREAD-Z tends to show low performance
in Texas, Cornell, and Film.
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Figure 7. Sensitivity to T
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F.3. Training Time

We present the training time of GREAD and some selected baselines in Fig. 9. In general, our method’s training time is little
larger than those of the existing baselines because GREAD has an additional operation in its reaction term.

32 64 128 256
dim(H)

5

6

7

Ru
nt

im
e 

(m
s)

GRAND
BLEND
GREAD-BS
GREAD-F
GREAD-AC

GREAD-Z
GREAD-ST
GREAD-FB
GREAD-FB*

(a) Euler

32 64 128 256
dim(H)

100

150

200

Ru
nt

im
e 

(m
s)

GRAND
BLEND
GREAD-BS
GREAD-F
GREAD-AC

GREAD-Z
GREAD-ST
GREAD-FB
GREAD-FB*

(b) RK4

Figure 9. Average running time per epoch (ms) on Cora dataset when T = 3, τ = 1.0, SC, and OA.

F.4. Visualizations

In order to show the effectiveness of our proposed model more intuitively, we further conduct visualization tasks for all
datasets. We extract the output vector in the final layer of GREAD and visualize those vectors using t-SNE. Fig. 10 shows
the visualization results on each dataset. Different colors mean different ground-truth classes.
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Figure 10. Visualization of networks
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G. Additional Experimental Results on Synthetic Datasets
G.1. Ablation Studies on β

We perform the ablation study on β from the perspective of the Dirichlet energy. β can be either a scalar parameter (SC) or a
learnable vector parameter (VC). In Fig. 11, we show the evolution of the Dirichlet energy on the synthetic random graph
created from cSBM (Deshpande et al., 2018), and compare SC and VC for our proposed method. In the case of GREAD-F,
GREAD-AC, GREAD-ST, and GREAD-FB, VC conserves more energy than SC, so the reaction term multiplied with β
successfully mitigates the oversmoothing problem.
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Figure 11. Evolution of the Dirichlet energy on the synthetic random graph. The Y-axis is the logarithmic Dirichlet energy in each layer’s
output given a GNN of 40 layers. The gray area is the Dirichlet energy difference between SC and VC.
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H. Comparison with GRAND++ and GREAD-ST
The structures of GREAD-ST and GRAND++ are similar to each other since they commonly use a source term to alleviate
the oversmoothing problem. However, there exists a key difference. First, GRAND++ is written as follows:

f(H(t))GRAND++ := −LH(t) +C(0), (20)

where C(0) is a subset of H(0), which consists of only “trustworthy” nodes.

On the other hand, the formula of GREAD-ST is written as follows:

f(H(t))GREAD-ST := α(−LH(t)) + β(C(0)). (21)

In our GREAD-ST, the full source term H(0) is added to the reaction term. After that, β, a learnable parameter, determines
how much the source term is added. In other words, GREAD-ST learns how to utilize H(0) in the reaction term.

We compare GRAND++ (Thorpe et al., 2022) and GREAD-ST through experiments using the benchmark dataset in Table 22.
GREAD-ST shows superiority in all datasets. In Table 23, we also show the performance by varying the number of layers
for Cora. Our method is more robust to the oversmoothing problem than GRAND++.

Table 22. Comparison with GRAND++ and GREAD-ST

Model Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer Pubmed

GRAND++ 77.57±5.00 82.75±4.19 81.89±5.28 33.63±0.48 40.06±1.70 56.20±2.15 88.15±1.22 76.57±1.46 88.50±0.35

GREAD-ST 81.08±5.67 86.67±3.01 86.22±5.98 37.66±0.90 45.83±1.40 63.03±1.32 88.47±1.19 77.25±1.47 90.13±0.36

Table 23. Classification accuracy of GRAND++ and GREAD-ST with different depths on Cora dataset

Dataset Model Layer

2 4 8 16 32 64

Cora GRAND++ 87.38±2.01 88.15±1.22 87.89±1.13 87.73±0.96 87.52±1.28 87.73±1.30

GREAD-ST 88.17±0.38 88.31±0.39 88.39±0.83 88.12±0.53 88.47±1.19 88.37±0.98

I. Well-posedness of GREAD
The well-posedness1 of NODEs was already proved in Lyons et al. (2004, Theorem 1.3) under the mild condition of the
Lipschitz continuity. Almost all activations, such as ReLU, Leaky ReLU, SoftPlus, Tanh, Sigmoid, ArcTan, and Softsign,
have a Lipschitz constant of 1. Other common neural network layers, such as dropout, batch normalization, and other
pooling methods, have explicit Lipschitz constant values. Therefore, the Lipschitz continuity of f can be fulfilled in some
cases of GREAD, making the initial value problem in Eq. (7) a well-posed problem. However, some other functions are
locally Lipschitz continuous. For instance, GREAD with the soft adjacency matrix does not satisfy the globally Lipschitz
continuous property. Nevertheless, our experimental results show that GREAD can be properly trained and outperforms
many baselines.

1A well-posed problem means i) its solution uniquely exists, and ii) its solution continuously changes as input data changes.
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J. Statistical Testing on Cora Dataset
For proper statistical testing, we experiment more with 10 different seeds per split and perform statistical tests using a total
of 100 experimental results. The unpaired t-test of GRAND and GREAD-BS is shown in Table 24. As shown, GREAD-BS
has a clear improvement in all datasets compared to GRAND.

Table 24. Significance test between GRAND and GRAND-BS utilizing unpaired t-test

Texas Wisconsin Cornell Film Squirrel Chameleon Cora Citeseer Pubmed

GRAND 76.10±6.03 79.19±5.26 82.17±5.99 33.43±1.29 38.09±1.38 53.86±2.04 87.12±1.74 76.11±1.24 88.82±0.50

GREAD-BS 88.71±3.24 89.10±2.90 86.44±7.03 39.90±1.02 58.89±1.11 70.04±0.93 88.43±0.59 77.48±1.15 90.03±0.49

t-statistic 18.42 16.50 4.62 39.34 117.45 72.17 7.13 8.10 17.28
p-value <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
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