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Abstract

Contextual dynamic pricing is a problem of set-
ting prices based on current contextual informa-
tion and previous sales history to maximize rev-
enue. A popular approach is to postulate a distri-
bution of customer valuation as a function of con-
textual information and the baseline valuation. A
semi-parametric setting, where the context effect
is parametric and the baseline is nonparametric,
is of growing interest due to its flexibility. A chal-
lenge is that customer valuation is almost never
observable in practice and is instead type-I inter-
val censored by the offered price. To address this
challenge, we propose a novel semi-parametric
contextual pricing algorithm for stochastic con-
texts, called the epoch-based Cox proportional
hazards Contextual Pricing (CoxCP) algorithm.
To our best knowledge, our work is the first to
employ the Cox model for customer valuation.
The CoxCP algorithm has a high-probability re-
gret upper bound of Õ(T

2
3 d), where T is the

length of horizon and d is the dimension of con-
text. In addition, if the baseline is known, the
regret bound can improve to O(d log T ) under
certain assumptions. We demonstrate empirically
the proposed algorithm performs better than exist-
ing semi-parametric contextual pricing algorithms
when the model assumptions of all algorithms are
correct.
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1. Introduction
The contextual dynamic pricing problem involves setting
real-time prices for products or services based on contextual
factors such as product details and customer characteristics.
There is a significant body of literature on this topic due to
its importance and practical applications. We refer to den
Boer (2015), Wei & Zhang (2018) and Mišić & Perakis
(2020) for comprehensive review and Chen & Chen (2015),
Hu et al. (2015), Dutta & Mitra (2017) and Saharan et al.
(2020) for applications. A common goal of dynamic pricing
algorithms is to maximize the seller’s revenue. To achieve
this, a good pricing policy should balance both learning
about customer demand through exploration and setting
prices based on current knowledge through exploitation.

A popular setting for contextual pricing is the customer
valuation model, also known as the binary choice model,
over a specific time horizon. Specifically, in each sales round
t ∈ [T ] = {1, . . . , T}, a feature xt ∈ Rd is provided to
describe the characteristics of the product and customer.
The customer’s valuation of the product, or market price, is
represented by a random variable vt, which is unknown to
the seller. The seller proposes a price pt based on previous
sales records and the current context xt, and then observes
feedback yt ∈ {0, 1} on whether the customer purchases
the product. The customer valuation model assumes that
yt = 1vt>pt , meaning that a purchase occurs if and only if
the selling price is less than the customer’s valuation. As
a result, the revenue at round t is ptyt, and the seller aims
to maximize the expected revenue. Note that the customer
valuation vt is only partially observed, in that it is right- or
left-censored by pt. This type of data is referred to as Type-I
interval censored data in the statistical literature.

Contextual pricing algorithms under the customer valuation
model postulate a probabilistic model family for the con-
ditional distribution of vt given xt. Let F (p|xt) = P(vt ≤
p|xt) be the cumulative distribution function (CDF) of vt
given xt. The linear model (Javanmard & Nazerzadeh, 2019;
Xu & Wang, 2021; Luo et al., 2022; Fan et al., 2022) as-
sumes a location family F (p|xt) = F0(p − xTt β), and
the log-linear model (e.g., Shah et al., 2019) assumes a
scale family F (p|xt) = F0(p exp(−xTt β)), where F0(p) =
P(vt ≤ p|xt = 0) is the baseline CDF and β ∈ Rd is
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Table 1. Comparison of customer valuation model-based contextual dynamic pricing algorithms with stochastic contexts. Notes:
] Informal definition is that the baseline revenue function p(1− F0(p)) is smooth at its maximizer. Exact definitions are slightly different;
[ Informal definition is that p(1− F0(p)) has a unique maximizer. Exact definitions are slightly different;
§m ≥ 2 is the order of smoothness of F0; † s is the sparsity (number of nonzero coefficients) of the parameter vector.

ASSUMPTIONS ON F0

METHOD
MODEL
FOR vt

REGRET
UPPER BOUND

2ND-ORDER

SMOOTHNESS]
OPTIMAL PRICE

UNIQUENESS[

(If F0 is unknown)

SHAH ET AL. (2019) LOG-LINEAR Õ(T
1
2 d

11
4 ) © ×

LUO ET AL. (2022) LINEAR Õ(T
2
3 d2) © ×

LUO ET AL. (2022) LINEAR Õ(T
3
4 d) × ×

FAN ET AL. (2022) LINEAR Õ((Td)
2m+1
4m−1 )§ © ©

COXCP (This work) PH Õ(T
2
3 d) × ×

(If F0 is known)

JAVANMARD & NAZERZADEH (2019) LINEAR O(s log T )† © ©
XU & WANG (2021) LINEAR O(d log T ) © ©

COXCP WITH FIXED F0 (This work) PH O(d log T ) © ©

the parameter of context effect. A popular approach is to
assume F0 is known and estimate β using the maximum
likelihood principle (Javanmard & Nazerzadeh, 2019; Xu
& Wang, 2021). Recently, there has been growing interest
in cases where the baseline CDF F0 is unknown and non-
parametric (Shah et al., 2019; Luo et al., 2022; Fan et al.,
2022), since it allows for more flexible modeling of the base-
line valuation distribution. These approaches are also called
semi-parametric, meaning that the seller must learn both
the parametric part (β) and the nonparametric part (F0). In
general, the semi-parametric learning problem for the type-
I interval censored data under (log-)linear models is very
challenging. One possible reason for this difficulty is that
the probability of purchase under these models has β ly-
ing inside F0(·), which may hinder theoretical investigation
provided that F0 is nonparametric.

In this work, we propose a novel semi-parametric contextual
dynamic pricing algorithm, namely Cox Contextual Pricing
(CoxCP) algorithm, under the customer valuation model
setting with stochastic contexts. The algorithm utilizes the
Cox proportional hazards (PH) model. It defines a shape
family on F (p|xt), where the baseline CDF F0 is allowed to
be nonparametric and the parametric effect xTt β affects the
“shape” of F0, rather than “shifting” F0 (as in the location
family) or “stretching” F0 (as in the scale family). The
PH model has a long history, dating back to the seminal
work of Cox (1972), and has been widely used to model
time-to-event data in various fields including biomedical
sciences, econometrics, and industrial statistics. It also has
been used for any positive random variables in the presence
of censoring such as healthcare cost (Malehi et al., 2015) and
wage (Fortin et al., 2011). Interestingly, to the best of our
understanding, the adoption of the PH model on customer

valuation has not been previously studied.

The proposed CoxCP algorithm employs a nonparametric
maximum likelihood estimator (NPMLE) to estimate β and
F0 of the PH model. Technically, unlike the linear and log-
linear models, the probability of purchase under the PH
model has β lying outside F0(·), which may facilitate sepa-
rate analysis of β and F0 in terms of both theory and compu-
tation. With a judicious application of the semi-parametric
estimation theory in the statistical literature related to the
PH model under type-I interval censoring (e.g. Finkelstein
1986; Huang 1996; Anderson-Bergman 2017), it is feasible
to establish a regret bound for the proposed algorithm over
a broad range of F0.

We remark that the distribution of customer valuation is
unknown and can arise from any distributions, even with
multiple modes (Wang et al., 2021b). Hence, the exploration
and augmentation of the model classes that foster efficient
learning are of paramount importance.

Contributions. In Table 1, we present a summary of our
results and key assumptions in comparison to existing results
from closely related literature. We make two theoretical
contributions for the proposed algorithms.

1. We derive a high-probability regret upper bound of
Õ(T

2
3 d) for the CoxCP algorithm when F0 is unknown

and nonparametric, without assuming the second-order
smoothness around the optimal price nor the unique-
ness of the optimal price. These are common assump-
tions in the contextual pricing literature. Our result
improves upon the existing regret bound of Luo et al.
(2022), which reports Õ(T

2
3 d2) with the second-order

smoothness assumption and Õ(T
3
4 d) without the two
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assumptions. Compared to the results of Fan et al.
(2022), which reported a regret bound of Õ(T

5
7 d

5
7 )

under both conditions, our result has a lower order
in T and relaxes the assumptions. Additionally, com-
pared to the order Õ(T

1
2 d

11
4 ) of Shah et al. (2019), our

algorithm has a slightly increased order in T , but it im-
proves with respect to d and relaxes the second-order
smoothness assumption.

2. For a comparison purpose, we derive an improved high-
probability regret upper bound of O(d log T ) for the
CoxCP algorithm for the known F0 case, provided
that we additionally assume the second-order smooth-
ness and the optimal price uniqueness. Our result and
assumptions are comparable to existing regret upper
bounds in linear model-based algorithms with known
F0 as reported in Javanmard & Nazerzadeh (2019); Xu
& Wang (2022).

Outline of paper. In Section 2, we briefly review related
literature. In Section 3, we describe the setup of the cus-
tomer valuation-based dynamic pricing problem. In Section
4, we define the PH model and give its interpretation under
the setup. In Section 5, we develop the proposed CoxCP
algorithm. In Section 6, we derive the regret upper bound of
the proposed algorithm. In Section 7, we conduct numerical
study. Finally, Section 8 concludes the paper.

2. Related Works
Customer valuation model-based algorithms with
stochastic contexts. A popular approach is to assume a
linear customer valuation model F (p|xt) = F0(p − xTt β)
with known F0 (Amin et al., 2014; Javanmard & Naz-
erzadeh, 2019; Xu & Wang, 2021). Amin et al. (2014)
assumed that the market price is a deterministic linear trans-
formation of the context, i.e., F0 is the point mass at zero.
Javanmard & Nazerzadeh (2019) assumed that both F0 and
1−F0 are twice continuously differentiable and log-concave,
which implies the uniqueness of the optimal price. They
proposed an epoch-based regularized maximum likelihood
algorithm with a regret bound of O(s log T ), where s is
the number of nonzero elements in the true β. Xu & Wang
(2021) proposed an unregularized version of Javanmard &
Nazerzadeh (2019)’s algorithm and derived the same regret
bound with a relaxed assumption on E(xtx

T
t ).

Some pioneering works assumed F0 as unknown and non-
parametric (Shah et al., 2019; Fan et al., 2022; Luo et al.,
2022). Shah et al. (2019) assumed the log-linear model
F (p|xt) = F0(p exp(−xTt β)) and constructed a noncon-
textual bandit-based UCB algorithm. Here, the entire space
of (β, F0(·)) is discretized; each discritized point corre-
sponds to an “arm.” Under the second-order smoothness
of the revenue function, the authors derived a regret upper

bound Õ(T
1
2 d

11
4 ) for a theorized version of their algorithm.

Fan et al. (2022) pointed out that this bound has suboptimal
dependence on d. Furthermore, a major drawback of this al-
gorithm is computational inefficiency. Its computation com-
plexity isO(T

d+1
4 ) which grows exponentially with d, since

each discretized “arm” is evaluated at least once. Therefore,
the algorithm may not scale well even if d is moderately
small. More computational details are discussed in Section
7 and Appendix D. On the other hand, Luo et al. (2022) and
Fan et al. (2022) constructed linear model-based algorithms
based on the linear modelF (p|xt) = F0(p−xTt β). Luo et al.
(2022) proposed an epoch-based algorithm that alternates
between a pure exploration phase and an upper confidence
bound (UCB) phase. In the exploration phase, prices are
drawn independently from a uniform distribution and used
to estimate β by least squares. Then, in the UCB phase,
the algorithm learns discretized values of F0(·). Under the
assumption of second-order smoothness of the expected rev-
enue around the optimal price, they derived a regret upper
bound of Õ(T

2
3 d2). Without this assumption, they derived a

regret bound of Õ(T
3
4 d). Fan et al. (2022) proposed another

epoch-based algorithm that alternates between exploration
and exploitation phases. During the exploration phase, in-
dependent uniform sampling is conducted as in Luo et al.
(2022). The estimation of β is also performed in the same
manner. The difference is the estimation of F0, which is
based on the Nadaraya-Watson kernel regression estimator
calculated from the exploration samples. In the exploitation
phase, the myopic policy with estimated parameters is used
to determine pt. The regret bound reported is Õ((Td)

2m+1
4m−1 ),

assuming that F0 ism ≥ 2 times continuously differentiable
and the optimal price is unique. For example, if m = 2, the
order becomes Õ((Td)

5
7 ).

Other contextual pricing algorithms. Several re-
searchers have proposed linear valuation model-based pric-
ing algorithms for adversarial contexts, including Cohen
et al. (2020), Liu et al. (2021), Krishnamurthy et al. (2021),
and Xu & Wang (2021). All of these works assumed that
F0 is known. Golrezaei et al. (2019) proposed another lin-
ear valuation model-based contextual pricing algorithm, but
with an additional assumption that side information about
the buyer’s bidding prices is available. Demand model-based
contextual pricing algorithms, which assume that the num-
ber of sold items under the given price is the linear function
of the price and contexts, are popular as well (Qiang & Bay-
ati, 2016; Ban & Keskin, 2021; Nambiar et al., 2019; Wang
et al., 2021c;a; Bu et al., 2022).

Proportional hazard (PH) models for type-I interval-
censored data. Our work is related to the semi-parametric
estimation problem of the PH model under type-I interval
censoring. When there is no context present, Turnbull (1976)
first proposed a pool-adjacent-violators algorithm-type esti-
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mator for F0, which was later clarified by Groeneboom &
Wellner (1992) as the NPMLE for F0. Finkelstein (1986)
first proposed the PH model for type-I interval-censored
data and presented the NPMLE of the parameters. The large-
sample properties of these estimators were established by
Huang (1996). For a comprehensive review of this topic, we
refer the reader to Banerjee (2012); Groeneboom & Jong-
bloed (2014).

3. Problem Setting
We formally introduce notations and settings. We consider
a stochastic contextual pricing problem under the customer
valuation model. There are T consecutive sales sessions
(rounds), where each round involves a single product. The
overall procedure is summarized below.

For each sales round t = 1, . . . , T ,
1. The seller observes a context vector xt ∈ Rd.

2a. The seller offers a price pt based on xt and the previ-
ous sales records {(xτ , pτ , yτ )}t−1

τ=1.
2b. Simultaneously, the customer evaluates the product

at vt, which is not known to the seller.
3. The seller observes yt = 1vt>pt , whether the product

was sold or not.

It is standard to assume that xt is independently and iden-
tically distributed (i.i.d.) and the distribution of vt de-
pends only on xt. The expected revenue for any offered
price p given xt is E(p1vt>p|xt) = pP(vt > p|xt) =
p(1− F (p|xt)), where we recall F (p|xt) = P(vt ≤ p|xt).
For concise presentation, we define the complementary CDF
(reverse CDF) of vt given xt as S(p|xt) = 1− F (p|xt) =
P(vt > p|xt). The optimal price p∗t at time t is defined by a
maximizer of the expected revenue function at the round,

p∗t ∈ argmax
p

pS(p|xt). (1)

Note that p∗t = p∗t (xt) depends on xt. The pricing policy
(1) is also called the clairvoyant policy. The regret at step t
is defined by the difference between the expected revenues
from the optimal price p∗t and the offered price pt,

regret(t) = p∗tS(p∗t |xt)− ptS(pt|xt). (2)

The goal of the seller is to devise a pricing policy that can
minimize the cumulative regret R(T ) =

∑T
t=1 regret(t).

4. Cox Proportional Hazards (PH) Model
We propose to model the distribution of vt by the proportion
hazard (PH) model (Cox, 1972) formulated by

S(p|xt) ≡ P(vt > p|xt) = S0(p)exp(xT
t β), (3)

where S0(p) = P(vt > p|xt = 0) = 1 − F0(p) is a base-
line complement CDF, and β ∈ Rd is a parameter vector

representing the linear effect of a given context. The context
effect xTt β determines the shape of the distribution of vt
through the exponent exp(xTt β). If S0(p) is unknown and
nonparametric, (3) is a semi-parametric model where it only
assumes a specific form for the context effect. If S0(p) is
known, (3) becomes a classic parametric model.

Intuition. For thorough comprehension, we provide inter-
pretation of the PH model within the customer valuation
setting. Let F (p), S(p) = 1 − F (p) and f(p) = F ′(p) be
the CDF, complementary CDF, and density function of vt.
The “hazard rate”1 function of vt is defined by

λ(p) :=
f(p)

S(p)
= − d

dp
{logS(p)}. (4)

Similarly, we denote by f(p|xt) and λ(p|xt) the conditional
density and hazard function of vt given xt. By definition,
for a small ∆p > 0, λ(p)∆p = f(p)∆p/P(vt > p) approx-
imates the conditional proportion of customers who value a
product between p and p+ ∆p, given that they would pur-
chase it if the price were not to exceed p. As these customers
would decline to buy the product if the price increases to
p+ ∆p, λ(p)∆p can also be interpreted as the approximate
conditional proportion of customer attrition, or churn, re-
sulting from a minor price increase. Another perspective on
λ(p) is to consider it as the negative Rate of Return (RoR)
of demand at price p. This interpretation is backed by the
fact that λ(p) = −S′(p)/S(p) and S(p) can be perceived
as the demand at price p. An additional remark is that if
p represents a logarithmic price, then λ(p) aligns with the
price elasticity at price p.

The PH model postulates that the hazard function of a prod-
uct, given its context, is proportional to the baseline hazard
function. From (4), one can easily check that the PH model
(3) can be restated as

λ(p|xt) = λ0(p) exp(xTt β), (5)

where λ0(p) := F ′0(p)/S0(p) is the baseline hazard rate
function. Essentially, the PH model presumes that the RoR
of demand functions is proportional across different con-
texts. For instance, if a given covariate is binary with d = 1,
exp(β) = λ(p|xt = 1)/λ(p|x∗t = 0) signifies the ratio
of the RoR of demand at a session with xt = 1 to that
with xt = 0. It’s noteworthy that the PH model is semi-
parametric, allowing the assumptions on the baseline λ0(·)
to remain minimal. In Appendix A, we provide a toy exam-
ple of a customer valuation equipped with the PH model to
facilitate better understanding.

1The term originates from the survival analysis.
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Optimal price revisited. Under (3), the definition of the
optimal price p∗t (1) is rewritten as

p∗t ∈ argmax
p

pS(p|xt) = argmax
p

pS0(p)exp(xT
t β). (6)

Since the context effect is acting on the exponent of S0(·),
the support of vt remains the same with the support of F0(·).
As p∗t lies on the support of vt, we can conclude that p∗t
always lies on the support of F0 regardless of the values of
given xt. This property is unique in the PH model compared
to the (log)-linear models. The linear model is a location
shift family where the parameter part xTt β determines the
amount of translation of F0, and the log-linear model is a
scale shift where exp(xTt β) determines the scale. Thus, the
support of vt shifts according to xTt β in both models. If an
outlying value of xt is input, then corresponding p∗t may be
an unreasonable, for example, negative or extremely large
price. On the other hand, in the PH model framework, we
can anticipate that the optimal prices will lie on the baseline
support even for accidentally large xt.

Connection to the log-linear model. In the statistical lit-
erature, the PH model and the log-linear model (also known
as the accelerated failure time model) are the most com-
mon choices to account for contextual effects in the survival
analysis. Although they assume different families of dis-
tributions (shape family and scale family), a special case
of the log-linear model is included in the PH model. To
illustrate this, we recall that an equivalent formulation on
the log-linear model S(p) = S0(p exp(−xTt β)) is log vt =
xTt β + εt, where S0 is the complement CDF of exp(εt).
When the distribution of εt is extreme value distribution in-
dexed by scale parameter σ, so that εt = σε∗t with ε∗t arising
from standard extreme value distribution, the model also
belongs to the PH model with λ(p|xt) = λ0(p) exp(xTt β),
where λ0(t) = αtα−1.

5. Proposed Algorithm
Epoch-based design. We employ an epoch-based design
(also known as the doubling trick) that segments the given
horizon T into several clusters of rounds (“epochs”) and
executes identical pricing policies on a per-epoch basis.
In every k-th epoch, the offered price is constructed from
(6), where the true β and S0 are estimated from the data
at the previous epoch. Such design has been employed in
maximum likelihood estimator-based pricing algorithms
(Javanmard & Nazerzadeh, 2019; Xu & Wang, 2021). A
complete pseudocode is provided in Algorithm 1. In the
following portion of this section, we examine the details
of parameter estimation and algorithmic variations of the
proposed algorithm.

Algorithm 1 Cox Contextual Pricing (CoxCP) algorithm

1: Input: The length of the first epoch, τ1; the minimum
and maximum of price search range, pmin and pmax.

2: For t = 1, . . . , τ1, observe xt, randomly choose pt from
a distribution supported on [pmin, pmax], and get reward
yt;

3: for epoch k = 2, 3, . . . do
4: Estimate θ = (β, S0(·)) by the NPMLE,

θ̂k ← argmin
θ

Lk−1(θ),

where Lk−1(θ) is defined in (9);
5: Set τk ← 2τk−1;
6: Set Ek ← {

∑k−1
r=1 τr + 1, . . . ,

∑k
r=1 τr};

7: for round t ∈ Ek do
8: Observe xt;
9: Offer price by the myopic policy,

pt ∈ argmax
p∈[pmin,pmax]

{
pŜk0 (p)exp(xT

t β̂
k)
}

; (7)

10: Get reward yt.
11: end for
12: end for

Nonparametric maximum likelihood estimation of pa-
rameters. Let Ek denote the set of round indices for epoch
k. Our algorithm design ensures that, conditioned on the
data from previous epochs 1, . . . , k − 1, the data for each
epoch k, {(xt, pt, yt)}t∈Ek , is independently and identically
distributed (i.i.d.) over t. Furthermore, the algorithm’s con-
figuration guarantees that vt ⊥ pt|xt for each t ∈ Ek.
This is due to the fact that pt solely relies on xt and pre-
vious epochs, while the distribution of vt only depends on
xt. Consequently, if we employ Huang (1996)’s Nonpara-
metric Maximum Likelihood Estimator (NPMLE) using
{(xt, pt, yt)}t∈Ek , it can be shown that it consistently es-
timates the true parameter (β, S0(·)) of the PH model (3),
subject to certain mild assumptions.

For completeness, we describe key estimation steps.

Let θ = (β, S0(·)) be the estimation target. Since yt|(pt, xt)
is a binary random variable with success probability
S(pt|xt), a negative loglikelihood function of θ given tuple
(xt, pt, yt) at round t is

lt(θ) = −yt log{S(pt|xt)} − (1− yt) log{F (pt|xt)},
= −yt exp(xTt β) log{S0(pt)}

−(1− yt) log{1− S0(pt)
exp(xT

t β)}, (8)

up to an additive constant not depending on θ. Then, we
can define the negative loglikelihood of θ given the data at
epoch k as Lk(θ) =

∑
t∈Ek lt(θ). For the convenience of
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discussion, we further define the baseline cumulative hazard
function as Λ0(p) :=

∫ p
0
λ0(v)dv. From (4), it holds that

Λ0(p) = − logS0(p). Since S0(·) and Λ0(·) is one-to-one,
we can reparametrize θ as θ = (β,Λ0(·)), with a slight
notational abuse. Then Lk(θ) is

Lk(θ) =
∑
t∈Ek

{
ytΛ0(pt) exp(xTt β)

−(1− yt) log{1− exp(−Λ0(pt)exp(xTt β)}
}
. (9)

A benefit of the reparametrization by Λ0 instead of S0 is that
the Lk(θ) is convex in each Λ0(pt) (if viewed as a scalar
parameter). The estimation procedure minimizes Lk(θ) as a
function of β and {Λ0(pt)}t∈Ek , so d+ |Ek| “parameters” in
total, under the constraint that Λ0(·) is monotone increasing
(i.e, Λ0(pt1) ≤ Λ0(pt2) for any pt1 ≤ pt2). The MLE of
β is the corresponding solution of the minimization prob-
lem. The NPMLE of Λ0 is a right-continuous step function
in which jumps occur only at {pt}t∈Ek and the function
value at each pt is equal to the corresponding solution for
Λ0(pt). Then, the NPMLE of S0 is Ŝ0(·) = exp(−Λ̂0(·)).
Finally, we denote the (NP)MLE of θ by θ̂k+1 to empha-
size that the data in epoch k is used in offering price in
epoch k + 1. Note that (9) is a constrained convex mini-
mization problem that can be efficiently solved with conver-
gence guarantees. For example, Finkelstein (1986), Huang
(1996) and Anderson-Bergman (2016) proposed algorithms
based on an alternating optimization of Λ0 and β. In par-
ticular, Anderson-Bergman (2016)’s algorithm is available
in R package icenReg (Anderson-Bergman, 2017), which
we employed to implement our algorithm in Section 7.

Price offering. Let k ≥ 2. For each round t in epoch k,
we set the offered price pt by (7), which is a myopic version
of (6). We propose a grid search for solving (7) since it is a
one-dimensional maximization problem on a closed interval.
For rounds t in the first epoch E1, as an initial step, we offer
randomly sampled prices.

We note that a well-known, randomized ε-greedy heuristic
(Auer et al., 2002) can be injected at the stage of price
offering (7) to encourage exploration. To be specific, let
αk ∈ [0, 1] be a constant depending on epoch k. For each
round t ∈ Ek, the ε-greedy heuristic offers pt by (7) with
probability 1− αk, and otherwise chooses a random price.
It is easy to check that choosing αk = min{γ2−

k−1
3 , 1}

does not change the regret upper bound of Algorithm 1
(Theorem 6.1 in Section 6), where γ is a global constant.
In our simulation experiment, we tune γ to optimize the
degree of exploration. For completeness, we provide the full
pseudocode of the CoxCP algorithm adding the ε-greedy
heuristic in Algorithm 2 of the Appendix C.

Our theoretical assumptions suggest that, whenever the ran-
dom sampling of pt is needed, it suffices to sample from any

arbitrary distribution supported on [pmin, pmax], where the
technical assumptions on pmin and pmax will be provided
later. One may want to set pmin as zero and pmax as a large
value if she has no information on the prices. If some prior
information exists, then one can inject prior knowledge into
the sampling distribution of pt. We remark that it is not nec-
essary to uniformly sample from [pmin, pmax]. On the other
hand, the linear model-based algorithms (Fan et al., 2022;
Luo et al., 2022) require sampling from a specific distribu-
tion (the uniform distribution) to guarantee the consistency
of β.

Modified algorithm when F0 is known. When the true
baseline valuation F0 is known, one can plug-in the true
S0 (equivalently Λ0) to the likelihood (9) and the myopic
policy (7). In the next Section, we prove that the resulting
algorithm has improved regret bound compared to the origi-
nal Algorithm 1 which matches the bound from the myopic
policy-based algorithms proposed under the linear model
(Javanmard & Nazerzadeh, 2019; Xu & Wang, 2021). If one
considers to inject the ε-greedy heuristic, it is easy to check
αk = min{γ2−(k−1), 1} does not change the regret upper
bound (Theorem 6.5 of Section 6).

6. Regret Analysis
We present our main theorems and proofs. To save space,
we will defer some details to the Appendices.

6.1. Assumptions

First, we make the following assumptions:

Assumption 1 (Bounded parameter space). True β lies in
the interior of {β ∈ Rd : ‖β‖2 ≤ B} for some B > 0.

Assumption 2 (Bounded i.i.d. contexts). (a) xt ∈ Rd is
independently and identically (i.i.d.) drawn a distribution
that does not involve β and F0, and ‖xt‖2 ≤ X with
probability 1 for some X > 0. (b) For any β1 6= β2,
P(xTt β1 6= xTt β2) > 0.

Assumption 3 (Mildness of baseline CDF over the search
range). (a) F0(0) = 0; (b) F0 has strictly positive and
continuous derivative over interval (pmin, pmax); (c) M1 <
F0(pmin) and F0(pmax) < M2 for some 0 < M1 < M2 <
1; (d) For any (x, β) with ‖x‖2 ≤ X and ‖β‖2 ≤ B, at least
one maximizer of pS0(p)exp(xT β) over [0,∞) lies inside
(pmin, pmax).

Assumptions 1, 2a, are common in the dynamic pricing
literature (Javanmard & Nazerzadeh, 2019; Shah et al., 2019;
Xu & Wang, 2021; Luo et al., 2022; Fan et al., 2022). Our
algorithm does not require knowing B and X in advance.
Assumption 2b guarantees the model identifiability in the
PH model and is equivalent to the full-rank condition of
E(xtx

T
t ). Assumption 3 is similar to but slightly weaker
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than those in the literature, in that the assumption is imposed
only an interval inside F0. We remark that, unlike existing
works with unknown F0 in the (log)-linear models (Shah
et al., 2019; Fan et al., 2022; Luo et al., 2022), we allow the
support of F0 to extend beyond a bounded interval. Instead,
we assume that the pre-specified search range [pmin, pmax]
contains an optimal price as in Assumption 3d.

6.2. Regret Upper Bound for CoxCP Algorithm

We provide our main result, the high-probability regret upper
bound for Algorithm 1 with unknown nonparametric F0.

Theorem 6.1. Suppose that Assumptions 1-3 hold. For any
small δ > 0 and sufficiently large T , there exists C > 0
such that, the cumulative regret of Algorithm 1 is

R(T ) ≤ CT 2
3 d (10)

with probability at least 1− δ.

Compared with existing works with unknown baseline valu-
ation (Shah et al., 2019; Fan et al., 2022; Luo et al., 2022),
we do not make assumptions related to the second- or higher-
order smoothness on pS0(p). Furthermore, compared with
Fan et al. (2022) we do not require the price uniqueness
assumption. We provide a sketch of the proof below and a
complete proof for the Theroem and Lemmas in Appendix
B.1.

Proof sketch. Fix k ≥ 2 and let t ∈ Ek be a round in
epoch k. Let Ŝk(p|xt) = Ŝk0 (p)exp(xT

t β). By the definition
of pt in (7), p∗t Ŝ

k(p∗t |xt) − ptŜk(pt|xt) ≤ 0. Combining
this with Assumption 3d, the regret at round t is decomposed
and upper bounded by

regret(t) = p∗tS(p∗t |xt)− ptS(pt|xt)
=
{
p∗tS(p∗t |xt)− p∗t Ŝk(p∗t |xt)

}
+
{
p∗t Ŝ

k(p∗t |xt)

−ptŜk(pt|xt)
}

+
{
ptŜ

k(pt|xt)− ptS(pt|xt)
}

≤ |Rk,t(p∗t )|+ 0 + |Rk,t(pt)|, (11)

where Rt,k(u) := uŜk(u|xt) − uS(u|xt). To further de-
compose (11), we introduce the following lemma first.

Lemma 6.2. Under the PH model (3) and Assumptions 1-3
for any small δ > 0, there exist C,K0 > 0 such that three
terms ‖β̂k − β‖2, ‖Ŝk0 (·) − S0(·)‖L2(Qk) and ‖Ŝk0 (·) −
S0(·)‖L2(Q∗k) are less than C|Ek|−

1
3 d with probability at

least 1 − δ, for all k ≥ K0. Here, Qk and Q∗k are the
marginal probability measures of pt and p∗t at epoch k,
and ‖f(·)‖L2(Q) := {

∫
f(u)2dQ(u)} 1

2 for a real-valued
function f and a Borel measure Q.

Lemma 6.2 is a reexamination and modification of Theorem
3.3 of Huang (1996). Compared to the original statement,
we unveiled terms related to d in the bound C|Ek|−

1
3 d. In

addition, we applied our assumptions and design to derive
the L2(Qk)- and L2(Q∗k)-convergence of Ŝk0 . The param-
eter estimation consistencies by Lemma 6.2 leads to the
following bound:

Lemma 6.3. Let Assumptions 1-3 hold. For a small δ > 0,
there exist constants K0, C1, C2 > 0 such that for any
u ∈ [pmin, pmax] and t ∈ Ek,

|Rt,k(u)| ≤ C1|Ŝk0 (u)− S0(u)|+ C2‖β̂k − β‖2

with probability at least 1− δ, for all k > K0.

Then, summing up the regret for all t ∈ Ek, (11) yields∑
t∈Ek

regret(t) ≤ 2C2J1k + C1J2k + C1J3k (12)

whenever the event in Lemma 6.3 is true, where J1k =
|Ek|‖β̂k−β‖2, J2k =

∑
t∈Ek |Ŝ

k
0 (pt)−S0(pt)| and J3k =∑

t∈Ek |Ŝ
k
0 (p∗t )− S0(p∗t )|. By Lemma 6.2, the order of J1k

is |Ek|
2
3 d. For J2k and J3k, since J2k/|Ek| and J3k/|Ek| are

empirical approximations of
∫
|Ŝk0 (u)−S0(u)|dQk(u) and∫

|Ŝk0 (u) − S0(u)|dQ∗k(u), a combination of Lemma 6.2,
the central limit theorem and Jensen’s inequality yields

Lemma 6.4. If Assumptions 1-3 hold, for small δ > 0,
there exists C,K0 > 0 such that J2k and J3k are less than
C|Ek|

2
3 d with probability at least 1− δ for all k > K0.

By the Lemma above, the right-hand side of (12) has leading
term |Ek|

2
3 d. Finally, summing up this regret up to epochs

k = 1 through dlog(T/τ1) + 1e concludes the proof.

Discussion on lower bound. The minimax lower bound
for the PH model-based contextual pricing problem is at
least Ω(T

2
3 ), when the true distribution class satisfies As-

sumptions 1–3. To show this, we employ the subclass of
CDFs constructed in equation (10) of Xu & Wang (2022).
This class is a subclass of the PH model family and satisfies
the aforementioned assumptions. Since Xu & Wang (2022)
derived an Ω(T

2
3 ) noncontextual minimax lower bound for

this class, it follows that our PH model family maintains the
same lower bound. Thus, our regret upper bound O(T

2
3 d)

matches the lower bound in terms of T . Nevertheless, a gap
of order d persists; its exploration is earmarked for future
research.

6.3. Regret Upper Bound for CoxCP Algorithm when
F0 is Known

Javanmard & Nazerzadeh (2019) and Xu & Wang (2021)
established an improved regret bound of O(d log T ) for the
linear valuation model when F0 is known. We claim that
this result goes parallel in the PH model as well; we derive
a logarithmic regret upper bound for the CoxCP algorithm
with known F0.

7



Semi-Parametric Contextual Pricing Algorithm using Cox Proportional Hazards Model

We first present additional assumptions.

Assumption 4 (Second-order smoothness of F0). F0 is
twice continuously differentiable on an interval containing
[pmin, pmax].

Assumption 5 (Optimal price uniqueness). There exists
cψ > 0 such that a map ψ : p 7→ pλ0(p) satisfies ψ′(p) ≥
cψ for all p ∈ [pmin, pmax].

Assumption 4 guarantees the regret at each round t can be
bounded by (p∗t − pt)2 up to a constant by the second-order
Taylor expansion. It matches Javanmard & Nazerzadeh
(2019), Xu & Wang (2021) and Fan et al. (2022)’s assump-
tions (when m = 2 in their notation). In fact, Assumption
4 can easily be weakened to the condition that pS0(p)v can
have a second-order polynomial approximation from the
optimal price for any v > 0. Similar weaker assumptions
were made in Shah et al. (2019) and Luo et al. (2022). As-
sumption 5 is an analogy of Assumption 2.1 of Fan et al.
(2022), which guarantees that the optimal price is unique in
the setting of the PH model. A sufficient condition is that
S0(p) is log-concave as in Javanmard & Nazerzadeh (2019)
and Xu & Wang (2021), then cψ ≥ λ0(pmin). Another suf-
ficient condition for Assumption 5 is the monotone hazard
ratio assumption that λ′0(·) ≥ cλ0 for a constant Cλ0 > 0.
Additional assumptions lead to the following theorem.

Theorem 6.5. Suppose that Assumptions 1-5 hold. For any
small δ > 0 and sufficiently large T , there exists C > 0
such that the cumulative regret of Algorithm 1 assuming F0

as known is
R(T ) ≤ Cd log T (13)

with probability at least 1− δ.

Proof. Key differences from the previous subsection are
the characterization of optimal prices and the decomposi-
tion of regret; for other arguments, we follow the proof of
Theorem 6.1. Note that p∗t is a maximizer of log(pS(p)).
Combining with Λ0(p) = − logS0(p), the first-order con-
dition implies

(p∗t )
−1 − exp(xTt β)λ0(p∗t ) = 0,

equivalently p∗tλ0(p∗t ) = exp(−xTt β). By Assumption 5, a
map ψ(p) : p 7→ pλ0(p) is injective on [pmin, pmax]. Thus,

p∗t = ψ−1(exp(−xTt β)),

and similarly pt from (7) in the Algorithm 1 (with F0 fixed)
is characterized as pt = ψ−1(exp(−xTt β̂k)) for a round
t ∈ Ek. Combining with Assumption 4,

regret(t) ≤ D1(p∗t − pt)2

= D1[ψ−1(exp(−xTt β))− ψ−1(exp(−xTt β̂k))]2

≤ D1D2[xt(β̂
k − β)]2 ≤ D1D2X 2‖β̂k − β‖22,(14)

where the second and the third inequalities hold from the
Mean Value theorem and the Cauchhy-Schwartz inequality,
respectively, and D1 and D2 are global constants. Since
F0 is known, the β̂k is a maximum likelihood estimator
for a parametric model. Thus, a standard likelihood theory
implies that ‖β̂k−β‖2 has order

√
d/|Ek|. Combining with

(14), we can upper bound regret(t) with the leading order
d/|Ek|, which implies that the total regret at epoch k is
of order d. Summing this regret for epoch k = 1 through
dlog(T/τ1) + 1e leads to the desired result.
Remark 6.6. The assumptions 4 and 5 are crucial to guar-
antee the log T order in the regret upper bound. Without
those assumptions, it is straightforward to derive the order
of
√
T .

7. Simulation Experiments
We evaluate the performance of the CoxCP algorithm
through Monte Carlo simulation experiments. For compari-
son, we included other semi-parametric algorithms for un-
known baseline valuation (Shah et al., 2019; Luo et al.,
2022; Fan et al., 2022). While these algorithms assume
different models on F (p|xt), such a comparative study in
the unknown baseline setting has yet been explored in the
literature.

The total horizon was set to T = 30,000. We generated vt
following the PH model (3) with the dimension of context
as d = 5. For true β ∈ Rd, we considered β = 4√

d
1d

and β = 0d, where 1d and 0d are d-dimensional vectors
of ones and zeros, respectively. In the latter scenario, all
the algorithms operate under the correct model, which en-
ables a fair comparison of their performances. Conversely,
in the former scenario, we can explore the benefits when
only our algorithm adheres to the correct model assumption.
For sampling distributions of xt ∈ Rd, we considered a uni-
form distribution on d-dimensional ball with radius 1

2 , and
multivariate t-distribution with the degree of freedom as 3
and the scale parameter as 1

4·3(d+2)Id×d, where Id×d is the
d×d identity matrix. We intended to equalize the covariance
matrices of the two distributions. As for true baseline val-
uation F0, we considered two mixture distributions: F0 =
1
2U[1, 4] + 1

2U[4, 10] and F0 = 3
4TN(3.25, 0.52, 1, 10) +

1
4TN(7.75, 0.52, 1, 10), where TN(µ, σ2, a, b) is the trun-
cated normal distribution with support [a, b], location pa-
rameter µ and scale parameter σ2. The combination of
choices of true β, the distribution of xt, and F0 leads to
eight scenarios in total. We note that every dynamic pric-
ing algorithm involves a set of hyperparameters to control
the degree of exploration. For example, the exploration
of the CoxCP algorithm can be controlled through the
first-epoch length τ1 and the forced sampling frequency
αk = min{γ2−(k−1)/3, 1}. We conducted a grid search for
t0 = 3,000 rounds, with τ1 ∈ {64, 128, 256, 512, 1024}
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Figure 1. Cumulative regret curves for the proposed algorithm, compared with Shah et al. (2019), Luo et al. (2022), and Fan et al. (2022)’s
algorithms. Averages and standard errors over replications are marked as solid lines and bands.

and γ ∈ {2−4, 2−3, 2−2, 2−1, 2−0}. The best hyperparam-
eter was identified in the sense of the cumulative realized
revenue

∑t0
t=1 ytpt. We continued the algorithm with the

best hyperparameter for the remaining T − t0 rounds. For
a fair comparison, we tuned the other algorithms’ hyper-
parameters as well. In Appendix D.1, we provide more
configuration details and a link to our simulation codes.

Figure 1 reports the cumulative regrets of the algorithms
against rounds over five replications. When β = 4√

d
1d

where only our algorithm assumes the correct model, our
algorithm achieved the best performance with a large mar-
gin, as expected. Interestingly, when β = 0d where all the
algorithms’ model assumptions are correct, our algorithm
still recorded the lowest cumulative regret on average. This
observation was consistent across F0s and xt-distributions
we considered. We hypothesize that the CoxCP algorithm
might have learned F0 and β better than other algorithms.
However, further empirical research is needed to better un-
derstand algorithms’ behaviors in various scenarios. In ad-
dition, we reported computation times of all the algorithms
in Table 2 of Appendix D.2. The computation time of our
algorithm was approximately 20 seconds for running the
entire T = 30,000 horizon, which was similar to Luo et al.
(2022) and ∼500x faster than Fan et al. (2022) and ∼1000x
faster than Shah et al. (2019).

8. Concluding Remarks
This paper proposes CoxCP, a novel contextual dynamic
pricing algorithm. Our algorithm assumed the Cox propor-
tional hazards model, a new model family, on customer
valuation. The algorithm is semi-parametric and may be
well suited to practical problems where customer valuation
is rarely observable. The CoxCP algorithm improves on the
existing algorithms’ theoretical results with fewer assump-
tions. Our simulation study demonstrates the advantage of
the proposed algorithm.
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A. Toy Example
For readers’ information, we illustrate a toy example of a customer valuation equipped with the PH model.

Let vt be the customer valuation on a taxi trip and there is no covariate. Put p = 3 dollars, ∆p = 0.1, and λ(p) = 2. This
means that an increase of a taxi trip price from 3 to 3.1 dollars may lead to a loss of approximately 20 · 0.01 = 2

10 of
customers who would take a taxi if its price were equal to or less than 3 dollars.

Now, suppose that the customer valuation follows the PH model with d = 1 and β = −1. Let xt be an indicator of whether
t-th customer is experiencing a peak time (e.g. xt = 1 for the rush hours and Friday night and xt = 0 for a normal
time). Then by (5), λ(p|xt = 1)/λ(p|xt = 0) = exp(−1) ≈ 0.37 for all p. So if ∆p = 0.01 and λ(p|xt = 0) = 2, then
λ(p|xt = 1)∆p = 2× 0.37× 0.1 = 0.07, which means that an increase of taxi trip price from 3 to 3.1 dollars may lead
to 7% of customer churn-out in the peak time. As a result, the distribution of vt on the peak times (xt = 1) will be more
concentrated on larger values than that on the normal times (xt = 0).

B. Proofs
B.1. Proof of Lemma 6.2

First, we cite the original statement of Huang (1996). We recall the definition ‖f(·)‖L2(Q) := {
∫
f(u)2dQ(u)} 1

2 .

Lemma B.1 (Theorem 3.3 of Huang 1996). Suppose that {(xt, pt, yt)}nt=1 is an i.i.d random sample with xt ∈ Rd, pt ∈
[pmin, pmax] and yt|(pt, xt) ∼ Bernoulli(S0(pt)

exp(xT
t β)), where S0(·) = 1− F0(·) for a CDF F0. Here, θ = (β, S0(·)) is

the unknown estimand. If Assumptions 1-3 hold and the joint distribution of (xt, pt) does not depend on true θ, then the
nonparametric maximum likelihood estimator θ̂ = (β̂, Ŝ0(·)) satisfies

‖β̂ − β‖2 + ‖Ŝ0(·)− S0(·)‖L2(Q) = OP (n−
1
3 ),

where Q is the marginal distribution of pt.

The dependence on d is hidden in the statement, which we unveil as follows. The original proof uses the empirical process
theory, where a key step is obtaining the covering number of the model family. Huang (1996) derived the covering number
as C(1/εd)(e1/ε) for any small ε > 0, where C > 0 is constant (Lemma 3.1 in the paper). Then this number was further
bounded by C ′e1/ε for use in subsequent steps. This implies that the log-covering number is approximately 1/ε; by Lemma
A.1 therein, integrating (the square root of) the log-covering number leads to a convergence rate of an empirical process.
Note that C ′ depends on d. We can reveal the dependence on d by bounding (1/εd)(e1/ε) by e(d+1)/ε, i.e., the log-covering
number of the family is approximately d/ε. Applying the new bound to the remaining steps results in the order of dn−

1
3 .

That is, it holds that

‖β̂ − β‖2 + ‖Ŝ0(·)− S0(·)‖L2(Q) = OP (dn−
1
3 ). (15)

Coming back to our epoch-based design, we remark that θ̂k uses the data in epoch k − 1, of which sample size is |Ek|/2.
This first implies n = |Ek|/2, so the order dn−

1
3 in the right-hand side of (15) becomes d|Ek|−

1
3 . Another implication is

that Q in Lemma B.1 in our context is the distribution of pt in epoch k − 1, namely Qk−1. That is,

‖Ŝk0 (·)− S0(·)‖L2(Qk−1) = OP (d|Ek|−
1
3 ).

By the design, the distribution of pt at epoch k (Qk) is continuously supported on [pmin, pmax] for any k. And, by assumption
3d, the distribution of p∗t on the epoch k (denoted by Q∗k) is continuously supported on a subset of (pmin, pmax). Therefore,
we have bothQk andQ∗k are absolutely continuous with respect toQk−1, and the Radon–Nikodym derivatives |dQk/dQk−1|
and |dQ∗k/dQk−1| are bounded by a constant C. Thus, by the Radon–Nikodym theorem,

‖Ŝ0(·)− S0(·)‖L2(Qk) =

∫
(Ŝ0 − S0)

dQk
dQk−1

dQk−1 ≤ C
∫

(Ŝ0 − S0)dQk−1 = OP (d|Ek|−
1
3 ),

and similarly ‖Ŝ0(·)− S0(·)‖L2(Q∗k) = OP (d|Ek|−
1
3 ). This completes the proof.

12
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B.2. Proof of Lemma 6.3

Let t ∈ Ek. For simplicity, we write as n = |Ek|, β̂ = β̂k and Ŝ0(·) = Ŝk0 (·), if there is no confusion. By algebra, for any
u ∈ [pmin, pmax], Rt,k(u) ≤ pmax

∣∣∣Ŝ(u|xt)− S(u|xt)
∣∣∣ and∣∣∣Ŝ(u|xt)− S(u|xt)

∣∣∣ =
∣∣∣Ŝ0(u)exp(xT

t β̂) − S0(u)exp(xT
t β)
∣∣∣

≤
∣∣∣Ŝ0(u)exp(xT

t β̂) − S0(u)exp(xT
t β̂)
∣∣∣+
∣∣∣S0(u)exp(xT

t β̂) − S0(u)exp(xT
t β)
∣∣∣ . (16)

For the first term of (16), the Mean Value Theorem on a map t 7→ tc (c > 0 a constant) yields∣∣∣Ŝ0(u)exp(xT
t β̂) − S0(u)exp(xT

t β̂)
∣∣∣ =

∣∣∣Ŝ0(u)− S0(u)
∣∣∣ · exp(xTt β̂)S̄(u)exp(xT

t β̂) for some S̄0(u) between Ŝ0(u) and S0(u).

From the convergence of β̂ (Lemma 6.2) and the boundedness of xt and β (Assumptions 1-2), and 0 < S0, Ŝ0 < 1 guarantees
|exp(xTt β̂)S̄(u)exp(xT

t β̂)| < c1 for any u for some constant c1. i.e, the first term of (16) is bounded by c1|Ŝ0(u)− S0(u)|.

For the second term of (16), the Mean Value theorem on a map t 7→ (c′)exp(c′′t) (c′, c′′ > 0 a constant) yields∣∣∣S0(u)exp(xT
t β̂) − S0(u)exp(xT

t β)
∣∣∣ = |xTt (β̂ − β)| · S0(u)exp(xT

t β̄)| logS0(u)| exp(xTt β̄)xt, for some β̄ between β̂ and

β. By the Cauchy-Schwartz inequality |xTt (β̂ − β)| ≤ ‖xt‖2‖β̂ − β‖2, we can make a similar argument with the above
paragraph to derive

∣∣∣S0(u)exp(xT
t β̂) − S0(u)exp(xT

t β)
∣∣∣ = c2‖β̂ − β‖2 for a constant c2.

Letting C1 = pmaxc1 and C2 = pmaxc2, we obtain the desired result.

B.3. Proof of Lemma 6.4

We want to show (a)
∑
t∈Ek |Ŝ

k
0 (pt)−S0(pt)| = OP (d|Ek|

2
3 ); and (b)

∑
t∈Ek |Ŝ

k
0 (p∗t )−S0(p∗t )| = OP (d|Ek|

2
3 ). We prove

(a) only; then the proof for (b) goes parallel.

For simplicity, let Wk,t = Ŝk0 (pt)− S0(pt), n = |Ek| and relabel the indices in Ek as 1, . . . , n. Now, a decomposition leads
to

1

n

n∑
t=1

|Wk,t| =
1

n

n∑
t=1

(
|Wk,t| −

∫
|Ŝk0 (u)− S0(u)|dQk(u) +

∫
|Ŝk0 (u)− S0(u)|dQk(u)

)

=
1

n

n∑
t=1

(
|Wk,t| −

∫
|Ŝk0 (u)− S0(u)|dQk(u)

)
+

∫
|Ŝk0 (u)− S0(u)|dQk(u).

For the first term, note that {pt}nt=1 is an i.i.d. sample of Qk and Ŝk0 is deterministic given epochs up to k − 1. And, since
|Ŝk0 (u)− S0(u)| ≤ 2 for any real number u, any moment of the Wk,t is finite. Thus, we can apply the central limit theorem
and obtain that the first term is of order n−

1
2 . For the second term, Jensen’s inequality leads to

∫
|Ŝk0 (u)− S0(u)|dQk(u) ≤[ ∫

{Ŝk0 (u)− S0(u)}2dQk(u)
] 1

2 , where the right-hand side is of order dn−
1
3 by Lemma 6.2. Since dn−

1
3 is a dominating

order, we can conclude that 1
n

∑n
t=1 |Wk,t| = OP (dn−

1
3 ), which completes the proof.

B.4. Proof of Theorem 6.1

We prove the case without ε-greedy heuristic (αk = 0) first and generalize to the case αk ≥ 0 in the remark after the proof.

Before proceeding, we note that, with loss of generality, we may assume the last epoch is complete (i.e., T = τ1(2K − 1) for
some integer K ≥ 1). If not (i.e., τ1(2K−1 − 1) < T < τ1(2K − 1)), the regret associated with the incomplete last epoch
will be no greater than if it were completed. Thus, the number of epochs K and T satisfies T = τ1(2K − 1), equivalently
K = log2(T/τ1 + 1).

Let δ > 0 be small. From Lemma 6.2, 6.3 and 6.4, there exist K0 > 0 and C0, C1, C2 > 0 such that

max{‖β̂k − β‖2, ‖Ŝk0 (·)− S0(·)‖L2(Qk), ‖Ŝk0 (·)− S0(·)‖L2(Q∗k), J2k, J3k} ≤ C0|Ek|−
1
3 d (17)

13



Semi-Parametric Contextual Pricing Algorithm using Cox Proportional Hazards Model

and
|Rt,k(u)| ≤ C1|Ŝk0 (u)− S0(u)|+ C2‖β̂k − β‖2

with probability at least 1− δ, for any k > K0. In this high-probability event, (11) and (12) leads to

regret(k-th epoch) :=
∑
t∈Ek

regret(t) ≤ C3|Ek|
2
3 d, (18)

where C3 = (2C1 + 2C2)C2
0 . Note that C3 depends on δ. Thus, we can summarize as follows: For given δ > 0, there exists

K0 and C3 such that
inf

k:k>K0

P
[
regret(k-th epoch) ≤ C3d|Ek|

2
3

]
≥ 1− δ.

Then, by union bound arguments, for given small δ > 0 and sufficient large K,

P

[
K⋂

k=K0+1

{
regret(k-th epoch) ≤ C3d|Ek|

2
3

}]
≥ 1− (K −K0)δ > 1−Kδ.

Since δ can be arbitrarily small, we can redefine δ
K as δ. Then,

P

[
K⋂

k=K0+1

{
regret(k-th epoch) ≤ C3d|Ek|

2
3

}]
≥ 1− δ (19)

for small δ > 0. Let A be the event in the probability notation.

Now we complete the proof. Suppose that the event A is true. We decompose by

R(T ) =

K0∑
k=1

∑
t∈Ek

regret(t) +

K∑
k=K0+1

∑
t∈Ek

regret(t) =: (I) + (II).

For (I), note that pS0(p)exp(xT β) is upper bounded by C4 := max{pS0(p)exp(v) : p ∈ [pmin, pmax], v ∈ [−BX ,BX ]}. So

(I) ≤
K0∑
k=1

∑
t∈Ek

C4 = τ1(2K0 − 1)C4,

where the right-hand side is finite and does not depend on T . For (II), since K = log2

(
T
τ1

+ 1
)

and |Ek| = τ12k−1, under
the event A,

(II) =

log2(T/τ1+1)∑
k=K0+1

regret(k-th episode) ≤
log2(T/τ1+1)∑
k=K0+1

C4d|Ek|
2
3 ≤ C4d

log2(T/τ1+1)∑
k=1

|Ek|
2
3 ≤ C5dT

2
3 .

Therefore, given small δ > 0, we have
R(T ) ≤ τ1(2K0 − 1)C4 + C5dT

2
3

with probability at least 1− δ. As T is sufficiently large, this completes the proof.

Remark B.2. Now, suppose that there is a ε-greedy heuristic with the forced sampling frequency αk. Then, the total regret
at epoch k is decomposed into the regret from rounds with the forced sampling, say r1k, and that from rounds with the
myopic policy, say (r2k). Note that r2k = OP (2

2k
3 d) from (18). And, since each round of the forced sampling leads to a

constant-bounded regret,
r1k = O(αk|Ek|) = O(αk|Ek|).

Choosing αk = min{γ2−
k−1
3 , 1}, we obtain r1k = O(2

2k
3 ). Therefore, the regret at the k-th epoch is still OP (2

2k
3 d) and

we obtain the same result with the case αk = 0.

14



Semi-Parametric Contextual Pricing Algorithm using Cox Proportional Hazards Model

C. Complete pseudocode of the proposed algorithm (CoxCP) with ε-greedy heuristic
Algorithm 2 describes a complete pseudocode of the proposed algorithm (CoxCP) with ε-greedy heuristic.

Algorithm 2 The Cox Contextual Pricing (CoxCP) algorithm with ε-greedy heuristic

1: Input: The length of the first epoch, τ1; the minimum and maximum of price search range, pmin and pmax; and the
forced sampling frequency αk = min{γ · 2−(k−1)/3, 1}

2: For t = 1, . . . , τ1, observe xt, randomly choose pt from a distribution supported on [pmin, pmax], and get reward yt;
3: for epoch k = 2, 3, . . . do
4: Estimate θ = (β, S0(·)) as

θ̂k ← argmax
θ

Lk−1(θ),

where Lk−1(θ) is defined in (9);
5: Set τk ← 2τk−1;
6: Set Ek ← {

∑k−1
r=1 τr + 1, . . . ,

∑k
r=1 τr};

7: for round t ∈ Ek do
8: Observe xt;
9: Draw a binary number r from Bernoulli(αk);

10: if r = 0 then
11:

pt ∈ argmax
p∈[pmin,pmax]

{
pŜk0 (p)exp(xT

t β̂
k)
}

; (20)

12: else
13: Randomly choose pt from a distribution supported on [pmin, pmax];
14: end if
15: Get reward yt.
16: end for
17: end for
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D. Details of the simulation
D.1. Configuration

Shah et al. (2019) has four algorithm variants and we ran the DEEP-C policy (Section 3.1 therein) because this version
is most highlighted in the main body. The exploration of Shah et al. (2019) can be tuned by the γ (in their notation), the
variance of their upper confidence-bound algorithm. We considered γ ∈ {3−2, 3−1, 0, 31, 32}. We note that the algorithm
discretizes the parameter space at the initial steps, and the number of discretized initial bins is T

d+1
4 . Since the discretization

for T = 30000 led to 30000
5+1
4 = 5,196,152 initial bins, which was computationally intractable, we ran their algorithms

with d3000
1
4 e5+1 = 262,144 initial bins.

The exploration of Luo et al. (2022) can be tuned by the length of the first epoch τ1 and the length of the exploration phase
in each epoch. The candidate of τ1 was {64, 128, 256, 512, 1024} as in our algorithm. The length of exploration phase is set
dC1l

β
k e in their paper; we considered C1 ∈ {2−2, 2−1, 1, 21, 22}.

The exploration of Fan et al. (2022) can be tuned in the same way. The length of first epoch τ1 were set as τ1 ∈
{64, 128, 256, 512, 1024}. The length of exploration phase in each epoch is d(lkd)(2m+1)/(4m−1)e in their notation; we
considered C1 ∈ {2−2, 2−1, 1, 21, 22} as in the same way with Luo et al. (2022).

Both Luo et al. (2022) and Fan et al. (2022)’s algorithms require in common to specify the support of uniform distribution
U [b, B] in the “exploration phase” in each episode. We specified b and B as the minimum and maximum of the true support
of F .

Other hyperparameters (if any) were set as their default values in their supplemental codes.

Codes for the simulation are available at https://github.com/younggeunchoi/CoxContextualPricing.

D.2. Computation time

In Table 2, we present a comparison of computation times for running one instance for T = 30,000, averaged over settings
and replications, measured in seconds.

Table 2. Comparison on computation times for running one instance for T = 30,000, averaged over settings and replications. Measured
in seconds.

ALGORITHMS COXCP (PROPOSED) LUO ET AL. (2022) FAN ET AL. (2022) SHAH ET AL. (2019)

TIME IN SEC. (AVG. ± SD.) 20.3 ± 0.4 5.1 ± 0.7 12841.7 ± 36.3 23227.2 ± 224.5

Ours and Luo et al. (2022)’s algorithm showed efficient computation since the computations of parameters are O(log T )
times of convex optimization problem and their price offerings are elementwise products and sums of two vectors. On
the other hand, computational inefficiency of Fan et al. (2022) may be mainly due to the evaluation of kernel smoothing
estimator, in which the complexity for each t is proportional to the product of the exploration samples and the number of
points that one needs to evaluate. In addition, the computational inefficiency of Shah et al. (2019) may be mainly due to the
fact that they conduct a d+ 1-dimensional grid search at initial steps, as explained in the previous subsection.
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