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Abstract
It has previously been reported that the represen-
tation that is learned in the first layer of deep
Convolutional Neural Networks (CNNs) is highly
consistent across initializations and architectures.
In this work, we quantify this consistency by con-
sidering the first layer as a filter bank and measur-
ing its energy distribution. We find that the energy
distribution is very different from that of the ini-
tial weights and is remarkably consistent across
random initializations, datasets, architectures and
even when the CNNs are trained with random
labels. In order to explain this consistency, we de-
rive an analytical formula for the energy profile of
linear CNNs and show that this profile is mostly
dictated by the second order statistics of image
patches in the training set and it will approach a
whitening transformation when the number of it-
erations goes to infinity. Finally, we show that this
formula for linear CNNs also gives an excellent fit
for the energy profiles learned by commonly used
nonlinear CNNs such as ResNet and VGG, and
that the first layer of these CNNs indeed performs
approximate whitening of their inputs.

1. Introduction
The remarkable success of Convolutional Neural Networks
(CNNs) on a wide variety of image recognition tasks is often
attributed to the fact that they learn a good representation
of images. Support for this view comes from the fact that
very different CNNs tend to learn similar representations
and that features of CNNs that are trained for one task are
often useful in very different tasks (Yosinski et al., 2014;
Gidaris et al., 2018a; Doimo et al., 2020).

A natural starting point for investigating representation
learning in deep CNNs is the very first layer. Studying

1 School of Computer Science and Engineering, Hebrew Uni-
versity, Jerusalem, Israel. Correspondence to: Rhea Chowers
<rhea.chowers@mail.huji.ac.il>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

this representation is somewhat easier than studying more
general representation learning for the simple reason that
the output of this layer is a linear function of its input. Thus
we can use the perspective of linear systems whereby a sys-
tem based on convolutions can be fully characterized by
its frequency response. In this paper, we adopt the linear
systems perspective and consider the first layer as a filter
bank and measure the sensitivity of the bank to different
spatial frequencies. As we show in Section 2, this pro-
file of sensitivities (which we call the ”energy profile”) is
highly consistent for different initializations, architectures
and training sets and is very different from the profile of the
initial random weights. The filter bank’s sensitivity peaks at
intermediate spatial frequencies, while being insensitive to
very high and low spatial frequencies.

The linear systems perspective has been used in the past to
analyze biological neural networks (Atick & Redlich, 1990)
where it has been argued based on first principles that the
first layer of a neural network should perform ”redundancy
reduction” (Barlow, 1989). For example, in the case of
images, the pixel representation is highly redundant since
neighboring pixel values are highly correlated. Under the
redundancy reduction hypothesis, the goal of early layers
is to ”disentangle” the input and remove these correlations
to facilitate downstream learning. When this hypothesis
is formalized, the resulting optimal transformation takes
the form of ”whitening”: the sensitivity of the first layer to
a particular frequency should be inversely proportional to
the variance of the input signal at that frequency (provided
that the input variance is much larger than the noise). Such
”whitening” transformations have been observed experimen-
tally in different biological systems (Hyvärinen et al., 2009),
and several authors have recently argued that whitening
should be enforced in the different layers of CNNs (Huang
et al., 2018; Zhang et al., 2021).

If CNNs were trained with an explicit ”redundancy reduc-
tion” loss function, we would therefore expect their energy
profiles to be consistent for different architectures and ran-
dom initializations, but why does this consistency occur
when the networks are trained to minimize a classification
loss on the training set? A possible explanation is that these
filters are optimal in some sense for solving the recognition
task. Thus, the networks have simply learned that in order
to minimize the training loss, the first layer of deep CNNs
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(a) CIFAR10 (b) CelebA (c) Imagenet

Figure 1. The energy profiles of different learned CNNs are highly consistent and different from initializaiton. CIFAR10 and CelebA are
averaged over many different initializations and the spread indicates the variance. Models trained on ImageNet were downloaded from the
PyTorch library. See Section 2 for full correlation coefficients. An example of a random initialization is plotted for reference.

must have filters whose energy profile has a particular shape.

In this paper we present empirical and theoretical results
that are inconsistent with this explanation. We show that
trained networks learn consistent representations that are
far from their initialization despite the fact that CNNs with
commonly used architectures can be trained equally well
with frozen random filters in the first layer. We also show
that the same energy profile is obtained when the network is
trained to predict random labels. We then show that under
realistic assumptions on the statistics of the input and labels,
consistency also occurs in simple, linear CNNs, and derive
an analytical form for its energy profile. We show that as
the number of iterations goes to infinity, this profile takes
the form of a first layer that performs whitening of the input
image patches. Finally, we show that the analytical formula
which we derived for linear CNNs gives an excellent fit to
the energy profile of real-world CNNs as well, when trained
with either true or random labels. Our code is publicly
available1.

2. Quantifying Consistency using Energy
Defining the similarity between the representations learned
by different CNNs is challenging (Laakso & Cottrell, 2000;
Wang et al., 2018). The dimension of the representation may
be different and even when they are the same, the two repre-
sentations may be very different when individual neurons
are compared but still identical when the full representation
is compared (e.g. two representations that are rotations of
each other). Recent works (Kornblith et al., 2019; Nguyen
et al., 2021) suggest comparing two representations based on
the distance between the distribution over patches induced
by the two representations. But estimating this distance in
high dimensions is nontrivial and two very different net-
works might give similar distributions over patches when

1https://github.com/RheaChowers/CNNs-First-Layer

the input distribution is highly skewed (Ding et al., 2021).
We propose a new method which avoids these shortcomings
and is especially relevant for the first layer of a CNN.

Our method is based on the linear systems perspective,
whereby a system that is based on convolutions is fully
specified by its frequency response. Since the filters in
CNNs are typically highly localized in space (e.g. many
successful CNNs use 3 × 3 × 3 filters in the first layer)
we characterize this frequency response using the principal
components of the input image patches.

Definition 2.1. Given a set of patches {pn} the PCA vectors
ui are eigenvectors of the matrix

∑
n pnp

T
n .

Definition 2.2. Given a set of filters {wk} and a set of PCA
vectors {ui} the energy profile of the set is given by a vector
e whose i’th component is given by:

e2i =
1

K

K∑
k=1

(wT
k ui)

2 (1)

We measure similarity between two different sets of fil-
ters by measuring the correlation coefficient between their
energy profiles. Note that this measure is invariant to a
rescaling of the filters, to a permutation of the filters and to
any orthogonal transformation of the filters. Since the PCA
vectors of a set of patches extracted from natural images are
highly localized in frequency (Hyvärinen et al., 2009), this
way of comparing linear representations is equivalent to con-
sidering the set of filters as a filter bank and measuring the
sensitivity of the filter bank to different spatial frequencies.

Figure 1 shows that different models trained with gradient
descent are remarkably consistent using our proposed mea-
sure. Regardless of architecture or the particular dataset
that they were trained on, different CNNs have very similar
energy profiles that are less sensitive to very high or low spa-
tial frequencies, and the peak sensitivity is for intermediate
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DATASET SEED WIDTH TRAINED VS VGG VS
INIT RESNET

CIFAR10 0.99 0.98 -0.13 ± 0.18 0.87
CIFAR100 0.97 0.98 -0.04 ± 0.04 0.80
CELEBA 0.99 0.98 -0.18 ± 0.13 0.92

Table 1. Correlation between energy profiles of VGG11 (Simonyan
& Zisserman, 2015), trained with different random seeds (initial-
izations), first layer widths, over various datasets, and compared
with ResNet18 (He et al., 2016). Standard deviation provided in
cases it exceeds 0.04.

spatial frequencies. This profile is very different from the
profile of the initial, random, filters which is approximately
constant for all frequencies.

Section 2 quantifies this similarity. The correlation between
energy profiles of trained models with different random ini-
tializations and architecture is remarkably high (over 0.98
in the case of different seeds and first layer widths) and the
correlation between the learned profiles and the random ini-
tialization is close to zero. An extensive set of comparisons
of various models and datasets can be found in Appendix E.

Thus the use of our new measure allows us to quantitatively
show that deep CNNs trained with gradient descent using
standard parameters exhibit highly consistent representation,
namely in the form of sensitivity to intermediate spatial
frequencies. We now ask: what determines this consistency?

3. Is Consistency due to CNNs Learning
Semantically Meaningful Features?

A natural explanation for the remarkable consistency of the
learned representation in the first layer is that CNNs learn
a representation that is good for object recognition. In par-
ticular, high spatial frequencies are often noisy while very
low spatial frequencies are often influenced by illumination
conditions. Thus learning a representation that is mostly
sensitive to intermediate spatial frequencies makes sense if
the goal is to recognize objects. Similarly, human vision
is also mostly sensitive to intermediate spatial frequencies
(Owsley, 2003), presumably for the same reasons.

In order to test this hypothesis we asked if training modern
CNNs while freezing the first layer will result in a decrease
in performance. If indeed a set of filters that is sensitive
mostly to intermediate frequencies is optimal for object
recognition, we would expect performance to suffer if we
froze the first layer to have random filters with equal energy
in all frequencies.

Figure 2 shows that there is almost no change in the per-
formance of modern CNNs when the weights in the first
layer are frozen. This is true when measuring training ac-
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Figure 2. Validation loss of VGGs of different depths on CIFAR10
as function of iteration with frozen first layer and without. For
deep networks the performance is the same as with frozen layer.
Training loss and accuracy figures can be found in Appendix D

curacy, training loss or validation accuracy and loss (see
Appendix D). Apparently the networks learn to compensate
for the random filters in the first layer by learning different
weights in the subsequent layers. In other words, if we
were to train modern CNNs using some discrete search over
weights (e.g. genetic programming) to minimize the training
loss, there is no reason to expect a consistent energy profile
that is sensitive mostly to intermediate spatial frequencies to
be found. Equally good training loss can be obtained with
random filters in the first layer.

Another test to this hypothesis can be done by training net-
works with random labels. In this setting, models are known
to memorize their training set (Arpit et al., 2017). While
a particular energy profile may be optimal for recognizing
natural object categories (e.g. for ignoring illumination ef-
fects), we should not expect any particular set of features
to be optimal for recognizing randomly defined categories.
Surprisingly, however, we find the same energy profile when
CNNs are trained with true labels and random labels. Fig-
ure 3 compares the energy profiles of models trained with
true and random labels on different datasets, and shows
a highly consistent profile between the two sets of labels.
Section 3 shows that this result is consistent over multiple
random seeds and far from initialization.

To summarize, while quantitatively highly consistent repre-
sentations are learned in the first layer of commonly used
CNNs, this cannot be explained by the networks minimiza-
tion of the training loss. Furthermore, the learned set of
features is consistent for models trained with random labels
as well, suggesting a bias in the input, training algorithm, or
both. This motivates us to analyze representation learning
in much simpler CNNs.
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(a) CIFAR10 (b) CIFAR100 (c) CelebA

Figure 3. VGG11 trained on CIFAR10 (Figure 3a) CIFAR100 (Figure 3b) and a CelebA classification task (Figure 3c) exhibit similar
energy patterns when trained with true and random labels. These are also highly correlated and differ from initialization (see Section 3).
Further experiments on binary CIFAR10 subsets can be found in Appendix E.

DATASET VGG (RANDOM) VGG (TRUE) VS
V INIT VGG (RANDOM)

CIFAR10 0.03 ± 0.22 0.90 ± 0.02
CIFAR100 0.14 ± 0.13 0.91 ± 0.01
CELEBA 0.08 ± 0.07 0.96 ± 0.03

Table 2. Correlation between energy profiles of VGG11 trained
with true and random labels for different datasets. While highly
correlated, the profiles are far from initialization.

4. Theory in Simple Linear CNNs
In order to understand the consistency that we observe
among energy profiles in the first layer of trained CNNs, we
turn to analyzing a very simple model: a linear CNN with
one hidden layer trained with the MSE loss. Specifically,
in this simple model, the first layer includes convolutions
with K different filters and the output is given by a global
average pool of the filters over all locations.

This model is clearly very different from real-world CNNs,
but it allows a closed form analysis of the energy profile
in the first layer. Furthermore, we will subsequently show
that it exhibits many of the same properties as those of
real-world CNNs.

Our main theorem (4.2) provides an analytic formula for the
energy profile of these models, which is consistent across
initializations and widths of the first layer. Additionally,
given that true labels are uncorrelated with image patches,
the theorem implies consistency between models trained
with true and random labels as well.

The theorem relates the energy profile of the learned filters
to the energy profile of the training patches, which we now
define.

Definition 4.1. Given a set of patches {pn} and a set of
PCA vectors {ui} the energy profile of the set is given by a

vector λ whose ith component is given by:

λ2
i =

1

N

N∑
n=1

(pTnui)
2 (2)

Theorem 4.2. Consider a depth-2 linear CNN of any width
initialized with zero mean filters and variance σ2I and
trained with gradient descent with step size η on the MSE
loss. Assume that different patches in each image are uncor-
related with each other and that the labels are uncorrelated
with individual PCA components, then as the number of
patches in the training set goes to infinity, the energy profile
of the filters at iterations t is given by:

ei = c̃ · |1− (1− ηλ2
i )

t|
η2λ2

i

λi + ξi (3)

where λi is the energy profile of the training patches and ξ a
random vector that depends on the initialization and whose
magnitude goes to zero as σ → 0 .

Proof Sketch. The result is obtained by explicitly calculat-
ing the gradient of the MSE loss with respect to the average
filter and noting that the dynamics of gradient descent can
be written as scalar dynamics in PCA space and take the
form of a geometric series(LeCun et al., 1991). The result
also uses the assumption that the labels are uncorrelated
with the PCA coefficients to obtain a formula that does not
depend on the labels. Even though the labels are uncor-
related with the PCA coefficients, any finite dataset will
include small, spurious correlations and the magnitude of
these correlations will almost surely be proportional to λi.
A full proof is supplied in Appendix A.

Thus under our assumptions, the energy profile will only
depend on the second-order statistics of the input patches (as
described by the energy profile λi), the number of iterations,
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Figure 4. Energy profiles predicted by our analytic formula (Equa-
tion (4)) at different iterations with a constant learning rate for the
eigenvalue spectrum of CIFAR10. At early training iterations the
profile is sensitive to the largest eigenvalue (corresponding to the
first PCA component). The sensitivity shifts as the number of iter-
ations increases and at each iteration the representation performs
whitening on increasingly higher frequencies.

and the learning rate. But what does this profile mean?
Figure 4 shows the analytic formula at different iterations
with a constant learning rate when the energy profile of the
patches λi is calculated on CIFAR10 (note the log scale on
the y axis). At early training iterations, the formula is mostly
sensitive to low spatial frequencies but the sensitivity shifts
as the number of iterations increases. As the number of
iterations approaches infinity, the profile is actually sensitive
mostly to high spatial frequencies. The following theorem
shows that as the number of iterations goes to infinity, the
filters of a linear CNN perform whitening.

Theorem 4.3. Let {wk} be the filters in the first layer of a
CNN. If the energy profile of these filters satisfy:

ei = c̃ · |1− (1− ηλ2
i )

t|
η2λ2

i

λi (4)

then as the number of iterations goes to infinity, the filters
in the first layer of the CNN perform spatial decorrelation:
the vector of responses at any given location is uncorrelated
with the vector of responses at any other location.

Proof Sketch. For any learning rate η < 1
maxi λ2

i
, at the

limit t → ∞ then (1 − ηλ2
i )

t → 0, meaning ei ∝ 1
λi

,
which is a whitening filter and therefore performs spatial
decorrelation. For full proof see Appendix A.

In other words, when assuming that the labels and input
patches are uncorrelated simple linear CNNs learn consis-
tent energy profiles which will converge to a whitening
transform, i.e. a transform that performs spatial decorrela-
tion. For finite iterations, the filters will not perform full
whitening and only those components for which λi is large
will be whitened (Figure 4). This is similar to the optimal

redundancy reduction that was derived from first principles
in (Atick & Redlich, 1990) and suggested that only compo-
nents for which λi is much greater than the noise should be
whitened. But unlike the explicit ”redundancy reduction”
discussed in previous works, here partial whitening emerges
due to a trade off with the number of iterations, caused by
the use of gradient descent to minimize the training loss.

(a) CIFAR10

(b) ImageNet (10)

Figure 5. Correlation between the patch energy in each PCA com-
ponent and the class labels for CIFAR10 (Figure 5a, using 3×3×3
patches) and a 10 class subset of ImageNet (Figure 5b, using
3× 7× 7 patches). The label vector is 1 for a given class and zero
for all other classes. Correlations are all around 0, suggesting the
assumption that patches are uncorrelated with their labels is true
for real datasets.

5. Comparing Theory to Practice
The theory in the previous section used a highly simplified
CNN trained with MSE loss. We now ask: how well does the
theory predict the energy profiles of real-world, nonlinear
CNNs trained with the standard cross-entropy loss?

A major assumption in our theory was that the labels are
uncorrelated with individual PCA coefficients. This is ob-
viously true for random labels, but we wanted to check
whether it was also true for true labels in commonly used
datasets. Figure 5 measures this correlation in CIFAR10
and in a 10 class subset of ImageNet. Specifically we con-
sider 10 ”one vs. all” binary classification tasks. For each
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such task, we measure the correlation between the label and
each of the individual PCA coefficients of patches in the
image. For CIFAR10 we use 3× 3× 3 patches (or 27 PCA
components) and for ImageNet we use 7 × 7 × 3 patches
(or 147 components). The figure plots these correlation co-
efficients for different binary classification tasks and for all
PCA coefficients. For all classes, correlation with the labels
is close to 0 for all components, supporting our assumption.

5.1. Spatial Decorrelation in CNNs

One prediction from our analysis is that the first layer of
CNNs should perform partial decorrelation. Let yi(x) be
the vector that denotes the output of all channels at a par-
ticular location i for image x. The autocorrelation function
is defined as C(δ) = Ei,x[yi(x)yi+δ(x)] where the expec-
tation is taken over locations (i) and training images. It is
easy to show that if y is obtained from x by a whitening
transform, then the autocorrelation function should be a 0
for any δ ̸= 0. We wanted to see if this holds for real-world
CNNs.

We first compute this autocorrelation when y includes three
channels corresponding to the input (R,G,B). As can be
seen in Figure 6 the correlation decreases as δ increases,
but even at a distance of 10 pixels the correlation is above
0.5. When we measure this same autocorrelation function
with 64 random filters (i.e. the first layer of commonly used
CNNs at initialization), the vector y is of length 64, but
the autocorrelation function is almost identical to that of
RGB (note that the graph corresponding to random weights
includes error bars and summarizes 100 different random
initializations but all random initializations give very similar
autocorrelation functions). In contrast, when the vector y is
the output of all 64 channels in the first layer of a learned
CNN, we consistently find that the spatial correlation is
significantly reduced, (e.g. at a distance of 10 pixels the
correlation after learning is reduced to around 0.2). For
comparison, we also show the autocorrelation function of a
set of filters that satisfy perfect whitening which reduces the
correlation at distance 10 pixels to zero, as expected. Thus,
consistent with our theoretical analysis of linear CNNs, real-
world CNNs perform approximate whitening of the input
and remove much of the redundancy that is present in their
input even though they are not explicitly trained with a
redundancy reduction loss.

5.2. Fitting the Formula to CNNs

Not only does our analysis predict this partial decorrelation
of the input at a finite number of training iterations, it also
gives a precise characterization of the energy profiles for a
linear CNN. Does this formula predict the energy profiles of
real models? We compare Equation (4) to energy profiles of
real models by setting a constant learning rate for all datasets

(a) ImageNet

(b) CIFAR10

Figure 6. Auto-correlation as a function of distance for different
representations of the input. In the RGB representation and in a
first layer that has random weights, the autocorrelation is signifi-
cant at large distances, but as the network is trained, this spatial
redundancy is reduced. Thus the first layer learns to perform par-
tial ”redundancy reduction” as predicted by our analysis.

and searching over the number of gradient steps t. The
results, portrayed in Figure 7 show high correlation between
the formula and real-world models (consistently above 0.9),
even in complex datasets such as ImageNet. Section 5.2
expands on these by providing correlation coefficients of
the formula to different models, with multiple random seeds
and on many datasets. Consistently, the formula calculated
at a finite iteration is able to capture much of what is done
by the first layer, independent of dataset, but not that of a
random initialization. More fits for ImageNet, CIFAR10,
CIFAR100, MNIST and for unsupervised tasks are provided
in Appendix B.

Additionally to capturing the profile of the first layer of
trained models, our formula also captures the dynamics of
gradient descent. Figure 8 shows an excellent fit between
the formula at different iterations of gradient descent and the
profile of the first layer of VGG11 trained on CIFAR10 and
MNIST during training. Clearly, as the training of the model
progresses, so does the number of iterations required for the
formula to fit its profile, showing a correspondence between
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(a) VGG11 on CIFAR10 (0.96) (b) VGG11 on CelebA (0.97) (c) ResNet18 on Imagenet (0.92)

Figure 7. Energy profiles of deep, nonlinear CNNs (orange) and the energy profile predicted by Equation (4) (blue). Even though the
formula was derived for a simple, linear CNN, the correlation coefficient between the predicted and observed profiles is often above 0.9.
See Section 5.2 for more correlations.

the two training dynamics. Furthermore, as the number of
iterations increases, the energy profile of real-world CNNs
approaches a whitening profile of the first components.

Our theory predicts that if gradient descent is run for an infi-
nite number of epochs, the learned weights will eventually
converge to whitening of all components. In our experi-
ments, we only observed partial whitening even after 10,000
training epochs and we believe this is due to the fact that the
gradient of loss with respect to the weights in the first layer
becomes extremely small after a finite number of epochs
(ratio of ∼ 10−10) causing the dynamics to plateau.

DATASET CORRELATION

IMAGENET 0.9±0.01
CIFAR10 0.94±0.01
CELEBA 0.96±0.01
CAR VS TRUCK 0.93±0.01
DOG VS FROG 0.91±0.02
DOG VS CAT 0.95±0.01
BIRD VS PLANE 0.96±0.005
BOAT VS PLANE 0.96±0.01
RANDOM INIT. 0.1±0.15

Table 3. Correlation between energy profiles of VGG11 with
the analytic formula for CIFAR10, CelebA and different binary
datasets of CIFAR10, averaged over 3 different seeds. Correla-
tions for ImageNet are averaged over 5 different models (and see
Appendix B). The correlation with a random initialization is also
presented for reference.

5.3. Changing the Data Statistics

In a final test of the ability of our analytic formula to fit
the energy profiles of real, nonlinear CNNs we design two
experiments that attempt to change the energy and label
statistics of the classification task. In the first task we force
the true labels to correlate with the input - for the i’th PCA

component, we sort all CIFAR10 images by their average
energy in the i’th direction and divide them into 10 equally
sized sets. This creates 27 datasets (as the number of PCA
components for 3 × 3 × 3 patches), each with high corre-
lation between the labels and the image energy. Figure 9a
displays the result of this experiment conducted on the 15’th
component. As expected, the profiles of true and random la-
bels are now noticeably different and their correlation drops
to around 0 (and see Appendix C.1), only by introducing
correlation between the images’ patch energy and labels.
Additionally, the first layer changes to be extremely sensi-
tive to the specific component that is correlated with the
labels.

In another experiment, we change only the input statistics by
multiplying each patch by a constant factor α in a specific
PCA direction. In this setting, there is no change in corre-
lation between the patch energy and the labels as the same
transformation is applied to all patches, and the eigenvalue
corresponding to the component we enhanced is changed
from λ2

i to α2λ2
i . Figure 9b shows that as expected, our

analytic formula for random labels still captures the energy
profiles of VGG with true labels, after applying the same
transformation that was done to the input images to the
eigenvalues used in the formula. More results are presented
in Appendix C.2.

6. Related Works
There have been many studies devoted to comparing repre-
sentations in different neural networks (Laakso & Cottrell,
2000; Lenc & Vedaldi, 2015; Csiszárik et al., 2021). The
comparison is often done by comparing the output of trans-
formations induced by the neurons (Kornblith et al., 2019;
Nguyen et al., 2021; Doimo et al., 2020) or the neurons
themselves (Wang et al., 2018; Li et al., 2015). The energy
profile is an alternative method that is especially useful for
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Figure 8. Energy profiles of VGG11 (blue) compared to the profile predicted by Equation (4) (orange) at different number of epochs. Both
for training on CIFAR10 with true labels (top) and for training with MNIST and random labels (bottom) the profiles are highly consistent
and approach whitening on the first components. All correlations between the profiles and the formula are above 0.95. Initialization was
subtracted from the model to simulate zero initialization.

comparing linear representations and avoids many of the
pitfalls of previous approaches.

The fact that different CNNs tend to learn qualitatively sim-
ilar filters in the first layer has been reported previously
(Yosinski et al., 2014; Sarwar et al., 2017; Luan et al., 2017;
Alekseev & Bobe, 2019, for example), and follows from a
line of work of visualizing representations in deep CNNs
(Zeiler & Fergus, 2013; Girshick et al., 2013). Our work
extends this finding by showing that the overall represen-
tation in the first layer is not only qualitatively but also is
quantitatively similar - different CNNs not only learn to
recognize spatial frequencies in their first layer but also the
same distribution of frequencies. This consistency is then
expanded to networks trained with true and random labels.

The idea that early representations should remove redun-
dancies in their input goes back to Barlow (1989) and there
has been a great deal of work arguing that initial layers in
biological neural networks remove dependencies in their
input (Field, 1994; Olshausen & Field, 1996; Bell & Se-
jnowski, 1997). In particular, when explicit redundancy
reduction is performed on natural image data, this principle
leads to Gabor filters similar to those that are observed in
the first layer of CNNs. In this work we followed Atick &

Redlich (1990) and focused on removing linear dependen-
cies by whitening. More importantly, we have shown that
this form of redundancy reduction emerges from minimizing
the classification loss either with true or random labels.

The usefulness of whitening as a normalization step in im-
age processing techniques is well known (Hyvärinen et al.,
2009), and is even used as a preprocessing technique when
training CNNs (Coates et al., 2011; Pal & Sudeep, 2016).
This has inspired others to constrain intermediate represen-
tations of neural networks to be white as well (Desjardins
et al., 2015; Luo, 2017; Huang et al., 2018; Pan et al., 2019;
Zhang et al., 2021) in order to improve convergence time and
performance. Our work shows that approximate whitening
occurs in CNNs even without an explicit whitening prepro-
cessing step nor without an explicit ”redundancy reduction”
loss.

As previously explained, the emergence of whitening is par-
tially the result of a bias in the gradient descent training
algorithm. The fact that gradient descent training biases
towards certain solutions has been known for many years,
and proven mainly for linear predictors and separable data.
Studies on linear networks (Soudry et al., 2018) and linear
CNNs (Gunasekar et al., 2018) found that under certain con-
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Figure 9. Changing the joint distribution of the patch energy and
the labels affects the energy profiles. When correlation between
the energy and the labels is introduced (9a) then the correlation
between the true and random profiles is broken. When statistics are
changed without introducing correlation (9b) the theory follows
suit. More results can be found in Appendix C

ditions, gradient descent causes the effective linear predictor
to be biased towards sparsity (in Fourier space in the case
of CNNs) or minimal norm or max-margin (Chizat & Bach,
2020). Similar works have also shown that deep nonlin-
ear networks are biased towards learning lower frequencies
first (Rahaman et al., 2019). Our theoretical analysis fol-
lows this line, and that of gaining insight into real-world
networks from simpler linear models (LeCun et al., 1991;
Hacohen & Weinshall, 2022; Gidel et al., 2019; Gissin et al.,
2019), while verifying our claims by quantitatively showing
consistency between theory and practice.

Previous works have examined the usefulness of representa-
tions in models trained with random labels by incorporating
them in transfer learning. Indeed, we show explicitly that
since there is a high degree of similarity between the first
layer of models trained with true labels and random ones, it
is reasonable to assume that layers of random models could

be useful for transfer learning. While some claimed (Bansal
et al., 2021) that this was due to similarity between the first
layer of a model trained with random labels and a random
initialization, Maennel et al. (2020) offered the explanation
that the first layer filters’ covariance and the patch PCA
have the same eigenvectors. Our results contradict the hy-
pothesis of (Bansal et al., 2021) and extend the results of
(Maennel et al., 2020) to give an analytic formula for the
energy profile that holds for true and random labels.

7. Discussion
The dramatic success of CNNs has led to increased interest
in the representations they learn, whether for explainability
or for transferring between different tasks. In this paper we
have focused on the representation that CNNs learn in the
very first layer and presented a high degree of quantitative
consistency between the energy profiles learned by different
networks using different initializations, architectures, and
even labels. To understand why CNNs learn this particular
energy profile we analyzed linear CNNs and showed that
this consistency is not a result of usefulness for object recog-
nition but rather due to properties of the input and output
statistics. Specifically the profile is mostly due to the lack
of correlation between image patches and labels and the
bias of the training algorithm. Combined, the two give an
implicit bias towards partial ”redundancy reduction”.

To generalize to real-world CNNs, we showed that the ana-
lytic formulation of the linear case captures much of what
is done by the first layer of different networks on different
datasets. To complement our explanation, we designed ex-
periments that adjust the statistics of the input and output
and showed the results behave as predicted.

Redundancy reduction is closely related to what is com-
monly referred to as ”disentanglement” in deep learn-
ing (Goodfellow et al., 2016): representations of the input
should disentangle the different factors of variation that
influence each piece of the input. Our results show that
real-world CNNs trained with gradient descent perform a
simplified version of disentanglement even if there is no ex-
plicit loss that rewards it. It will be interesting to see if this
result can be extended to deeper layers and more nonlinear
definitions of disentanglement.
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A. Proofs of Theorems on CNNs
We start with some definitions. To simplify the notation, we assume that the mean of the patches in the training set is zero.

Definition A.1. Given a set of patches {pn} the PCA vectors ui are eigenvectors of the matrix
∑

n pnp
T
n .

Definition A.2. Given a set of filters {wk} and a set of PCA vectors {ui} the energy profile of the set is given by a vector e
whose ith component is given by:

e2i =
1

K

K∑
k=1

(wT
k ui)

2 (5)

Definition A.3. Given a set of patches {pn} and a set of PCA vectors {ui} the energy profile of the set is given by a vector
λ whose ith component is given by:

λ2
i =

1

N

N∑
n=1

(pTnui)
2 (6)

Definition A.4. A labeled training set of images {xn, yn} satisfies the property that the label is uncorrelated with individual
PCA coefficients if E

[
uT
i pj(x)y(x)

]
= E

[
uT
i pj(x)

]
E [y(x))] where the expectation is over the dataset and pj(x) is a

randomly chosen patch in image x.

Theorem A.5. Consider a depth-2 linear CNN of any width initialized with zero mean filters and variance σ2I and trained
with gradient descent with step size η on the MSE loss. Assume that different patches in each image are uncorrelated with
each other and that the labels are uncorrelated with individual PCA components, then as the number of patches in the
training set goes to infinity, the energy profile of the filters at iterations t is given by:

ei = c̃ · |1− (1− ηλ2
i )

t|
η2λ2

i

λi + ξi (7)

where λi is the energy profile of the training patches and ξ a random vector that depends on the initialization and whose
magnitude goes to zero as σ → 0 .

Proof. The output of the network for an input image x is given by:

ŷ(x) =
∑
k

1

J

J∑
j=1

pj(x)
Twk = cp̄T (x)w̄ (8)

where pj(x) is the jth patch in image x, p̄(x) is the average patch in image x and w̄ is the average filter and c is the number
of filters. This also means that the gradient of the MSE loss L = 1

N

∑
x(y(x)− ŷ(x))2 with respect to a particular filter is

given by:

∂L

∂wk
= c (Aw̄ − b) (9)

where A = 1
N

∑
x p̄(x)p̄(x)

T and b = 1
N

∑
x p̄(x)y(x). Note that the gradient is the same for all k which means that at

each iteration:
wk(t) = w̄(t) + wk(0) (10)

and we can describe the dynamics of the mean filter at each iteration t by:

w̄(t) = w̄(t− 1)− η (Aw̄(t− 1)− b) (11)

Defining the matrix C = (I − ηA) and assuming that the mean filter at the initial iteration is 0 gives:

w̄(t) =

(
t−1∑
n=0

Cn

)
b (12)

13
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Note that the matrix C is diagonalized by the PCA basis and its eigenvalues are 1− ηλi which means that:

uT
i w̄(t) =

(
1− (1− ηλ2

i )
t
)

η2λ2
i

(uT
i b) (13)

Or taking the absolute value of both sides:

|uT
i w̄(t)| = |

(
1− (1− ηλ2

i )
t
)

η2λ2
i

| · |(uT
i b)| (14)

Now consider the term |uT
i b| this can be rewritten:

|uT
i b| =

∣∣∣∣∣ 1N ∑
x

uT
i p̄(x)y(x)

∣∣∣∣∣ (15)

By the central limit theorem, the term zi =
1
N

∑
x u

T
i p̄(x)y(x) approaches a Gaussian whose mean is the mean of the

random variable y(uT
i p), i.e. the random variable is the product of the label of an image and a PCA coefficient of the average

patch in that image. Since we are assuming the labels to be uncorrelated with the PCA coefficient, the mean of this random
variable is 0 and its variance is λ2

i /J (where J is the number of patches). Thus zi is a Gaussian random variable with mean
zero and variance λ2

i /(JN) and the term |uT
i b| is a “folded Gaussian” whose expectation is:

E
[∣∣uT

i b
∣∣] = λi√

JN

√
2√
π

(16)

and whose variance is also proportional to 1/JN . As JN → ∞, the variance goes to zero which means that |uT
i b| is with

high probability close to its expected value and hence |uT
i b| is with high probability proportional to λi.

Substituting this in equation 17 gives that with high probability:

∣∣uT
i w̄(t)

∣∣ = c2

∣∣∣∣∣
(
1− (1− ηλ2

i )
t
)

η2λ2
i

∣∣∣∣∣λi (17)

Finally, by the definition of the energy profile and the fact that wk(t) = w̄(t) + wk(0) equation 7 follows.

Theorem A.6. Let {wk} be the filters in the first layer of a CNN. If the energy profile of these filters satisfy Equation (7)
then as the number of iterations goes to infinity, the filters in the first layer of the CNN perform spatial decorrelation.

Proof. It is evident from Equation (7) that as t → ∞, the energy profile is proportional to 1
λ . This means that the filter

bank performs “whitening” and there have been many works that show the connection of whitening to spatial decorrelation
(see Hyvärinen et al. (2009) and references within). For completeness, we give the derivation here.

Recall that the PCA vectors of natural image patches aare approximately the Fourier basis. Thus the fact that the energy
profile is proportional to 1

λ implies a relationship between the Fourier transform of the bank of filters and the Fourier
transform of the images. Denote by E

[∣∣xF (ω)
∣∣] the expected power spectrum of the training images and by

∣∣wF
k (ω)

∣∣ the
power spectrum of the k’th filter then: ∑

k

∣∣wF
k (ω)

∣∣2 ∝ 1

E
[
|xF (ω)|2

] (18)

Now denote by C the auto-correlation function of the representation and by yk the k’th channel activations, i.e. yk = x ⋆wk

then:

C = Ex

[∑
k

yk ⋆ yk

]
(19)
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where the expectation is over images in the training set. We say that a representation is “spatially disentangled” if the
channels at different locations are uncorrelated and C is a delta function.

We denote by CF (ω) the Fourier Transform of C and yFk (ω) are the Fourier transforms of each channel. Then:

CF (ω) = E

[∑
k

∣∣yFk (ω)∣∣2
]

(20)

=
∑
k

∣∣wF
k (ω)

∣∣2 E [∣∣xF (ω)
∣∣2] (21)

= E
[∣∣xF (ω)

∣∣2]∑
k

∣∣wF
k (ω)

∣∣2 (22)

= c (23)

Where the last equation is derived by substituting Equation (18). Hence the Fourier Transform of the auto-correlation
function is a constant which means that the auto-correlation function is a δ function.

B. Fitting Formula to Different Models
To expand on the results in Section 5, presented are more fits of the formula in Equation (7) to different models on different
datasets. Figure 10 depicts models trained on ImageNet, which have been downloaded from the PyTorch model hub,
which are highly correlated with the theoretical formula. Meanwhile, a random initialization can hardly be explained
using it. Figure 11 and Figure 13 provide more examples of fitting the formula to models trained on CIFAR10 and
CIFAR100 respectively. Figure 12 shows the formula fitted to pretrained models on CIFAR10, and see Appendix E for more
information. Figure 14 shows fits of the formula to a model trained on MNIST over different iterations. An additional fit to
a self-supervised model is presented in Figure 15.
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(a) DenseNet (0.9)
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(b) GoogLeNet (0.9)
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(c) ResNet18 (0.92)
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(d) ResNeXt (0.9)
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(e) SqueezeNet (0.9)
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(f) Random Init. (0.11)

Figure 10. Fitting Equation (7) to different models trained on ImageNet by searching over iterations. An example of a random initialization
is attached for reference. Correlation coefficients in parentheses.
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Figure 11. More examples of fitting Equation (7) to VGG11 trained on CIFAR10 with different random seeds. Correlations are above
0.94.
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Figure 12. Fitting the formula to pretrained models trained on CIFAR10 (and see Appendix E for more). These models were trained with
learning rate schedulers, weight decay and momentum, all of which not covered in our theory and can cause differences in practice.
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Figure 13. Examples of fitting Equation (7) to VGG11 trained on CIFAR100 with different random seeds. Correlations are above 0.93.
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(a) Epoch 1 (0.99)
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(b) Epoch 3 (0.96)
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Figure 14. Fitting Equation (7) to VGG trained on MNIST with true labels, at different iterations. Correlations are in parentheses.
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Figure 15. Fitting Equation (7) to ”RotNet” (Gidaris et al., 2018b) - VGG11 trained to predict image rotations on CIFAR10.
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C. Effects of Changing Label and Image Statistics
As explained in Section 5, we conducted two experiments changing the input-output statistics and testing the effects on the
learned energy profiles. According to Theorem 4.2, as long as the PCA components remain uncorrelated we expect models
trained with true and random labels to remain consistent with each other and with the formula in Equation (7).

C.1. Introducing Correlation between Patches and Labels

In the first, each image was labeled according to the energy w.r.t. a PCA component u. For an image X with patches
P1(X)...Pk(X) we calculated the quantity

∑k
i=1(Pi(X)Tu)2 to be the total patch energy in direction u, and labeled X

according to the percentile of its energy (top 10% of images w.r.t. their energy were labeled y = 1, bottom 10% were labeled
y = 10 and so on).
Figure 16 shows that for different components, the correlation drops between the profiles of models trained with the new
true labels and random labels. Notice, the decrease is more is larger when the labels are determined by components which
aren’t learned by the model with random labels.
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(b) Component 3 (0.76)
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(c) Component 16 (-0.06)
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Figure 16. Training with true and random labels, when the true labels correspond to the image patch energy in different components (mean
correlation in parenthesis). Once introducing correlation between patches and labels, profiles of true and random labels cease to correlate.
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C.2. Changing the Patch Statistics

In this experiment, we changed the patch distribution consistently for all classes, therefore not changing the correlation
between energy and labels. Let u1...ud be the PCA components. Therefore each patch Pi(X) of and image X can be
spanned as:

Pi(X) =

d∑
j=1

⟨Pi(X), uj⟩uj (24)

We adjust the distribution by constant α > 1 w.r.t. component ut by transforming:

d∑
j=1

⟨Pi(X), uj⟩uj → α ⟨Pi(X), ut⟩ut +
∑
j ̸=t

⟨Pi(X), uj⟩uj (25)

Therefore changing the patch PCA eigenvalue corresponding to ut. We do this to all overlapping patches in the dataset
(therefore with no affect to the correlation between patches and labels), and adjust the stride in the first layer to avoid issues
with the overlap.

Figure 17 shows that indeed the first layers of models trained with true and random labels are still highly similar after
applying the transformation in Equation (25). Profiles of both models can still be explained by our analytic formula after
applying the same transformation to the eigenvalues used to calculate it.
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(a) Component 0 (True)
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(b) Component 0 (Random)
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(c) Component 15 (True)
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(d) Component 15 (Random)
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(e) Component 25 (True)
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(f) Component 25 (Random)

Figure 17. Changing the eigenvalues corresponding to different PCA component for true and random labels. The profiles for both sets of
labels are highly similar and can be explained by the analytic formula.
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D. CNNs with Frozen First Layer
To expand on the result on VGGs with a frozen first layer we attach here the full set of training results. As can be seen in
Figure 18, as the depth of a network increases the difference between the model with a frozen first layer and a learnt one is
almost indistinguishable - both in terms of accuracy and loss.
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Figure 18. Loss and accuracy metrics for VGGs of different depths, with and without a frozen layer, on CIFAR10, as function of iteration.
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E. Consistency for Different Datasets and Architectures
Below, are more figures portraying the high consistency between different models trained on different datasets, even when
trained with random labels.

E.1. Different Datasets and Architectures

Figure 20 displays high similarity between the first layer energy profiles of models trained on ImageNet. Figure 21 and
Figure 22 display high similarity for models trained on CIFAR100 and CIFAR10 respectively. Figure 19 shows different
ResNets trained on either CIFAR10 and CIFAR100 learn similar profiles as well. All models in this section are pretrained
models downloaded through the PyTorch model hub, from different publicly available github repositories2.
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(b) Correlation Coefficients

Figure 19. Different ResNets trained on different datasets all learn highly consistent energy profiles in their first layer.
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Figure 20. Energy profiles of different models trained on ImageNet with filters of dimension 3× 7× 7. Models are generally different
from a random initialization.

2https://github.com/chenyaofo/pytorch-cifar-models
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(a) Energy Profiles (b) Correlation Coefficients

Figure 21. Energy profiles of different models trained on CIFAR100 with filters of dimension 3× 3× 3.
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Figure 22. Energy profiles of different models trained on CIFAR10 with filters of dimension 3× 3× 3.
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E.2. Consistency for True and Random Labels

Figure 23 displays high similarity between VGG11’s trained on different binary subsets of CIFAR10 with true and random
labels, as discussed in Section 3.
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(a) Bird vs Plane (0.98)
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(b) Boat vs Plane (0.98)
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(c) Dog vs Cat (0.98)
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(d) Dog vs Frog (0.92)

Figure 23. Energy profiles of VGG11 trained with true and random labels on different binary subsets of CIFAR10. Correlation coefficients
in parentheses.
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F. Visual Similarity of Filters in the First Layer
As has already been pointed out by (Krizhevsky et al., 2012; Li et al., 2015) filters learned by CNNs learn visually similar
filters. For the readers convenience, Figure 24 displays filters taken from different networks trained on ImageNet. Notice
these are noticably differ from a random initialization.

(a) Initialized ResNet18 Filters (b) Trained ResNet18 Filters

(c) Trained GoogleNet Filters (d) Trained DenseNet Filters

Figure 24. Different CNNs (24b, 24c, 24d) trained on ImageNet learn a highly consistent first layer despite using different architectures.
These filters are very different from the initial, random filters (24a) showing that consistent representation learning has occurred.
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