
Distribution Free Prediction Sets for Node Classification

Jase Clarkson 1

Abstract
Graph Neural Networks (GNNs) are able to
achieve high classification accuracy on many im-
portant real world datasets, but provide no rigor-
ous notion of predictive uncertainty. Quantifying
the confidence of GNN models is difficult due to
the dependence between datapoints induced by
the graph structure.

We leverage recent advances in conformal predic-
tion to construct prediction sets for node classi-
fication in inductive learning scenarios. We do
this by taking an existing approach for confor-
mal classification that relies on exchangeable data
and modifying it by appropriately weighting the
conformal scores to reflect the network structure.
We show through experiments on standard bench-
mark datasets using popular GNN models that our
approach provides tighter and better calibrated
prediction sets than a naive application of con-
formal prediction. The code is available at this
link.

1. Introduction
Machine learning on graph structured data has seen a boom
of popularity in recent years, with applications ranging from
recommendation systems to biology and physics. Graph
neural networks are quickly maturing as a technology; many
state of the art models are commoditised in frameworks such
as Pytorch Geometric (Fey and Lenssen, 2019) and DGL
(Wang et al., 2019). Despite their overwhelming popularity
and success, very little progress has been made towards
quantifying the uncertainty of the predictions made by these
models, a vital step towards robust real world deployments.

In related areas of machine learning such as computer vi-
sion, conformal prediction (Vovk et al., 2005) has emerged
as a promising candidate for uncertainty quantification (An-
gelopoulos et al., 2020). Conformal prediction is a very
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appealing approach as it is compatible with any black box
machine learning algorithm and dataset as long as the data
is statistically exchangeable. The most wide-spread method,
so called split-conformal, also requires trivial computational
overhead when compared to model fitting.

Networks, or graph structured data is in general not ex-
changeable and so the guarantees provided by conformal
prediction in its naive form do not hold. Recent work by
Barber et al. (2022) extends conformal prediction to the non-
exchangeable setting and provides theoretical guarantees on
the performance of conformal prediction in this setting. We
leverage insights from (Barber et al., 2022) to apply confor-
mal prediction in the node classification setting. The key
insight is that for a homophilous graph, the model calibra-
tion should be similar in a neighbourhood around any given
node. We leverage this insight to localise the calibration of
conformal prediction. We show that our method improves
calibration of predictive uncertainty and provides tighter
prediction sets when compared with a naive application of
conformal prediction across several state of the art models
applied to popular node classification datasets.

This paper is structured as follows; we begin by reviewing
related work in Section 2. In Section 3 we give an intro-
duction to the relevant background material on conformal
prediction. We introduce our method for adapting confor-
mal prediction to networks in Section 4. We then detail our
experimental setup and provide marginal coverage statistics
in Section 6, and discuss the conditional coverage properties
of our method in Section 7. We provide an ablation study
to better understand our results in 8 and finally give our
conclusions and discuss avenues for future work in Section
9.

2. Related Work
There is no standard approach to estimating the predictive
uncertainty of neural network models. Many works take
a Bayesian approach (Goan and Fookes, 2020), where the
goal is to learn a distribution over the network weights and
represent uncertainty via the posterior distribution. Bayesian
approaches however become quickly computationally in-
tractable for large models and datasets, which has lead to ap-
proximations of Bayesian learning such as Deep Ensembles
(Lakshminarayanan et al., 2017) and Variational Inference
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(Welling and Kingma, 2014). These approximations too
come with practical drawbacks, such as the need to explore
distinct regions of the parameter space in Deep Ensembles.

In the graph setting, several variants of Bayesian GNNs
have been proposed (Hasanzadeh et al., 2020; Chandra et al.,
2021; Zhang et al., 2019), all of which require modifications
to either model architecture or the model training proce-
dure. The methods introduced in this work are deployed
after model training and have trivial computational overhead
compared to model fitting.

Conformal prediction (Vovk et al., 2005) has seen a surge
in popularity in recent years, especially amongst the deep
learning community (Stutz et al., 2022; Einbinder et al.,
2022; Teng et al., 2022). In the exposition below we will
focus on conformal classification as introduced in (Romano
et al., 2020) as that is the object of study in this work, but
note that other approaches to conformal classification exist
such as that introduced in (Sadinle et al., 2019). Conformal
prediction may also be used to construct prediction intervals
for regression (Lei et al., 2018; Romano et al., 2019) or to
control more general risk functions (Angelopoulos et al.,
2022).

While we are not aware of prior work extending conformal
prediction to networks, very recent work has considered
the application of conformal prediction to time series, in
which observations are in general not exchangeable. These
algorithms often assume the distribution can shift over time,
even adversarially, and as such utilise online learning (Gibbs
and Candes, 2021; Zaffran et al., 2022; Gibbs and Candès,
2022) or game theoretic (Bastani et al., 2022) techniques.
In contrast, we assume that the data is non-exchangeable
but that the adjacency matrix of the graph is indicative of
the dependency structure between data points.

3. Conformal Prediction
Conformal prediction is a family of algorithms that gener-
ate finite sample valid prediction intervals or sets from an
arbitrary black box machine learning model. In this work
we employ a convenient approach known as split confor-
mal prediction (Papadopoulos et al., 2002; Lei et al., 2018).
Split conformal prediction may be thought of as a ”wrap-
per” around a fitted model that uses a set of exchangeable
held out data to calibrate prediction sets. Amazingly, the
predictive model does not even need be well specified for
these guarantees to hold (although the prediction intervals
or sets may not be useful in this case). An excellent tutorial
is provided by Angelopoulos and Bates (2021).

3.1. The Exchangeable Case

In a K−class classification model suppose that we have a
fitted model f̂ : X → [0, 1]K that outputs the probability of

each class. Given an exchangeable set of held-out calibra-
tion datapoints (X1, Y1) , . . . , (Xn, Yn) (held out meaning
they were not used to fit the model) and a new evaluation
point (Xn+1, Yn+1), conformal prediction constructs a pre-
diction set Ĉ(Xn+1) that satisfies

1− α ≤ P
(
Yn+1 ∈ Ĉ (Xn+1)

)
≤ 1− α+

1

n+ 1
(1)

for a user specified error rate α ∈ [0, 1]. Conformal predic-
tion relies on a score function S : X × Y → R, which mea-
sures the calibration of the prediction at a given datapoint.
Given a score function S, the procedure for constructing a
prediction set is very simple; for each datapoint (Xi, Yi) in
the calibration set, compute the score si = S(Xi, Yi). De-
fine 1− α̂ to be the ⌈(n+ 1)(1− α)⌉/n empirical quantile
of the scores s1, . . . , sn, and finally create the prediction set

Ĉ (Xn+1) = {y : S (Xn+1, y) ≤ 1− α̂} .

A popular conformal prediction procedure for classifica-
tion problems is known as Adaptive Prediction Sets (APS,
(Romano et al., 2020)). To motivate the APS score func-
tion, suppose we have access to an oracle classifier π
that exactly matches the true conditional distribution (i.e.
π(x) = P(Yn+1|Xn+1 = x)). Then to construct a 1 − α
prediction set from the oracle, we simply sort the probabili-
ties into descending order, and add labels to the set until the
cumulative probability exceeds 1− α (with appropriate tie
breaking to ensure exact coverage).

Let
πy(x) = P(Y = y | X = x)

for all y ∈ Y and denote the order statistics of the oracle
classifier probabilities by

π(1)(x) ≥ π(2)(x) ≥ . . . ≥ π(K)(x).

For any τ ∈ [0, 1] define the generalised conditional quantile
as

L(x;π, τ) = min{k ∈ {1, . . . ,K} :

π(1)(x) + π(2)(x) + . . .+ π(k)(x) ≥ τ}.

One can now define the set valued function

S(x, u;π, τ) =



Labels of the
L(x;π, τ)− 1 largest πy(x),

if u ≤ V (x;π, τ),

Labels of the
L(x;π, τ) largest πy(x),

otherwise
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where

V (x;π, τ) =
1

π(L(x;π,τ))(x)

L(x;π,τ)∑
c=1

π(c)(x)− τ

 .

The oracle prediction set is then be defined as

Coracle
α (x) = S(x, U ;π, 1− α)

where U ∼ Uniform(0,1) is independent of everything else.
The above is saying one should break ties proportional to the
gap between the cumulative sum of the ordered probabilities
until the true label is included and the desired level τ .

In practice the probabilities given by a fitted classifier f̂(x)
will usually not be exactly equal to P(Yn+1|Xn+1 = x).
APS instead measures the deviation from the oracle proce-
dure required to achieve the desired level of coverage on the
calibration data; the conformal score is defined as

S(x, y) =

k∑
j=1

f̂(x)(j), where y = k. (2)

To give a concrete example, suppose we want to construct
prediction sets that contain the true label 90% of the time
(so α = 0.1). It could be the case that, on our held out data,
if we simply add up the ordered softmax outputs until their
cumulative sum exceeds 0.9 we actually get 85% coverage,
due to the model being miss-calibrated. Using APS we
might calculate that if we construct prediction sets using
1− α̂ = 0.94 we get 90% coverage, and by exchangeability
this translates to 90% coverage on any new test point. We
would therefore use the level α̂ = 0.06 to construct our new
prediction sets.

3.2. Beyond Exchangeability

Conformal prediction in the form presented above relies
on the assumption that the data points Zi = (Xi, Yi) are
exchangeable. The exchangeable form of conformal predic-
tion provides no guarantee if these assumptions are violated,
however non-exchangeable conformal prediction was intro-
duced in the pioneering work of Barber et al. (2022).

Formally, the non-exchangeable conformal prediction pro-
cedure assumes a choice of deterministic fixed weights
w1, . . . , wn ∈ [0, 1] (normalized as detailed in (Barber et al.,
2022)). As before, one computes the scores s1, . . . , sn but
now defines the prediction set in terms of the weighted quan-
tiles of the score distribution

Ĉn (Xn+1)

= {y ∈ Y : S (Xn+1, y) ≤

Q1−α

(
n∑

i=1

wi · δsi + wn+1 · δ+∞

)}
(3)

where Qτ (·) denotes the τ -quantile of a distribution and δx
denotes a point mass at x.

Non-exchangeable conformal prediction also comes with
performance guarantees; the authors define the coverage
gap

Coverage gap = (1−α)−P
{
Yn+1 ∈ Ĉn (Xn+1)

}
(4)

as the loss of coverage when compared to the exchangeable
setting, and show that this can be bounded as follows: let
Z = ((X1, Y1) , . . . , (Xn+1, Yn+1)) be the full dataset and
define Zi as the same dataset after swapping the test point
and the ith training point

Zi = ((X1, Y1) , . . . , (Xi−1, Yi−1) , (Xn+1, Yn+1) ,

(Xi+1, Yi+1) , . . . , (Xn, Yn) , (Xi, Yi))).

Then the coverage gap in Equation (4) can be bounded as
(Theorem 2a, Barber et al. (2022)):

Coverage gap ≤
∑n

i=1 wi · dTV

(
Z,Zi

)
1 +

∑n
i=1 wi

(5)

where dTV is the total variation distance. To make this
bound small one would like to place a large weight wi on
datapoints that are drawn from a similar distribution to the
test point (Xn+1, Yn+1).

4. Conformal Prediction for Node
Classification

Consider now the node classification setting: we are given a
graph G = (V,E), and for each node i ∈ V we are given
a node feature vector Xi ∈ RF and a label Yi ∈ Y . A
standard pipeline for node classification usually consists of
a GNN model that produces a node embedding hi ∈ RH

followed by a classifier f : RH → Y .

Here the data points Zi = (Xi, Yi) are certainly not as-
sumed to be exchangeable; the underlying principle of GNN
models is that the adjacency matrix of G provides informa-
tion about the dependency between datapoints (and hence
neighbourhood information of G is aggregated and used for
prediction). Barber et al. (2022) show in particular that non-
exchangeable data can be navigated when the fitted model is
a symmetric function of the test data. Our method is based
on the observation that using only training data to fit the
model trivially satisfies this assumption. In particular, this
excludes the transductive setting.

We combine non-exchangeable conformal prediction with
the information given by the adjacency matrix to produce
an algorithm for constructing prediction sets for node classi-
fication, which we call Neighbourhood Adaptive Prediction
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Table 1. Statistics for the Flickr, Reddit2 and Amazon Computers datasets, with notation as in Subsection 6.3.

Dataset Nodes Edges # Feat # Classes # Test Nodes
∣∣N cal

∣∣ Ĥ Hrand

Flickr 89,250 899,756 500 7 22313 5161 0.319 0.266
Reddit2 232,965 23,213,838 602 41 55334 22160 0.812 0.051

Amazon Comp. 13752 491,722 767 10 12000 11033 0.785 0.208

Sets (NAPS). The first variant simply localises the calibra-
tion to a neighbourhood of the network; we set the weights
in Equation (3) to wi = 1 if i ∈ NK

n+1, where NK
n+1 is the

K-hop neighbourhood of node n+ 1. We then apply non-
exchangeable conformal prediction with the APS scoring
function in Equation (2).

The coverage gap of NAPS is bounded as

Coverage gap ≤

∑
i∈Nk

n+1
dTV

(
Z,Zi

)
1 + |N k

n+1|
(6)

by simple substitution into Equation (5). This bound will
be small if the k-hop neighbours of node n + 1 are dis-
tributed similarly, which is otherwise known as homophily
(McPherson et al., 2001).

Homophily is a key principle of many real world networks,

APS

NAPS (Our Method)

Test

Calibration

Not Used

Figure 1. An illustration of the nodes used for calibrating con-
formal prediction via an ”out the box” application of APS (top
panel), which randomly splits the data, and the nodes used in
NAPS (bottom panel). NAPS localises the calibration nodes to a
neighbourhood of the test node.

where linked nodes often belong to the same class and have
similar features, and is in crucial for good performance in
many popular GNN architectures (although recent work
has considered the heterophilic case, see (Zhu et al., 2021),
which we will discuss in the future work section). This
is also related to network homogeneity, where nodes in a
neighbourhood play similar roles in the network and are
considered interchangeable on average.

Motivated by the principle of homophily, we also explore
two variants of NAPS that place more weight on closer
neighbours than those further away. Formally we introduce
a weighting function w(k) setting wi = w(k) for a node i
that is k hops from the test node n+1. In this setting, letting
N k′

n+1 represent the nodes that are exactly k hops from node
n+ 1, similarly to (6) we have the coverage gap bound

Coverage gap ≤

∑K
k=1 w(k)

∑
i∈Nk′

n+1
dTV

(
Z,Zi

)
1 +

∑K
k=1 w(k)|N k′

n+1|
.

(7)

The first variant, which we call NAPS-H, uses a hyperbolic
decay rate w(k) = k−1, and the second, which we call
NAPS-G, uses a geometric decay rate w(k) = 2−k.

Note that NAPS is not applicable in the transductive setting,
as the fitted model f̂ would depend on the node features in
the test set, hence the conformal scores would no longer be
exchangeable. It is however applicable in inductive settings
where either the test set consists of multiple new graphs, or
new nodes are added to an existing network.

The neighbourhood depth parameter K introduces a trade-
off; expanding the neighbourhood increases the sample size
for calibration, but introduces nodes that may be progres-
sively less topologically similar. In the form presented here
we recommend only applying NAPS to large homophilous
networks with dense 1 or 2 hop neighbourhoods, but we
will discuss extensions in future work.

5. A Case Study: The Stochastic Block Model
To gain further insight into when we might expect NAPS
to outpeform APS, we perform a theoretical study inspired
by the Stochastic Block Model (SBM), a parametric model
from network science. Suppose we have a graph on 2n
nodes partitioned into two distinct groups, C1 and C2. We
introduce two parameters, pin, the probability of connecting
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Table 2. The test accuracy, empirical coverage, average prediction set size and average prediction set size conditional on coverage for all
models considered on the Reddit2, Flickr and Amazon Computers datasets with α = 0.1. Each column shows the median-of-means
computed over 100 repetitions of the experiment, where each experiment is evaluated on a set of 1000 nodes. Bold indicates the best
performing method.

Dataset Model
Accuracy Coverage Size Size | Coverage

Top-1 APS NAPS NAPS-L NAPS-G APS NAPS NAPS-L NAPS-G APS NAPS NAPS-L NAPS-G

Reddit2

GS-Mean 0.914 0.928 0.895 0.896 0.899 2.02 1.59 1.59 1.59 2.12 1.72 1.73 1.73
GS-Max 0.771 0.918 0.903 0.904 0.906 3.97 3.20 3.20 3.21 3.82 3.30 3.31 3.31

SD-SAGE 0.844 0.925 0.896 0.899 0.897 2.08 1.64 1.63 1.64 2.11 1.69 1.67 1.68
SD-GCN 0.827 0.927 0.896 0.898 0.899 2.11 1.66 1.64 1.65 2.14 1.73 1.70 1.71

Flickr

GS-Mean 0.503 0.915 0.904 0.909 0.910 4.22 4.01 4.10 4.12 4.26 4.06 4.17 4.19
GS-Max 0.501 0.910 0.903 0.907 0.909 4.32 4.11 4.21 4.23 4.34 4.14 4.24 4.27

SD-SAGE 0.500 0.912 0.904 0.907 0.908 4.27 4.07 4.15 4.17 4.31 4.11 4.21 4.23
SD-GCN 0.496 0.912 0.903 0.908 0.909 4.28 4.09 4.18 4.20 4.33 4.12 4.22 4.25

Amazon

GS-Mean 0.854 0.905 0.902 0.902 0.904 1.50 1.44 1.44 1.46 1.57 1.50 1.49 1.52
GS-Max 0.765 0.902 0.903 0.902 0.902 2.15 1.98 2.01 2.01 2.18 2.04 2.06 2.07

SD-SAGE 0.815 0.912 0.905 0.905 0.906 1.77 1.66 1.67 1.67 1.80 1.72 1.74 1.73
SD-GCN 0.822 0.911 0.904 0.905 0.904 1.75 1.64 1.63 1.64 1.82 1.72 1.71 1.73

two nodes in the same group, and pout, the probability of
connecting two nodes in different groups (usually pout <<
pin). We assume for nodes i ∈ C1 that (Xi, Yi) ∼ π1 i.i.d
for all i ∈ C1 where π1 is a probability distribution, and that
for nodes j ∈ C2 that (Xj , Yj) ∼ π2 i.i.d where π2 ̸= π1, a
different probability distribution. Importantly, we assume
the group membership of each node is not observable, only
implicit in the model specification.

Assume we have already fit a classifier f̂ on a distinct train-
ing set, and our test network follows the block-model struc-
ture described above. The goal is to construct prediction
sets for each node in the test set. If the group member-
ship for each node was known, the problem would be easy;
one could simply calibrate amongst only nodes in the same
community. These nodes are drawn i.i.d from the same
probability distribution, hence are exchangeable and so the
standard guarantees for conformal prediction hold. As com-
munity membership is not observable, one must use the
edges to determine whether two nodes are likely to be in
the same group or not. Intuitively if pin >> pout then on
average linked nodes are much more likely to be in the same
community, hence if there are enough neighbours to ensure
sufficient sample size one would want to calibrate amongst
the neighbours.

We now provide a theoretical result quantifying this intu-
ition, the proof of which is given in Appendix A.1.

Lemma 5.1. Assume the test data has the block model
structure described above. Let CGAPS be the coverage gap
for prediction sets constructed using APS (i.e. calibrating
using all available nodes), and CGNAPS be the coverage
gap attained by the unweighted variant of NAPS calibrated
amongst the 1-hop neighbours of each test node. Then

E[CGNAPS] < E[CGAPS] if

E
[

Nout

Nout +Nin + 1

]
<

1

2
(8)

where Nin ∼ Bin(n − 1, pin), Nout ∼ Bin(n, pout) are
Binomial random variables.

Note if we mean field approximate the expectation in Equa-
tion (8) we obtain a more intuitive expression in terms of
the data generating parameters, namely that E[CGNAPS] <
E[CGAPS] (approximately) when

npout
npout + (n− 1)pin + 1

<
1

2
.

.

6. Experiments
We now perform experiments with popular real world
datasets and models to evaluate the performance of our
procedure. Our experiments follow the following format:
we split each graph into training, validation and test nodes
(where the validation and test nodes are not available during
model fitting i.e. an inductive node split). The training
and validation sets are used for model fitting, and the test
set is used to evaluate the conformal prediction procedure
by constructing prediction sets and evaluating the empiri-
cal coverage. Details of the implementation are found in
Appendix A.3.

6.1. Evaluating Conformal Prediction

The observed coverage in a single application of confor-
mal prediction is a random quantity, where the randomness
comes from the choice of which data points are used for
calibration as well as the finite sample size of the calibration
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set (corresponding to the upper bound in Equation (1)). It is
therefore important to pick a large enough number of cali-
bration points, and also repeat the experiment many times
with different calibration/evaluation splits.

For simplicity we follow the guidelines given in Angelopou-
los and Bates (2021), which suggest using at least 1000
validation points, and we repeat each experiment 100 times
with a different calibration/evaluation split; with this setup
by the law of large numbers the probability of observing
significant deviations from the true coverage is extremely
low, and therefore we can evaluate the performance of our
method with high confidence.

Conformal prediction in the exchangeable setting is usu-
ally deployed by splitting the data into a calibration set and
an evaluation set. The calibration points are used to esti-
mate the quantile of the score distribution, which is used
to construct prediction sets for each evaluation point. In
our setting, this corresponds to selecting the calibration and
evaluation nodes randomly, which ignores the graph struc-
ture. The goal of our experimental setup is to study the
improvement in the performance of conformal prediction
when the graph structure is taken into account.

6.2. Experimental Setup

In each experiment, we sample a batch of evaluation nodes
and construct a 1 − α probability prediction set for each
evaluation node using NAPS as described in Section 4, as
well as using a naive application of APS calibrated among
all the nodes not in the evaluation set. We then report the
empirical coverage, average prediction set size and average
size of the prediction set given that the set contains the true
label across all nodes.

For each experiment we sample 1000 nodes randomly from
the nodes in the test set, and we perform 100 repetitions of
the experiment (see Appendix 6.1 for a justification of this
approach). We only apply our method to large connected
components from the test set following the discussion in
Section 4 (see Appendix A.2 for details on the datasets and
the test set construction procedure).

6.3. Datasets and Models

We apply our method to three popular node classification
datasets, namely Reddit2 and Flickr introduced in (Zeng
et al., 2020) and Amazon Computers introduced in (Shchur
et al., 2018). We apply two variants of two popular GNN
models, namely GraphSAGE (Hamilton et al., 2017) with
the mean and max aggregators, and the ShaDow (Zeng
et al., 2021) subgraph sampling scheme with GraphSAGE
and GCN (Kipf and Welling, 2017) layers.

NAPS relies on node homophily to minimize the coverage
gap bound in Equation (5). Here we verify here that each

of these networks is homophilous. We measure this via the
node homophily ratio defined in (Pei et al., 2020) as

H =
1

|V|
∑
v∈V

|{(w, v) : w ∈ N (v) ∧ yv = yw}|
|N (v)|

.

We define a homophilous network as one that has node
homophily ratio larger than expected under a random as-
signment of labels. For a network with K classes, assume
each node is assigned class k independently with probability
pk. Then for any (v, w) ∈ V , we have

P(yv = yw) =

K∑
k=1

p2k.

It follows that the expected homophily ratio under random
class assignment is

E[H] =
1

|V|
|V|

K∑
k=1

p2k =

K∑
k=1

p2k.

In Table 1 we report both the observed homophily ratio Ĥ
computed over the induced subgraph of the test nodes for
each network as well as the expected node homophily under
a random assignment of the labels Hrand, using the relative
node label frequencies as the probabilities pk. We see that
Reddit2 and Amazon Computers are strongly homophilous,
while Flickr is relatively weakly so.

The results for each dataset are displayed in Table 4. We see
across all models on all three datasets, NAPS produces well
calibrated, tight prediction sets, while the naive application
of APS tends to overcover and produces wider prediction
sets. The outperformance of NAPS over APS on the Flickr
dataset shows that strong homophily is not required. We
also see that this outperformance persists over a range of
different GNN architectures. While the three NAPS variants
perform similarly on Reddit2 and Amazon, NAPS outper-
forms the weighted variants by a significant margin on the
Flickr dataset. This is likely due to the relatively weak node
homophily ratio, implying that the increase in effective sam-
ple size is more valuable than down-weighting more distant
neighbours.

7. Conditional Coverage and Network
Topology

In this section we will examine the conditional coverage
properties of NAPS via two metrics, one generic and one
specific to the graph setting. A set-valued predictor C :
X → 2Y is said to satisfy exact conditional coverage if

P(Y ∈ C(X)|X = x) = 1− α for all x ∈ X .
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Table 3. The SSCV and PCCV (as described in Equations (9) and (10)) for all models considered on the Reddit2, Flickr and Amazon
Computers datasets with α = 0.1. Bold indicates the best performing method. All the NAPS variants use depth parameter K = 2.

Dataset Model
SSCV PCCV

APS NAPS NAPS-H NAPS-G APS NAPS NAPS-H NAPS-G

Reddit2

GraphSAGE-Mean 0.087 0.074 0.072 0.074 0.084 0.052 0.054 0.054
GraphSAGE-Max 0.089 0.075 0.073 0.076 0.083 0.052 0.051 0.053
ShaDow-SAGE 0.075 0.056 0.053 0.055 0.087 0.054 0.051 0.055
ShaDow-GCN 0.078 0.056 0.054 0.056 0.089 0.053 0.052 0.053

Flickr

GraphSAGE-Mean 0.113 0.064 0.074 0.079 0.080 0.059 0.065 0.065
GraphSAGE-Max 0.102 0.062 0.073 0.075 0.084 0.061 0.067 0.067
ShaDow-SAGE 0.100 0.054 0.085 0.087 0.089 0.064 0.066 0.067
ShaDow-GCN 0.105 0.054 0.079 0.081 0.091 0.062 0.069 0.071

Amazon

GraphSAGE-Mean 0.082 0.073 0.072 0.079 0.076 0.046 0.042 0.041
GraphSAGE-Max 0.081 0.072 0.072 0.074 0.078 0.045 0.042 0.042
ShaDow-SAGE 0.065 0.057 0.058 0.052 1.03 0.056 0.053 0.050
ShaDow-GCN 0.066 0.055 0.054 0.055 0.99 0.051 0.052 0.049

1 2 3 4
Neighbourhood Size K

0.800

0.825

0.850

0.875

0.900

0.925

0.950
Coverage

1 2 3 4
Neighbourhood Size K

1.4

1.6

1.8

2.0

Set Size

APS

NAPS

NAPS-H
NAPS-G

Figure 2. The coverage and size for the different conformal prediction procedures whilst varying K on the Reddit2 dataset. All the
experiments use the GraphSAGE-Mean GNN architecture. Each column shows the median of means over 100 repetitions of the experiment
for the given method using the methodology introduced in Section 6.2. The dashed black line shows the desired coverage level α = 0.9.

Exact Conditional coverage is known to be impossible to
achieve for conformal prediction (Barber et al., 2019); it is
nonetheless desirable to achieve approximate conditional
coverage.

Firstly we consider a metric introduced specifically for clas-
sification problems in (Angelopoulos et al., 2020), namely
Size-Stratified Coverage Violation (SSCV) metric. Let
S = {Si}i=s

i=1 be a disjoint stratification of the possible
prediction set sizes such that

⋃s
j=1 Si = {1, . . . , |Y|}. De-

fine the index set of all the datapoints with prediction set
size falling into stratum Sj as

Ij = {i : |C(Xi, Yi, Ui)| ∈ Sj}.

Then the SSCV is defined as

SSCV (C,S) :=

sup
j

∣∣∣∣ |{i : Yi ∈ C (Xi,Yi,Ui) , i ∈ Ij}|
|Ij|

− (1− α)

∣∣∣∣ . (9)

Here prediction set size can be thought of as a proxy for
the difficulty of the sample, so intuitively this measures the
worst case coverage violation conditioned on the difficulty
of the example.

In the graph setting, a desirable property for a conformal pre-
diction method is that the coverage probability for a given
node does not depend on its location within the graph. To
give a trivial example of why this is important, suppose our

7
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test network consists of 100 nodes split into two commu-
nities, with 90 nodes in one community and 10 nodes in
the other. To achieve 90% coverage, a conformal prediction
method could predict the full label set on all nodes in the
first community and the empty set on all the nodes in the
second community, yet this would not be helpful in practice.

To measure the degree to which this issue is present in
the constructed prediction sets, we introduce the Partition
Conditional Coverage Violation (PCCV) metric. Given a
partitioning of the node set into disjoint partitions V =
{Vi}Ni=1, we define the PCCV as

PCCV (C,V) :=

sup
j

∣∣∣∣ |{i : Yi ∈ C (Xi,Yi,Ui) , i ∈ Vj}|
|Vj|

− (1− α)

∣∣∣∣ .
(10)

We estimate the SSCV using the experimental setup intro-
duced in Section 6.2. We modify the experimental setup
slightly for computing PCCV, instead taking half of the
nodes (chosen at random) as calibration data and the other
half as test data. We partition the data into disjoint neigh-
bourhoods using a recursive approach; given the current set
of test nodes, we choose a root node at random and take the
2-hop neighbourhood around it, then delete all the nodes
in the neighbourhood from the current set and repeat until
there are no neighbourhoods of size 30 nodes or more. We
repeat this procedure 100 times and report the median over
the different runs.

The experimental results are shown in Table 3. All NAPS
variants outperform APS on all data sets and models. Within
the NAPS variants, the linear weights tend to perform best
on the Reddit2 data set, and the geometric weights perform
very well on the Amazon dataset, while the unweighted
NAPS version performs well on all data sets.

8. Ablation Study
The neighbourhood depth parameter K reflects a trade-off
between sample size and similarity between datapoints. To
better understand the influence of neighbourhood depth on
the performance of NAPS, we repeat the Reddit2 experiment
using the same setup introduced in Section 6.2 for K =
1, . . . , 4.

The results for the GraphSAGE-Mean architecture are dis-
played in Figure 2. We see that for K = 1 (on which all
three NAPS variants are equal) our method slightly over-
covers, likely due to the low sample size. We see that as K
increases (i.e. the neighbourhoods become large) the per-
formance of the unweighted variant of NAPS tends towards
that of APS as expected. The weighted variants are better
able to manage the trade-off between sample size and rele-
vance, maintaining similar rates of coverage and prediction

set size as the neighbourhood size grows.

9. Conclusion and Future Work
In this work we have introduced NAPS, an approach for
constructing prediction sets on graph structured data. NAPS
is quick to train and deploy and comes with theoretical guar-
antees on the coverage. We have shown through extensive
experiments that NAPS produces prediction sets that are
both more efficient and have better conditional coverage
properties than a naive application of conformal prediction.

In this work we have treated the neighbourhood size K
as a hyper-parameter. Intuitively, one would like to select
this value such that the calibration nodes are ”local” within
the network while providing a large enough sample size to
accurately estimate the quantile 1− α̂. It would be useful
to further study the interplay between the optimal choice
of K, the homophily level and the diameter of the network.
NAPS could also be extended to heterophilic networks;
in a heterophilic network nodes tend to be connected to
dis-similar nodes. One could therefore calibrate among
alternating neighbourhoods

⋃k
j=1 N

2j
n+1 \ N

2j−1
n+1 .

NAPS may produce wide prediction sets when deployed
on low density networks as the sample size for conformal
calibration will be small, see Equation (1). An approach for
conformal prediction in hierachical models was introduced
in Dunn et al. (2022), where the quantiles are calibrated in
different groups before being pooled. An approach similar
to this could be applied for nodes in small connected com-
ponents, where calibration on similar neighbourhoods or
components could be pooled to provide a better estimate of
the conformal quantile.

Finally, NAPS could be extended to model other types
of graph structured data. Here we have only considered
unweighted and undirected networks, but addressing both
weighted and directed networks follow as natural extensions
to the method. It would also be fairly straightforward to
extend the method to node regression tasks simply by using
a different conformal score function such as CQR (Romano
et al., 2019).

10. Ethical Concerns
While we do not believe this work is likely to have any neg-
ative impact on society, as always with statistical methods
care must be taken with the interpretation of the results. Just
like any method that constructs prediction intervals, those
obtained by NAPS indicate a statistical prediction, and as
such if used in a high-stakes field such as healthcare must
be interpreted as such.
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A. Appendix
A.1. Proof of Lemma 5.1

We define d := dTV (π1, π2) as the total variation distance
between the data distributions for the two communities.

A naive application of APS ignores the link structure, ap-
plying weight wj = 1 to all nodes. For whichever node
the prediction set is being constructed, n nodes will belong
to the opposing community (hence occur a penalty of d in
the Equation (5)) and n− 1 nodes will belong to the same
community so we may immediately apply Equation (5) to
obtain

E[CGAPS] ≤
nd

(2n− 1) + 1
=

d

2
(11)

Define Vi := 1Yi∈Ĉ(Xi)
as the indicator function of the

event that the ith node is covered by the constructed pre-
diction set. We can write the expected coverage for NAPS
as

E[CNAPS] = E

[
1

2n

2n∑
i=1

Vi

]
=

1

2n

2n∑
k=1

E[Vk].
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We can write each term in this sum as

E[Vk] =

n−1∑
i=1

n∑
j=1

(E[Vk | Nin = i,Nout = j]

Bin(i;n− 1, pin)Bin(j;n, pout)) (12)

where Nin, Nout are random variables indicating the num-
ber of neighbours in the same community and opposing
community to node k respectively, and Bin(l;n, p) is the
probability mass function of a Binomial random variable
with parameters n and p evaluated at l.

The term E[Vk | Nin = i,Nout = j] is just the coverage of
a prediction set constructed for node k in a fixed realisation
of the network, so we may apply Equation (5) to obtain

E[Vk | Nin = i,Nout = j] ≥ (1− α)− jd

i+ j + 1
. (13)

Lower bounding term-wise in Equation (12) we have that

E[Vk] ≥ (1− α)− dE
[

Nout

Nout +Nin + 1

]
(14)

Comparing the two bounds gives the result.

A.2. Dataset Details

For the experiments above we used the Flickr and Reddit2
datasets from (Zeng et al., 2020), and the Amazon Comput-
ers dataset introduced in (Shchur et al., 2018).

The Flickr dataset is constructed using images uploaded
to the Flickr site, where the node features consist of the
meta-data for each image and the label is the image tag.
The Reddit2 dataset is constructed from posts on the social
media site Reddit, with posts representing nodes. The node
features are bag-of-word vectors from the post, and the label
is the community (or sub-reddit) that the post belongs to.
The Amazon Computers dataset consists of segments of an
Amazon co-purchase graph, where nodes represent goods
and links are added between nodes if they are frequently
bought together.

Our train/validation/test splits for Flickr and Reddit2 were
done using the splits given in the original papers (which are
conveniently implemented in Pytorch Geometric (Fey and
Lenssen, 2019)). For Amazon Computers we constructed
our own split, using 752 nodes for training, 1000 for valida-
tion and the remaining 12000 for testing. As mentioned in
the main text we tested our graph only on large connected
components, which we chose as nodes with at least 50 2-hop
neighbours in Flickr and Amazon Computers, and nodes
with at least 1000 2-hop neighbours in Reddit2. We call this
set of nodes N cal, and report the sizes of these sets as well
as some summary statistics about each dataset in Table 1.

A.3. Model Training Details

We used the implementations of GraphSAGE and ShaDow
provided by Pytorch Geometric (Fey and Lenssen, 2019).
All models on all datasets used the same hyper-parameters.
Each GNN used 2 layers with hidden dimension H = 64.
We used the Adam optimiser (Kingma and Ba, 2014) with
default hyper-parameters, learning rate η = 0.1, and used
dropout probability δ = 0.5. For the GraphSAGE neigh-
bour sampling training we used 25 1-hop neighbours and 10
2-hop neighbours. We used early stopping based on the ac-
curacy on the validation set. We made no effort to optimise
any of these parameters as we are not trying to optimise for
accuracy, we merely assess whether our method performs
well with a variety of architectures.

Each experiment here took less than two hours in total on a
single machine with an NVIDIA GeForce RTX 2060 SU-
PER GPU and an AMD Ryzen 7 3700X 8-Core Processor.
One run of the conformal prediction procedure has trivial
overhead when compared with model fitting (and actually
NAPS is faster than APS as we use less data points to cali-
brate the procedure).
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