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Abstract
In meta reinforcement learning (meta RL), an
agent seeks a Bayes-optimal policy – the optimal
policy when facing an unknown task that is sam-
pled from some known task distribution. Previous
approaches tackled this problem by inferring a
belief over task parameters, using variational in-
ference methods. Motivated by recent successes
of contrastive learning approaches in RL, such as
contrastive predictive coding (CPC), we investi-
gate whether contrastive methods can be used for
learning Bayes-optimal behavior. We begin by
proving that representations learned by CPC are
indeed sufficient for Bayes optimality. Based on
this observation, we propose a simple meta RL
algorithm that uses CPC in lieu of variational be-
lief inference. Our method, ContraBAR, achieves
comparable performance to state-of-the-art in do-
mains with state-based observation and circum-
vents the computational toll of future observation
reconstruction, enabling learning in domains with
image-based observations. It can also be com-
bined with image augmentations for domain ran-
domization and used seamlessly in both online
and offline meta RL settings.

1. Introduction
In meta reinforcement learning (meta RL), an agent learns
from a set of training tasks how to quickly solve a new
task, sampled from a similar distribution as the training
set (Finn et al., 2017; Duan et al., 2016). A formal set-
ting for meta RL is based on the Bayesian RL formulation,
where a task corresponds to a particular Markov decision
process (MDP), and there exists some prior distribution over
MDPs (Humplik et al., 2019; Zintgraf et al., 2020; Rakelly
et al., 2019). Under this setting, the optimal meta RL policy
is well defined, and is often referred to as a Bayes-optimal
policy (Ghavamzadeh et al., 2016).
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In contrast to the single MDP setting, where an optimal pol-
icy can be Markovian – taking as input the current state and
outputting the next action, the Bayes-optimal policy must
take as input the whole history of past states, actions, and re-
wards, or some sufficient statistic of it (Bertsekas, 1995). A
popular sufficient statistic is the belief – the posterior prob-
ability of the MDP parameters given the observed history.
For small MDPs, the belief may be inferred by directly ap-
plying Bayes rule, and approximate dynamic programming
can be used to calculate an approximately Bayes-optimal
policy (Ghavamzadeh et al., 2016). However, this approach
quickly becomes intractable for large or continuous MDPs.
Recently, several studies proposed to scale up belief infer-
ence using deep learning, where the key idea is to lever-
age a variational autoencoder (VAE, Kingma & Welling
2013) formulation of the problem, in which the posterior
is approximated using a recurrent neural network (Zintgraf
et al., 2020; Humplik et al., 2019). While this approach
has demonstrated impressive results on continuous control
benchmarks (Zintgraf et al., 2020; Humplik et al., 2019;
Dorfman et al., 2021), it also has some limitations. Train-
ing a VAE is based on a reconstruction loss, in this case,
predicting the future observations given the current history,
which can be difficult to optimize for visually rich observa-
tions such as images. Furthermore, variational algorithms
such as VariBAD (Zintgraf et al., 2020) reconstruct entire
trajectories, restricting application to image-based domains
due to memory limitations.

As an alternative to VAEs, contrastive learning has shown
remarkable success in learning representations for various
domains, including image recognition and speech process-
ing (Chen et al., 2020; Fu et al., 2021b; Han et al., 2021).
Rather than using a reconstruction loss, these approaches
learn features that discriminate between similar observa-
tions and dissimilar ones, using a contrastive loss such as
the InfoNCE in contrastive predictive coding (CPC, Oord
et al. 2018). Indeed, several recent studies showed that con-
trastive learning can learn useful representations for image
based RL (Laskin et al., 2020; 2022), outperforming rep-
resentations learned using VAEs. Furthermore, Guo et al.
(2018) showed empirically that in partially observed MDPs,
representations learned using CPC (Oord et al., 2018) are
correlated with the belief. In this work, we further investi-
gate contrastive learning for meta RL, henceforth termed
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CL meta RL, and aim to establish it as a principled and
advantageous alternative to the variational approach.

Our first contribution is a proof that, given certain assump-
tions on data collection and the optimization process of CPC,
representations learned using a variant of CPC are indeed a
sufficient statistic for control, and therefore suffice as input
for a Bayes-optimal policy. Our second contribution is a
bound on the suboptimality of a policy that uses an approx-
imate sufficient statistic, learned by CPC, in an iterative
policy improvement scheme where policies between itera-
tions are constrained to be similar. This result relaxes the
assumptions on the optimization and data collection in the
first proof. Building on this result, we propose a simple meta
RL algorithm that uses a CPC based representation to learn
a sufficient statistic. Our third contribution is an empirical
evaluation of our method that exposes several advantages
of the contrastive learning approach. In particular, we show
that: (1) For state-based observations, CL meta RL is on
par with the state-of-the-art VariBAD (Zintgraf et al., 2020)
(2) For image-based observations, CL meta RL significantly
outperforms the variational approach, and is competitive
with RNN based methods (Duan et al., 2016) (3) In contrast
to the variational approach, CL Meta RL is compatible with
image augmentations and domain randomization. (4) Our
method works well in the online and offline meta RL setting.
Overall, our results establish CL meta RL as a versatile and
competitive approach to meta RL.

2. Background and Problem Formulation
In this section we present our problem formulation and
relevant background material.

2.1. Meta RL and POMDPs

We define a Markov Decision Process (MDP) (Bertsekas,
1995) as a tuple M = (S,A,P,R), where S is the state
space, A is the action space, P is the transition kernel and
R is the reward function. In meta RL, we assume a dis-
tribution over tasks, where each task is an MDP Mi =
(S,A,Pi,Ri), where the state and action spaces are shared
across tasks, and Pi,Ri are task specific and drawn from a
task distribution, which we denote D(P,R). At a given time
t, we denote by (s0, a0, r0, s1, a1, r1, . . . , st) = ht ∈ Ωt

the current history, where Ωt is the space of all state-action-
reward histories until time t. Our aim in meta RL is to find
a policy π = {π0, π1, . . . }, where πt : Ωt → A, which
maximizes the following objective:

Eπ

[ ∞∑
t=0

γtrt

]
,

where the expectation Eπ is taken over the transitions
st+1 ∼ P(·|st, at), the reward rt = R(st, at), the actions

at ∼ π(·|ht) and the uncertainty over the MDP param-
eters P,R ∼ D(P,R). We assume a bounded reward
rt ∈ [−Rmax, Rmax], Rmax > 0 with probability one.

Meta RL is a special case of the more general Partially Ob-
served Markov-Decision Process (POMDP), which is an ex-
tension of MDPs to partially observed states. In the POMDP
for meta RL, the unobserved variables are P,R, and they do
not change over time. We define Ωt for POMDPs as above,
except that states are replaced by observations according
to the distribution ot+1 ∼ U(ot+1|st+1, at). As shown in
Bertsekas (1995), the optimal policy for a POMDP can be
calculated using backwards dynamic programming for ev-
ery possible ht ∈ Ωt. However, as explained in Bertsekas
(1995) this method is computationally intractable in most
cases as Ωt grows exponentially with t.

2.2. Information States and BAMDPs

Instead of the intractable space of histories, sufficient statis-
tics can succinctly summarize all the necessary information
for optimal control. One popular sufficient statistic is the
posterior state distribution or belief P (st|ht). Conditions
for a function to be a sufficient statistic, also termed infor-
mation state, were presented by Subramanian et al. (2020)
and are reiterated here for completeness:
Definition 2.1 (Information State Generator). Let {Zt}Tt=1

be a pre-specified collection of Banach spaces. A collec-
tion {σt : Ωt → Zt}Tt=1 of history compression functions
is called an information generator if the process {Zt}Tt=1

satisfies the following properties, where ht ∈ Ωt, and
σt(ht) = Zt ∈ Zt:

P1 For any time t and for any ht ∈ Ωt, at ∈ A we have:

E [rt|ht, at] = E [rt|Zt = σt(ht), at] .

P2 For any time t, and for any ht ∈ Ωt, at ∈ A, and any
Borel subset B of Zt+1 we have:

P (B ∈ Zt+1|ht, at) = P (B ∈ Zt+1|Zt = σt(ht), at) .

Intuitively, information states compress the history without
losing predictive power about the next reward, or the next
information state.

To solve a POMDP, one can define a Bayes-Adaptive MDP
(BAMDP)– an MDP over the augmented state space of
S × B, where B = {Zt}Tt=1 is the space of the informa-
tion state. This idea was introduced by Duff (2002) for
the belief. Here, we use the term BAMDP more generally,
referring to any information state. The optimal policies for
BAMDPs are termed Bayes-optimal and optimally trade-off
between exploration and exploitation, which is essential for
maximizing online return during learning. Unfortunately,
in most cases computing the Bayes-optimal policy is in-
tractable because the augmented space is continuous and
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high-dimensional. Zintgraf et al. (2020) proposed to ap-
proximate the Bayes-optimal policy by using deep neural
networks to learn an information state (belief), and condi-
tioning an RL agent on the learned augmented space; here
we follow this approach.

3. Related Work
Our focus in this work is learning a Bayes-optimal policy
for meta RL. We recapitulate the current approaches to meta
RL with a focus on approaches that potentially yield Bayes-
optimal policies.

The methods in (Finn et al., 2017; Grant et al., 2018; Nichol
et al., 2018; Rothfuss et al., 2018; Clavera et al., 2018) learn
neural network policies that can quickly be fine-tuned to
new tasks at test time via gradient updates. These methods
do not optimize for Bayes-optimal behavior, and typically
exhibit significantly suboptimal test-time adaptation.

A different approach is to learn an agent that directly in-
fers the task at test time, and conditions the policy based
on the inferred task. Typically, past interactions of the
agent with the environment are aggregated to a latent rep-
resentation of the task. Rakelly et al. (2019); Fakoor et al.
(2019) follow a posterior-sampling approach, which is not
Bayes-optimal (Zintgraf et al., 2020); in this work we fo-
cus on methods that can achieve Bayes-optimality. Duan
et al. (2016); Wang et al. (2016) propose memory-based ap-
proaches, which Ortega et al. (2019) proves to approximate
Bayes-optimal agents. Zintgraf et al. (2020; 2021); Dorfman
et al. (2021) also approximate Bayes-optimal agents with a
history-based representation, using a variational approach.
Humplik et al. (2019) learn an approximately Bayes-optimal
agent, where privileged information – a task descriptor – is
used to learn a sufficient statistic. We explore an alternative
approach that lies at the intersection of meta RL and con-
trastive learning. Different from memory-based methods
such as RL2 (Duan et al., 2016), and similarly to VariBAD,
we learn a history based embedding separately from the
policy. However, unlike variational methods, we learn the
task representation using contrastive learning.

Contrastive learning has been used to learn representations
for input to a meta RL policy. FOCAL (Li et al., 2020b) uses
distance metric learning to learn a deterministic encoder of
transition tuples to perform offline RL. They operate under
the relatively restrictive assumption that each transition tu-
ple (s, a, s′, r) is uniquely identified by a task. The authors
followed up with FOCAL++, in which batches of transition
tuples (not necessarily from the same trajectory) are en-
coded to a representation that is optimized with MoCo (He
et al., 2020), a variant of CPC, alongside an intra-task atten-
tion mechanism meant to robustify task inference (Li et al.,
2021). The MBML method in (Li et al., 2020a) proposes

an offline meta RL method that uses the triplet loss to learn
embeddings of batches of transition tuples from the same
task, with the same probabilistic and permutation-invariant
architecture of Rakelly et al. (2019). Wang et al. (2021)
propose embedding windows of transition tuples as prob-
abilistic latent variables, where the windows are cropped
from different trajectories. The embeddings are learned with
MoCO (He et al., 2020) by contrasting them in probabilistic
metric space, where positive pairs are transition windows
that come from the same batch. The algorithm is presented
as a general method to learn representations for context-
based meta RL algorithms, but in practice all results are
shown with PEARL (Rakelly et al., 2019). In a similar line
of work, Fu et al. (2021a) encode batches of transitions as
a product of Gaussian factors and contrast the embeddings
with MoCO (He et al., 2020), with positive pairs being em-
bedded transition batches from the same task, as opposed
to the same trajectory as in Wang et al. (2021). As in Wang
et al. (2021), results are shown with a posterior sampling
meta RL algorithm. While we also investigate contrastive
learning for meta RL, we make an important distinction: all
of the works above embed transition tuples and not histo-
ries, and therefore cannot represent information states, and
cannot obtain Bayes-optimal behavior. In contrast, in our
work, we draw inspiration from Guo et al. (2018), who used
a glass-box approach to empirically show that contrastive
learning can be used to learn the belief in a POMDP. We
cast this idea in the Bayesian-RL formalism, and show both
theoretically and empirically, that contrastive learning can
be used to learn Bayes-optimal meta RL policies.

4. Method
In this section we show how to use contrastive learning to
learn an information state representation of the history, and
use it as input to an RL agent. We give a brief description
of CPC (Oord et al., 2018) followed by our meta RL algo-
rithm. We then prove that our method does indeed learn an
information state.

4.1. Contrastive Predictive Coding

CPC (Oord et al., 2018) is a contrastive learning method that
uses noise contrastive estimation (Gutmann & Hyvärinen,
2010) to discriminate between positive future observations
o+t+k, where t is the current time step, and negative obser-
vations o−t+k. First, an encoder g generates an embedding
for each observation in a sequence of observations from
a trajectory τ until time t, {zi = g(oi)}ti=1. Second, an
autoregressive model gAR summarizes z≤t, the past t obser-
vations in latent space, and outputs a latent ct. The model
is trained to discriminate between future observations o+t+k

and K negative observations
{
o−,i
t+k

}K

i=1
given ct. Given
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Figure 1: ContraBAR architecture. Red box: similarly to CPC, gAR is autoregressively applied to past observation
embeddings (zt, zt−1, . . . ) to yield the current representation ct. Green box: unlike CPC, the MLP f receives as input, in
addition to a positive/negative future embedding, the output of an action GRU that process ct and the future action sequence.
Blue box: the representation ct is the information state, which is concatenated with the state st and input to the RL policy.

a set X = {o+t+k, o
−,1
t+k, . . . , o

−,K
t+k } containing one positive

future observation sampled according to P (o+t+k|ct) and K
negative observations sampled from a proposal distribution
P (o−t+k), the InfoNCE loss is:

LInfoNCE =

−EX

[
log

exp
(
f
(
ct, o

+
t+k

))
exp

(
f
(
ct, o

+
t+k

))
+

∑K
i=1 exp

(
f
(
ct, o

−,i
t+k

))] ,

where f is a learnable function that outputs a similarity
score. The model components f, g, gAR are learned by
optimizing the loss LInfoNCE .

4.2. ContraBAR Algorithm

We will now introduce our CPC based meta RL algorithm,
which is depicted in Figure 1, and explain how CPC is used
to learn a latent representation of the history.

We begin by noting that we use the term observation
throughout the text, in line with Oord et al. (2018), how-
ever in our case the meaning is state, reward and action
ot = {st, rt−1, at−1} when talking about “observation his-
tory”, and state and reward ot+k = {st+k, rt+k−1} when
talking about “future observations”. We would like to learn
an embedding of the observation history, ct, that will con-
tain relevant information for decision making. The CPC
formulation seems like a natural algorithm to do this – for a
given trajectory τ of length T collected from some unknown
MDP M, we use an embedding of its observation history
until time t < T , ct, to learn to discriminate between future

observations from the trajectory τ and random observations
from other trajectories τj ̸= τ . This means that ct encodes
relevant information for predicting the future system states,
and consequently information regarding the MDP M from
which τ was collected.

The CPC formulation described above is based on predicting
future states in an uncontrolled system without rewards. We
now modify it to learn a sufficient statistic for meta RL. We
assume that data is collected at each training iteration m by
some data collection policy πm and added to a replay buffer
D = {τi}Ni=1 containing trajectories from previous data
collection policies {π1, . . . , πm−1}; we note that length
of the trajectories may vary. At each learning iteration, a
batch of M trajectories is sampled, and for each trajectory
and time t the negative observations are sampled from the
remaining M − 1 trajectories in the batch. As in CPC,
we define ct to be a function of the observation history
until time t, but we add to f as input the future k − 1
actions, as in a controlled system the future observation
ot+k = (st+k, rt+k−1) depends on the controls. Our f
can therefore now be written as f(ct, ot+k, at:t+k−1). We
implement this modification as in Guo et al. (2018) by means
of an additional autoregressive component, a GRU gaction
that receives actions as input and takes ct as its initial hidden
state.

Given the adjustments described above, each batch B used
as input to our algorithm contains the following: (1) The
observation history until time t in some trajectory τ (2) Fu-
ture observations from time t + k (3) Observations o−t+k

from the remaining M − 1 trajectories sampled from D.
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We rewrite the InfoNCE loss for the meta RL setting explic-
itly; For ease of notation we mark f(ct, o

+
t+k, at:t+k−1) as

f+ and f(ct, o
−,i
t+k, at:t+k−1) as f−,i:

LM = EB

[
log

exp(f+)

exp(f+) +
∑K

i=1 exp (f
−,i)

]
, (1)

where the expectation is over the batches of positive and
negative observations sampled from D, as described above.

4.3. Learning Information States with CPC

We now show that integrating contrastive learning with meta
RL is a fundamentally sound idea. We shall prove that our
algorithm presented in Section 4.2 learns a representation
of the history that is an information state, by showing that
the latent encoding satisfies the properties of an information
state P1, P2 as defined by Subramanian et al. (2020) and
reiterated above in Section 2.

We first define the notion of a “possible” history, which we
use in Assumption 4.2.

Definition 4.1 (Possible history). Let PM denote a proba-
bility distribution over MDPs and let Pm,π(ht) be the prob-
ability of observing history ht under policy π in MDP m.
We say that ht is a possible history if there exists a policy π
and an MDP m such that PM (m) > 0 and Pm,π(ht) > 0.

Next, we make the following assumption, which states that
the policy collecting the data covers the state, reward and
action space.

Assumption 4.2. Let the length of the longest possible
history be T . Let ht, where t ≤ T , be a history and let
PD(ht) denote the probability of observing a history in the
data D. If ht is a possible history, then PD(ht) > 0.

Assumption 4.2 is necessary to claim that the learned CPC
representation is a sufficient statistic for every possible his-
tory. In Section 4.4 we discuss a relaxation of this assump-
tion, using approximate information states.

Theorem 4.3. Let Assumption 4.2 hold. Let g∗, g∗AR, f
∗

jointly minimize LM (g, gAR, f). Then the context latent
representation ct = g∗AR(z≤t) satisfies conditions P1, P2
and is therefore an information state.

The full proof is provided in Appendix A; we next provide
a sketch. The main challenge in our proof lies in proving
the following equality:

P (st+1, rt|ht, at) = P (st+1, rt|ct, at). (2)

Given the equality in Equation (2), proving P1,P2 is rela-
tively straightforward. We prove Equation (2) by expanding
the proof in (Oord et al., 2018), which shows that the In-
foNCE loss upper bounds the negative mutual information

between o+t+k and ct (in the CPC setting). In our case, we
show that

LM ≥ log(M − 1)− I(st+1, rt; ct|at), (3)

where I(·; ·) denotes mutual information. Thus, by mini-
mizing the loss in Equation (1), we maximize the mutual
information I(st+1, rt; ct|at). Due to the Markov property
of the process, the mutual information in (3) cannot be
greater than I(st+1, rt;ht|at), which leads to Equation 2.

4.4. Learning Approximate Information States with
CPC

We next investigate a more practical setting, where there
may be errors in the CPC learning, and the data does not
necessarily satisfy Assumption 4.2. We aim to relate the
CPC error to a bound on the suboptimality of the result-
ing policy. In this section, we consider an iterative policy
improvement algorithm with a similarity constraint on con-
secutive policies, similar to the PPO algorithm we use in
practice (Schulman et al., 2017). We shall bound the subop-
timality of policy improvement, when data for training CPC
is collected using the previous policy, denoted πk.

In light of Eq. 3, we assume the following error due to an
imperfect CPC representation:

Assumption 4.4. There exists an ϵ such that for every t ≤
T , I(st+1, rt; ct|at) ≥ I(st+1, rt;ht|at) − ϵ, where the
histories are distributed according to policy πk.

The next theorem provides our main result.

Theorem 4.5. Let Assumption 4.4 hold for some represen-
tation ct. Consider the distance function between two dis-
tributions D(P1(x), P2(x)) = maxx |P1(x)/P2(x)|. We
let r̂(ct, at) = E[rt|ct, at] and P̂ (c′|ct, at) = E[1(ct+1 =
c′)|ct, at] denote an approximate reward and transition ker-
nel, respectively. Define the value functions

Q̂t(ct, at) = r̂(ct, at) +
∑
ct+1

P̂ (ct+1|ct, at)V̂t+1(ct+1)

V̂t(ct) = max
π:D(π(ct),πk(ct))≤β

∑
a

π(a)Q̂t(ct, a), (4)

for t ≤ T , and V̂T (cT ) = 0, and the approximate optimal
policy

π̂(ct) ∈ argmax
π:D(π,πk(ct))≤β

∑
a

π(a)Q̂t(ct, a). (5)

Let the optimal policy π∗(ht) be defined similarly, but with
ht replacing ct in (4) and (5). Then we have that

Eπ∗

[
T−1∑
t=0

r(st, at)

]
− Eπ̂

[
T−1∑
t=0

r(st, at)

]
≤

ϵ1/3RmaxT
2(
√
2 + 4βT ).
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The dynamic programming recurrence in Equation (4) de-
fines the optimal policy that is conditioned on ct (and not
ht), and is restricted to be β-similar to the previous policy
πk. The theorem bounds the loss in performance of such
a policy compared to a policy that is conditioned on the
full history (yet still restricted to be β-similar to πk). The
proof of Theorem 4.5 builds on the idea of an approximate
information state (Subramanian et al., 2020) and is detailed
in Appendix A.

4.5. ContraBAR Architecture

We now describe several design choices in our ContraBAR
implementation.

History Embedding We now describe the specific archi-
tecture used to implement our algorithm, also depicted in
Figure 1. We use a non-linear encoder to embed a history
of actions, rewards and states and run it through a GRU to
generate the hidden state for the current time-step ct. The la-
tent ct is then used to initialize the action-gru gaction, which
is fed future actions as input – the resulting hidden state is
then concatenated with either a positive observation-reward
pair, or a negative one and used as input to a projection head
that outputs a score used in Equation (1).

We note that given a random sampling of negative obser-
vations, the probability of sampling a positive and nega-
tive observation that share the same state is low. Conse-
quently, for environments where st+k can be estimated via
st, at, . . . , at+k without ht, ct need only encode informa-
tion regarding st to allow the action-gru to learn to dis-
tinguish between positive and negative observations. This
renders ct uninformative about the reward and transition
functions and thus unhelpful for optimal control. An exam-
ple of this is a set of deterministic environments that differ
only in reward functions. The action-gru can learn to predict
st+k via st, at, . . . , at+k, only requiring ct to encode infor-
mation regarding st and not the reward function. One way
to circumvent this is hard negative mining, i.e using negative
samples that are difficult to distinguish from the positive
ones. Another solution, relevant for the case of varying
reward functions, is to generate a negative observation by
taking the state and action from the positive observation
and recalculating the reward with a reward function sam-
pled from the prior. In practice, we found that a simple
alternative is to omit the action-gru. This prevents the easy
estimation of st+k and requires ct to encode information
regarding the reward and transition function. We found
this worked well in practice for the environments we ran
experiments on, including those with varying transitions.
We expand on these considerations in Appendix D.

RL Policy The history embedding portion of the algo-
rithm described above is learned separately from the policy

and can be done online or offline. The policy, which can be
trained with an RL algorithm of the user’s choice, is now
conditioned on the current state st as well as ct – the learned
embedding of ht. We chose to use PPO (Schulman et al.,
2017) for the online experiments and SAC (Haarnoja et al.,
2018) for the offline experiment – in line with VariBAD and
BOReL (Dorfman et al., 2021).

5. Experiments
In our experiments, we shall demonstrate that (1) Contra-
BAR learns approximately Bayes-optimal policies (2) Con-
traBAR is on par with SOTA for environments with state
inputs (3) ContraBAR scales to image-based environments
(4) Augmentations can be naturally incorporated into Con-
traBAR and (5) ContraBAR can work in the offline setting.

We compare ContraBAR to state-of-the-art approximately
Bayes-optimal meta RL methods. In the online setting, we
compare against VariBAD (Zintgraf et al., 2020), RL2 (Duan
et al., 2016), and the recent modification of RL2 by Ni et al.
(2022) which we refer to as RMF (recurrent model-free). In
the offline setting, we compare with BOReL (Dorfman et al.,
2021). Zintgraf et al. (2020) and Dorfman et al. (2021) al-
ready outperform posterior sampling based methods such as
PEARL (Rakelly et al., 2019), therefore we do not include
such methods in our comparison. Finally, we note that using
VariBAD (Zintgraf et al., 2020) with image-based inputs
is currently computationally infeasible due to memory con-
straints, and as such we did not use it as a baseline – we
explain this issue further in Appendix E. Other variational
approaches, which require a reconstruction of the future
observations, are subject to similar memory constraints. In-
stead, we compared our algorithm against RL2 (Duan et al.,
2016), which works with images. We evaluate performance
similarly to Zintgraf et al. (2020), by evaluating per episode
return for 5 consecutive episodes with the exception of the
offline setting where we adapted our evaluation to that of
BOReL.

5.1. Qualitative Near Bayes-Optimal Behavior

We begin with a qualitative demonstration that ContraBAR
can learn near Bayes-optimal policies. As calculating the
exact Bayes-optimal policy is mostly intractable, we adopt
the approach of Dorfman et al. (2021): for deterministic
domains with a single sparse reward, the Bayes-optimal
solution is essentially to search all possible reward locations
so as to maximally reduce uncertainty, and then go directly
to the goal in subsequent episodes. Thus, we can identify
whether a policy is approximately Bayes-optimal by inspect-
ing its trajectory. Figure 2 displays rollouts from a trained
policy in the Gridworld and Semi-Circle domains, demon-
strating near Bayes-optimal behavior similar to VariBAD
(Zintgraf et al., 2020).
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Figure 2: Left: Qualitatively Bayes-Optimal behavior on
gridworld. The agent methodically searches the grid, reduc-
ing uncertainty about unexplored cells in the second episode
and updating to a shorter path in the subsequent episode.
Right: Qualitatively Bayes-Optimal behaviour on Sparse
Semi-Circle. The agent scans the semi-circle until the goal
has been found and all uncertainty reduced. In subsequent
episodes the agent goes straight to the goal.

5.2. Results for Problems with State Observations

We compare ContraBAR with VariBAD and RMF, the cur-
rent state-of-the-art on MuJoCo locomotion tasks (Todorov
et al., 2012), commonly used in meta RL literature. We
use the environments considered in Zintgraf et al. (2020),
namely the Ant-Dir, AntGoal, HalfCheetahDir, HalfChee-
tahVel, Humanoid and Walker environments. Figure 3
shows competitive performance with the current SOTA on
all domains. Note that rewards in these environments are
dense, so in principle, the agent only needs a few exploratory
actions to infer the task by observing the rewards it receives.
Indeed, we see that ContraBAR is able to quickly adapt
within the first episode, with similar performance in subse-
quent episodes.

5.3. Scaling Belief to Image-Based Inputs

We show that ContraBAR can scale to image domains,
which are computationally expensive, by running our al-
gorithm on three image-based domains with varying levels
of difficulty and sources of uncertainty: (1) Reacher-Image
– a two-link robot reaching an unseen target located some-
where on the diagonal of a rectangle, with sparse rewards
(2) Panda Reacher – a Franka Panda robot tasked with plac-
ing the end effector at a goal on a 2d semi-circle, where the
vertical position of the goal (z coordinate) is fixed; adapted
from the Reacher task in Panda Gym (Gallouédec et al.,
2021) (3) Panda Wind – The same environment as Panda
Reacher, except that the transitions are perturbed with Gaus-
sian noise sampled separately for each task. For a more
detailed description of each environment see Appendix B.

Image-Based Reward: For our image-based experiments,
we found that learning in image-based domains with sparse
reward was difficult when the reward was embedded sep-
arately (as in the state observation domains), and concate-

nated with the image embedding. We hypothesized that
this might be an issue of differing scales between the scalar
rewards and image inputs, but we observed that standard nor-
malization techniques such as layer norm (Ba et al., 2016)
did not help. Instead, we opted for a different approach
that embeds the reward as an explicit part of the image. To
implement this idea, we exploited the fact that in all our
domains, the reward is sparse and binary, and we add a
colored strip to a fixed place in the image when non-zero
reward is received. Extending this idea to non-binary reward
is possible, for example, by controlling the color of the strip.

Our results are displayed in Figure 4. For the Reacher en-
vironment, ContraBAR is slightly outperformed by RL2,
whereas in Panda Reacher and Panda Reacher Wind Con-
traBAR outperform RL2 by a large margin. Notice that in
contrast to the dense reward domains of Section 5.2, in these
sparse reward tasks the agent gains by exploring for the goal
in the first iteration. Evidently, the plots show significantly
higher reward in the second episode onward.

Glass-box Approach To further validate that our algo-
rithm learns a sound belief representation, we follow a glass-
box approach similar to that of Guo et al. (2018). First,
we used ContraBAR to learn an information state for the
Panda Reacher environment. Second, we use the trained
agent to create a dataset of trajectories, including the agent’s
belief at each time step of every trajectory. We then trained
an MLP-based binary classifier, which takes (x, y) and the
information state ct as input and predicts whether the goal
in the trajectory is indeed (x, y). In Figure 5 we see the
visualization of the classifier’s prediction at different points
along the trajectory; We see that the predictions coincide
with the belief we expect the agent to hold at each step, thus
validating the soundness of our belief representation.

5.4. ContraBAR with Domain Randomization

Despite the high fidelity of modern simulators, when de-
ployed in the real-world, image-based algorithms learned
in simulation can only be accurate up to the differences
between simulation and reality – the sim-to-real gap. This
motivates us to learn a belief representation that is robust
to such differences, and in the following we will show that
our algorithm can indeed learn such an information state.
Robustification to irrelevant visual properties via random
modifications is termed domain randomization (Tobin et al.,
2017). We employ domain randomization in a similar fash-
ion to Rabinovitz et al. (2021) wherein we modify the past
and future observations (without the rewards) in the trajec-
tories with a mapping T : S → S that randomly shifts the
RGB channels of the images. These modified trajectories
are used to learn the history embedding ct, with the hope
that it will be invariant to different color schemes in the en-
vironment. We show the strength of such modifications by
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Figure 3: Average test performance on six different MuJoCo environments, trained separately with 10 seeds per MuJoCo
environment per method - as in (Zintgraf et al., 2020). The meta-trained policies are rolled out for 5 episodes to show how
they adapt to the task. Values shown are averages across tasks (95% confidence intervals shaded). We show competitive
performance, surpassing VariBad and RMF (Ni et al., 2022) on certain environments. The results shown for RMF are the
average performance on the first 2 episodes, as taken from their repository, which did not contain results for more than 2
episodes and did not contain results for the Walker and Ant-Goal environments.
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Figure 4: Average test performance on three different image-based environments, trained separately with different seeds
per environment per method. The meta-trained policies are rolled out for 5 episodes to show how they adapt to the task.
Values shown are averages across tasks (95% confidence intervals shaded). All methods were run with 5 seeds for each
environment. We show competitive performance with RL2, surpassing it in the Panda environments.

training two agents with ContraBAR on the Panda Reacher
environment – one receives images modified by T and the
other does not. We then evaluate each agent’s performance
on different color schemes, which are kept static for evalu-
ation. The results as well as the environments can be seen
in Figure 7. Note that while the belief may be robustified
separately with augmentations, the policy must be robust to
such changes as well. To do so, we used the data-regularized
actor-critic method from Raileanu et al. (2021) where the
policy πθ and value function Vϕ are regularized via two
additional loss terms,

Gπ = KL [πθ(a|s)|πθ(a|T (s))] ,

GV = (Vϕ(s)− Vϕ(T (s)))
2
,

where T : S → S randomly modifies the image.

We emphasize that domain randomization, as applied here,
is not naturally compatible with variational belief inference
methods. The reason is that when the loss targets reconstruc-
tion of the modified observation, the learned embedding
cannot be trained to be invariant to the modification T .

5.5. Offline ContraBAR

We show that as in VariBAD (Zintgraf et al., 2020), the
disentanglement of belief and control allows us to reframe
the algorithm within the context of offline meta RL, as was
done in Dorfman et al. (2021). First, we use ContraBAR to
learn a history embedding ct from an offline dataset. Note
that no specific change is required to our algorithm – we
simply treat the offline dataset as the replay buffer for Con-
traBAR. Second, we perform state relabeling as described

8
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Figure 5: Belief visualization on the Panda Reacher en-
vironment. At each step, we visualise the predictions of
the MLP-classifier for the entire map. Each frame shows
an interesting milestone along the trajectory. From left to
right along the rows: (1) Initially, the agent’s belief over the
location of the reward is uniform over the semi-circle, as
in the prior. (2) As the agent travels along the semi-circle,
the uncertainty regarding the location of the goal collapses
in locations where the agent has visited and not found a
goal. (3) Once the agent reaches the goal, all uncertainty
collapses, even for locations the agent has yet to visit. (4)
On the second episode, the agent follows the maintained
belief and goes directly to the goal without exploration.

in Dorfman et al. (2021): for each trajectory τi of length T ,
i.e (si0, a

i
o, r

i
0, . . . , s

i
T ), we embed each partial t-length his-

tory ht as ct, and transform each sit to s+,i
t = (sit, c

i
t) as in

the BAMDP formulation. We then learn a policy with SAC
(Haarnoja et al., 2018) on the transformed dataset. We show
competitive results with BOReL (Dorfman et al., 2021) in
Figure 6. Unfortunately we were not able to find an offline
adaptation of RMF to use as an additional baseline.

6. Conclusions
We proved that ContraBAR learns a representation that is
a sufficient static of the history. Following on this, we
presented what is to the best of our knowledge the first
approximately Bayes-optimal CL meta RL algorithm. We
demonstrated results competitive with previous approaches
on several challenging state-input domains. Furthermore,
by using contrastive learning we were able to scale meta-RL
to image-based domains; We displayed results on par with
RL2 which was also able to scale to image inputs. Finally,
we showed that our method is naturally amenable to domain
randomization, which may be important for applications
such as robotics.
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Figure 6: Results for the sparse Semi-Circle environment
in the offline setting. Values shown are the average returns
over two episodes, averaged over tasks. The shaded areas
indicate 95% confidence intervals over different seeds of
the method. ContraBAR and BOReL were both run with 10
seeds with reward relabeling.
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Figure 7: Left: Average test performance on three Panda
Reacher environments with different color schemes from
the training data. We show two meta-trained policies, one
with augmentations and one without, each rolled out for 3
episodes to show how they adapt to the task. Values shown
are averages across tasks (95% confidence intervals shaded).
The agent trained with augmentations is invariant of the
color schemes. Right: Top left image is the training envi-
ronment; others are different color schemes for evaluation.
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A. Theorem proofs
Theorem 4.3. Let Assumption 4.2 hold. Let g∗, g∗AR, f

∗ jointly minimize LM (g, gAR, f). Then the context latent represen-
tation ct = g∗AR(z≤t) satisfies conditions P1, P2 and is therefore an information state.

We begin our proof by presenting the causal model for the variant of CPC used by ContraBAR, shown in Figure 8.

Figure 8: The causal model for ct

From the causal model, we can infer that
P (ct+1|ct, st+1, rt, at) =

P (ct+1|ct, st+1, rt, at, ht)

and P (st+1, rt|ht, at) = P (st+1, rt|ht, at, ct). We shall also assume that ct is a deterministic function of ht, and
therefore P (ct+1|ct, st+1, rt, at, ht) = P (ct+1|st+1, rt, at, ht), and from the above, we have P (ct+1|st+1, rt, at, ht) =
P (ct+1|st+1, rt, at, ct).

We now prove a mutual information bound similar to that of Oord et al. (2018), we show that by optimizing the meta RL
InfoNCE loss defined in Equation (1) we maximize the mutual information between ct and st+1, rt given at.

We begin with a lemma similar to that of Section 2.3 in Oord et al. (2018):

Definition A.1 (Possible sufficient statistic transition). Let ct be a function of ht, i.e ct = σt(ht). st+1, rt, ct, at is a
possible sufficient statistic transition if ht, at, rt, st+1 is a possible history as in Definition 4.1 and ct = σt(ht).

Lemma A.2. Let Assumption 4.2 and the loss in Equation (1) be jointly minimized by f, g, gAR, then for any possible
sufficient statistic transition st+1, rt, ct, at as in Definition A.1, where ct = gAR(ht), we have that

f(st+1, rt, ct, at) ∝
P (st+1, rt|ct, at)
P (st+1, rt|at)

.

Proof. The loss in Eq. 1 is the categorical cross-entropy of classifying the positive example correctly, with f∑
B f being the

prediction of the model. We denote the j-th example in the batch B as sj , rj , where the subscript does not refer to time here.
As in (Oord et al., 2018), the optimal probability for this loss is P (d = i|B, ct, at) (with [d = i] indicating the i-th example
in B is the positive example) and can be derived as follows:

P (d = i|B, ct, at) =
P (si, ri|ct, at)Πl ̸=iP (sl, rl|at)∑M

j=1 P (sj , rj |ct, at)Πl ̸=jP (sl, rl|at)

=

P (si,ri|ct,at)
P (si,ri|at)∑M

j=1
P (sj ,rj |ct,at)
P (sj ,rj |at)

.

(6)
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Eq. 6 means that for any st+1, rt, ct, at that are part of a batch B in the data, we have that f(st+1, rt, ct, at) ∝
P (st+1,rt|ct,at)
P (st+1,rt|at)

. From Assumption 4.2, for any sufficient statistic transition tuple st+1, rt, ct, at there exists a batch it
is a part of.

Lemma A.3. Let Assumption 4.2, and let the loss in Equation (1) be jointly minimized by f, g, gAR. Then

I(st+1, rt; ct|at) ≥ log(M − 1)− Lopt.

Proof. Given the optimal value shown in Lemma A.2 for f(st+1, rt, ct, at), by inserting back into the loss we get:

Lopt = −E log

 P (st+1,rt|ct,at)
P (st+1,rt|at)

P (st+1,rt|ct,at)
P (st+1,rt|at)

+
∑

(s′,r′)∈{o−j }M−1
j=1

P (s′,r′|ct,at)
P (s′,r′|at)


= E log

1 + (
P (st+1, rt|at)

P (st+1, rt|ct, at)
∑

(s′,r′)∈{o−j }M−1
j=1

P (s′, r′|ct, at)
P (s′, r′|at)


≈ E log

[
1 + (

P (st+1, rt|at)
P (st+1, rt|ct, at)

(M − 1) · ED(s′,r′|at)
P (s′, r′|ct, at)
P (s′, r′|at)

]
= E log

[
1 + (

P (st+1, rt|at)
P (st+1, rt|ct, at)

(M − 1)

]
≥ E log

[
P (st+1, rt|at)

P (st+1, rt|ct, at)
(M − 1)

]
= −I(st+1, rt; ct|at) + log(M − 1).

We therefore get that
I(st+1, rt; ct|at) ≥ log(M − 1)− Lopt.

We conclude that the objective maximizes the mutual information between ct and st+1, rt given at.

Corollary A.4. Let Assumption 4.2, and let the loss in Equation (1) be jointly minimized by f, g, gAR, then
I(ct; st+1, rt|at) = I(ht; st+1, rt|at) where I(·; ·) denotes mutual information.

Proof. Since st+1, rt depend only on ht (conditioned on at), and since ct is a deterministic function of ht, I(st+1, rt; ct|at)
cannot be greater than I(st+1, rt;ht|at). From Lemma A.3 , we therefore have that

I(ct; st+1, rt|at) = I(ht; st+1, rt|at)

.

Note that Corollary A.4 states that given the causal model above, ct is maximally informative about st+1, rt (conditioned on
at). We use this result to prove a short lemma that will help us prove that that ct is an information state.

Lemma A.5. Let the assumptions of Corollary A.4 hold, then for every a, P (st+1, rt|ht, at) = P (st+1, rt|ct, at).

Proof. We start with a result similar to the data processing inequality. Consider I(st+1, rt;ht, ct|at). We have that

I(st+1, rt;ht, ct|at) =
I(st+1, rt; ct|ht, at) + I(st+1, rt;ht|at),

(7)

and on the other hand,

I(st+1, rt;ht, ct|at) =
I(st+1, rt;ht|ct, at) + I(st+1, rt; ct|at).

(8)

From the causal graph above, we have that I(st+1, rt; ct|ht, at) = 0. Therefore, from Eq. (7) and (8) we have
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I(st+1, rt;ht|at) = I(st+1, rt; ct|at) + I(st+1, rt;ht|ct, at)
≥ I(st+1, rt; ct|at)

with equality only if I(st+1, rt;ht|ct, at) = 0, since the mutual information is positive. From Corollary A.4, we therefore
must have I(st+1, rt;ht|ct, at) = 0. This implies that st+1, rt and ht are independent conditioned on ct, at (Cover &
Thomas), and therefore

P (st+1, rt|ht, at) = P (st+1, rt|ct, at)
.

Proposition A.6. Let Assumption 4.2, and let the loss in Equation (1) be jointly minimized by f, g, gAR, then ct satisfies P1,
i.e., E[rt|ht, at] = E[rt|ct, at].

Proof.

E[rt|ht, at] =

∫
rt

∫
P (st+1, rt|ht, at)dst+1drt

=

∫
rt

∫
P (st+1, rt|ct, at)dst+1drt

=

∫
rtP (rt|ct, at)drt

= E[rt|ct, at].

Proposition A.7. Let Assumption 4.2 and let the loss in Equation (1) be jointly minimized by f, g, gAR, then ct satisfies P2,
i.e., P (ct+1|ht) = P (ct+1|ct).

Proof.

P (ct+1|ht, at)

=

∫ ∫
P (st+1, rt|ht, at)P (ct+1|ht, st+1, rt, at)dst+1drt

=

∫ ∫
P (st+1, rt|ct, at)P (ct+1|ht, ct, st+1, rt, at)dst+1drt

=

∫ ∫
P (st+1, rt|ct, at)P (ct+1|ct, st+1, rt, at)dst+1drt

= P (ct+1|ct, at).

where the second equality is due to lemma A.5 and the penultimate equality is due to ct+1 being a deterministic function of
ct, st+1, rt and at

We now provide the proofs for the setting described in Section 4.4, where there may be errors in the CPC learning, and the
data does not necessarily satisfy Assumption 4.2.

We recapitulate that we consider an iterative policy improvement algorithm with a similarity constraint on consecutive
policies, similar to the PPO algorithm we use in practice (Schulman et al., 2017). We shall bound the suboptimality of
policy improvement, when data for training CPC is collected using the previous policy, denoted πk. We will show optimal
policy bounds when the information state is approximate, similar in spirit to Subramanian et al. (2020), but with additional
technicalities. Under the setting above, we will bound the suboptimality in policy improvement in terms of an error in CPC
training, which we denote ϵ.

In light of the bound from A.3, we assume the following:
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Assumption 4.4. There exists an ϵ such that for every t ≤ T , I(st+1, rt; ct|at) ≥ I(st+1, rt;ht|at)− ϵ, where the histories
are distributed according to policy πk.

We now define Pπ(ht) as the probability of seeing a history under a policy π. For the sake of simplicity, for the subsequent
section we will refer to Pπ(ht) as P (ht). Furthermore, when the information state is approximate, we denote the information
state generator σ̂t.

We begin with the following bound.

Proposition A.8. Let Assumption 4.4 hold, then Eht∼P (ht) [DKL(P (st+1, rt|ht, at)||P (st+1, rt|σ̂t(ht), at)] ≤ ϵ

Proof.

Proposition A.9. Let Assumption 4.4 hold, then I(st+1, rt;ht|ct, at) ≤ ϵ

Proof. We start with a result similar to the data processing inequality. We have that

I(st+1, rt;ht, ct|at) =
I(st+1, rt; ct|ht, at) + I(st+1, rt;ht|at)

and,

I(st+1, rt;ht, ct|at) =
I(st+1, rt;ht|ct, at) + I(st+1, rt; ct|at)

From the causal graph we have that I(st+1, rt; ct|ht, at) = 0, yielding

I(st+1, rt;ht|at) = I(st+1, rt;ht|ct, at) + I(st+1, rt; ct|at) ⇒
I(st+1, rt;ht|at)− I(st+1, rt; ct|at) = I(st+1, rt;ht|ct, at)

Combined with 4.4 we get that I(st+1, rt;ht|ct, at) ≤ ϵ

We note that from here on out everything is conditioned on at, and omit it to avoid overly cumbersome notation.

For ease of notation we define: z = st+1, rt. We note that given a specific ht, we have:

DKL

(
Pz|ht

||Pz|σ̂t(ht)

)
=

∫
z

P (z|ht) · log
(
P (z|ht)

P (z|ct)

)

Proposition A.10. I(z;ht|ct) = Eht∼P (ht)

[
DKL

(
Pz|ht

||Pz|σ̂t(ht)

)]
15
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Proof.

I(z;ht|ct) = EPσt(ht)=ct

[
DKL

(
Pz,ht|ct ||Pz|ct · Pht|ct

)]
= EPσt(ht)=ct

[∫
ht

∫
z

P (z, ht|ct) log

(
P (z, ht|ct)

P (z|ct) · P (ht|ct)

)]
= EPσt(ht)=ct

[∫
ht

∫
z

P (z, ht|ct) log

(
P (z, ht, ct) · P (ct)

P (z, ct) · P (ht, ct)

)]
= EPσt(ht)=ct

[∫
ht

∫
z

P (z, ht, ct)

P (ct)
log

(
P (z|ht)

P (z|ct)

)]
=

∫
ct

∫
ht

∫
z

P (z, ht, ct) log

(
P (z|ht)

P (z|ct)

)
=

∫
ct

∫
ht

∫
z

P (z|ht)P (ht, ct) log

(
P (z|ht)

P (z|ct)

)
=

∫
ct

∫
ht

P (ht, ct)

∫
z

P (z|ht) log

(
P (z|ht)

P (z|ct)

)
=

∫
ht

P (ht)

∫
ct

δct=σt(ht)

∫
z

P (z|ht) log

(
P (z|ht)

P (z|ct)

)
= Eht∼P (ht) [DKL(P (st+1, rt|ht)||P (st+1, rt|σ̂t(ht))]

We now complete the proof. Combining Proposition A.9 with Proposition A.10 we get that

Eht∼P (ht)

[
DKL

(
Pst+1,rt|ht

||Pst+1,rt|σ̂t(ht)

)]
≤ ϵ

as required.

Let πk(σ̂t(ht)) denote the policy at iteration k, and note that it is defined on the information state. At iteration k + 1, we
first collect data using πk. We denote Pπk

(ht) the probability of observing a history in this data collection process. We then
use CPC to learn an approximate information state. Let D(ht) = DKL

(
Pst+1,rt|ht,at

||Pst+1,rt|σ̂t(ht),at

)
.

Proposition A.11. Let Assumption 4.4 hold, then∑
ht

Pπk
(ht)D(ht) ≤ ϵ. (9)

Proof. Assumption 4.4 holds, therefore the result is an immediate corollary from A.8 for every t ∈ 0, 1, . . . , T − 1.

For some distance measure D, let Πβ = {π : D(π(ht), πk(σ̂t(ht))) ≤ β ∀ht} denote the set of policies that are β-similar
to πk.

We next define the optimal next policy π∗

π∗ ∈ argmax
π∈Πβ

Eπ

[
T−1∑
t=0

r(st, at)

]
. (10)

Note that the value of this policy satisfies the following Bellman optimality equations:

Qt(ht, at) = r(ht, at) + E [Vt+1(ht+1)]

Vt(ht) = max
π:D(π(ht),πk(ht))≤β

∑
a

π(a)Qt(ht, a),
(11)

for t ≤ T , and VT (hT ) = 0.

We now present our main result, where we consider an iterative policy improvement scheme based on the approximate
information state of ContraBAR and provide policy improvement bounds.
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Theorem 4.5. Let Assumption 4.4 hold for some representation ct. Consider the distance function between two distributions
D(P1(x), P2(x)) = maxx |P1(x)/P2(x)|. We let r̂(ct, at) = E[rt|ct, at] and P̂ (c′|ct, at) = E[1(ct+1 = c′)|ct, at] denote
an approximate reward and transition kernel, respectively. Define the value functions

Q̂t(ct, at) = r̂(ct, at) +
∑
ct+1

P̂ (ct+1|ct, at)V̂t+1(ct+1)

V̂t(ct) = max
π:D(π(ct),πk(ct))≤β

∑
a

π(a)Q̂t(ct, a),
(4)

for t ≤ T , and V̂T (cT ) = 0, and the approximate optimal policy

π̂(ct) ∈ argmax
π:D(π,πk(ct))≤β

∑
a

π(a)Q̂t(ct, a). (5)

Let the optimal policy π∗(ht) be defined similarly, but with ht replacing ct in (4) and (5). Then we have that

Eπ∗

[
T−1∑
t=0

r(st, at)

]
− Eπ̂

[
T−1∑
t=0

r(st, at)

]
≤ ϵ1/3RmaxT

2(
√
2 + 4βT ).

Proof. Since Assumption 4.4 holds, Proposition A.11 does as well.

From the Markov inequality, we have Pπk
(D(ht) ≥ nϵ) ≤ ϵ

nϵ = 1
n .

We now the define the “Good Set” HG = {ht : D(ht) < nϵ} and the “Bad Set” HB = {ht : D(ht) ≥ nϵ}.

Next, we define an auxiliary policy π̃(ht) =

{
π∗(ht), if ht ∈ HG

worst behavior, if ht ∈ HB

.

We will assume that after observing ht ∈ HB , the policy performs as bad as possible for the rest of the episode.

Next, we bound the performance of π̃.

Proposition A.12. We have that Eπ∗
[∑T−1

t=0 r(st, at)
]
− Eπ̃

[∑T−1
t=0 r(st, at)

]
≤ 2T 2Rmaxβ

T /n.

Proof. We will denote by rt(ht) the reward at the last state-action pair. That is, for ht = s0, a0, r0, . . . , st−1, at−1, rt−1, st
we set rt(ht) = rt−1. We will denote R(ht) the sum of rewards, that is, R(ht) =

∑t−1
t′=0 rt′ .

We also denote by Pπ(ht) the probability of observing history ht under policy π. Note that by definition∑T−1
t=0

∑
ht

Pπ(ht) = 1. Also, note that by the definition of the set Πβ , for any two policies π1, π2 ∈ Πβ we have
Pπ1

(ht)/Pπ2
(ht) ≤ βt.

We now claim that

Eπ̃

[
T−1∑
t=0

rt

]
≥ Eπ∗

[
T−1∑
t=0

rt

]
− 2T 2Rmaxβ

T /n.

We first estimate the probability that policy π̃ encounters a history in HB . Consider some t ∈ 0, . . . , T − 1. We have that
under Pπk

, with probability at most 1/n, ht ∈ HB . Under Pπ̃, with probability at most βt/n, ht ∈ HB . From the union
bound, with probability at most TβT /n the policy visits at least one history in HB .

Let H̄B denote the set of T -length histories that visit a history in HB , and let H̄G be its complement set.
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Now, note that

Eπ̃

[
T−1∑
t=0

rt

]
=

∑
hT

Pπ̃(hT )R(hT )

=
∑

hT∈H̄G

Pπ̃(hT )R(hT ) +
∑

hT∈H̄B

Pπ̃(hT )R(hT )

=
∑

hT∈H̄G

Pπ∗(hT )R(hT ) +
∑

hT∈H̄B

Pπ̃(hT )R(hT )

≥
∑

hT∈H̄G

Pπ∗(hT )R(hT ) + (TβT /n)T (−Rmax)

=
∑
hT

Pπ∗(hT )R(hT )−
∑

hT∈H̄B

Pπ∗(hT )R(hT ) + (TβT /n)T (−Rmax)

≥ Eπ∗

[
T−1∑
t=0

rt

]
− 2T 2Rmaxβ

T /n

(12)

The third equality is from the definition of π∗. The fourth inequality relies on the reward function being bounded, i.e
R(hT ) ≥ T (−Rmax). This alongside the fact that

∑
hT∈H̄B

Pπ̃(hT ) ≥ (TBT /n) gives us the inequality. Note that the
last inequality follows from the definition of π∗, wherein the probability of visiting at least one history in HB is the same for
π∗ and π̃.

Next, we note that using Pinsker’s inequality, we have dTV (Pst+1,rt|ht,at
, Pst+1,rt|ct,at

) ≤√
2dKL(Pst+1,rt|ht,at

, Pst+1,rt|ct,at
), and that

|E[rt|ht, at]− E[rt|ct, at]| ≤ RmaxdTV (Pst+1,rt|ht,at
, Pst+1,rt|ct,at

)

|E[Vt+1|ht, at]− E[Vt+1|ct, at]| ≤ Rmax(T − t)dTV (Pst+1,rt|ht,at
, Pst+1,rt|ct,at

)

We next prove the following result.

Proposition A.13. We have that

Q̂t(σ̂t(ht), a) ≥ Qπ̃(ht, a)− αt,

V̂t(σ̂t(ht)) ≥ V π̃(ht)− αt,
(13)

where αt satisfies the following recursion: αT = 0, and αt =
√
2nϵRmax(T − t+ 1) + αt+1.

Proof. We prove by backward induction. The argument holds for T by definition. Assume that Equation (13) holds at time
t+ 1, and consider time t. If ht ∈ HB , then by definition Q̂t(σ̂t(ht), a) ≥ Qπ̃(ht, a), since π̃ will take the worst possible
actions after observing ht. Otherwise, ht ∈ HG and we have

Qπ̃(ht, a)− Q̂t(σ̂t(ht), a)

=E[rt|ht, a] + E
[
V π̃
t+1(ht+1)|ht, a

]
− r̂(σ̂t(ht), a)−

∑
ct+1

P̂ (ct+1|σ̂t(ht), a)V̂t+1(ct+1)

=E[rt|ht, a]− E[rt|ct, at]

+ E
[
V π̃
t+1(ht+1)|ht, a

]
− E

[
V̂t+1(σ̂t+1(ht+1))|ht, a

]
+ E

[
V̂t+1(σ̂t+1(ht+1))|ht, a

]
−

∑
ct+1

P̂ (ct+1|σ̂t(ht), a)V̂t+1(ct+1)

≤
√
2nϵRmax + αt+1 +

√
2nϵRmax(T − t).

We note that for ht ∈ HG, D(ht) ≤ nϵ, yielding the dTV bounds.
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For the second part, If ht ∈ HB , then by definition V̂t(σ̂t(ht)) ≥ V π̃(ht). Otherwise, ht ∈ HG and we have

V π̃
t (ht)− V̂t(σ̂t(ht)) = max

π:D(π(ht),πk(ht))≤β

∑
a

π(a)Qπ̃
t (ht, a)− max

π:D(π(ht),πk(ht))≤β

∑
a

π(a)Q̂t(σ̂t(ht), a)

≤ max
π:D(π(ht),πk(ht))≤β

∑
a

π(a)(Q̂t(σ̂t(ht), a) + αt)− max
π:D(π(ht),πk(ht))≤β

∑
a

π(a)Q̂t(σ̂t(ht), a)

= αt.

We next define another auxiliary policy ˜̂π(ht) =

{
π̂(ht), if ht ∈ HG

optimal behavior, if ht ∈ HB

. We will assume that after observing

ht ∈ HB , the policy perform optimally for the rest of the episode. Therefore, V ˜̂π
t (ht ∈ HB) = Vt(ht). We have the

following results, analogous to Propositions A.12 and A.13.

Proposition A.14. We have that E˜̂π
[∑T−1

t=0 r(st, at)
]
− Eπ̂

[∑T−1
t=0 r(st, at)

]
≤ 2T 2Rmaxβ

T /n.

Proof. Analogous to the proof of Proposition A.12.

Proposition A.15. We have that

Q̂t(σ̂t(ht), a) ≤ Q
˜̂π(ht, a) + αt,

V̂t(σ̂t(ht)) ≤ V
˜̂π(ht) + αt,

(14)

where αt satisfies the following recursion: αT = 0, and αt =
√
2nϵRmax(T − t+ 1) + αt+1.

Proof. Similarly to the proof of Proposition A.13. The argument hold for T by definition. Assume that Equation (14) holds
at time t + 1, and consider time t. If ht ∈ HB , then by definition Q̂t(σ̂t(ht), a) ≤ Q

˜̂π(ht, a), since ˜̂π will take the best
possible actions after observing ht. Otherwise, ht ∈ HG and we have

Q̂t(σ̂t(ht), a)−Q
˜̂π(ht, a)

=r̂(σ̂t(ht), a) +
∑
ct+1

P̂ (ct+1|σ̂t(ht), a)V̂t+1(ct+1)− E[rt|ht, a]− E
[
V

˜̂π
t+1(ht+1)|ht, a

]
=E[rt|σ̂t(ht), at]− E[rt|ht, a]

+ E
[
V̂t+1(σ̂t+1(ht+1))|ht, a

]
− E

[
V

˜̂π
t+1(ht+1)|ht, a

]
+

∑
ct+1

P̂ (ct+1|σ̂t(ht), a)V̂t+1(ct+1)− E
[
V̂t+1(σ̂t+1(ht+1))|ht, a

]
≤
√
2nϵRmax + αt+1 +

√
2nϵRmax(T − t).

For the second part, If ht ∈ HB , then by definition V̂t(σ̂t(ht)) ≤ V
˜̂π(ht). Otherwise, ht ∈ HG and we have

V̂t(σ̂t(ht))− V
˜̂π
t (ht) = max

π:D(π(ht),πk(ht))≤β

∑
a

π(a)Q̂t(σ̂t(ht), a)− max
π:D(π(ht),πk(ht))≤β

∑
a

π(a)Q
˜̂π
t (ht, a)

≤ max
π:D(π(ht),πk(ht))≤β

∑
a

π(a)(Q
˜̂π
t (ht, a) + αt)− max

π:D(π(ht),πk(ht))≤β

∑
a

π(a)Q
˜̂π
t (ht, a)

= αt.
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Corollary A.16. We have

Eπ∗

[
T−1∑
t=0

r(st, at)

]
− Eπ̂

[
T−1∑
t=0

r(st, at)

]
≤ Eπ̃

[
T−1∑
t=0

r(st, at)

]
− Eπ̂

[
T−1∑
t=0

r(st, at)

]
+ 2T 2Rmaxβ

T /n

=
∑
h0

P (h0)
(
V π̃
0 (h0)− V π̂

0 (h0)
)
+ 2T 2Rmaxβ

T /n

≤
∑
h0

P (h0)
(
V π̃
0 (h0)− V̂0(σ̂0(h0)) + V̂0(σ̂0(h0))− V π̂

0 (h0)
)
+ 2T 2Rmaxβ

T /n

≤
∑
h0

P (h0)
(
V π̃
0 (h0)− V̂0(σ̂0(h0)) + V̂0(σ̂0(h0))− V

˜̂π
0 (h0)

)
+ 4T 2Rmaxβ

T /n

≤ 2α0 + 4T 2Rmaxβ
T /n

We note that the first inequality follows from Proposition A.12. The second equality stems from the fact that P (h0) = P (s0),
which is not affected by the choice of policy. The fourth transition follows from the addition and subtraction of V ˜̂π

0 (h0) and
the use of Proposition A.14. The final inequality follows from Propositions A.13 and A.15.

Let us bound α0. By the recursion αt =
√
2nϵRmax(T − t + 1) + αt+1 we have that α0 = T 2

2

√
2nϵRmax. Setting

n = ϵ−1/3 we obtain the desired result:

Eπ∗

[
T−1∑
t=0

r(st, at)

]
− Eπ̂

[
T−1∑
t=0

r(st, at)

]
≤ T 2

√
2ϵ1/3Rmax + 4T 2Rmaxβ

T ϵ1/3

= ϵ1/3RmaxT
2(
√
2 + 4βT ).

B. Environments
Reacher Image: In this environment, a two-link planar robot needs to reach an unknown goal as in (Dorfman et al., 2021),
except that the goal is randomly chosen along a horizontal section of 0.48. For each task, the agent receives a reward of +1
if it is within a small radius r = 0.05 of the goal, and 0 otherwise.

rt =

{
1, if ∥xt − xgoal∥2 ≤ 0.05

0, otherwise

where xt is the location of the robot’s end effector. The agent observes single-channel images of size 64 × 64 of the
environment]. The horizon is set to 50 and we aggregate k = 2 consecutive episodes to form a trajectory of length 100.

Panda Reacher: A Franka Panda robot tasked with placing the end effector at a goal on a 2d semi-circle of radius 0.15
with fixed z = 0.15/2 in 3d-space. The task is adapted from the Reacher task in Panda Gym (Gallouédec et al., 2021), with
the goal occluded. For each task, the agent receives a reward of +1 if it is within a small radius r = 0.05 of the goal, and 0
otherwise.

rt =

{
1, if ∥xt − xgoal∥2 ≤ 0.05

0, otherwise

where xt is the current location of the end effector. The action space is 3-dimensional and bounded [−1, 1]3. The agent
observes a 3-channel image of size 84× 84 of the environment. We set the horizon to 50 and aggregate k = 3 consecutive
episodes to form a trajectory of length 150.

Panda Wind: This environment is identical to Panda Reacher, except that the goal is fixed and for each task the agent
experiences different wind with shifts the transition function, such that for an MDP M the transition function becomes

st+1 = st + at + wM

where wM is task specific and drawn randomly from a circle of radius 0.1. To get to the goal and stay there, the agent must
learn to quickly adapt in a way that cancels the effect of the wind.
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C. Implementation Details
In this section we outline our training process and implementation details, exact hyperparameters can be found in our code
at https://github.com/ec2604/ContraBAR

The CPC component termed gAR consists of a recurrent encoder, which at time step t takes as input the tuple (at, rt+1, st+1).
The state, reward and action are passed each through a different fc layer (or a cnn feature-extractor for the states in
image-based inputs). Our CPC projection head takes in (cat , zt+k) and passes it through one hidden layer of half the input
size, with an ELU activation function.

D. Architecture Details
In this section we detail practical considerations regarding the CPC architecture.

In Section 4.5 we described situations where ct does not need to encode belief regarding the task in order to distinguish
between positive and negative observations. This is detrimental to learning a sound sufficient statistic as we would like ct to
encode information regarding the reward and transition functions, as they are what set apart each task. In order to prevent
this “shortcut” from being used, we can perform hard negative mining. We do this by using negative observations that cannot
be distinguished from the positive observation without belief regarding the transition and reward functions. In the case
where only the reward functions vary, we can do this by taking the state and action of the positive observation and sampling
a new reward function. We then calculate the respective reward and embed it as a negative observation alongside the original
state and action. By having the positive and negative observations share the same state and action, we ensure that ct must be
informative regarding the reward function in order to distinguish between positive and negative observations. We note that
in this modified setup we use st as the initial hidden state for the action-gru and include the original ct as input to the CPC
projection head. This ensures that the gradient of the loss with respect to the action-gru does not affect ct, which should
encode information regarding the reward function. For the case where the environments only vary in reward functions, we
propose a simpler solution which is to omit the action-gru, as the future actions except for at+k−1 do not affect rt+k. We
can simply use (ct, zt+k) as input to the CPC projection head – we note that in this case zt+k is an embedding of the reward,
state and action. We found in practice that this simplification also worked well for the environments we used where the
transitions varied.

The modified architecture where the action-gru is omitted can be seen in Figure 9. In Figure 10 we demonstrate on the
Ant-Goal environment that omitting the action-gru and reward-relabeling with the action-gru yield similar results. Finally,
we note that hard-negative mining can be done for varying transitions by sampling a random transition from the prior and
simulating the transition to some st+k given st, at, . . . , at+k.

E. Image-based inputs are computationally restrictive for VariBAD
To understand the computational restriction in VariBAD (Zintgraf et al., 2020), we look to the formulation of the VAE
objective. For every timestep t, the past trajectory τ:t is encoded to infer the posterior q(m|τ:t), and used by the decoder
to reconstruct the entire trajectory including the future. In our analysis we restrict ourselves to the memory required for
reconstruction of the reward trajectory, in an image-based domain, under the following assumptions: (1) images of dimension
d× d× 3 are embedded to a representation of size 32 via 3 convolutions with 32 channels each and kernels of size, with
strides 2, 2, 1 respectively. (2) actions are of size 2 and embedded with a linear layer of size 16 (3) The trajectory is of
length 120, which is average for the domains in meta RL. We draw attention to the fact that reward decoder in VariBAD
receives st, st+1 as input, requiring us to take into consideration the memory required for embedding the image trajectory.
On top of this, we also consider three times the size of the parameters of the image encoder (parameters, gradients and
gradient moments). We present the memory consumption as a function of the image dimensions in Figure 11. We note that
in practice we often wish to decode multiple trajectories at once, and we also need to take into account encoder portion of
the model as well as its gradients.
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Figure 9: ContraBAR architecture where the action-gru is omitted. The history encoding is the same, future observations
however, do not include the action.
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Figure 10: The relabel and omit-gru architectures are run on the Ant-goal environment, with 10 seeds (evaluated over
10 environment samples each). The meta-trained policies are rolled out for 5 episodes to show how they adapt to the
task. Values shown are averages across tasks (95% confidence intervals shaded). The results for both methods are similar,
with slightly better results when the action-gru is omitted. We additionally show a single seed of the original action-gru
architecture, evaluated on 10 environment samples – we see that the sample mean is out of the confidence interval for both
the relabel and omit-gru architectures.
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Figure 11: VariBAD memory consumption for decoding the rewards for image-based input, as a function of the image
dimension given a trajectory length of 200
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