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Abstract
Compact representation of multimedia signals us-
ing implicit neural representations (INRs) has ad-
vanced significantly over the past few years, and
recent works address their applications to video.
Existing studies on video INR have focused on
network architecture design as all video infor-
mation is contained within network parameters.
Here, we propose a new paradigm in efficient
INR for videos based on the idea of strong lot-
tery ticket (SLT) hypothesis (Zhou et al., 2019),
which demonstrates the possibility of finding an
accurate subnetwork mask, called supermask, for
a randomly initialized classification network with-
out weight training. Specifically, we train multi-
ple supermasks with a hierarchical structure for a
randomly initialized image-wise video represen-
tation model without weight updates. Different
from a previous approach employing hierarchi-
cal supermasks (Okoshi et al., 2022), a trainable
scale parameter for each mask is used instead of
multiplying by the same fixed scale for all lev-
els. This simple modification widens the param-
eter search space to sufficiently explore various
sparsity patterns, leading the proposed algorithm
to find stronger subnetworks. Moreover, exten-
sive experiments on popular UVG benchmark
show that random subnetworks obtained from our
framework achieve higher reconstruction and vi-
sual quality than fully trained models with similar
encoding sizes. Our study is the first to demon-
strate the existence of SLTs in video INR models
and propose an efficient method for finding them.

1. Introduction
Implicit neural representation (INR) has become a promis-
ing tool to encode various multimedia signals in the last few
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Figure 1. Reconstruction quality of decoded YachtRide video. The
proposed random weight pruning method with learned scales
achieves higher reconstruction quality than the method with fixed
scale parameters as well as weight training of state-of-the-art im-
plicit video representation models (NeRV) at various compres-
sion ratios. The reconstruction quality and compression ratio are
measured by peak signal-to-noise-ratio (PSNR) and bits-per-pixel
(BPP) metrics. As shown in the example frame, our random sub-
networks encode fine details better (e.g., shroud and hand).

years. INR leverages on the possibility of using a neural net-
work to fit a continuous function fθ : Rm → Rn that maps
an m-dimensional input coordinates (e.g., pixel coordinates
for an image) to an n-dimensional signal of interest (e.g.,
RGB color of the pixel) with network parameters θ. This
continuous representation allows for compact and efficient
encoding of target signals in various applications such as
image (Sitzmann et al., 2020; Mehta et al., 2021; Chen et al.,
2021b) and video representations (Chen et al., 2021a; Li
et al., 2022; Zhang et al., 2022), 3D shapes (Genova et al.,
2019; 2020), 3D scenes (Sitzmann et al., 2019; Jiang et al.,
2020; Chabra et al., 2020; Peng et al., 2020) and 3D struc-
tures (Mildenhall et al., 2020; Niemeyer et al., 2020; Peng
et al., 2021; Oechsle et al., 2021).

Due to its compact nature, one suitable application of INR
is video representation. Indeed, encoding is saving video
frames into neural network architecture and parameters
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through model fitting. Once all video information is embed-
ded within the model parameters, all image frames can be
decoded by simple network inference, and the storing cost
is proportional to the number of network parameters.

Most prior works on implicit video representation have
focused on developing network architectures to improve
parameter efficiency. Early methods (Sitzmann et al., 2020;
Mehta et al., 2021) parameterize continuous mappings be-
tween spatial-temporal coordinates of each pixel and its
RGB color value using deep networks. However, these pixel-
wise representation approaches require enormous number
of parameters to accurately represent target signals (Sitz-
mann et al., 2020; Mildenhall et al., 2020). Recently, NeRV
(Chen et al., 2021a) proposes an image-wise implicit repre-
sentation architecture that directly outputs each image frame
given the associated frame index as input. It is shown that
this reformulation boosts reconstruction quality with smaller
amounts of parameters compared to the existing pixel-wise
representations. In this work, we build a new video rep-
resentation framework on the state-of-the-art image-wise
representation model of NeRV.

Designing parameter-efficient implicit video representation
can be also viewed as solving a model compression problem
(Chen et al., 2021a). One of the most intriguing findings
in network compression literature is strong lottery ticket
hypothesis (Zhou et al., 2019), which demonstrates the
feasibility of finding an accurate subnetwork in an over-
parameterized random neural network for image classifica-
tion tasks by training a weight mask called a supermask and
properly scaling weights. Inspired by this, we propose a
new image-wise implicit video representation framework
that constructs a subnetwork in a randomly initialized model
without weight training.

Our method is developed upon the algorithm of Okoshi
et al. (2022) that improves the idea of supermask by training
an overlay of multiple supermasks with a nested structure.
Specifically, the edge-popup algorithm (Ramanujan et al.,
2020) selects hierarchical subnetwork masks in a randomly
initialized NeRV model (Chen et al., 2021a) without weight
updates. Unlike Okoshi et al. (2022), a learnable scale pa-
rameter for each supermask is used instead of multiplying
by the same fixed scale for all levels. We empirically demon-
strate that this simple modification expands the parameter
search space to sufficiently explore different types of spar-
sity patterns, leading the proposed algorithm to find better
subnetworks (see Figure 1 and Table 1). We note that this is
the first work to show the presence of strong lottery tickets
in an implicit video representation model and introduce an
efficient method for finding them.

Unlike existing implicit video representation methods (e.g.,
Sitzmann et al., 2020; Chen et al., 2021a; Li et al., 2022),
it is not necessary to save model weights in our framework.

In fact, encoded videos can be reconstructed from smaller
amount of data. We only need to store the random seed
used at train time, final binary supermasks and a few scale
parameters to recover the compressed video.

Extensive experiments are performed on the popular UVG
benchmark dataset (Mercat et al., 2020) for video compres-
sion. We demonstrate that the proposed algorithm improves
the reconstruction quality of generated random subnetworks
over that obtained from existing methods of finding super-
masks in classification models. Moreover, the subnetworks
selected by our framework perform better than fully trained
models with similar encoding sizes, even though our method
does not require weight training.

In summary, we made the following contributions:

• We propose a novel video representation framework
that is based on strong lottery tickets in an INR model.
This is the first work to show the existence of random
subnetworks for non-classification tasks that output
high resolution images (e.g., full HD images).

• We present a new algorithm to find strong subnetworks
from randomly initialized video INR models without
weight training.

• We show that video encoding quality of the random
subnetworks obtained from our method outperforms
that of counterpart networks selected by existing algo-
rithms for finding supermasks in classification models
as well as the performance of fully trained implicit
video representation networks under various video se-
quences and compression ratio settings.

2. Related Work
Implicit Video Representation: Recently, there has been
a growing interest in video INR, the idea of parametrizing
video signals with neural networks. Most prior studies on
implicit video representation have focused on developing
efficient network architectures to improve encoding and de-
coding speed and/or compression ratio (e.g., Chen et al.,
2021a; Li et al., 2022; Kim et al., 2022; Chen et al., 2022).
The pioneering approaches (Sitzmann et al., 2020; Milden-
hall et al., 2020) use pixel-wise representation that maps
each spatial-temporal coordinate to its pixel value. A follow-
up work, NeRV (Chen et al., 2021a), proposes an alternative
image-wise representation model that directly outputs an im-
age given the corresponding frame index as input. With this
simple design idea, NeRV achieves state-of-the-art quality
of video encoding. In this paper, we build a new framework
for implicit video representation on this architecture.

Neural Network Pruning: The goal of neural network
pruning is to simplify a large model by reducing the num-
ber of parameters without significant deterioration in its
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Figure 2. Overview of the proposed video representation framework. In the encoding phase, our video representation framework finds
multiple supermasks and corresponding scale parameters in an implicit video representation network without training its weights. In the
forward path, scores s of the randomly initialized network weights w are sorted, and N masks are assigned to the weights using step
functions hkn ’s. The threshold scores of the step functions are determined by pre-defined densities kn’s of nonzeros in the supermasks.
The masks are then scaled by learnable parameters αn’s and accumulated to calculate the output of the network. In the backward path, the
mean-squared error loss between the ground truth video frames and the network outputs is computed, and only the scores s and scales
αn’s are updated by back-propagation. As all network parameters are fixed and random, we can recover the encoded images by simple
network inference using random seed used at train time, N final supermasks and learned scale parameters αn’s in the decoding phase.
This differs from the existing implicit video representation methods, which require storing model weights and biases.

performance. The traditional iterative pipeline of “overfit,
prune, re-train” greatly reduces computation at inference,
but involves considerable computational cost at training.
To alleviate this problem, a substantial body of work has
been proposed (see Hoefler et al., 2021, for survey). Lottery
Ticket Hypothesis (Frankle & Carbin, 2018) is a recent and
noteworthy discovery in this area. It suggests that an over-
parameterized dense neural network, initialized randomly,
includes a subnetwork that is initialized in such a way that
it can achieve similar level of test accuracy as the original
network when trained separately.

Strong Lottery Tickets: Zhou et al. (2019) discovers that
lottery tickets can be found without weight updates. This is
referred to as Strong Lottery Ticket Hypothesis, and the cor-
responding binary mask for subnetwork selection is called
supermask. A recent work, Hidden Networks (Ramanujan
et al., 2020), improves the algorithm of Zhou et al. (2019)
by removing its stochasticity. A subsequent study, Multi-
coated Supermasks (Okoshi et al., 2022), further refines
Hidden Networks by training multiple nested supermasks.
Moreover, there has been considerable research on the the-
ory and algorithms related to the strong lottery ticket idea
(see e.g., Malach et al., 2020; Pensia et al., 2020; Orseau
et al., 2020; Diffenderfer & Kailkhura, 2021; Sreenivasan
et al., 2022a;b). Despite being popular, there are currently
limited findings on non-classification tasks. While a re-
cent study (Yeo et al., 2023) has shown the existence of
strong lottery tickets in generative models, their ability to
produce high-resolution images is not yet satisfactory. In
this paper, we move towards developing an implicit neural
video representation framework that can effectively process
high-resolution images by leveraging strong lottery tickets.

3. Method
3.1. Framework Overview

This section proposes a new video representation frame-
work that finds strong lottery tickets (SLTs) in a video INR
network (see Figure 2 for overall architecture). We use
an image-wise representation model of Chen et al. (2021a)
fθ : R → R3×H×W that maps a frame index to the asso-
ciated RGB image with network parameters θ. Our goal
is to find hierarchical multi-level supermasks and proper
scale parameters such that the resulting subnetwork fits to
the target video without weight training, and this process
corresponds to video encoding. Once model fitting is done,
decoding is simple network inference as its weights and
biases encode all video frames. Different from existing
INR approaches (e.g., Sitzmann et al., 2020; Chen et al.,
2021a; Li et al., 2022), we do not need to save the model
parameters for decoding as a random number generator can
recover untrained weights and biases, leading to significant
reduction in model size. In the next section, we describe our
algorithm for finding SLTs in the video INR model.

3.2. Multi-level Supermasks with Learnable Scales

Multi-level Supermasks: Our algorithm is developed upon
Okoshi et al. (2022) that proposes a method for finding SLTs
using multi-level supermasks with a hierarchical structure.
For completness, we recap details of multi-level supermasks.
The main idea is to score the importance of each weight and
apply the edge-popup algorithm (Ramanujan et al., 2020) to
pick weights with high scores according to a pre-determined
density at each supermask level. To be specific, scores
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s = {si}Dl
i=1 are assigned for randomly initialized weight

parameters wrand = {wrand
i }Dl

i=1 in each layer (say, layer l)
of the network. Here, Dl denotes the number of weights in
the l-th layer. At each forward path, scores, s = {si}Dl

i=1,
are sorted in the decreasing order:

sort(s) = (s′1, s
′
2, · · · , s′Dl

)

s.t. |s′1| ≥ |s′2| ≥ · · · ≥ |s′Dl
| , (1)

where the operator |·| denotes the absolute value and s′i’s are
ordered scores. Suppose pre-defined densities of nonzero
elements for N supermask levels are given by {kn}Nn=1

where 1 > k1 > · · · > kN > 0. Then for each level n,
referred to as “coat n” in Okoshi et al. (2022), the weight
supermask is assigned using a step function with a threshold
score stn :

hkn
(si) =

{
1 if |si| ≥ stn
0 otherwise

(2)

for each layer. Here, the threshold score for layer l is com-
puted as stn = |s′tn | where the associated index

tn = ⌊kn ×Dl⌋ (3)

is used to select the top-100kn% scores |si| ≥ stn . If
we denote the set of nonzero indices in a supermask with
density k by

Hk = {i |hk(si) ̸= 0} , (4)

then the following inclusion relation holds:

ki < kj ⇒ Hki ⊆ Hkj . (5)

This implies that nonzero indices of a higher level super-
mask are a subset of those of a lower level supermask since
k1 > · · · > kN . In our experiments, the first density k1 is
set to be the target proportion of nonzero weights, and the
other densities {kn}Nn=2 are determined by linear method
of Okoshi et al. (2022). As typically done in model com-
pression, we do not prune random biases in the model.

Overlay of Supermasks with Learnable Scales: Given
supermasks for all levels of densities, we accumulate them
to calculate the output of the network. Here, we incorporate
scale parameters α = {αn}Nn=1 to the mask accumulation
rather than training a simple overlay of the supermasks
as done in Okoshi et al. (2022). Specifically, we use the
following masked weights w = {wi}Dl

i=1:

wi = wrand
i

N∑
n=1

clipϵ(αn)hkn(si) , (6)

where ϵ > 0 is a small positive constant. Here, α1 is set to 1
and {αn}Nn=2 are trainable parameters. For the stability of
training, αn’s are clipped to be in the interval of [ϵ,∞) so
that the scale of each mask is positive. From this, the output
of neuron v in the l-th fully connected layer in the forward
pass is, for example, computed by

Iv =
∑

u∈V(l−1)

wrand
uv Zu

N∑
n=1

clipϵ(αn)hkn
(suv) + brandv

(7)

where wrand
uv is the randomly initialized weight of edge con-

necting nodes u and v with score suv, brandv is the random
bias at node v, Zu is the output of node u, and V(l−1) is

Table 1. Effectiveness of scale learning in the proposed framework. Random subnetworks are selected to fit Bosphorus (Bospho),
Jockey, ReadySteadyGo (Ready) and YachtRide (Yacht) videos with fixed and learnable scale settings. The performance is measured
by reconstruction (PSNR) and visual quality (MS-SSIM). Bold indicates the best result, and ↑ denotes higher values are better. The
first column (Params) is the number of parameters in each dense model, the number in the second column (Method) is the number of
supermasks. Employing multiple supermasks generally yields better performance. Adding scale parameters further improves video
compression quality for most combinations of BPP and video sequence.

Params Method BPP PSNR (↑) MS-SSIM (↑)
Bospho Jockey Ready Yacht Bospho Jockey Ready Yacht

24.4M
1-Fixed 0.020 28.56 22.69 20.69 25.73 0.862 0.761 0.680 0.801
3-Fixed 0.025 32.75 28.93 23.00 27.40 0.927 0.850 0.773 0.859

3-Learned 0.025 32.80 29.80 23.77 27.71 0.929 0.862 0.797 0.863

36.5M
1-Fixed 0.029 31.92 27.40 21.72 26.70 0.913 0.823 0.724 0.838
3-Fixed 0.037 32.87 30.44 24.17 28.09 0.935 0.875 0.812 0.878

3-Learned 0.037 33.61 31.16 24.81 28.38 0.940 0.886 0.832 0.882

59.1M
1-Fixed 0.047 32.29 27.66 22.20 26.78 0.920 0.828 0.743 0.839
3-Fixed 0.060 34.08 31.67 25.40 28.97 0.945 0.892 0.848 0.898

3-Learned 0.060 34.52 32.09 26.03 29.14 0.950 0.899 0.865 0.899

87.7M
1-Fixed 0.070 32.75 28.13 22.74 27.31 0.927 0.836 0.764 0.857
3-Fixed 0.089 34.52 32.22 26.42 29.73 0.954 0.900 0.872 0.911

3-Learned 0.089 35.29 33.00 26.14 30.00 0.957 0.912 0.873 0.915

190.2M
1-Fixed 0.153 33.01 29.81 23.99 27.96 0.933 0.865 0.807 0.873
3-Fixed 0.192 36.46 33.31 28.64 30.92 0.967 0.918 0.915 0.928

3-Learned 0.192 35.63 32.69 28.85 30.86 0.960 0.908 0.918 0.929
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Figure 3. Correlation with final supermask. For each epoch of running the proposed framework with three supermasks, we compute
Pearson correlation coefficients between the final supermask (at 200 epoch) and the current supermask (from 50 epochs) and plot them.
The first three plots are results for the three levels, and the last one is obtained from the accumulated total mask (scale applied version).
For both fixed and learnable scale approaches, the subnetworks are selected to fit YachtRide video using our framework with supermask
densities (k1, k2, k3) = (0.2, 0.0595, 0.0129). When considering all plots, it is observed that pruning with learnable scales converges on
the final mask more slowly while the speed gap at each level is slightly different.

the set of nodes in (l − 1)-th layer. When αn’s are all fixed
to be ones, (7) is identical to the corresponding output of
the algorithm in Okoshi et al. (2022). Also, if N = 1, we
recover the method of Ramanujan et al. (2020). The scale
parameters α = {αn}Nn=1 are shared across all layers in
the network, so the number of additional trainable param-
eters is N − 1 in our framework compared to Okoshi et al.
(2022). In the backward path, the mean-squared error loss
between the ground-truth videos and the network outputs is
computed and only the score si’s and scale αn’s are updated
by back-propagation. Here, the straight-through estimator
(Bengio et al., 2013) is used to calculate the gradient of mask
function (2) as in Ramanujan et al. (2020) and Okoshi et al.
(2022). A pseudo code of training the proposed algorithm
is described in Appendix A.1.

3.3. Encoded Model Size

In our framework, it is sufficient to only store the random
seed used at train time, final supermasks, and scale parame-
ters for recovering the subnetwork weights (6). Untrained
network parameters can be reproduced by a random number
generator using the random seed. Because of the hierarchi-
cal structure of supermasks (5), we store the location of the
nonzero elements of the n-th supermask in the (n− 1)-th
supermask following Okoshi et al. (2022). If the random
seed and N − 1 scale parameters {αn}Nn=2 are saved in B
bits, then the total number of bits of unary encoded multi-
level supermasks with learned scales for the l-th layer with
Dl weights is computed by

{
Dl +B for N = 1(
Dl +

∑N
n=2⌊kn−1 ×Dl⌋

)
+B + (N − 1)B for N > 1

(8)
where the first and second terms are for the weight masks
and random seed, and the third term for N > 1 corresponds

to the bits for the learned scale parameters {αn}Nn=2. We
note that the proposed algorithm incurs only (N − 1)B
bits of additional storing costs compared to the method of
Okoshi et al. (2022), and we found N = 3 works quite well
in our experiments.

4. Experimental Evaluation
This section provides experimental evaluation of the pro-
posed video representation framework. We first show the su-
periority of our prune-at-initialization algorithm with learn-
able scales under the same network architecture settings in
Sections 4.2, 4.3, and 4.4. We also analyze optimal frame-
work setups in Sections 4.5 and 4.6 and perceptual quality
of the decoded videos in Section 4.7. We compare our ap-
proach with state-of-the-art video compression methods in
Section 4.8 and provide encoding time in Section 4.9.

4.1. Implementation Details

Dataset: Following prior video INR methods (e.g., Chen
et al., 2021a; Li et al., 2022), we demonstrate the effec-
tiveness of our framework on UVG dataset (Mercat et al.,
2020), a widely used benchmark for video compression.
UVG dataset consists of 7 video sequences: Beauty, Bospho-
rus, HoneyBee, Jockey, ReadySteadyGo, ShakeNDry and
YachtRide. We extract RGB frames from the original YUV
videos with a resolution of 1920×1080 (see Appendix A.2).

Experimental Settings: We adopt NeRV architectures
(Chen et al., 2021a) as our dense models (see Appendix A.3
for network specifications of authors’ example models). The
network weights are randomly initialized using Kaiming
Normal distribution (He et al., 2015). Throughout our exper-
iments, we use 3 levels of supermasks with k1 = 0.2, and
the other densities {kn}3n=2 are chosen by linear method
of Okoshi et al. (2022) unless specified. Further training
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Figure 4. Comparison between proposed prune-at-initialization
method and full weight training on Bosphorus, Jockey, ReadyS-
teadyGo and YachtRide sequences. Although our method is based
on random weights, the resulting subnetworks significantly outper-
form fully trained dense models at varying BPPs for all sequences.

details are provided in Appendix A.4.

Metrics: To quantify the reconstruction quality of videos,
we use peak signal-to-noise ratio (PSNR) that is a com-
monly used metric in video compression. For visual quality
assessment, decoded images are evaluated by MS-SSIM
(Wang et al., 2003). We also adopt bits-per-pixel (BPP) to
measure the compression ratio and use the formula of Chen
et al. (2021a) for calculating BPP:

Total Number of Bits for Storing Encoded Model
Total Number of Pixels

. (9)

The numerator of (9) is obtained from (8) for our models.
The quality of video encoding is tested on multiple BPPs
(see Table 4 in Appendix A.3 for example values).

4.2. Effectiveness of Scale Learning
As our method is the first work to introduce prune-at-
initialization in neural video representation networks, there
is currently no existing reference framework based on ran-
dom weights for comparison. Instead, we compare our
method with an alternative approach that directly applies
the pruning algorithm of Okoshi et al. (2022) for finding
SLTs in classification models where scale αn for each level
in (6) is fixed at one. For both approaches, we use 3 levels
of supermasks (N = 3) and also report the performance of
single supermask case. Specifically, five randomly initial-
ized example networks (ID 1-5 in Table 4) are pruned under
three settings: 1-level with fixed scale, 3-levels with fixed
scale and 3-levels with learnable scale. Then, we summa-
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Figure 5. Comparison between the proposed random weight prun-
ing and conventional pruning pipeline (“overfit, prune, re-train”)
on implicit video representation models fitted to YachtRide video.
The random subnetworks obtained from our layer-wise (local)
pruning framework significantly outperform those from the con-
ventional global pruning method at varying BPPs.

rize the PSNR values for different BPPs computed on four
UVG video sequences in Table 1. It is shown that using
multiple supermasks generally yields higher quality of video
compression, which is consistent with results reported in
Okoshi et al. (2022) for classification networks. In addition,
adding scale parameters further improves PSNR for most
combinations of BPPs and video sequences with a negligible
increase in compression ratios (see Appendix B). We believe
that the learned scale setup can achieve higher performance
by leveraging per-setting hyperparameter search.

Our intuition is that the proposed method with learnable
scales has a wider parameter search space that can fully
explore different sparsity patterns, leading the algorithm to
find stronger subnetworks. To see this, we compute Pearson
correlation coefficients between the final supermasks and
supermasks at the end of each training epoch and plot them
in Figure 3 as in Tai et al. (2022). For every supermask level,
we find that pruning with learnable scales converges to the
final mask more slowly while the speed gap at each super-
mask level is a bit different. The same pattern is observed
for the accumulated total supermask with scales. This rep-
resents sufficient exploration of diverse sparsity patterns,
and as a result the resulting subnetwork with learned scales
achieves higher video encoding quality. In this experiment,
the random subnetwork selected from the dense model with
14.3M parameters (ID 0 in Table 4) using learned scales
attains higher PSNR of 26.72dB on YachtRide video. The
corresponding value of the pruned model obtained with
constant scale is 26.40dB.

4.3. Comparison with Fully Trained Dense Models
We now compare weight training and our method. We use
fully trained dense NeRV models (Chen et al., 2021a) as
baselines. In fact, BPPs of the example dense models pro-
vided by the authors are significantly larger than those for
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Table 2. Effect of the number of supermasks N on PSNR and BPP
when pruning the model with 59.1M parameters using the proposed
framework. Given the first supermask density k1 = 0.2, highest
performance is obtained with N = 3 on HoneyBee and Jockey.

N {kn}Nn=1 BPP PSNR (dB)
HoneyBee Jockey

1 0.2 0.0474 36.03 27.66
2 0.2,0.0288 0.0569 37.22 29.67
3 0.2,0.0595,0.0129 0.0597 38.20 32.09
4 0.2,0.0830,0.0288,0.0083 0.0622 37.90 28.72
5 0.2, 0.1003, 0.0450, 0.0180, 0.0064 0.0647 37.11 28.51

the subnetworks obtained from our method (see Table 4).
To ensure fair evaluation, we build dense networks with
the same architecture to similarly match the BPPs of our
models (see Appendix C for details). Figure 4 demonstrates
that our subnetworks with random weights significantly out-
perform the state-of-the-art trained dense models at various
compression ratio settings.

4.4. Comparison with Fully Trained Sparse Models
We consider fully trained sparse NeRV models (Chen et al.,
2021a) as baselines. The sparse networks are obtained from
authors’ official implementation of the standard model com-
pression (train, prune, and re-train) using “global” unstruc-
tured pruning in pytorch library. We use the first 5 exam-
ple networks (ID 0-4 in Table 4) as dense networks. For fair
comparison, the fraction of weights remaining after pruning
is set to 20% for both baseline and our approaches. Figure 5
shows the video encoding quality of our pruning method
versus the baseline on YachtRide video sequence. Here,
we only plot PSNR values of the reference models close
to BPP interval of our subnetworks. The subnetworks ob-
tained from our framework perform better than those from
the reference approach even though our method is based on
layer-wise (“local”) pruning of random weights. Additional
results on a different datasets are presented in Appendix D.

4.5. Effect of Number of Supermasks on Performance
This section evaluates the effect of the number of super-
masks on PSNR and compression ratio (BPP) in the pro-
posed framework. Recall that given the first level of density
k1, the other proportions of the remaining weights {kn}Nn=2

are determined by linear method of Okoshi et al. (2022). We
empirically probe the best N for fixed k1 = 0.2 using the
example model with 59.1M parameters (ID 3 in Table 4).
Table 2 shows the results for N ∈ {1, 2, 3, 4, 5} on Honey-
Bee and Jockey videos. While BPP increases monotonically
with the number of supermask levels N , the highest per-
formance is obtained with N = 3 requiring 4.96% bigger
BPP than the one with N = 2. We speculate that this is
an exploration-exploitation trade-off of having the widest
search space at N = 5 and smallest search space at N = 1.
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Figure 6. Effect of total weight density on reconstruction perfor-
mance. For various densities of the non-pruned weights k1 ∈
{0.025, 0.05, 0.1, 0.2, 0.3, 0.4}, we plot PSNR values of the cor-
responding random subnetworks selected from our framework.
With k1 ∈ {0.2, 0.3, 0.4} we obtain reasonable quality, and the
best performance is shown at k1 = 0.3.
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Figure 7. Perceptual quality of decoded YachtRide video. MS-
SSIM for variety of models from different video compression
frameworks are reported to evaluate visual quality of the decoded
images. The proposed pruning method of random weights with
learned scale achieves higher MS-SSIM values than weight train-
ing as well as the prune-at-initialization algorithm with fixed scale.

4.6. Effect of Total Weight Density on Performance
We investigate the relationship between the proportion of
non-pruned weights (i.e., the density of the first supermask
k1) and video encoding quality of the resulting subnetwork
in our framework. To see this, we prune the model with
59.1M parameters (ID 3 in Table 4) for varying the values
of k1 ∈ {0.025, 0.05, 0.1, 0.2, 0.3, 0.4}. We did not exploit
larger densities as a certain level of over-parameterization
is required to achieve good performance (e.g., Pensia et al.,
2020). Figure 6 shows that descent quality is obtained
with k1 ∈ {0.2, 0.3, 0.4} with a maximum at k1 = 0.3.
Aggressive pruning deteriorates the performance as demon-
strated in cases of k1 ∈ {0.025, 0.05, 0.1}. The results for
k1 = 0.4 suggest that we need to prune sufficiently many
weights to lessen the impact of using random parameters.
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(a) Ground Truth (b) Proposed (learned scales), BPP=0.119 (c) Trained Dense, BPP=0.128

(d) Ground Truth (e) Proposed (learned scales), BPP=0.060 (f) Trained Dense, BPP=0.064

Figure 8. Reconstruction results on ShakeNDry and ReadySteadyGo videos. The subnetworks selected by the proposed method with
learned scales better encode fine details (e.g., water drops and horse legs).
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Figure 9. Comparison with state-of-the-art learning-based video
compression methods (DVC, HEVC and NVP) and video com-
pression standards (H.264 and HEVC). * indicates that results are
taken from DVC. Our random subnetworks show decent perfor-
mance compared to existing video compression frameworks that
consist of carefully optimized complex modules.

4.7. Perceptual Quality
We now demonstrate how the encoded images are perceptu-
ally similar to the original images by measuring MS-SSIM.
Here, we use three types of baseline methods of Section 4.2
(prune-at-initialization with single fixed scale and 3 fixed
scales) and Section 4.3 (training dense models). Figure 7
and Table 1 show that the subnetworks selected from the
proposed pruning framework with learned scale generally
achieve highest visual quality at various BPPs. In Figure 8,
we see that the proposed method of learned scales better
captures fine details in dynamic scenes. More visualization
results are provided in Appendix E.

4.8. Comparison with Other Compression Methods
We compare compressed videos obtained from the proposed
framework and state-of-the-art learning-based video com-

pression methods of DVC (Lu et al., 2019), HLVC (Yang
et al., 2020), and NVP (Kim et al., 2022) and video compres-
sion standards, H.264 (Wiegand et al., 2003) and HEVC,
(Sullivan et al., 2012) on all video sequences of UVG dataset.
Following prior works (e.g., Kim et al., 2022), results are
averaged over the 7 video sequences. Figure 9 shows that
the proposed approach works decently compared to existing
top-performing methods even if our subnetworks are based
on random weights. Admittedly, there exists a performance
gap between ours and the existing video compression algo-
rithms. This is because our core objective is not to construct
optimal video compression architecture itself whereas the
prior methods consist of carefully designed complex mod-
ules such as motion estimation and entropy coding tailored
for compression. Also, we believe the proposed prune-at-
initialization has room for improvement, such as developing
better neural networks for video representation and opti-
mizing initialization methods, which is our future research
direction. More video-wise comparison results with video
compression standards are illustrated in Appendix F.

4.9. Encoding Time

This section provides encoding time of the proposed method
and baseline NeRV models (Chen et al., 2021a). We used a
single NVIDIA A100 GPU (80GB) and 4 batches through-
out this experiment. For both approaches, 6 example models
(ID 0-5) in Table 4 are served as dense models. Our frame-
work is run for 200 epochs under 3-level supermask setup
with a total density of k1 = 0.2. NeRV models are trained
for 200 epochs and then pruned for 50 epochs using the
conventional model compression pipeline to achieve the
same density on authors’ official implementation. Encoding
a video of 600 frames at 1920x1080 resolution takes 67-351
minutes (ID 0-5) using our framework with learnable scale
and 64-314 minutes (ID 0-5) with fixed scale. On the other
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hand, it takes 75-335 minutes (ID 0-5) for compression
of NeRV models. Our method is competitive in terms of
encoding time compared to weight training.

5. Conclusion
We introduce a new implicit video representation framework
that finds SLTs in an image-wise representation model with-
out weight training. Extensive experiments verify that the
random subnetworks selected by the proposed algorithm
outperform those obtained from existing methods of finding
SLTs in classification networks as well as fully trained mod-
els with the same encoded model sizes under various video
sequences and compression ratio settings. To the best of our
knowledge, this is the first work to show the existence of
random subnetworks for non-classification tasks that output
full HD size videos. We hope our work will stimulate inter-
est in exploring new paradigm for video representations and
algorithms for finding SLTs in non-classification networks.
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A. Implementation Details
A.1. Pseudo Code of the Proposed Method

We provide a pseudo code of training our framework with a single batch in Algorithm 1. We note that our networks do not
contain batch normalization layers, and all random weight and bias parameters in the networks are not updated at train time.
This differs from the previous method of Okoshi et al. (2022) for finding SLTs in classification networks where affine batch
normalization layers are used (i.e., scale and bias parameters in batch-norm layers are updated).

Algorithm 1 Multi-level Supermasks with Learnable Scales

Input: Video with T frames {xt}Tt=1, neural network f(·;w, b) with weight and bias parameters w and b, where the
weight parameter vector is D =

∑
l Dl dimensional with Dl weights for layer l, N supermasks with densities {kn}Nn=1,

number of iterations E, learning rate η
Output: Supermasks m = {mn}Nn=1 with mi ∈ [0, 1]D and scale parameters α = {αn}Nn=1 with αn > 0
Randomly initialize weight wrand ∈ RD and bias brand
Randomly initialize score s ∈ [0, 1]D

for e = 1 to E do
s′ ← sort(s) /* layer-wise sorting*/
for n = 1 to N do
stn ← s′q where q ← ⌊kn ×Dl⌋ /* for each layer l with Dl weights, top-⌊kn ×Dl⌋ thresholding*/
mn ← hkn

(s) /* step function hkn
with threshold stn is applied to elements of s */

end for
w ← wrand ⊙

∑N
n=1 clipϵ(αn)mn /* ⊙ is an element-wise multiplication operator */

x̂t ← f(t; w, brand)
loss← MSE(x̂t, xt)
/* use straight-through estimator for calculating gradients of hkn

*/
s← s− η∇sloss
α← α− η∇αloss

end for

A.2. UVG Dataset

Following prior works (e.g., Chen et al., 2021a), we use ffmpeg (Tomar, 2006) to extract RGB frames form original YUV
videos:

ffmpeg -f rawvideo -s 1920x1080 -pix_fmt yuv420p -probesize 32M -framerate 120
-i <SEQ>_1920x1080_120fps_420_8bit_YUV.yuv
-sws_flags bilinear+accurate_rnd+full_chroma_int -y <SEQ>/%04d.png

where <SEQ> is the input video sequence name.

A.3. NeRV

Network Architecture: We adopt NeRV (Chen et al., 2021a), an image-wise representation model, to represent a video
V = {xt}Tt=1 with a mapping fθ : R→ R3×H×W parameterized by the network parameters θ. We recap its architecture
details for completeness. Here, T , H and W are the number of video frames and height and width of the RGB frame,
respectively. For each video, the input is a frame index t and the output fθ(t) fits to the corresponding image xt ∈ R3×H×W .
The network fθ first maps the normalized frame index t ∈ [0, 1) to a positional encoding vector (e.g., Mildenhall et al.,
2020; Tancik et al., 2020): (

sin(b0πt), cos(b0πt), · · · , sin(bl−1πt), cos(bl−1πt)
)
, (10)

where b and l are hyperparameters. Then a 2-layer multi-layer perceptron (MLP) takes the positional embedding as input
and outputs a small feature map. Finally, the feature map is gradually transformed into the original image size by multiple
NeRV blocks that consist of convolutional, PixelShuffle (Shi et al., 2016) and activation layers.

Hyperparameters: For our experiments with UVG dataset (Mercat et al., 2020), hyperparameters b and l in the positional
embedding (10) are set to be 1.25 and 80, respectively, and the output channel of the first layer in the MLP is 512. We use
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the upscale factors (5, 3, 2, 2, 2) in NeRV blocks, and GELU (Hendrycks & Gimpel, 2016) activation as suggested by the
authors. NeRV architecture is parameterized by (C1, C2) as described in Table 3, so we can obtain models with different
sizes by changing these values. Table 3 is directly taken from Appendix A.1 in Chen et al. (2021a).

Table 3. NeRV architecture for UVG dataset with a frame resolution 1920× 1080.

Layer Modules Upscale Factor Output Size
(C ×H ×W )

0 Positional Encoding - 160× 1× 1
1 MLP and Reshape - C1 × 16× 9
2 NeRV block 5× C2 × 80× 45
3 NeRV block 3× C2/2× 240× 135
4 NeRV block 2× C2/4× 480× 270
5 NeRV block 2× C2/8× 960× 540
6 NeRV block 2× C2/16× 1920× 1080
7 Head layer - 3× 1920× 1080

Compression Ratio: The formula for calculating compression ratios of trained NeRV models is described in its official
implementation. Suppose a model with D parameters is trained with B bit precision to fit a video with T frames of an
H ×W resolution. If the proportion of remaining weights is k after pruning, then the BPP is computed by

Total Number of Bits for Storing Encoded Model
Total Number of Pixels

=
(Number of Remaining Weights and Biases)× (Parameters Bits)

Total Number of Pixels

=
(D × k)×B

T ×H ×W
, (11)

where B = 32 as the model is trained in full precision (FP32) in our experiments.

Example Models: Authors provide 7 example networks with different number of parameters. In our experiments, we use 6
of them with (C1, C2) equal to (48, 384), (64, 512), (128, 512), (128, 768), (128, 1024), and (192, 1536). The number of
parameters for the six models is summarized in Table 4.

Table 4. Specifications of 6 example NeRV models for UVG experiments. The fourth column (Params) is the number of parameters in
each dense model (100% remaining). We summarize BPPs of sparse models after pruning 80% of the original. The sixth column comes
from conventional pruning method (overfit, prune, and re-train). The last two columns are BPPs of pruned models obtained from the
proposed approach with learnable scale and the total density k1 = 0.2 for 1-supermask and 3-supermask setups. The BPP calculation is
based on full precision models (FP32) fitted to a video sequence that consists of 600 frames with a resolution of 1920× 1080.

BPP

ID C1 C2 Params
NeRV (trained) Proposed (random)

(100% remaining) (20% remaining) 1-supermask 3-supermask
(k1 = 0.2) (k1 = 0.2)

0 48 384 14.6M 0.376 0.076 0.012 0.015
1 64 512 24.4M 0.627 0.125 0.020 0.025
2 128 512 36.5M 0.938 0.188 0.029 0.037
3 128 768 59.1M 1.519 0.304 0.047 0.060
4 128 1024 87.7M 2.256 0.451 0.070 0.089
5 192 1536 190.2M 4.891 0.978 0.153 0.193

A.4. Training Details of the Proposed Framework

We train our framework for 200 epochs using Adam optimizer (Kingma & Ba, 2015) with a cosine learning rate scheduler
and 4 batches on a single NVIDIA A100 GPU (80GB). Multiple learning rates ranging from 0.015 to 0.200 are swept over
and the best results are reported. Throughout our experiments, networks are trained in full precision (FP32). We do not
consider quantization as many elements of positional encoding vector (10) in the first stage of NeRV network (Chen et al.,
2021a) vanish in lower precision system.
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B. Comparison of Compression Ratios between Fixed and Learned Scales
We summarize compression ratios (BPPs) of the subnetworks obtained from the proposed framework with fixed and learned
scales. We use the 6 example models provided in Table 4 as dense networks in our experiments with UVG dataset (Mercat
et al., 2020). In order to accurately show BPPs, the number of parameters in each dense model and corresponding BPP are
expressed to 6 and 7 decimal places, respectively. As in Table 5, the increase in BPP due to additional scale parameters is
negligible.

Table 5. BPPs of pruned models obtained from our framework with fixed and learned scales on UVG experiments. The fourth column
(Params) is the number of parameters in each dense model. We summarize BPPs of subnetworks with total density k1 = 0.2 selected by
the proposed approach with fixed and learned scale under 3-supermask setup. The BPP calculation is based on full precision models
(FP32) fitted to a video sequence that consists of 600 frames with a resolution of 1920× 1080. BPPs are expressed up to 7 decimal places
to accurately show the amounts of increase introduced by additional scale parameters.

BPP
ID C1 C2 Params 3-supermask (k1 = 0.2)

fixed scale learned scale
0 48 384 14.630443M 0.01479122 0.01479127
1 64 512 24.364259M 0.02463866 0.02463872
2 128 512 36.464867M 0.03687914 0.03687919
3 128 768 59.052115M 0.05973678 0.05973683
4 128 1024 87.721923M 0.08875198 0.08875203
5 192 1536 190.155427M 0.19242292 0.19242297

C. Experimental Settings for Fully Trained Dense Models
As shown in Table 4, there is no overlap between BPP range of example dense NeRV models (Chen et al., 2021a),
[0.376, 4.891], and the corresponding range of our default setup, [0.015, 0.193]. For fair comparison, we build new NeRV
networks using the modules in Table 3 to similarly match the range of [0.015, 0.193] by changing (C1, C2). The constructed
architectures are provided in Table 6. We train the constructed dense models for 200 epochs using authors’ optimal
hyperparameters.

Table 6. Specifications of constructed dense NeRV models for UVG experiments. The fourth column (Params) is the number of parameters
in each network. We provide BPP values of the dense models trained in full precision (FP32) to fit a video that consists of 600 frames
with a resolution of 1920× 1080.

BPP
ID C1 C2 Params NeRV (trained)

(100% remaining)
A 6 48 0.7M 0.018
B 8 64 1.0M 0.025
C 16 64 1.7M 0.043
D 16 128 2.5M 0.064
E 24 144 3.6M 0.093
F 48 192 7.4M 0.191
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D. Results on Different Datasets
D.1. Results on Big Buck Bunny Video

We consider fully trained sparse NeRV models (Chen et al., 2021a) as baselines and compare them with the our subnetworks
on Big Buck Bunny dataset from scikit-video. The baseline networks are obtained from the conventional model
compression pipeline that consists of overfitting, pruning and finetuning steps. BPPs of example models (NeRV-M and
NeRV-L) provided by the authors are significantly larger than our subnetworks, so we build two models, say NeRV-XXS
and NeRV-XS, to match the BPPs close to those of our subnetworks (see Table 7). Figure 10 shows that the proposed
pruning method of random weights with learned scales achieves higher PSNR than weight training as well as the prune-at-
initialization algorithm with fixed scale parameters.

Table 7. Specifications of NeRV models for Big Buck Bunny experiment. NeRV-S, NeRV-M, and NeRV-L are provided by the authors
and NeRV-XS and NeRV-XXS are constructed. The second column (Params) is the number of parameters in each dense model. We
summarize BPPs of sparse models after pruning 80% of the original using conventional method (overfit, prune, re-train) and the proposed
approach with 3 supermasks and the total density k1 = 0.2. The video sequence consists of 132 frames with a resolution of 720× 1280,
and the BPP calculation is based on full precision models (FP32).

BPP
ID Params NeRV (trained) Proposed (random)

(20% remaining) 3-supermask (k1 = 0.2)
XXS 1.3M 0.068 -
XS 1.5M 0.080 -
S 3.2M 0.170 0.033
M 6.3M 0.333 0.065
L 12.5M 0.663 0.129
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Figure 10. PSNR vs BPP on Big Buck Bunny dataset. The reconstruction quality (PSNR) of decoded images obtained from different
implicit video representation frameworks at various compression ratios (BPPs) is reported. The proposed method with learned scales
outperforms weight training as well as the prune-at-initialization algorithm with fixed scale parameters.
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D.2. Results on Cityscapes Video

We demonstrate the effectiveness of our framework on Cityscapes dataset (Cordts et al., 2016), a widely used benchmark for
urban scene understanding. We use one demo video sequence (stuttgart00), which consists of 599 frames with a resolution
of 1024 × 2048. We consider two baseline models named “Trained Sparse” and “Trained Dense”. The first one is fully
trained sparse models obtained from the conventional model compression pipeline that consists of overfitting, pruning and
finetuning steps. The fraction of remaining weights after pruning is set to 20% for the sparse baseline and our framework.
The other is fully trained dense networks (without pruning). We use the default setup (3 supermasks and learnable scales)
for our random subnetworks. The video encoding quality of each method is tested on multiple BPPs. Figure 11 shows that
our method consistently achieves higher reconstruction (PSNR) and visual (MS-SSIM) quality than the baselines under
similar compression ratio settings (BPP).
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Figure 11. PSNR vs BPP (left) and MS-SSIM vs BPP (right) on Cityscapes dataset. The reconstruction (PSNR) and perceptual (MS-SSIM)
quality of decoded images obtained from different implicit video representation frameworks at various compression ratios (BPPs) is
reported. The BPP calculation is based on full precision (FP32) for trained models. The proposed method outperforms weight training.

16



Is Overfitting Necessary for Implicit Video Representation?

E. More Visualization Results
E.1. Decoded Images

Ground Truth Proposed (learned scales), BPP=0.060 Trained Dense, BPP=0.064

Ground Truth Proposed (learned scales), BPP=0.060 Trained Sparse, BPP=0.076

Ground Truth Proposed (learned scales), BPP=0.060 Proposed (fixed scales), BPP=0.060

Figure 12. More visualization results on Bosphorus, HoneyBee, Beauty, YachtRide, Jockey videos. The proposed method of learned
scales encodes fine details better. Please refer to https://saitmerong.github.io/INRSLT/ for larger images.
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E.2. FLIP Visualization

We further provide FLIP maps (Andersson et al., 2020) for the decoded images in Tables 8, 9, and 10. FLIP generates a
map of approximating errors recognized by humans when alternating between two images. In FLIP maps, bright color
corresponds to large error and dark to small error, and smaller FLIP value is better. We find that at low BPP settings
(BPP < 0.1), the proposed method better encodes small objects in large area having repeated patterns compared with three
baseline methods. Please refer to https://saitmerong.github.io/INRSLT/ for larger images.

Table 8. Proposed (learned scales) vs. Trained Dense

Sequence Result Type Proposed (learned scales), BPP=0.060 Trained Dense, BPP=0.064

Bosphorus

FLIP
Map

FLIP=0.1258 FLIP=0.1613

Decoded
Image

HoneyBee

FLIP
Map

FLIP=0.0532 FLIP=0.0534

Decoded
Image
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Table 9. Proposed (learned scales) vs. Trained Sparse

Sequence Result Type Proposed (learned scales), BPP=0.060 Trained Sparse, BPP=0.076

Beauty

FLIP
Map

FLIP=0.1258 FLIP=0.1613

Decoded
Image

YachtRide

FLIP
Map

FLIP=0.1258 FLIP=0.1499

Decoded
Image
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Table 10. Proposed (learned scales) vs. Proposed (fixed scales)

Sequence Result Type Proposed (learned scales), BPP=0.060 Proposed (fixed scales), BPP=0.060

Jockey

FLIP
Map

FLIP=0.1401 FLIP=0.1466

Decoded
Image

Ready
Steady

Go

FLIP
Map

FLIP=0.1761 FLIP=0.1932

Decoded
Image
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F. Comparison with Standard Video Codecs
In this section, we provide video-wise comparison results between our method and two video compression standards, H.264
(Wiegand et al., 2003) and HEVC (Sullivan et al., 2012).

Compression Procedure: Following prior works (e.g., Chen et al., 2021a; Kim et al., 2022), ffmpeg (Tomar, 2006)
commands below are used to compress videos with a medium mode:
ffmpeg -i FILE/f%04d.png -c:v h264 -preset medium -bf 0 -crf CRF FILE.EXT
ffmpeg -i FILE/f%04d.png -c:v hevc -preset medium -x265-params bframes=0 -crf CRF
FILE.EXT
where FILE is the file name, CRF is the constant rate factor value, and EXT is the video container format extension.

Comparison Results: Figure 13 shows that the proposed framework with learned scales achieves slightly better results
than H.264 on low-motion videos (Beauty and HoneyBee). However, H.264 and HEVC capture dynamic motions and high
frequency details better as shown in Jockey and ReadySteadyGo sequences. While there exists a general performance gap
between carefully optimized video codecs and our method, we believe there are several potential avenues for enhancing
the current proposed setup such as designing more specialized INR architectures for video representation and optimizing
random weight initialization methods.
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Figure 13. PSNR vs BPP values of the proposed method and video compression standards. The proposed method shows slightly better
results than H.264 on low-motion videos (Beauty and HoneyBee) while the legacy codecs significantly outperform INR-based frameworks
on high-motion videos (Jockey and ReadySteadyGo).
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G. Effect of Choice of Random Seed on Performance
We evaluate how the choice of random seed at initialization affects the performance of our framework. We consider 7 video
sequences in UVG dataset (Mercat et al., 2020) and use default experimental settings described in Section 4.1. We prune the
first four example models (ID 0-3 in Table 4) using the proposed method with learned scales and total density k1 = 0.2
under 3-supermask setup. In Table 11, we report PSNR values averaged over 5 different random seed runs along with the
standard deviation in the parenthesis. In most cases, the standard deviation is less than 0.2. We see that the reconstruction
performance is not sensitive to the selection of random seed.

Table 11. Robustness of the proposed framework to the choice of random seed. Random subnetworks are selected to fit Beauty, Bosphorus
(Bospho), HoneyBee (HoneyB), Jockey, ReadySteadyGo (Ready), ShakeNDry (ShakeN) and YachtRide (Yacht) videos with learnable
scale settings. The PSNR value averaged over 5 different random seed runs are reported along with the standard deviation in the
parenthesis. The reconstruction performance is not sensitive to the selection of random seed as the standard deviation is less than 0.2 in
most cases.

ID Beauty Bospho HoneyB Jockey Ready ShakeN Yacht
0 32.57 (±0.03) 31.72 (±0.14) 36.36 (±0.17) 28.41 (±0.19) 22.80 (±0.08) 32.23 (±0.15) 26.87 (±0.07)
1 33.18 (±0.06) 32.87 (±0.03) 37.14 (±0.18) 29.68 (±0.19) 23.77 (±0.06) 33.11 (±0.14) 27.69 (±0.05)
2 33.67 (±0.15) 33.51 (±0.18) 37.60 (±0.20) 31.07 (±0.11) 24.84 (±0.13) 33.46 (±0.10) 28.33 (±0.07)
3 33.94 (±0.07) 34.51 (±0.33) 38.19 (±0.16) 32.16 (±0.18) 25.85 (±0.11) 34.18 (±0.20) 29.14 (±0.05)

H. Effect of Model Size on Encoding Time
Finding strong subnetworks in a large dense model requires more iterations because the number of possible subnetworks
increases as the number of parameters in the dense model increases. To see this, we provide reconstruction quality (PSNR)
of subnetworks obtained from our framework at 50, 100, 150 and 200 epochs on four UVG (Mercat et al., 2020) video
sequences (Bosphorus, Jockey, ShakeNDry and YachtRide). We prune three example models (ID 0, 3, and 5 in Table 4) with
learnable scales and total density k1 = 0.2 under the 3-supermask setup. In Table 12, the second column (Params) is the
number of parameters in each dense model, and ∆ is calculated by PSNR at the corresponding epoch minus PSNR at the
final epoch (200 epochs). In most cases, more epochs are required to find good subnetworks as the number of parameters in
the dense model increases. For example, when compressing YachtRide video with our framework using a small model (ID
0), the performance gap ∆ between subnetworks found at 50 and 200 epochs is 0.64 while the corresponding gap using a
large model (ID 5) is 3.16.

Table 12. Reconstruction quality at different train epochs. Random subnetworks are selected to fit Bosphorus (Bospho), Jockey, ShakeNDry
(ShakeN), and YachtRide (Yacht) videos using the proposed framework. The second column (Params) is the number of parameters in each
dense model. ∆ is calculated by PSNR at the corresponding epoch minus PSNR at the final epoch (200 epochs). In general, more epochs
are required to find good subnetworks as the number of parameters in the dense model increases.

ID Params Epochs Bospho Jockey ShakeN Yacht
PSNR ∆ PSNR ∆ PSNR ∆ PSNR ∆

0 29.2M

50 30.80 -1.09 27.29 -1.32 21.54 -1.02 26.26 -0.64
100 31.19 -0.70 27.89 -0.72 22.20 -0.36 26.54 -0.36
150 31.48 -0.41 28.11 -0.50 22.39 -0.17 26.83 -0.07
200 31.89 28.61 22.56 26.90

3 118.1M

50 33.27 -1.25 29.87 -2.22 24.38 -1.65 28.19 -0.95
100 34.05 -0.47 31.18 -0.91 25.34 -0.69 28.71 -0.43
150 34.21 -0.31 31.81 -0.28 25.68 -0.35 28.89 -0.25
200 34.52 32.09 26.03 29.14

5 380.2M

50 30.30 -5.33 27.05 -5.64 26.58 -2.27 28.26 -3.16
100 34.39 -1.24 28.65 -4.04 27.81 -1.04 30.04 -1.38
150 34.41 -1.22 31.76 -0.93 28.34 -0.51 30.37 -1.05
200 35.63 32.69 28.85 31.42
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I. Pruning Pre-trained Models
We demonstrate the effectiveness of the proposed framework in pruning of pre-trained networks. We use 4 example NeRV
(Chen et al., 2021a) networks (ID 1-4 in Table 4) as dense models, and they are trained for 200 epochs using its official
implementation to fit YachtRide video sequence of UVG (Mercat et al., 2020) dataset. The pre-trained models are pruned
following the model compression pipeline of Chen et al. (2021a) that consists of pruning and re-training (for 50 epochs)
such that the proportion of remaining weights is 20%, and we use the resulting sparse models as baselines. We also prune the
pre-trained models in the proposed framework such that the total remaining weight density matches to 20% (k1 = 0.2 in our
notation) with learnable scales under the 3-supermask setup. We note that pruning in our framework does not involve weight
and bias update in the dense models. In Table 13, we report reconstruction (PSNR) and perceptual (MS-SSIM) quality of
pre-trained dense models, baseline sparse models, and sparse models obtained from the proposed framework with 50 and
200 pruning epochs. We see that our 50-epoch sparse models show very competitive results compared to the baseline sparse
models even though our framework does not re-train network parameters. Moreover, our 200-epoch sparse models almost
match the performance of the baseline sparse models. For example, our 50-epoch and 200-epoch sparse models with ID 1
achieve 27.75 and 28.35 PSNR values, respectively, while the corresponding value of the baseline sparse model is 28.41.

Table 13. Effectiveness of the proposed method in pruning pre-trained models. Dense models are trained to fit YachtRide video. Baseline
sparse models are obtained from pruning and re-training such that the proportion of remaining weights is 20%. However, our framework
does not involve weight and bias update in the dense models. We report encoding quality of the sparse models using PSNR and MS-SSIM.
Our 50-epoch sparse models show very competitive results compared to the baseline sparse models even though the proposed framework
does not re-train network parameters.

Method Weight Prune PSNR MS-SSIM
Remaining Epoch ID 1 ID 2 ID 3 ID 4 ID 1 ID 2 ID 3 ID 4

Dense 100% - 31.87 33.22 35.51 36.76 0.9562 0.9680 0.9815 0.9861
Baseline 20% 50 28.41 29.40 30.46 31.71 0.9042 0.9218 0.9374 0.9508

Ours (50-epoch) 20% 50 27.75 28.35 28.87 29.36 0.8664 0.8847 0.8946 0.9065
Ours (200-epoch) 20% 200 28.35 29.18 30.00 30.80 0.8798 0.8987 0.9134 0.9271
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