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Abstract
Denoising diffusion models (DDMs) have re-
cently attracted increasing attention by showing
impressive synthesis quality. DDMs are built
on a diffusion process that pushes data to the
noise distribution and the models learn to denoise.
In this paper, we establish the interpretation of
DDMs in terms of image restoration (IR). Inte-
grating IR literature allows us to use an alterna-
tive objective and diverse forward processes, not
confining to the diffusion process. By imposing
prior knowledge on the loss function grounded on
MAP-based estimation, we eliminate the need for
the expensive sampling of DDMs. Also, we pro-
pose a multi-scale training, which improves the
performance compared to the diffusion process,
by taking advantage of the flexibility of the for-
ward process. Experimental results demonstrate
that our model improves the quality and efficiency
of both training and inference. Furthermore, we
show the applicability of our model to inverse
problems. We believe that our framework paves
the way for designing a new type of flexible gen-
eral generative model. The code is available at
https://github.com/Jae-Moo/RGM/.

1. Introduction
Generative modeling is a prolific machine learning task that
the models learn to describe how a dataset is distributed
and generate new samples from the distribution. The most
widely used generative models primarily differ in their
choice of bridging the data distribution to a tractable latent
distribution (Goodfellow et al., 2020; Kingma & Welling,
2014; Rezende et al., 2014; Rezende & Mohamed, 2015;
Sohl-Dickstein et al., 2015; Chen et al., 2022). In recent
years, denoising diffusion models (DDMs) (Ho et al., 2020;
Song & Ermon, 2019; Song et al., 2021b; Dockhorn et al.,
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Figure 1: Conceptual comparison of RGMs and DDMs.
Here, x is the original data, y is the degradation of x with

noise ξ ∼ N (0, σ2I), and x̂ is the reconstruction of y.

2022a) have drawn considerable attention by demonstrat-
ing remarkable results. DDMs rely on a forward diffusion
process that progressively transforms the data into Gaussian
noise, and they learn to reverse the noising process. Albeit
their enormous successes, their gradual denoising generative
process gives rise to low inference efficiency. To pull latent
variables back to the data distribution, the denoising pro-
cess often requires hundreds or even thousands of network
evaluations to sample a single instance. Many follow-up
studies consider enhancing inference speed (Song et al.,
2021a; Tachibana et al., 2021; Lu et al., 2022) or grafting
with other generative models (Xiao et al., 2021a; Vahdat
et al., 2021; Zhang & Chen, 2021; Pandey et al., 2022).

In this study, we focus on a different perspective. We in-
terpret the DDMs through the lens of image restoration
(IR), which is a family of inverse problems for recover-
ing the original images from corrupted ones (Castleman,
1996; Gunturk & Li, 2018). The corruption arises in vari-
ous forms, including noising (Rudin et al., 1992; Buades
et al., 2005) and downsampling (Farsiu et al., 2004). IR has
been a long-standing problem because of its high practical
value in various applications (Besag et al., 1991; Banham &
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Katsaggelos, 1997; Lehtinen et al., 2018; Ma et al., 2011).
From the IR point of view, DDMs can be considered as
IR models based on minimum mean square error (MMSE)
estimation (Zervakis & Venetsanopoulos, 1991; Laumont
et al., 2022), focusing only on the denoising task. Mathe-
matically, IR is an ill-posed inverse problem in the sense
that it does not admit a unique solution (Hadamard, 1902)
and hence, leads to instability in reconstruction. Owing to
the ill-posedness of IR, MMSE produces impertinent results.
DDMs alleviate this problem by leveraging costly stochastic
sampling, which has been regarded as an indispensable tool
in the literature on DDMs.

Inspired by this observation, we propose a new flexible fam-
ily of generative models that we refer to restoration-based
generative models (RGMs). We adopt an alternative objec-
tive; a maximum a posteriori (MAP) based regularization
(Hunt, 1977; Trussell, 1980), which is predominantly used
in IR. This approach detours the ill-posedness by regular-
izing the data fidelity loss by prior knowledge rather than
doing costly iterative sampling. Prior knowledge can be
utilized in a variety of ways. Moreover, we also have the
freedom to design the degradation process. RGMs with
variability of these two have several benefits:

Implicit Prior knowledge Many hand-crafted regulariza-
tion schemes (Tikhonov, 1963; Donoho, 1995; Baraniuk,
2007) encourage solutions to satisfy certain properties, such
as smoothness and sparsity. However, for the purpose of
density estimation, we parametrize the prior term to learn
the statistical distance, e.g., Kullback–Leibler divergence or
Wasserstein distance. We also introduce a random auxiliary
variable to further ease the ill-posedness. Our MAP-based
estimation allows a much smaller computational cost, re-
taining the density estimating capability of DDMs.

Various Forward process DDMs are buried in a Gaussian
noising process. On the other hand, fluidity in the forward
process of RGMs improves model performance because
the behavior of generative models is significantly affected
by how the data distribution is transformed into a simple
distribution. As one instantiation, we design a degradation
process that progressively reduces the dimension by block
averaging the image, which improves performance.

Our comprehensive empirical studies on image generation
and inverse problems demonstrate that RGMs generate sam-
ples rivaling the quality of DDMs with several orders of mag-
nitude faster inference. In particular, our model achieves
FID 2.47 on CIFAR10, with only seven network function
evaluations. Furthermore, through rigorous experiments
with various prior terms and degradation, we validate that
our RGM framework is well-structured that opens the way
for designing more efficient and flexible generative models.

2. Background
Image Restoration A common inverse problem arising
in image processing, including denoising and inpainting, is
the estimation of an image x given a corrupted image

y = Ax+ ξ, (1)

where A is a matrix that models the degradation process,
and ξ ∼ N (0,Σ) is an additive noise. A family of such
problems is known as image restoration (IR). A popular
approach is the maximum-a-posteriori (MAP) estimation

argmaxx log p (x | y) = log p (y | x) + log p (x) . (2)

However, since the explicit density function log p (x) is
intractable, they replace the objective (2) with

argminx f (y,x) + g (x) , (3)

where f (x,y)=−log p (y | x)= 1
2

∥∥∥(Σ†) 1
2 (Ax− y)

∥∥∥2
2

is the data fidelity term with the pseudoinverse (Moore,
1920) Σ† and g is a regularization term (or prior knowledge)
that represents prior or constraints on the solution. Since
(3) originated from the MAP objective, it is also called the
MAP-based approach. Prior knowledge can be imposed
in a variety of ways and the choice is crucial because the
quality of the restoration varies according to different prior.
Moreover, the ill-posedness nature of the inverse problem
(1), that is non-uniqueness of the solution, necessitates the
use of regularization. By imposing certain prior information
about the desirable recovery, the prior knowledge g relieves
the ill-posedness. Therefore, many researchers have been
devoted to designing a proper prior g (Rudin et al., 1992;
Mallat, 1999; Lunz et al., 2018).

Denoising Generative Models Denoising diffusion mod-
els (DDMs) (Ho et al., 2020; Song et al., 2021b) have re-
cently emerged as the forefront of image synthesis research.
Starting from the image distribution, they gradually corrupt
the image x0 ∼ pdata into Gaussian noise over time through
a forward diffusion process with a given noise schedule σt:

q(t) (xt | x0) = N
(
x0, σ

2
t I
)
,

also known as VESDE (Song et al., 2021b). Another linear
diffusion process named VPSDE is also leveraged, but since
these two are known to be exchangeable with each other
(Kim et al., 2022), the paper focuses on VESDE. DDMs
pose the data generation as an iterative denoising procedure
by learning the reverse of the forward process. As they are
modeled with conditional Gaussian distributions, evidence
lower bound (ELBO) (Sohl-Dickstein et al., 2015) could be
simplified to the following objective with a weight λ (t) ≥ 0
(Ho et al., 2020; Song et al., 2021b):

ΣT
t=0Ex0∼pdata,xt∼qσt (xt|x0)

[
λ (t) ∥Gθ (xt, t)− x0∥22

]
,
(4)
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where Gθ is a neural network parametrized by θ.

For each forward step t, (4) is the minimum mean square
error (MMSE) objective. MMSE loss is simple and straight-
forward to train, however, the solution is only optimized to
ensure accordance with the degradation process because it
only contains the recovery term. Consequently, MMSE is
affected by ill-posedness. To be precise, when σt is large,
(1) becomes highly ill-posed and possesses many solutions
for a given observation. In this case, the MMSE solution av-
erages all these candidate solutions, resulting in an atypical
reconstruction. Recent works (Laumont et al., 2022; Kawar
et al., 2021) have endeavored to resolve this problem by
stochastic sampling, however, they suffer from notoriously
low efficiency as they roll out thousands of trajectories. In a
similar manner, DDMs utilize a sampling scheme that often
requires hundreds to thousands of steps. In summary, there
are two limitations of DDMs from the IR perspective:

1. The degradation process is restricted to Gaussian noising.

2. The inference efficiency is intrinsically low due to the
MMSE estimator.

3. Method
3.1. MAP-based Estimation for Generation

As alluded in Section 2, DDMs can be regarded as MMSE-
grounded IR models, specialized in denoising. This obser-
vation brings us a new perspective on the design of a family
of flexible generative models. As an alternative to MMSE,
we propose a new generative model based on (3):

Ex∼pdata,y∼N (x,σ2I)

[
1

2σ2
∥Gθ(y)− y∥22 + λg(Gθ(y)))

]
,

(5)
where the first term measures the data fidelity and the sec-
ond term delivers the prior knowledge of the data distri-
bution. It has been adopted as a standard approach for
high-dimensional imaging problems and is known to be
more relevant than MMSE in many applications (Saha et al.,
2009; Bigdeli et al., 2019; Chen, 2016). By leveraging prior
information on the solution, MAP-based approaches alle-
viate the ill-posedness of the inverse problem (1), without
the use of costly sampling. Therefore, carefully crafting
the relevant prior term is crucial. We now show how one
can execute an appropriate prior term for density estimation
while alleviating the ill-posedness.

Alleviation of ill-posedness Unlike the generic denoising
task, it is necessary to bridge the image to the Gaussian noise
to learn the data distribution. As the noise level increases,
a single distorted observation has several solutions, which
indicates that the ill-posedness deepens. Therefore, our
generator Gθ should be able to recover diverse restorations
from a degraded image to express the data distribution more

abundantly. Since it is difficult for the regularization term
to remedy all these problems on its own, we further offload
the ill-posedness by introducing a random auxiliary variable
z ∼ N (z | 0, I). In other words, we use the stochastic
variable z as an input of Gθ. As Gθ (y, z) generates various
restores for different z, it is more amenable to faithfully
recovering the data distribution.

Implicit Prior Knowledge For density estimation, the
knowledge about the data distribution should be properly
encoded in the prior term g of (5). However, since the
explicit density of the data is inaccessible, we parameterize
g to learn the prior. For each forward step, our new objective
for the generator Gθ in conjunction with the z is given by:

Ex∼pdata,y∼N (x,σ2I),z∼N (0,I)

[
1

2σ2
∥Gθ(y, z)− y∥22

+ λgϕ(Gθ(y, z)))] ,

(6)

where gϕ is a learnable prior term parameterized by ϕ. For
example, we can learn an implicit representation of the data
by adopting gϕ(x) = log (1−Dϕ (x))− logDϕ (x) where
Dϕ is a discriminator trained coupled with Gθ. As Dϕ gets
close to the optimal, i.e., Dϕ(x) = pdata(x)

pdata(x)+pθ(x)
, the ex-

pectation of gϕ approaches to Kullback–Leibler divergence
(KLD) DKL(pθ||pdata), which leads the loss (6) with λ = 1
to agree with the following objective:

Ex∼pdata,y∼N (x,σ2I) [DKL(pθ(x|y)||p(x|y))] +H(pθ),
(7)

whereH denotes an entropy and pθ the distribution gener-
ated by Gθ. The overall training procedure combined with
all σ ∈ {σk}Tk=1 is provided in Appendix B.2.
Remark 3.1. Contrary to conventional IR literature whose
prior term is pre-defined, our approach (6) tries to learn
the prior term by coordinating with Gθ. This end-to-end
training allows our MAP-inspired scheme to deliver more
promising performance. Moreover, it is worth noting that
our framework has the wide freedom in the choice of gϕ
without being tied to the discriminative learning for KLD ex-
emplified above. Consequently, we further design the prior
term by mounting maximum mean discrepancy (MMD)
(Dziugaite et al., 2015) and distributed sliced Wasserstein
distance (DSWD) (Nguyen et al., 2020) in Section 4.

Small Denoising Steps A major downside of DDMs is
their sampling inefficiency, which often requires hundreds
to thousands of denoising steps to obtain a single image. By
adopting regularization term g, our approach provides an
avenue to offload the time-consuming sampling and enables
significantly small denoising steps. For small degradation,
we can obtain a restored image in one shot. But, as our
restoration starts from the Gaussian noise, the data distribu-
tion is not completely estimated. Therefore, we perform the
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Figure 2: Generated samples on LSUN Church (left) and CelebA-HQ (right).

generation iteratively. In our experiments on CIFAR10, we
generate a high-quality sample in four denoising steps.

3.2. Extension to General Restoration

In Section 3.1, we proposed a denoising generative model
based on MAP objective. However, from the IR perspective,
it is not necessary to restrict the forward process to Gaussian
noising (A = I) and it can be generalized to any family of
degradation matrices A and noise factors Σ in (1). Utilizing
the general forward process, we can learn the generative
model by generalizing the loss function (6) as follows:

Ex∼pdata,y∼N (Ax,Σ),z∼N (0,I) [λgϕ(Gθ(y, z)))

+
1

2

∥∥∥(Σ†) 1
2 (A ·Gθ(y, z)− y)

∥∥∥2
2

]
.

(8)

Therefore, RGM has an flexible structure that can permeate
any forward process, and aids in designing a new generative
model. Here, we propose a new model established upon
super-resolution (SR).

Multi-scale RGM Most DDMs maintain the image size
during the diffusion process by adding noise to individual
pixels. Consequently, they are very inefficient because they
require a latent as much as dimension of pixel space that
is much larger than the submanifold of the image space.
Motivated by this, we take A as a block averaging filter that
averages out 2 × 2 pixel values. Halving the image size
at each coarsening step allows us a more expressive gen-
erative model with a lower-dimensional latent distribution.
Moreover, multi-scale training has proven to be an effective
strategy for synthesizing large scale images (Denton et al.,
2015; Karras et al., 2017b; Reed et al., 2017). Therefore, our
model produces strikingly realistic images by progressively
extracting spatial information.

4. Experiments
This section evaluates the performance of the proposed
RGMs on synthetic and several benchmark datasets. We

also analyze our model through extensive ablation studies.
Furthermore, we show the capability of RGMs for solving
inverse problems. We parametrize Gθ based on the UNet-
like structure (Ronneberger et al., 2015) which was success-
fully used in NCSN++ (Xiao et al., 2021a). The internal
details of the implementation can be found in Appendix B.

Setup Our RGMs have a free hand in designing the for-
ward process (i.e. data fidelity) and the prior term. To verify
the pliability of RGMs, we implement RGMs with diverse
forward processes and regularization terms:

• We consider three prior knowledge by leveraging KLD,
MMD, and DSWD, where each stands for the measure-
ment of the difference between two distributions. KLD
measures how much two distributions diverge from each
other entropically as introduced in Section 3.1. Using
a kernel trick, MMD measures the mean squared differ-
ence of the statistics of two sets of samples. DSWD
estimates the difference by calculating the sliced Wasser-
stein distance for two distributions for multiple projection
vectors. With the Gaussian noise forward process, we call
these models RGM-KLD-D, RGM-MMD-D, and RGM-
DSWD-D, respectively. Here, the term “D” stands for
“denoising”. See Appendix B.2 for a detailed explanation.

• Additional to the Gaussian noise forward process, which
is primarily used in DDM, we also carry out an RGM-
KLD with the multi-scale forward process introduced in
Section 3.2. In this case, the image is corrupted by a
downsampling filter together with additive noise. There-
fore, the model (termed by RGM-KLD-SR (naive)) is de-
manded to conduct upsampling and denoising at the same
time. To ease the task, we separate the downsampling and
noising processes and perform them alternatively. We
call a model using this separated schedule RGM-KLD-SR.
(See Appendix B.1 for details).

4.1. 2D Toy Example

We first employ a two-dimensional example to validate the
effectiveness and flexibility of our framework. We adopt
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Figure 3: Comparison of recovering density by MMSE
versus three RGMs with different priors. All three RGMs

are much more efficient than the MMSE approach.

a mixture of Gaussian with eight components (Grathwohl
et al., 2018) as a target distribution. Our results are depicted
in Figure 3. As illustrated in the first column, we diffuse the
data distribution through four different noise levels. From
left to right, each of the columns represents the learned
distribution of our RGMs with the regularization term pa-
rameterized by KLD, MMD, DSWD, and lastly MMSE
estimation.

Effectiveness of MAP-based approach Figure 3 shows
the benefits of our methodology over the MMSE approach.
First, the rightmost column shows the failure of MMSE,
where the modes of the distribution are connected and then
missed. This tendency exacerbates as the noise level in-
creases. Since the MMSE fails to reconstruct the data
distribution even with a small rise in the noise level, the
MMSE does not yield a satisfactory generative model with
a small number of diffusion steps. Consequently, MMSE
approaches, such as DDMs, require a large number of steps
to stably recover the data distribution. On the other hand,
by adding the prior knowledge our RGMs generate sam-
ples from the multimodal distribution significantly better,
which allow distribution recovery with a much smaller num-
ber of forward processes than the MMSE approach. This
demonstrates the effectiveness of using the prior term g.
Flexibility of the prior term Our RGMs have the free-
dom to parametrize the prior term g of (6). To demonstrate
that the RGM framework universally works for variously
parametrized prior terms, we manifoldly design the prior
term by KLD, MMD, and DSWD. The results depicted in
Figure 3 validate that RGMs parametrized in three different
ways show consistent performance, where they are all more
efficient than the MMSE estimator. In particular, MMD
measures the distance between two distributions based on a
pre-defined kernel, and hence g is fixed rather than learned.

Table 1: Results on unconditional generation of CIFAR10.

Class Model FID (↓) IS (↑) NFE (↓)

RGM
RGM−DSWD−D 3.11 9.08 4

RGM-KLD-D 3.04 9.14 4
RGM-KLD-SR 2.47 9.68 7

DDM

NCSN (Song & Ermon, 2019) 25.3 8.87 1000
DDPM (Ho et al., 2020) 3.21 9.46 1000

Score SDE (VE) (Song et al., 2021b) 2.20 9.89 2000
Score SDE (VP) (Song et al., 2021b) 2.41 9.68 2000

Probability Flow (VP) (Song et al., 2021b) 3.08 9.83 140
DDIM (50 steps) (Song et al., 2021a) 4.67 8.78 50

Recovery EBM (Gao et al., 2021) 9.58 8.30 180
LSGM (Vahdat et al., 2021) 2.10 9.87 147

FastDDPM (T = 50) (Kong & Ping, 2021) 3.41 8.98 50
VDM (Kingma et al., 2021) 4.00 - 1000

UDM (Kim et al., 2021) 2.33 10.1 2000
GGF (Jolicoeur-Martineau et al., 2021b) 2.44 - 1000

Subspace Diffusion (Jing et al., 2022) 2.17 9.94 ≥ 1000
CLD (Dockhorn et al., 2022a) 2.25 - 2000
DDGAN (Xiao et al., 2021a) 3.75 9.63 4
DEIS (Zhang & Chen, 2022) 3.37 9.74 15

StyleGAN2+ES-DDPM (Lyu et al., 2022) 5.52 - 101
DPM-Solver-3 (Lu et al., 2022) 2.70 - 30
GENIE (Dockhorn et al., 2022b) 3.94 - 20

GAN

SNGAN+DGflow (Ansari et al., 2020) 9.62 9.35 25
AutoGAN (Gong et al., 2019) 12.4 8.60 1
TransGAN (Jiang et al., 2021) 9.26 9.02 1

StyleGAN2 w/o ADA (Karras et al., 2020) 8.32 9.18 1
StyleGAN2 w/ ADA (Karras et al., 2020) 2.92 9.83 1

Others

NVAE (Vahdat & Kautz, 2020) 23.5 7.18 1
Glow (Kingma & Dhariwal, 2018) 48.9 3.92 1
PixelCNN (Van Oord et al., 2016) 65.9 4.60 1024

VAEBM (Xiao et al., 2020) 12.2 8.43 16

Despite this simple structure, the results confirm that our
RGM with MMD is more efficient than MMSE.

4.2. Image Generation

We compare the performance of our RGMs with several
existing baselines. We use Fréchet Inception Distance (FID)
and Inception Score (IS) as the evaluation metrics. We also
report the number of network function evaluations (NFEs).
For DDMs and RGMs, NFE value and real inference time
are proportional. Following (Song et al., 2021b; Dockhorn
et al., 2022a), we focus on the widely used CIFAR10 un-
conditional image generation benchmark (Krizhevsky et al.,
2009) and also validate the performance of RGMs on large-
scale (256×256) images: CelebA-HQ (Liu et al., 2015) and
LSUN Church (Yu et al., 2015). Tables 1 and 2 summarize
the quantitative evaluations on CIFAR10 and CelebA-HQ,
respectively. The qualitative performance of RGM-KLD-D
is depicted in Figures 2 and 4.

Results We can see that our models are comparable to
the best existing DDMs on CIFAR10 and achieve the state-
of-the-art FID score on CelebA-HQ-256. Although the
best denoising models obtain better results than ours on
CIFAR10, they use a much larger number of denoising steps
(e.g. ScoreSDE with VESDE requires 2000 steps). Notably,
our RGM-KLD-SR achieves FID 2.47 and IS 9.68 with
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Figure 4: CIFAR10 generated samples.

only seven steps, which is state-of-the-art sampling FID
performance when NFE is limited. The overall results con-
firm that our method immediately eliminates the need for
an expensive sampling scheme while still maintaining the
density estimating capability of DDMs. Interestingly, RGM-
KLD-SR outperforms RGM-KLD-D by a large margin even
with far fewer latent variables than RGM-KLD-D. This im-
proved performance may be attributed to the increase in
NFE; however, the FID of RGM-KLD-D with T = 8 re-
ported in Table 7 confirms that it is not. In addition, RGM
with the DSWD prior term retains comparable performance.
This verifies that our MAP-inspired objective (6) works
universally well, not being tied to how we parametrize the
prior term. The overall results indicate that the prior knowl-
edge regularized estimation of RGMs is a promising way
of generating high-quality samples in limited steps. More
uncurated images can be founded in Appendix C.5.

Table 2: Results on generation of CelebA-HQ-256.

Class Model FID (↓) NFE (↓)

RGM RGM-KLD-D 7.15 4

DDM

Score SDE (VP) (Song et al., 2021b) 7.23 4000
Probability Flow (Song et al., 2021b) 128.13 335

LSGM (Vahdat et al., 2021) 7.22 23
UDM (Kim et al., 2021) 7.16 2000

DDGAN (Xiao et al., 2021a) 7.64 4

GAN

PGGAN (Karras et al., 2017a) 8.03 1
Adv. LAE (Pidhorskyi et al., 2020) 19.2 1

VQ-GAN (Esser et al., 2021) 10.2 1
DC-AE (Parmar et al., 2021) 15.8 1

VAE
NVAE (Vahdat & Kautz, 2020) 29.7 1

VAEBM (Xiao et al., 2020) 20.4 1
NCP-VAE (Aneja et al., 2021) 24.8 1

4.3. Ablation Studies

This section is devoted to validating that the structure of
the RGM framework is well-organized, with all parts of our
objective, including fidelity term, prior knowledge, auxiliary
variable, and regularization parameter, faithfully fulfilling
their respective roles. For a fair comparison, we used the
same network for all experiments.

x0

x1

x2

x3

x4

Figure 5: Study on the effect
of auxiliary variable z.

Figure 6: FIDs for different
regularization parameter λ.

On the effect of Varying λ We investigate the sensitivity
of the regularization parameter λ in (6). Since it controls
the relative importance between the fidelity term and the
prior term, λ is a trade-off hyperparameter that determines
how much regularizes the joint distribution of pk and pk+1.
In Figure 6, we present FID scores measured on CIFAR10
with the same number of degradation steps (T = 4) and
varying λ. We can see that our models are quite robust with
respect to λ. An empirically observed sweet spot of λ is
d/10 ≤ λ ≤ d for the image size d, in which FID is no
longer improved outside this threshold. For small λ, the
models put a lot of effort to recover the degradation, which
hinders estimating data distribution. Choosing a large λ also
results in performance degeneration.

On the Importance of Fidelity term The results of
RGMs trained without the fidelity term also draw our atten-
tion. Table 3 shows that the FID scores of both RGM-KLD-
D and RGM-DSWD-D degenerate when there is no fidelity
term. In particular, looking at RGM-DSWD-D, the perfor-
mance without fidelity term is inferior to the vanilla DSWD
model despite using multiple timesteps. This demonstrates
that the performance improvement of our model is not solely
due to the power of the existing generative models we used
to design the prior knowledge. On the other hand, including
the fidelity term significantly improves performance. In
particular, RGM-DSWD-D achieves more than two times
performance improvement over the vanilla DSWD. The ab-
lation studies we discuss here confirm that RGMs owe the
performance improvement to the fidelity term, not simply
because we borrow the expressivity from the regularization
term. We further observe that with the help of the fidelity
term, our model enhances the mode-collapsing resiliency of
GAN (See Figure 18). Overall results validate that the per-
formance of RGMs owes to both fidelity and prior term, and
the reliable regularization parameter should be determined
to balance these two terms.

On the role of z We include experimental results on
LSUN church, which demonstrate how the auxiliary vari-
able z alleviates the ill-posedness of the inverse problem.
By noising the upper-left image x0, we obtain the forward
trajectory {xk}4k=1. The figures on the right are restored
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Original Grayscale Ours DDRM Downsampled Ours Bicubic GAN baseline DDRMGAN baseline

Colorization Super-Resolution (× 𝟖)

Figure 7: Colorization (left) and super-resolution (right) results on LSUN and CelebA-HQ datasets.

Table 3: Ablation studies of RGMs on CIFAR10.

Model Multi-step Fidelity z FID (↓)

✗ ✗ ✗ 42.8
✗ ✓ ✓ 14.6

RGM-KLD-D ✓ ✗ ✓ 32.5
✓ ✓ ✗ 3.87
✓ ✓ ✓ 3.04

✗ ✗ ✗ 7.12
RGM-DSWD-D ✓ ✗ ✓ 16.3

✓ ✓ ✓ 3.14

RGM-KLD-SR (naive) ✓ ✓ ✓ 3.17
RGM-KLD-SR ✓ ✓ ✓ 2.47

images of xk by RGM-KLD-D together with four different
z. We can see that reconstruction is almost unique when
the noise level is small. But, as the noise level increases,
a single xk has various reconstructions. It is evident that
assigning z helps generate different denoised images from
a heavily degraded xk through the guidance provided by
z. However, one might think that the ill-posedness is de-
toured by multi-step training using multiple σk rather than
through z. This claim can be refuted using the result of
RGM-KLD-D without z reported in Table 3. We observe
the significant difference in FIDs of RGM-KLD-D with and
without z under the same number of denoising steps, which
indicates the effectiveness of z.

On the forward process schedule Since the forward pro-
cess determines the way of connecting the data and latent
distributions, it significantly affects the performance of mod-
els. The first important factor is the number of forward steps
T , which is directly related to NFE. In Table 3, we ablate
the effect of T . When T = 1, it may be difficult for the
model to directly approximate the data distribution from the

Gaussian noise. This is reflected in the poor FID score.

We also study the forward process schedule of the SR model.
We can observe that the separation of the same forward pro-
cess into two steps makes the model easier to learn, and
this brings the performance enhancement of RGM-KLD-SR
compared to RGM-KLD-SR (naive). From this, we would
like to point out that properly designing the forward process
can significantly increase performance. We leave the devel-
opment of more useful and rigorous forward process as a
promising future direction.

4.4. Inverse Problems

While our model was originally devised to generate images,
we further show the applicability of RGMs to inverse prob-
lems. Recently, a promising approach in imaging inverse
problems is to leverage a learned denoiser as an alternative to
the proximal operator of splitting algorithms (Romano et al.,
2017; Hurault et al., 2021). Such methodology is referred to
as Plug-and-Play (PnP) algorithms (Venkatakrishnan et al.,
2013). In a similar spirit, we utilize the trained RGMs as a
modular part of the PnP algorithms to solve various inverse
problems. In this section, we testify our RGM-KLD-D for
two inverse problems; SR and colorization, by plugging our
model into Douglas-Rachford Splitting algorithm (Lions &
Mercier, 1979). Details can be found in Appendix B.4.

Results We compare the performance of our model with
current-leading models: We compare our model with
DDRM (Kawar et al., 2022), which solves inverse prob-
lems with a pre-trained DDPM by a posterior sampling
scheme. As a GAN baseline, we adopt StyleSwin (Zhang
et al., 2022) and reconstruct the image by optimizing over
the latent vector (Pan et al., 2021). We also consider bicu-
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Table 4: Quantitative comparison of RGM-KLD-D and RGM-KLD-SR on image reconstruction.

Model Super-Resolution Denoising

(×2) (×4) (σ = 10/255) (σ = 20/255) (σ = 40/255)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RGM-KLD-D 26.63 0.88 20.84 0.58 30.11 0.93 26.57 0.86 24.23 0.80
RGM-KLD-SR 27.42 0.90 21.14 0.59 29.41 0.92 25.87 0.84 23.53 0.77

bic interpolation as a baseline for super-resolution. We
observe that our model is capable of reconstructing faith-
ful and realistic images, as evident in Figure 7. Compared
with baselines, our model produces high-quality reconstruc-
tions across all the datasets. In particular, our model shows
promising performance for colorization. These results show
the applicability of RGMs to PnP prior, and this will bring
a range of potential applications, including image segmen-
tation, conditional generation, and other imaging inverse
problems. Additional quantitative and qualitative results are
provided in Appendix C.3.

Comparison of RGM-D and RGM-SR We investigate
the effect of the degradation process used during training
on the performance of solving inverse problems. We com-
pare the reconstruction performance of RGM-KLD-D and
RGM-KLD-SR which are trained on different degradation
processes by applying both models to denoising and super-
resolution (SR) tasks on CIFAR10. Quantitative results are
presented in Table 4. We can see that the RGM-KLD-SR
that is trained based on SR actually performs the SR task
better. Also, we can observe a similar tendency for denois-
ing. The results confirm that the degradation process used in
training actually helps in solving the corresponding inverse
problem.

5. Related Work
In recent years, DDMs (Ho et al., 2020; Song & Ermon,
2019; Song et al., 2021b) have emerged as a class of density
estimation models, first sparked by (Sohl-Dickstein et al.,
2015). They define a sampling process as the reverse of a
forward diffusion process that maps data to Gaussian noise
by consecutively adding a small portion of the noise to the
input data. DDMs are known to faithfully estimate the data
distribution and generate high-fidelity samples, however,
their major drawback is slow and expensive sampling speed.
Many studies have been dedicated to circumventing this
downside by developing a fast numerical solver (Jolicoeur-
Martineau et al., 2021a; Zhang & Chen, 2022; Tachibana
et al., 2021; Liu et al., 2022) or using an alternative nois-
ing process such as non-Markovian (Song et al., 2021a), a
second-order Langevin dynamics (Dockhorn et al., 2022a),
and non-linear diffusion processes (De Bortoli et al., 2021;
Chen et al., 2022). Another line of work improves sampling
efficiency by incorporating it into other generative models,

including GAN (Xiao et al., 2021a; Lyu et al., 2022), and
VAE (Vahdat & Kautz, 2020). Xiao et al. (2021a) which
enjoys small sampling steps by using GAN is one of our re-
lated works. On a side note, all the aforementioned models
use the Gaussian noising process as the forward process.

Recently, the literature has begun to replace the additive
Gaussian noising process with other transforms. Breaking
away from the diffusion process, (Rissanen et al., 2022)
proposed a forward blurring process inspired by heat dis-
sipation. They suggest a new generation process, but they
specialize in the proposed blurring process and cannot be
incompatible with other degradation processes. Possibly the
closest study to our work is Cold Diffusion (Bansal et al.,
2022) which generalizes the diffusion process to arbitrary
image transformations. It seems to use a general trans-
form similar to our models, but Cold Diffusion only uses
deterministic degradation processes by entirely removing
additive Gaussian noise, which hinders its density estima-
tion performance. Also, they use the MMSE objective, still
requiring an array of several forward steps. We include a
comparison with these related works in Appendix C.2.

6. Conclusion and Future Work
In this study, we presented a general framework for mod-
eling efficient generative models through the lens of IR.
Compared to DDMs whose both forward and reverse pro-
cesses are fixed to thousands of Gaussian steps, our ap-
proach provides more flexible models that eliminate expen-
sive sampling and can enjoy versatile forward processes.
We eliminated the usage of slow sampling by taking on the
MAP-based approach and incorporating implicit priors. In
addition, we propose a multi-scale method as an example of
the usability of various forward processes. The experimen-
tal results showed that the image quality obtained was on
par with the leading DDMs, and we achieved state-or-the-
art performance using a limited number of forward steps.
We hope that this work provides a broad view of modeling
useful generative models.

Our model has two degrees of freedom: One is how to
parametrize the prior knowledge, and the other is the choice
of the forward process. Designing new prior terms and
degradation processes would be an interesting direction for
future research. Future work could include the comprehen-
sive design of a convergence-guaranteed PnP algorithm for
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application to various inverse problems. We leave these fur-
ther extensions to future work. Furthermore, notwithstand-
ing the high performance, our methodology lacks theoretical
justification. We also leave this as interesting future work.
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A. Continuation of Related Works
DDMs have been pertinent generative models by showing promising results on various generation tasks. DDMs degrade the
data with a reference diffusion process and learn the data distribution by restoring it. We have arranged DDMs in the context
of restoration, and DDMs can be interpreted as an MMSE estimator for a denoising task.

• Energy-based models (EBMs) are another line of generative models that learn the unnormalized data distribution by
giving low energy to high-density regions in the data space. As DDMs have demonstrated that recovery of a sequence
of noisy data is more effective than directly approximating the data density, Gao et al. (2021) recently proposed a
recovery energy-based model (REBM) by using a diffusion process. Inspired by DDMs, REBM learns a sequence of
energy functions for the marginal distributions of the diffusion process. More precisely, from the noisy observation
x̃ = x+ ξ, ξ ∼ N

(
0, σ2I

)
, they estimate the conditional likelihood pθ (x | x̃) ∝ exp−Eθ(x|x̃) by learning the energy

function
Eθ =

1

2σ2
∥x− x̃∥2 − fθ (x) . (9)

They indeed learn the marginal density fθ and infer the data through the recovery likelihood. The marginal density fθ is
adversarially trained by assigning low energy to high-probability regions in the data space and high energy values outside
these regions. Since direct sampling from pθ (x | x̃) is intractable, samples are usually drawn by leveraging Langevin
dynamics (LD) (Neal, 1993), which is a conventional sampling method of EBMs. Therefore, REBM trains marginal
density fθ using a kind of adversarial loss, but REBM is actually a MAP estimator implicitly defined by the sampling
dynamics. In other words, REBM learns the posterior distribution using the reference diffusion process, but it does not
deviate from the traditional sampling method of EBM, still generating samples through inefficient LD. There are two
difficulties of such a Markov Chain Monte Carlo (MCMC) sampling: Applying MCMC in pixel space to sample one
instance from the model is impractical due to the high dimensionality and long inference time. As reported in (Xiao et al.,
2021b), the estimated density of EBMs can sometimes differ significantly from the data distribution, even if the model
with the short-run LD produces relevant samples. It is also known that the convergence of LD is very difficult when the
energy function is complicated.

• Another related work is a denoising diffusion GAN (DDGAN) (Xiao et al., 2021a), which enjoys small sampling steps
by using GAN. DDGAN focuses on improving the sampling efficiency while maintaining the sample quality and mode
coverage of DDMs. The reason why DDMs adhere to the heavy sampling scheme is their common assumption that
the true posterior is approximated by Gaussian distributions. This assumption holds only with small denoising steps.
When the number of denoising steps is reduced, the denoising distribution is no longer a Gaussian distribution, but a
non-Gaussian multi-modal, which is usually intractable. DDGAN breaks the Gaussian assumption by reducing the number
of denoising steps and then approximates the non-Gaussian multimodal posterior distribution with the help of GAN.
DDGAN enhances the sampling efficiency of DDMs and also resolves the mode collapse problem of GANs by using a
couple of denoising steps from the perspective of GAN literature. The architecture of DDGAN is somewhat similar to that
of our RGM-KLD-D. However, there is a difference in a way of estimating MAP. DDGAN assigns all responsibility for
MAP estimation to the GAN structure. On the other hand, our models learn the MAP-based estimator by separating the
posterior distribution into the fidelity term and the prior term. Therefore, the model is much easier to learn than DDGAN.
As a consequence, RGM-KLD-D obtains substantial savings in terms of training iterations than DDGAN. Specifically, in
CIFAR10 experiments, DDGAN takes 400K iterations to achieve FID of 3.75. In comparison, our RGM-KLD-D only
uses 150K iterations to achieve the same performance as DDGAN and takes 200K iterations for FID of 3.04. For the
CelebA dataset, DDGAN requires 750K iterations to attain FID 7.64, while RGM-KLD-D obtains the same FID score
using only 450K iterations and FID 7.15 even with 500K iterations. Furthermore, our framework can be extended to
various forward processes and regularization terms, which are more flexible and utilizable.

As such, there have been various density estimation models based on denoising. Diffusion models, such as DDPM and score
matching with Langevin dynamics and its variants, are MMSE-based estimators. The model of REBM itself approximates
the marginal density as we do, but our model is trained with MAP-based loss, whereas REBM generates samples from the
posterior distribution through the sampling method. Diffusion models and REBM train different estimators, but both models
use a Langevin sampling scheme that requires thousands of network evaluations. On the other hand, DDGAN is a model that
can perform one-shot sampling with the help of GAN (away from the Langevin sampling), just like our RGMs. However,
since DDGAN learns the whole posterior density through the discriminator, it is more inefficient in terms of learning than
our models, which separate the fidelity and the prior term. Consequently, our RGMs achieve better performance than
DDGAN with much fewer iterations. All these models are restricted to the diffusion process. Otherwise, our RGMs can
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enjoy flexible forward processes and are also given a degree of freedom in how to parametrize the prior term. In other words,
our approach does not need to restrict to the diffusion process and unlike DDGAN, which is limited to the GAN structure, it
is possible to design the prior term by leveraging different generation models. This is further discussed in Appendix B.2.

B. Implementation Details
B.1. Degradation Schedule

Let Ak and Σk be a degradation matrix and a noise variance on the k-th degradation step, respectively.

Then, given a data x sampled from the real data distribution pdata, a degraded data yk on the k-th forward step is sampled
from

p (yk | x) = N (yk;Akx,Σk) .

We denote the marginal distribution at the T -th degradation step as pT . Because our primary goal is to bridge pdata to an
easy-to-sample distribution pT , (especially to a zero mean Gaussian distribution), we gradually decrease the norm of Ak to
zero as k increases. In Section 4, we introduced two families of models based on the degradation schedule {(Ak,Σk)}Tk=1

with the corner cases: RGM-KLD-D for Ak = I and RGM-SR for Ak = Pk a 2 × 2 averaging filter. Roughly speaking, we
consider three models based on different forward processes designed as follows:

• RGM-D: noise→ noise→ noise→ noise→ · · · .

• RGM-SR (naive): downsample + noise→ downsample + noise→ · · · .

• RGM-SR: noise→ downsample→ noise→ downsample→ · · · ,

shown schematically in Figure 8. With the following notations

βk =
1

4
(βmax − βmin)

(
k

T

)2

+
1

2
βmin

k

T
, (10)

β̃k =
1

4
(βmax − βmin)

(
k

T

)4

+
1

2
βmin

(
k

T

)2

, (11)

where βmax = 20 and βmin = 0.1, table 5 details the explicit form of the forward processes used for each model. The noise

Table 5: The choice of schedule Ak and Σk and the corresponding latent distribution pT for RGM-D, RGM-SR (naive), and
RGM-SR. Pk is a projection matrix that downscales the images by block averaging in a factor of 2k. For RGM-SR, we set

T in (10) to be half of the total steps added by one.

RGM-D RGM-SR (naive) RGM-SR

Ak e−βkI e−β̃kPk e−β⌈k/2⌉P⌊k/2⌋

Σk

(
1− e−2βk

)2
I

(
1− e−2β̃k

)2

P⊤
k Pk

(
2⌈k/2⌉

(
1− e−2β⌈k/2⌉

))2
P⊤

⌊k/2⌋P⌊k/2⌋

pT N (0, I) N
(
0, 1

64I
)

N (0, 4I)

schedule of RGM-D follows the Variance Preserving SDE provided bySong et al. (2021b), and others are implemented with
a slight modification of them.

When we use the degradation matrix Ak as the averaging filter, the corresponding forward process downsamples the image
while adding Gaussian noise. RGM according to this forward process, referred to as RGM-SR (naive), is demanded to
super-resolve the degraded data while simultaneously denoising it. It is considerably more difficult than the denoising
task when the noise level is the same. To address this difficulty, we consider a newly scheduled degradation scheme that
decomposes the forward process into downsampling and noising operations. We name the RGM designed in conjunction
with this forward schedule as RGM-SR. As provided in Table 5, when the step k is odd, the difference from the (k + 1)-th
step is only the projection matrix. Namely, only downsample is performed when sampling the (k+1)-th degraded data from
the k-th degraded observation. Conversely, when k is an even number, the forward process produces the (k+1)-th degraded
image by adding the Gaussian noise. In summary, RGM-SR focuses on denoising the data in odd steps and super-resolving
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Figure 8: Degradation sequences for RGMs.

the data in even steps. Provably due to the difficulty of performing super-resolution and denoising simultaneously, RGM-SR
(naive) has the worst performance. Whereas RGM-SR, which uses the decomposed forward process, outperforms both
RGM-D and RGM-SR by a large margin as reported in Section 4.2.

B.2. Training RGMs

In this section, we unambiguously elucidate how we train our RGMs. In Algorithms 1 and 2, we summarize the two
training procedures of GAN-based prior that are suited to different situations. We also provide an explanation of the training
procedure of RGMs with other priors. Moreover, the generation process is provided in Algorithm 3.

Training As proposed in Section 3.1, RGMs learn the data distribution pdata through the process of degrading the image
through a forward process and then restoring it using the MAP-based objective (6). However, since it is too difficult to
restore the image directly from the Gaussian distribution in one shot, we use a handful of forward steps and train RGMs that
recover the distribution between each step. (We also include an ablation study on this in Appendix C.1) In other words, at
each step k, we first sample a degraded image yk of a given image x ∼ pdata. The generator Gθ generates the restored image
x̂, and then, we degrade it by the posterior distribution ŷk−1 ∼ p (ŷk−1 | yk, x̂). We train our loss function so that ŷk−1

becomes a restoration of yk. The discriminator loss is also imposed on the (k − 1)-th step. Through the overall process, we
ultimately learn the model that restores the distribution of the previous (k − 1)-th step at each k-th step.

The training procedure is articulated in Algorithm 1.

However, we can exactly formulate the posterior distribution only when the forward process satisfies certain conditions. For
all k = 1, · · · , T , if there exists

(
Ãk, Σ̃k

)
satisfying

Ak = ÃkAk−1, Σ̃k := Σk − ÃkΣkÃ
⊤
k ≻ 0, (12)

we can explicitly construct a conditional distribution pk|k−1(yk|yk−1) = N (Ãkyk−1, Σ̃k) and a posterior distribution (Ho
et al., 2020; Kingma et al., 2021; Xiao et al., 2021a). For example, the forward process of RGM-D falls under this condition
(12), but that of RGM-SR does not. Therefore, the Algorithm 1 does not fit with RGM-SR. To unravel such a problem,
we propose a prevalent algorithm that is applicable to forward processes that are in discord with the condition (12). See
Algorithm 2. The only difference from the Algorithm 1 is the replacement of the posterior sampling by the prior sampling in
Line 5 and the data fidelity term in Line 9. When the posterior distribution is unavailable, we corrupt the image x̂ restored
by the generator Gθ to the (k − 1)-th degraded distribution using the k-th forward process rather than posterior sampling.
Moreover, since the conditional distribution between k and (k − 1) steps is unknown, we adopt the fidelity term of the
image x̂ reconstructed by the generator. This algorithm is universally applicable to general forward processes. One notable
fact is that RGM-D, whose posterior distribution is tractable, learns the data distribution better when using this algorithm
than Algorithm 1. This is discussed in detail in Appendix C.1.

Training with other priors Without being tied to the GAN discriminator, our RGMs have the freedom to parametrize the
prior term g of regularizer (6) in any other way. To demonstrate that the RGM framework universally works for variously
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Algorithm 1 Training of RGMs with Posterior sampling

Input: Dataset D, degradation schedule {(Ak,Σk)}Tk=0 with (A0,Σ0) = (I,0), posterior distribution

pk|k−1 (yk−1,yk) = N
(
Ãkyk, Σ̃k

)
, generator Gθ, discriminator Dϕ, and regularization parameter λ ≥ 0.

1: for i = 0, 1, 2, . . . do
2: Sample data x ∈ D.
3: Sample k ∼ Uniform({1, 2, . . . , T}).
4: Sample z ∼ N (0, I).
5: Sample degraded data yk ∼ N (Akx,Σk) and yk−1 ∼ N (Ak−1x,Σk−1).
6: Generate an image x̂ = Gθ(yk, k, z).
7: Degrade data by posterior sampling ŷk−1 ∼ p (ŷk−1 | yk, x̂).
8: Update ϕ by the following loss:

log (1−Dϕ (ŷk−1, k − 1)) + logDϕ (yk−1, k − 1) .

9: Update θ by the following loss:

log (1−Dϕ (ŷk−1, k − 1))− logDϕ (ŷk−1, k − 1) +
1

2λ

∥∥∥∥(Σ̃†
k

) 1
2
(
Ãkŷk−1 − yk

)∥∥∥∥2
2

.

10: end for

Algorithm 2 Relaxed training algorithm of RGMs

Input: Dataset D, degradation schedule {(Ak,Σk)}Tk=0 with (A0,Σ0) = (I,0), discriminator Dϕ, generator Gθ, and
regularization parameter λ ≥ 0.

1: for i = 0, 1, 2, . . . do
2: Sample x ∈ D.
3: Sample k ∼ Uniform({1, 2, . . . , T}).
4: Sample z ∼ N (0, I).
5: Sample degraded data yk ∼ N (Akx,Σk) and yk−1 ∼ N (Ak−1x,Σk−1).
6: Generate an image x̂ = Gθ(yk, k, z).
7: Degrade x̂ by ŷk−1 ∼ N (Ak−1x̂,Σk−1).
8: Update ϕ by the following loss:

log (1−Dϕ (ŷk−1, k − 1)) + logDϕ (yk−1, k − 1) .

9: Update θ by the following loss:

log (1−Dϕ (ŷk−1, k − 1))− logDϕ (ŷk−1, k − 1) +
1

2λ

∥∥∥∥(Σ†
k

) 1
2

(Akx̂− yk)

∥∥∥∥2
2

.

10: end for
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parametrized prior terms, we design the prior term in two additional ways: maximum mean discrepancy (MMD) (Dziugaite
et al., 2015) and distributed sliced Wasserstein distance (DSWD) (Nguyen et al., 2020):

• We replace KLD objective to MMD, a two-sample test based on kernel maximum mean discrepancy (Li et al., 2017). For
given two sets of data X = {x1, x2 . . . , xM} and Y = {y1, y2 . . . , yM}, the MMD prior g(X,Y ), which estimates the
MMD distance, is defined as follows;

g (X,Y ) =
1(
M
2

)
∑

i ̸=j

k (xi, xj)− 2
∑
i ̸=j

k (xi, yj) +
∑
i ̸=j

k (yi, yj)

 , (13)

where k is a positive definite kernel. Following the prior works (Dziugaite et al., 2015; Li et al., 2015; 2017), we use a
mixture of RBF kernels k(x, x′) =

∑n
i=1 kσi

(x, x′) where kσ is a Gaussian kernel with bandwidth parameter of σ.

• To measure the distance of two datasets X = {x1, x2 . . . , xM} and Y = {y1, y2 . . . , yM}, sliced Wasserstein-based
framework (SW) projects the data into a one-dimensional vector then explicitly calculates the Wasserstein distance on
the projected space. In such an explicit calculation, SW can be freed from an unstable adversarial framework. Recently,
Nguyen et al. (2020) has proposed a novel and efficient method to obtain useful projection samples, hence, we followed the
implementation of this prior work in our experiments. Specifically, following Nguyen et al. (2020), we use the learnable
feature function and calculate DSWD on the feature space for CIFAR10 experiments. In other words, we replace the prior
term g of line 9 of Algorithm 2 to DSWD objective.

The results on the 2D synthetic example discussed in Figure 3 validate that RGMs parametrized in three different ways
show consistent performance, where they are all more efficient than the MMSE estimator. Furthermore, we also carried out
the experiment of RGM-D with the DSWD prior, termed RGM-DSWD-D, on CIFAR10. Consequently, RGM-DSWD-D
achieves an FID score of 3.14 retaining comparable performance with RGM-KLD-D. The overall results verify that our
MAP approach works universally well for the various prior terms.

Algorithm 3 Sampling Procedure of RGMs

Input: Trained generator Gθ and degradation schedule {Ak,Σk}Tk=1.
1: Sample initial state yT ∼ N (0,ΣT ).
2: for k = T − 1, T − 2, . . . , 0 do
3: Sample z ∼ N (0, I).
4: Restore image x̂k by x̂k = Gθ (yk+1, k + 1, z).
5: Sample yk ∼ N (Akx̂k,Σk).
6: end for
7: return x̂0

Sampling The sampling algorithm is sum-
marized in Algorithm 3. Starting from a la-
tent variable yT ∼ pT , the trained Gθ gener-
ates the restored image x̃ = Gθ (yk+1, k, z)
with a randomly selected auxiliary variable z
from the (k + 1)-the degraded image yk+1,
and then corrupt it by passing the k-th for-
ward process. Continue this procedure until
k = 0. When we train our model with Al-
gorithm 1, line 5 should be replaced by the
posterior sampling. For a schematic represen-
tation of this hierarchical sampling process
of RGMs, see Figure 9.

B.3. Implementation Details

We refer to (Nguyen et al., 2020) for the precise definition of hyperparameters of RGM-DSWD-D.

Experiments on 2D dataset In the implementation of the two-dimensional Gaussian Mixture, we use a 3-layered MLP of
32 hidden dimensions for both generator and discriminator with Tanh activation. We concatenated all the inputs and passed
them through the network. For the RGM-KLD-D experiment, models are trained for 100K iterations with a learning rate of
10−4, a batch size of 1000. For the RGM-DSWD-D experiment on the 2D data, we use the number of iterations of 100K,
the number of projections of 10, 10 DSW iterations, and λC = 10. For the MMD experiment, we applied kernel bandwidths
of 0.1, 0.5, 1, 2, and 10.

Image generation To optimize our RGMs, we mostly followed the previous literature (Xiao et al., 2021a), including
network architectures, R1 regularization, and optimizer settings. Note that our code is largely built on top of DDGAN 1

1https://github.com/NVlabs/denoising-diffusion-gan
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Figure 9: Hierarchical generation process of RGMs.

(MIT License). We vary the discriminator by simply changing input channels into three. Moreover, we use a learning rate of
2× 10−4 for generator update in all experiments and a learning rate of 10−4 for discriminator update. We use λ−1 = 10−3

for image size of 32, and λ−1 = 5× 10−5 for image size of 256. The models are trained with Adam (Kingma & Ba, 2014)
in all experiments. In CIFAR10 experiments, we train RGM-KLD-D and RGM-KLD-SR (naive) for 200K iterations and
RGM-KLD-SR for 230K iterations. Moreover, for RGM-DSWD-D implementation on CIFAR10, we use the output of the
fifth convolutional layer of the discriminator as a feature vector. We use the number of iterations of 150K, the number of
projections of 1000, 10 DSW iterations, and λC = 1 for the DSWD experiment. Lastly, we train RGM-KLD-D for 500K
iterations and 300K iterations in LSUN experiments.

Other details We train our models on CIFAR-10 using 4 V100 GPUs. The training takes approximately 40 hours on
CIFAR-10. Moreover, the sampling of 100 samples takes approximately 0.25 seconds for RGM-KLD-D on single V100
GPUs. For evaluation on CIFAR10, we use 50K generated samples to measure IS and FID. For CelebA-HQ-256, we use
30K samples to compute FID.

B.4. Solving Inverse Problems

Modern image processing algorithms reconstruct the ground-truth image by solving the following minimization problem:

minimize
x

fy (x) + λg (x),

where f measures the fidelity to a corrupted observation y, and g constrains the solution space by measuring the complexity
or noisiness of the image. Many imaging inverse problems, such as colorization, super-resolution (SR), and deblurring, fall
under this form. Since the above optimization problem does not have a closed-form solution in general, first-order proximal
splitting algorithms, including half-quadratic splitting (HQS) (Geman & Yang, 1995), alternating direction method of
multipliers (ADMM) (Boyd et al., 2011), solve the problem by operating individually on f and g via the proximal operator
(Parikh et al., 2014). With the aid of the emergence of deep learning, Plug-and-Play (PnP) algorithms (Venkatakrishnan et al.,
2013) have recently begun to connect proximal splitting algorithms and deep neural networks by replacing the proximity
operator of the regularization term g with a generic denoiser (Romano et al., 2017; Reehorst & Schniter, 2018).

Similarly, our trained RGMs can be used as PnP priors. In Section 4.4 we solved two inverse problems, colorization, and
super-resolution, by plugging the trained RGMs into Douglas-Rachford Splitting (DRS) algorithm (Lions & Mercier, 1979),
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following (Hurault et al., 2022). This is summarized in Algorithm 4. Starting from the degraded observation y, the DRS
algorithm updates the solution by alternatively utilizing proximal operations for both f and g. By iteratively updating the
solution, the solution lies far outside the distribution on which our denoiser Gθ trained. For this out-distribution data, Gθ

cannot recover the original image distribution, which in turn prevents the DRS algorithm from convergence. To remedy this
problem, the input of Gθ should always be within the trained distribution. Therefore, we push the updated solution into
the learned distribution through the forward process. Note that the proximal operation is calculated by utilizing efficient
singular value decomposition proposed in Kawar et al. (2022).

Algorithm 4 Solving Inverse Problems by RGMs

Input: A degraded observation y, fidelity loss function fy, repeat number M , update rate α ∈ (0, 1], regularization
parameter λ ≥ 0, trained generator Gθ, and degradation schedule {Ak,Σk}Ti=1.

1: Initialize xK = y.
2: for 0, 1, . . . ,M do
3: for i = K,K − 1, . . . , 1 do
4: Sample ŷ ∼ N (Axi,Σi) and z ∼ N (0, I).
5: x̂← Gθ(ŷ, i− 1, z).
6: x̂← (1− α)xi + αx̂.
7: ∆x← proxλfy(2x̂− xi)− x̂.
8: xi−1 ← xi +∆x.
9: end for

10: end for
11: return x0

Settings & Hyperparameters In SR experiments, we downscale images by using a block averaging filter by r in each
axis. The filter is applied for the stride of r. We experiment on r = 4 and r = 8 for LSUN and CelebA-HQ datasets. In the
CIFAR10 experiment, we use r = 2 and r = 4. In colorization experiments, we simply degrade color images to gray by
averaging images along the channels of each pixel. All tasks are evaluated on hundred samples that are sampled from the
evaluation dataset. Table 6 reports the exact set of hyperparameters that we used in our experiments. We set K = 2 for
colorization and K = 1 for denoising and SR tasks.

On CIFAR10 experiments, to fairly compare RGM-KLD-D and the naive version of RGM-KLD-SR, we train both models

with the same degradation steps of three (T = 3). For RGM-KLD-D, we used Ak = e−β̃kI and Σk =
(
1− e−2β̃k

)2

I.

For RGM-KLD-SR, we used Ak = e−β̃kPk and Σk =
(
1− e−2β̃k

)2

P⊤
k Pk.

Table 6: Hyperparameters used for solving inverse problems.

CIFAR10 LSUN/CelebA-HQ

SR(×2) SR(×4) σ = 10/255 σ = 20/255 σ = 40/255 SR(×4) SR(×8) Color

M 5 10 10 20 10 40 40 20
λ 0.2 0.1 0.01 5 5 10 10 5
α 0.2 0.2 0.2 0.1 0.1 0.05 0.05 0.5

Baselines We employed two main comparison models, namely DDRM (Kawar et al., 2022) and GAN baseline, which
is close to our work. Similar to our method, both comparison models assume that a degradation matrix is given and they
iteratively update degraded images by using their knowledge obtained from the pretrained network and degradation matrix.
Moreover, our model and these comparisons do not require heavy additional training. The implementation of DDRM follows
its original implementation. The implementation of GAN baseline mainly follows the implementation of DGP (Pan et al.,
2021), however, instead of using BigGAN (Brock et al., 2018), we replaced it with a pretrained model of StyleSwin (Zhang
et al., 2022), which is one of the state-of-the-art. For discriminator loss of DGP, we used the last feature vector of StyleSwin
discriminator. We additionally adjusted the weights of the losses. For experiments in SR, we use an MSE loss weight of 1.0
and a discriminator loss weight of 1.0. For colorization, we use MSE loss weight of 1.0 and discriminator loss of 1.0 for the
previous 400 iterations and 0.1 after that. Other hyperparameters of GAN baseline implementation follow Pan et al. (2021).
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We also compare our model with SDEdit (Meng et al., 2021), a stroke-based diffusion model. In the implementation of
SDEdit, we use total denoising steps of 200 with the number of repeats of three.

C. Additional Results
C.1. Additional Ablation Studies

In this section, we include additional ablation studies on our training procedure and the forward process schedule. All
experiments are conducted on the CIFAR10 dataset and focused on RGM-KLD-D.

Table 7: Additional ablation studies on
CIFAR10 experiments.

Model FID (↓)

Directly matching data 21.2
RGM-KLD-D w/ posterior 3.52

RGM-KLD-D (T = 8) 6.50

RGM-KLD-D (T = 4) 3.04

Directly restoring the data distribution Given a k-th degraded image yk,
the generator is trained to restore the original image in one shot. Therefore,
we can train RGMs to directly restore the real image distribution from each
degraded step k. RGM-KLD-D trained in this say is denoted by Directly
matching data in Table 7. This model was trained in the same forward
process as RGM-KLD-D (T = 4). The FID score shows that the model has
difficulties in learning the data distribution, falling short of FID score by
21.2. It seems that it is still difficult to directly restore the image of the real
data distribution from a severely degraded image yk (k ≈ T ) even with the
help of auxiliary variable z.

Training with posterior sampling While training, there are two ways to sample ŷk−1 from ŷk (See line 7 of Algorithm 1
and 2). The posterior sampling (line 7 of Algorithm 1) is theoretically well-grounded since it minimizes the statistical MAP
loss of the posterior distribution. However, to obtain an explicit form of posterior sampling, the forward process should be
constrained to satisfy the conditions (12). Since the noising forward process of RGM-KLD-D satisfies these conditions, we
trained RGM-KLD-D with both posterior sampling (Algorithm 1) and prior sampling (Algorithm 2) under the same setup. In
Table 7, RGM-KLD-D (T = 4) and RGM-KLD-D w/ posterior refer to the model trained with prior and posterior sampling,
respectively. As shown in Table 7, both models achieve similar results in terms of FID score, where RGM-KLD-D with
prior sampling slightly precedes posterior sampling. This verifies that the two training objectives of Algorithms 1 and 2 are
somewhat consistent. Because the performance is a bit better, we adopt the prior sampling in all our experimental studies.

Effect of the number of forward steps The number of forward steps is one of the important factors affecting the
performance of the model. We investigated this in Section 4.3 by comparing a four-step model RGM-KLD-D (T = 4)
with the RGM-KLD-D (T = 1), where we use only one degradation step. As reported in Table 3, RGM-KLD-D (T = 1)
struggles to learn the data distribution because it needs to recover the real data distribution directly from Gaussian noise with
one chance. On the other hand, RGM-KLD-D (T = 4) estimates the data density well. Besides, what happens when we use
more steps? Since our RGMs learn the data distribution in a way that restores the distribution of the previous degradation
step (k − 1) distribution from the k-th degraded distribution, one may expect that the models will be easier to estimate
the density as the distribution between the two steps is closer by dividing the forward process with more steps. However,
the opposite results are presented in Table 7. The results show that RGM-KLD-D (T = 8) attains a higher FID score. In
other words, dividing the forward process into smaller pieces does not enhance the model performance. In addition, this
phenomenon is also observed for Directly matching data. RGM-KLD-D (T = 1) can actually be regarded as Directly
matching data (T = 1), whereas the Directly matching data presented in the table uses T = 4. Comparing these two, we
can observe that the model using fewer degradation steps performs better. Xiao et al. (2021a) reported a similar tendency.
Choosing appropriate T is crucial for algorithmic performance, but not straightforward how many steps are optimal.

Reducing mode collapse using data fidelity Lastly, we examine the influence of the data fidelity term in our MAP-based
estimation. To quantify the contribution of the fidelity term, we trained RGM-KLD-D by the loss function without the data
fidelity loss (termed by RGM-KLD-D (λ =∞)) in Section 4.3, and we reached an FID score of 32.5 (See Table 3). This
result clearly motivates our objective. Moreover, we observe the mode collapse for RGM-KLD-D (λ =∞), which is the
one of common failure modes of GAN. As evidence, generated samples are presented in Figure 18. Comparing samples
generated by our RGM-KLD-D (see Figure 2) to Figure 18, it is clear that images generated by RGM-KLD-D have higher
diversity and better quality. The results verify that it is beneficial to train our RGMs together with the data fidelity term.
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C.2. Comparison with existing models using various destruction

Recently, several works introduce various degradation processes as an alternative to the diffusion process. Rissanen et al.
(2022) proposed an inverse heat dissipation model (IHDM) with a forward blurring process inspired by heat equation.
Afterward, Hoogeboom & Salimans (2022) established a theoretical bridge between diffusion models and IHDM using
Fourier transform. Based on this insight, they built a blurring diffusion model. Daras et al. (2022) proposed a general
framework for learning the score function for any linear corruption process. Moreover, Cold Diffusion (Bansal et al., 2022)
proposed a new family of models using deterministic degradation processes. Similarly, the proposed RGMs can leverage
general linear degradation processes. Therefore, we compare the performance of RGMs with the aforementioned related
works in Table 8. In comparison with our model itself, the change in the forward process brings FID improvement. But
compared to other models, we can observe how efficiently our proposed method produces high-quality images.

Table 8: Comparison with restoration-based models with various forward
processes. Sample quality on CIFAR10 is measured by FID score.

Model FID (↓) NFE

Cold Diffusion (SR) (Bansal et al., 2022) 152.76 3
Cold Diffusion (Blur) (Bansal et al., 2022) 80.08 50

IHDM (Rissanen et al., 2022) 18.96 200
Soft Diffusion (Daras et al., 2022) 3.86 ≤ 100

Soft Diffusion (Blur) (Daras et al., 2022) 4.64 ≤ 100
Blurring Diffusion (Hoogeboom & Salimans, 2022) 3.17 1000

RGM-KLD-D 3.04 4
RGM-KLD-SR 2.47 7

C.3. Additional Results on Inverse Problems

To quantify the performance of our RGM, we report signal-to-noise ratio (PSNR), which measures faithfulness to the
ground-truth image. Also, as a perceptual metric, we include structural similarity index measure (SSIM) (Wang et al., 2004)
that quantifies the image. Table 9 summarizes the PSNR and SSIM performances of colorization and super-resolution (SR)
on CelebA-HQ and LSUN datasets. Since the primary goal of SDEdit is to generate a realistic and faithful image in the
absence of paired data, we did not make a quantitative comparison with SDEdit. But we include qualitative comparisons.

Colorization The goal of image colorization is to restore a gray-scale image to a colorful image with RGB channels. We
present more colorization results on CelebA-HQ and LSUN church in Figure 11 and 12, respectively. Results reported
in Table 9 show that our RGM achieves comparable and sometimes even better performance than baselines. From the
qualitative results, we can observe that our RGM is able to reconstruct more faithful and realistic images than other models.

Super-resolution Super-resolution aims at recovering high-resolution images corresponding to a given low-resolution
image. We consider downsampled images with two scale factors 4 and 8. We also compare SR results with bicubic
interpolation. Figure 13 and 14 present the qualitative comparisons. Compared against bicubic upsampling, bicubic attains

Table 9: Colorization and super-resolution results of different methods.

Model Colorization Super-Resolution
LSUN CelebA-HQ LSUN CelebA-HQ

(×4) (×8) (×4) (×8)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RGM 23.78 0.93 25.57 0.93 22.74 0.65 19.96 0.48 28.51 0.81 24.86 0.70
DDRM 23.68 0.94 23.94 0.93 23.22 0.67 20.61 0.51 29.32 0.83 26.23 0.73

GAN baseline 20.02 0.81 24.79 0.88 20.32 0.48 18.06 0.34 26.77 0.71 23.92 0.59
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higher PSNR and SSIM values. However, we can observe from Figure 13 and 14 that bicubic interpolation results in
blurry images, and RGM super-resolves more plausible images. Also, visual differences between RGM and DDRM are
qualitatively not large.

C.4. Additional results of varying z

We investigated the influence of the auxiliary variable z in Section 4.3. Here, we include more observations in Figure 10.

C.5. Additional Qualitative Results on Generation

We present more generated image samples in Figures 15, 16, 17, 19, and 20.

22



Restoration based Generative Models

x0

x1

x2

x3

x4

x0

x1

x2

x3

x4

Figure 10: Illustration of the effect of varying z on CelebA-HQ (top) and LSUN (bottom). The images in the leftmost
column depict the selected trajectory {xk}4k=1 degraded from an image x0. Each row on the right presents restored images
of xt using four different random auxiliary values z. When the noise level is small, they generate almost identical images,

which means that the restoration problem is almost well-posed. As the noise level increases, however, each degraded
observation xk estimates diverse images depending on the z. In other words, the larger the noise, the more severe the

ill-posedness, and the results validate that a much wider restoration is possible through the introduction of z.
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Figure 11: Colorization. Qualitative comparison on CelebA-HQ.
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Figure 12: Colorization. Qualitative comparison on LSUN church.
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Figure 13: Super-resolution. Qualitative comparison on CelebA-HQ.
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Figure 14: Super-resolution. Qualitative comparison on LSUN church.

26



Restoration based Generative Models

Figure 15: Generated samples of RGM-DSWD-D on CIFAR10.

Figure 16: Generated samples of RGM-KLD-D on CIFAR10.
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Figure 17: Generated samples of RGM-KLD-SR on CIFAR10.

Figure 18: Mode collapse of RGM-KLD-D trained without the data fidelity term. Sampled images of RGM-KLD-D
(λ =∞) seem repetitive.
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Figure 19: Additional qualitative results of RGM-KLD-D trained on CelebA-HQ-256.
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Figure 20: More qualitative results of RGM-KLD-D trained on LSUN Church.
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